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Abstract

This thesis investigates strategies for automatically classifying documents provided in dif-
ferent languages thematically, geographically, or according to other criteria, and presents
Ontology Region Mapping, a novel linguistically motivated text representation method
that can be used with adaptive machine learning algorithms in order to learn classi-
fications from pre-classified examples and then automatically classify documents that
might be given in completely different languages. Ontology Region Mapping associates
terms occurring in a text with concepts represented in formal ontologies and lexical re-
sources, thereby, however, going beyond a simple mapping from terms to concepts by
fully exploiting the external knowledge manifested in the resources and mapping to entire
regions of concepts. In order to do so, a graph traversal algorithm is used that explores
further related concepts that might be relevant. Extensive testing has shown that this
method leads to significant improvements compared to existing approaches.
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Zusammenfassung

Die vorliegende Arbeit untersucht Strategien zur automatischen Klassifizierung von Do-
kumenten, die in unterschiedlichen Sprachen vorliegen, wobei die Zuordnung nach the-
matischen, geographischen oder anderen Kriterien erfolgen kann. Vorgestellt wird ein
neues linguistisch motiviertes Textrepräsentationsverfahren namens Ontology Region
Mapping, mit dem eine Klassifikation anhand bereits markierter Beispieldokumente mit
adaptiven Algorithmen gelernt werden kann, um sodann ein Klassifizieren neuer Doku-
mente zu ermöglichen, selbst wenn diese in unterschiedlichen Sprachen vorliegen. Onto-
logy Region Mapping verknüpft Begriffe aus den Dokumenten mit Konzepten, die von
formalen Ontologien oder lexikalischen Ressourcen spezifiziert werden, geht dabei je-
doch über ein direktes Abbilden dieser Terme auf Konzepte hinaus, in dem es das in
derartigen Ressourcen manifestierte Wissen effektiver ausnutzt und gesamte Regionen
von Konzepten berücksichtigt. Zu diesem Zweck wird ein graphentheoretisches Verfahren
zur Entdeckung weiterer potenziell relevanter Konzepte eingesetzt. Umfangreiche Tests
haben ergeben, dass diese Methode im Vergleich zu existierenden Ansätzen signifikante
Verbesserungen erzielt.
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Chapter 1

Introduction

1.1 Motivation

Language is the vehicle of thought and the fundamental tool that has allowed us to
develop human culture, accumulate knowledge, and communicate with other human
beings. At the same time, language today is still one of the prime reasons whenever
there is a lack of communication, as language barriers represent significant obstacles to
those wishing to communicate with other cultures or access information.

The need of having to organize knowledge in multiple languages has been an important
issue for a very long time now, considering that even the ancient Library of Alexandria is
thought to have held hundreds of thousands of scrolls written in different languages. The
digital age has significantly improved our prospects of successfully tackling such tasks
and has enabled us to make information a lot more accessible, yet at the same time the
volume of available data has increased exponentially, meaning that good principles of
organization are highly essential.

Automatic text classification (also known as text categorization) is the process of au-
tomatically associating text documents with the categories or classes considered most
appropriate, thereby distinguishing, for instance, texts from the field of particle physics
from those dealing with optical physics (cf. Figure 1.1). Although research in this area
has progressed to a point where certain techniques have become well-established with
successful application in many production settings, nearly all known approaches presup-
pose that every single document is provided in the same single language. A multilingual
approach to text classification, in contrast, would allow for adding new documents in
several different languages to a collection without the time-consuming need for someone
to manually decide to which categories or classes these documents belong, and people
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Chapter 1 Introduction

Figure 1.1: Classification: For each document we need to determine which class labels are ap-
propriate.

seeking information could then find relevant documents written in languages other that
the ones they normally use for searching and browsing. Once it is known which docu-
ments are relevant, if necessary, automatic or manual translations can be performed, or
if the user has a very basic understanding of the language, the document can be read
using a multilingual comprehension assistant (see Grefenstette and Segond, 2003,
pp. 708ff).

This, however, is just one main motivation for dealing with text classification. It should
be considered that apart from truly multilingual environments in places such as India
and large parts of Africa, people all over the world are getting used to speaking a lingua
franca such as English, Spanish, and Swahili in addition to their native local languages.
It has been estimated that at least 50% of Africa’s population is multilingual (Wolff,
2000), and far less than 10% of the world’s population speak English as their native
language, so it is not surprising that most applications of monolingual text classification
also turn out to be potential applications for multilingual text classification, including
the following.

• News wire filtering: The large quantity of news articles received at news agencies
and editorial departments needs to be classified so that recipients only receive those

2



Chapter 1 Introduction

articles that suit their specific profiles of interest (Sebastiani, 2006). For instance,
articles about the latest developments of oil prices in Venezuela might not be of
interest to subscribers of Italian sports journals. International news agencies deal
with articles coming from all parts of the world, presented in different languages.

• Traditional libraries and digital libraries: The vast resources available to us in our
Information Age need to be well-organized for them to be of any practical use to
us. Even within single issues of journals, one can often find articles written in
different languages.

• Web page and web site classification: Text classification assists in organizing World
Wide Web pages and sites with respect to a given taxonomy. This might also occur
on-the-fly in the context of an information retrieval request from a search engine
or in the context of content filtering systems.

• E-mail: In many countries users receive messages in different languages on a daily
basis. Multilingual text classification allows incoming messages to be automati-
cally placed into different categories, separating work-related matters, private cor-
respondence, and unsolicited e-mails. These techniques can also be used in order to
automatically forward messages to the most appropriate people in organizations.

• Surveillance technologies: Due to the high volume of documents (e.g. e-mails, con-
versation logs) that need to be scanned when gathering intelligence, it is necessary
to automatically select a small amount of suspicious documents for further review
from the millions of documents that typically pass through surveillance systems.

• Document management systems: Many organizations and companies nowadays
operate in several different countries or in multilingual regions and need to store
and organize documents in various languages.

1.2 Contribution

In this thesis we analyse the problem of automatic multilingual text classification, evalu-
ating several strategies for classifying texts from multilingual document sets. We provide
linguistic arguments against some existing approaches to the problem and devise a new
approach, called Ontology Region Mapping, that exploits background knowledge from
ontologies and lexical resources by first mapping the terms occurring in a document to
concepts associated with an ontology, disambiguating between different possible word
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Chapter 1 Introduction

senses, and then exploiting the background knowledge manifested in such ontologies by
weighting not only immediately connected concept identifiers but also multiple levels of
related concepts using a graph traversal algorithm. We propose strategies for setting
the parameters and additionally introduce several combined text representations for de-
creasing the error rate even further. Although the model proposed is designed to cope
particularly well with several phenomena inherent to multilingual documents, it likewise
offers a viable alternative approach to monolingual text classification.

1.3 Overview

The remainder of this document is organized as follows. We begin with a basic introduc-
tion to some fundamental concepts and techniques used in automatic text classification
and natural language processing in Chapter 2, followed by a presentation of some al-
ternative approaches to text classification related to our work in Chapter 3. Based on
an analysis of the problem of multilingual text classification, Chapter 4 will attempt
to identify weaknesses of those alternative approaches, while Chapter 5 will proceed
with the presentation of a novel approach called Ontology Region Mapping. Additional
considerations to be made when implementing this approach are described in Chapter
6, followed by an experimental evaluation of it in Chapter 7. Finally, the concluding
Chapter 8 will outline some of the implications for continued research in this area.

4



Chapter 2

Background

This chapter provides an introduction to how monolingual automatic text classification
is conventionally performed and presents some well-known techniques and resources from
the domain of natural language processing. It will serve as a prerequisite for a proper
understanding of the new techniques presented later on. The first section will introduce
the basics of learning classifications automatically by means of machine learning algo-
rithms, while the second section will then describe how these algorithms can be of use in
the case of monolingual text documents. A final third section will provide information
on certain additional natural language processing techniques and resources that will be
of use later on when more sophisticated means of using such learning algorithms on text
documents will be presented.

2.1 Learning Classifications

Automatic classification is the process of establishing and deploying classifiers φ̂ that
approximate classifications φ made by human experts.

Definition 2.1.1. A classification is an assignment of class labels C ∈ C to objects D ∈
D in the form of a function φ : D×C −→ {>,⊥} where > indicates that object D ∈ D is
assigned class label C ∈ C, and ⊥ indicates that this is not the case (Sebastiani, 2002).

Definition 2.1.2. A text classification problem T consists in finding a classifier φ̂ for
documents D ∈ D needing to be categorized using fixed class labels C ∈ C based on
their contents such that a given classification φ is approximated with a high level of
effectiveness, perhaps in terms of low error rates or other evaluation measures (see Section
7.2.4).
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Chapter 2 Background

In the context of this thesis, D will be a set of documents and each class label C ∈ C will
correspond to a category such a document might belong to. For instance, there could
be categories for nuclear physics, astrophysics, and optics, among others.

Additional conditions and constraints may apply to classification tasks. One may de-
mand that the set of class labels of an object D, classes(D) := {C ∈ C | φ(D,C)},
always have a cardinality of 1, meaning that every object must be assigned exactly one
class label C ∈ C. This case is called single-label classification, whereas in multi-label
classification every object can have zero, one, or multiple class labels.

Binary classification is a special case of single-label classification that imposes an addi-
tional constraint, this time on the cardinality of C, requiring that |C| = 2. This implies
that every object is assigned to exactly one of two possible classes. Frequently, the
second class involved is simply the complement C of the first class C. In contrast, if
no constraints are made regarding the cardinality of C, we have a multi-class classifi-
cation. When this is the case, there might additionally also be dependencies between
classes in the sense that certain classes are sub-classes of other ones, a special case called
hierarchical classification.

In the past, rules for classifying objects frequently used to be handcrafted by human
experts and then the classification process could run automatically by following those
rules. In order to perform classifications in a truly automated manner without the need
for human experts to program the system, one may now rely on techniques from machine
learning, a branch of Artificial Intelligence that deals with automated methods enabling
a machine to acquire knowledge inductively from examples. Such examples are much
easier to produce than handcrafted rules for an expert system. In text classification, the
examples are pre-classified documents, so the general type of learning process is called
supervised learning. The respective algorithms attempt to learn an existing classifica-
tion φ using pre-classified example objects, creating a classifier φ̂ which is hoped to be
able to classify new, hitherto unclassified objects correctly. In many cases, a sufficient
number of classified examples already exist from the time before the transition to a new
automatic classification solution (Sebastiani, 2006). For example, if a system is sup-
posed to be able to automatically distinguish articles about nuclear physics from articles
about astrophysics, one could perhaps use 100 existing articles about nuclear physics and
further 100 existing articles about astrophysics as pre-classified examples. The machine
learning algorithm would then study those examples and attempt to construct a model
that could be used to make the distinction for new, unseen documents. The set of
training objects is called the training set Dtr ⊆ D. In research settings, another set of
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Chapter 2 Background

pre-classified objects, called the test set Dtst ⊆ D (Dtr ∩ Dtst = ∅), is used to test how
well the learnt classifier approximates the original classification.

An adequate representation of the objects in D is an important prerequisite for being
able to apply learning algorithms. It is normally necessary to identify certain attributes
of the objects that are considered relevant, and represent them as discrete or continuous
features. The algorithms referred to in the context of this thesis assume that the features
are represented by real numbers. When categorizing automobiles one could use features
representing engine power, weight, and maximum speed, among others. Section 2.2 will
describe a common way of representing text documents using real-valued features that
is mainly based on how often particular terms occur within a document.

For each learning process, a fixed set of features is finalized as well as a fixed order of the
features, enabling us to define a vector space in which each object D ∈ D may be repre-
sented by a so-called feature vector, an n-dimensional vector d = (d1, . . . , dn) of feature
values in the Euclidean space Rn. Each feature corresponds to a separate dimension of
this vector space, so in the case of automobiles one dimension could represent the engine
power, another the weight, and so on.

A number of algorithms exist for learning classifications by analysing a series of labelled
feature vectors representing objects in the training set Dtr and then inductively con-
structing a classifier φ̂ that can then be applied to new objects such as the ones in
the test set Dtst. Three algorithms that have successfully been used for classifying text
documents will now be presented.

2.1.1 Artificial Neural Networks

Inspired by models of the functioning of neurons in the human brain, Artificial Neural
Networks (ANNs) are networks of interconnected units, where each unit takes one or
more real numbers as input and produces a single real number as output. In order to
classify an object, each component value of the object’s feature vector d is passed to a
separate input unit. As shown in Figure 2.1, the activation of such units is propagated
through the network, and the output of a designated set of output units determines the
classification prediction made by the network.

The most basic type of Artificial Neural Network is composed of a single layer of units
called Perceptrons (Rosenblatt, 1958). A single layer in this context implies that the
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Chapter 2 Background

Figure 2.1: Artificial Neural Networks

input units directly pass their activation to the output units without any additional
hidden units existing. The output of a Perceptron for input d = (d1, . . . , dn) is

o(d) =

1 w0 + w1d1 + w2d2 + . . . + wndn > 0

−1 otherwise
(2.1)

for some weight vector w ∈ Rn and an additional threshold constant w0 ∈ R. A Percep-
tron therefore implements a linear discriminant which in turn represents a hyperplane
decision surface w · x + w0 = 0 in the feature space (Figure 2.2). The output is 1
for instances lying on one side of the feature space and −1 for instances lying on the
other, allowing for binary classification problems to be solved where examples from one
class (positive examples) need to be separated from examples associated with another
class (negative examples). Problems allowing for a separation of positive from negative
instances by means of such a hyperplane decision surface are called linearly separable
problems.

In order to learn a classification, the weights are adapted to a set of training instances
d1, . . . ,dm (each di = (di,1, . . . , di,n)), possibly passed to the network multiple times (in
several epochs). One way of doing this is to initially set all wj to some default value or
to random values and then iteratively apply the Perceptron to the training instances di,
modifying the wj as

wj ← wj + η(c− p)di,j (2.2)

8



Chapter 2 Background

w⋅x  w0 = 0

x1

x2

Figure 2.2: Linearly separable problem

where we imagine extended document vectors di by defining di,0 as 1 in order to si-
multaneously account for w0 being updated (Mitchell, 1997, ch.4). Here, c ∈ {±1}
represents the true classification as the desired target output for di, p ∈ {±1} is the ac-
tual output received as a prediction, and η > 0 is a value called the learning rate which
determines to what degree the weights are adapted (η can also be changed over time). If
the output matches the original classification, the Perceptron is left unchanged because
c − p = 0. In the case of a misclassification, however, the weight vector is adapted in
accordance with di. It has been shown that this method is guaranteed to converge if
a sufficiently small learning rate is used and the training instances are indeed linearly
separable (Mitchell, 1997, p.89). Since it might not always be possible and desirable
to continue iterating up to the point of convergence, one may for example use the Voted-
Perceptron algorithm by Freund and Schapire (1998), an extension of this approach
that combines the update rule mentioned above with a leave-one-out-strategy: When
classifying an unseen example d, rather than just looking at the final o(d) using the
weight vector w received at the end of the training process, a separate prediction o(d) is
made after each single training instance. The final prediction for d is then determined
in a majority voting process.

For problems that are not linearly separable, more complex neural networks with multiple
layers or non-linear transfer functions as in the case of radial basis function neural
networks can be used, and the weights can be updated using back-propagation algorithms
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(see Brause, 1999). While such techniques have proven useful for tasks such as image
recognition, in the context of text classification the use of hidden units has not shown
significant improvements over the single-layer Perceptron model (Sebastiani, 2002). We
assume that the reason for this lies in the fact that, as will be explained later on, text
documents are usually represented in very high-dimensional feature spaces, obviating
the need to capture nonlinear relationships between single features.

2.1.2 Support Vector Machines

As explained earlier on, in the case of linearly separable binary decision problems there
exist some hyperplanes in the feature space that separate the positive from the nega-
tive examples. The basic idea behind Support Vector Machines (SVM), introduced by
Vapnik (1995), is to use the hyperplane that maximizes the distance to the closest pos-
itive and the closest negative examples by solving a constrained optimization problem,
assuming that this minimizes the risk of confusing positive and negative instances when
classifying (see Figure 2.3). These closest examples are called the support vectors, the
sum of the two minimal distances, one for each class, between them and the hyperplane
is also known as the margin, and hence the hyperplane chosen by a support vector ma-
chine is called the maximum-margin hyperplane. New instances can then be evaluated
by computing the distances to the support vectors and determining in which half-space
with respect to the maximum-margin hyperplane the vector lies.

Formally, a hyperplane can be characterized as w · x = w0 for some weight vector
w ∈ Rn and some scalar w0, allowing φ̂(D,C) to be determined by a feature vector
d ∈ R for D and a binary decision rule for C characterized by o(d) = sgn(w · d + w0)
with o(d) = 1 indicating a positive and o(d) = −1 indicating a negative classification, as
in the case of the Perceptron algorithm. Let us assume that the training documents in
Dtr are represented by d1, . . . ,dm and their respective classifications are represented by
c1, . . . , cm ∈ {±1} (ci = 1 for positive examples, −1 for negative ones). Since it is possible
to rescale w and w0 such that the points closest to the hyperplane satisfy |w·di+w0| = 1,
one may assume that the maximum-margin hyperplane satisfies ci(w · di + w0) ≥ 1 for
all i ∈ 1, . . . ,m, as illustrated in Figure 2.4.

For two points d+, d− closest to this hyperplane on either side we then have (w ·d+)−
(w · d−) = 2, so the margin becomes:

(
w
||w||

· d+ −
w
||w||

· d−) =
2
||w||

(2.3)
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w⋅xw0=0

x1

x2 v⋅xv0=0

Figure 2.3: Multiple separating hyperplanes: Since v·x+v0 = 0 is closer to the training instances
than w · x + w0 = 0, the latter is considered less likely to lead to misclassifications
of new examples.

w⋅xw0=0

x1

x2

w⋅xw0=−1

w⋅xw0=1

Figure 2.4: The maximum-margin hyperplane must satisfy ci(w · di + w0) ≥ 1 for all i. We can
imagine two parallel hyperplanes marking this minimal distance.

11



Chapter 2 Background

Maximizing this margin is thus equivalent to solving the following quadratic optimiza-
tion problem:

minimize:
1
2
w ·w (2.4)

subject to: ∀i ∈ {1, . . . ,m} : ci[w · di + w0] ≥ 1

Cortes and Vapnik (1995) introduce the soft margin hyperplane which extends this ba-
sic idea to cases when no hyperplane exists that perfectly separates all positive examples
from all negative ones by allowing slight deviations ξi:

minimize:
1
2
w ·w + κ

m∑
i=1

ξi (2.5)

subject to: ∀i ∈ {1, . . . ,m} : ci[w · di + w0] ≥ 1− ξi

∀i ∈ 1, . . . ,m : ξi ≥ 0

where κ is a constant.

Support Vector Machines can also be employed for problems with truly non-linear deci-
sion boundaries by relying on the so-called kernel trick, which involves mapping vectors
that are not linearly separable to a higher-dimensional space where this becomes the
case in such a way that the computation of the formulae remains efficient. As explained
earlier, however, non-linear separation is not deemed necessary for conventional repre-
sentations of text documents.

SVMs work particularly well for text classification because the runtime is linear with
respect to the number of attributes and because the method is able to cope rather well
with irrelevant attributes. Support Vector Machines were used for text classification by
Joachims (1998) and it is now generally accepted that they outperform Neural Networks
when conventional text representation methods are used, such as the one presented in the
following section (Yang and Liu, 1999; Sebastiani, 2002). The use of the maximum-
margin hyperplane implies that SVMs have the property of being fairly resistant to the
problem of overfitting, i.e. arriving at models that fail to generalize to new examples
(Sebastiani, 2002).

2.1.3 Adaptive Boosting

Adaptive Boosting (AdaBoost Freund and Schapire, 1997) is a meta-learning algo-
rithm that uses other learners as its basis. Often, the base classifiers are simple decision
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stump functions that merely determine whether a single feature value surpasses some
fixed threshold. The power of AdaBoost derives from its ability to find several low ac-
curacy base classifiers that are then suitably combined to form a single high-accuracy
classifier.

The classifying committee, in this case, comprises base classifiers that are all learnt by
the same base learner, albeit with different weightings of the training instances. For every
training instance labelling there is an associated importance weight value that indicates
to the base learner how important correctly making the respective classification is.

In each iteration, the base learner generates a new classifier based on the weighted train-
ing examples paying respect to the fact that misclassifying training instances is consid-
ered more severe for labellings with a high importance weight than for those that are
associated with a lower one. The weighted error that is then obtained for this classifier on
the training examples later determines to what extent the classifier will contribute to the
final meta-classifier. In the first round, all importance weights are equal. Subsequently,
however, whenever a base classifier fails to guess the correct label of a training instance,
the respective labelling will be weighted more in the next round, whereas all other la-
bellings have their weight decreased. Hence, the misclassified instances will presumably
be handled more appropriately by the next classifier to be learnt, as it is expected to
avoid the errors made by its predecessor.

In the end, when all base classifiers have been learnt, a meta-classifier is constructed by
linearly combining them using coefficients computed from the respective weighted error
rates.

Adaptive Boosting has exhibited very high levels of effectiveness in text classification
tasks (Sebastiani, 2002). More information about this technique can be found in Fre-

und and Schapire (1999).

2.1.4 Multi-Label and Multi-Class Classification

Algorithms such as the Perceptron and Support Vector Machine normally do not support
multi-label and multi-class problems directly. In such cases, rather than resorting to
algorithms without such restrictions, one may use class binarization or decomposition
methods that reduce the problem to multiple binary problems that can be addressed
separately.
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A popular approach to decomposition is the one-against-all strategy where each class
C ∈ C is examined using a separate binary classifier that has been trained to discriminate
objects in the respective class C from all other objects. The predictions made by these
binary discriminators can trivially be combined to determine which classes a document
is associated with in the multi-label case. For single-label problems, the classifiers should
be able to provide a confidence rating of their prediction so that the class with highest
score can be chosen as the one to associate the document with.

2.2 Conventional Monolingual Text Classification

In the previous sections we introduced classification using learning algorithms for ar-
bitrary objects that are described by feature vectors with real-valued feature values.
In the case of text classification, the objects to be classified are text documents, and
although some related tasks such as authorship attribution and classification by genre
exist, the classes correspond to categories based on topics that the documents may or
may not pertain to. It is not obvious how a text document’s content can adequately be
represented numerically in a Euclidean vector space such that the feature vectors allow
for such thematic characterizations. In what follows, we shall present the most popular
solution to this problem for monolingual documents, an approach relying on counting
how often terms occur in the respective documents. All steps involved in arriving at
feature vectors for such documents will be described in detail.

2.2.1 Import and Lexical Analysis

For our purposes, a document is simply a unit of text that might be a journal article,
a web page, or even an entire book. We will assume that we are dealing with purely
textual data taking the form of a sequence of symbols, uncoupled from any embedded
images or advanced formatting information. When creating a feature vector represen-
tation for a document, the first required step is thus that the text be imported from
the respective document data sources. These might be local files in various formats, e.g.
Hypertext Markup Language (HTML), Extensible Markup Language (XML), or OASIS
OpenDocument files. They could as well be text objects stored in a relational database.
When importing, formatting information codes that might indicate font changes etc.
need to be removed. This process might also involve merging supplementary informa-
tion such as the document title and subtitle to the main text body, whereas other types
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of meta-information usually are discarded. In some cases, the actual full text may not
be available and a surrogate is used, e.g. an abstract.

Formally, given a set Σ of elementary symbols consisting e.g. of the letters of the alphabet
and punctuation characters, a text can be modelled as a finite sequence s = (s1, . . . , sn)
of symbols si ∈ Σ with some length n such that s adheres to the rules of a language. A
language is a highly complex, structured system of signs with rules that govern how a set
of fundamental symbols are combined in a linear fashion in order to arrive at higher-level
units such as morphemes, words, sentences, and texts.

The next elementary task is thus the lexical analysis step, performed by a so-called
tokenizer, which involves segmenting a text into so-called tokens, while ignoring the
whitespace and punctuation between them. A token is defined as a short finite sequence
of symbols corresponding to a word or a similar unit (numbers, formulae, etc.). Despite
the fact that the segmentation is mainly derived from occurrences of whitespace, tokens
may contain whitespace characters, as in the case of the term ‘European Union’. One
might also need to deal with issues such as removing hyphenation and line breaks, recog-
nizing abbreviations, and of course dealing with the general problem that there usually
is no clear definition of what a word exactly is, so one might need to simply establish
certain conventions based on the requirements of the task (for more information about
these issues, see Grefenstette and Tapanainen, 1994). Formally, the tokenization
step transforms the finite sequence of symbols s = (s1, . . . , sn) into a finite sequence of
tokens.

2.2.2 Term Processing

The terms in the finite sequence of tokens are then processed in several operations. The
first operation normalizes words, e.g. by ensuring that all letters are converted to a
lower-case form. For text classification purposes, it normally does not make much sense
to distinguish different capitalizations of a word (e.g. ‘LASER’, ‘Laser ’, and ‘laser ’)

In the next step, the sequence of terms is filtered such that certain words considered
topic-neutral due to their frequent occurrence in the language are removed. These in-
clude function words such as articles, prepositions, and conjunctions that regularly can
be found in all kinds of texts and thus are not valuable for the process of learning classifi-
cations because their presence does not speak for any particular class. This process, first
employed in information retrieval systems, is called stop word removal and is performed
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using predetermined lists of words (Luhn, 1958), containing among others the words
‘although’, ‘enough’, ‘get’, ‘not’, ‘probably ’, and ‘they ’, for example.

Since the goal is to establish similarities between documents, it makes a lot of sense to
abstract from specific word forms rather than regard forms such as ‘child ’, ‘children’,
‘childishly ’ as completely distinct. It is thus very common to perform a step called
stemming where the different possible derivative forms a word may take are conflated
to one single word stem or similar normalized form. The normalized forms need not
correspond to morphologically correct words of the language, e.g. English ‘chastity ’ could
be reduced to the string ‘chast’ and French ‘éclaircirent’ could be shortened to ‘éclairc’.
Most stemming algorithms used in text classification and information retrieval, including
the one devised by Porter (1980), which is the most commonly used one, are limited to
removing suffixes using general pattern-based rules. Lemmatization, explained in Section
2.3, is a related, more linguistically motivated process, which, however, is rarely used in
text classification.

2.2.3 Term Weighting

In order to represent the resulting sequences of terms as feature vectors as required by
the learning algorithms, one generally adopts the vector space model originally developed
for information retrieval purposes (Baeza-Yates and Ribeiro-Neto, 1999, p. 27ff),
which associates each distinct term with a separate vector dimension. A vector space is
constructed where each dimension corresponds to a feature associated with a particular
term such that all terms received as output after stemming from any of the training
documents are covered. For every document, one can then construct a feature vector
consisting of feature values that are based on the number of occurrences of the respective
term in the document (after preprocessing) and are intended to represent the importance
or weight of that term in the document with respect to our particular goal of classifying
the document using a given classification scheme.

In the course of such a transition from finite sequences of terms to feature vectors, one
thus loses all information about where particular words occurred within the document,
which is why this representational model is often called the bag-of-words model. Put
differently, however, this process results in an abstraction from details that highly sim-
plifies the learning process, yet works very well in practice. The most commonly used
term weighting schemes are:
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• Term Counts (TC): Term Count values simply indicate the absolute number of
occurrences of a term.
Definition 2.2.1. If t = {t1, . . . , tk} is the processed token sequence for document
D ∈ D, then

tc(t, t) :=
k∑

i=1

It(ti) (2.6)

for a term t and an indicator function It that evaluates to 1 if its argument equals
t and to 0 otherwise.

The underlying assumption is that the higher the number of occurrences, the more
important the term is for our purposes.

• Term Frequency (TF): TF is similar to TC except that each feature vector
is normalized such that the feature values characterize the relative importance of
terms within the document. Although variations exist, the most common choice is
to normalize with respect to the sum of all Term Counts values:
Definition 2.2.2. The term frequency (TF) is defined as

tf(t, t) :=


tc(t, t)∑

t′
tc(t, t′)

tc(t, t) 6= 0

0 otherwise

(2.7)

where t′ iterates over the set of all distinct terms occurring in t.

• TF-IDF: Considering that terms that occur frequently in a wide range of docu-
ments bear less discriminatory information, it is common practice to give them less
weight by multiplying all TF values with the so-called inverse document frequency
(IDF) introduced by Spärck Jones (1972).
Definition 2.2.3. The inverse document frequency (IDF) is defined as

idf(t) :=


log

1
df(t)

df(t) 6= 0

0 otherwise
(2.8)

where df(t), the document frequency, is defined as

df(t) :=
|{ti ∈ Dtr | tc(ti, t) > 0}|

m
(2.9)

and provides information about which fraction of all m = |Dtr| training documents
(m > 0) with processed token sequences ti ∈ Dtr contains a particular term (Dtr is
taken to be the set of processed token sequences resulting from the set of training
documents Dtr).
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Terms that occur in only few documents thus have a higher IDF value than terms
occurring in many documents. This finally leads to the following formula based on
seminal work in information retrieval by Salton and Buckley (1988):
Definition 2.2.4. TF-IDF term weights are defined as

tfidf(t, t) := tf(ti, t) · log
1

df(t)
(2.10)

for a term t, a term sequence t for some document (that need not be from the
training set), and term sequences ti ∈ Dtr corresponding to the training documents.

It should be pointed out that some systems use slightly deviating formulae (e.g.
Singhal et al., 1996).

The term weights are numeric values that can then be used as feature values in a feature
space constructed by assigning every processed term occurring in some term sequence t
a separate feature dimension.

2.2.4 Feature Selection and Normalization

Obviously, using term weights for all terms as separate feature values results in a tremen-
dously high-dimensional feature space. Fortunately, most of the components of any given
vectors will have the value 0, and such sparse vectors can be stored and processed rather
efficiently.

Nevertheless, many learning algorithms benefit from only receiving feature vectors with
a limited number of highly relevant features rather than all available information, as
this not only has a desirable effect on runtime performance but also often induces an
increased accuracy. In order to reduce the dimensionality of the feature space, a com-
monly used approach is to employ so-called feature selection algorithms. Given a set
of training instances, these algorithms determine which vector dimensions may be con-
sidered extraneous and therefore are not taken into account when learning. One can
then construct a new feature vector space that is lower-dimensional than the original
feature space and map the training and test instances accordingly. A simple yet effective
heuristic is to use the document frequency as described above as an indication of how
important a feature is, as many terms typically just occur in one or two documents (cf.
Sebastiani, 2002). Such terms with an extremely low document frequency are unlikely
to contribute substantially to the constructed classifier because no general decision rules
can be inferred without additional knowledge. A more sophisticated measure for evalu-
ating the usefulness of particular features is the Information Gain (IG) measure, defined
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as the number of bits of information gained for class prediction by knowing whether the
event F of some specific feature being nonzero is given (Yang and Pedersen, 1997).

IG(F ) =− (
∑
C∈C

P (C) log P (C)) (2.11)

+ P (F )(
∑
C∈C

P (C|F ) log P (C|F )) + P (F )(
∑
C∈C

P (C|F ) log P (C|F ))

Here, P (C) is the probability of a document being in a class C ∈ classes, P (F ) and P (F )
are the probabilities of the feature value being nonzero or zero, respectively, and P (C|F )
and P (C|F ) are the corresponding conditional probabilities for C. These probabilities
are estimated based on the training set and then only the l highest-ranking features are
maintained (for some predetermined value l), or alternatively some threshold Information
Gain is specified.

Finally, one can optionally normalize the vectors to have a Euclidean norm of 1.0, facil-
itating the learning algorithm’s task of comparing different vectors.

Definition 2.2.5. The L2 norm of a vector d = (d1, . . . , dn) is

norm(d) :=
1
||d||

d =
1√

d2
1 + . . . + d2

n

d (2.12)

The resulting feature vectors can then be used for learning and deploying classifiers that
are able to distinguish text document categories.

2.3 Other Techniques and Resources for Natural Language

Processing

In the following chapters, alternatives to the conventional approach to text classification
described so far will be introduced. First, however, this section will provide a brief
overview of some additional techniques and resources from natural language processing
that will be used for this purpose.

2.3.1 Morphological Analysis

Morphological analysis is a process that is used to obtain information about the lexical
category of a term as well as its lemma. The words of a language can be associated

19



Chapter 2 Background

with different lexical categories (traditionally called parts of speech). In general, for
instance, nouns denote various types of things (including abstract entities, classes of
entities, etc.), verbs denote events, adjectives modify nouns, and adverbs modify words
from other lexical categories. A morphological analyser uses rules or statistical methods
in order to determine the most appropriate category for a term. At the same time,
most analysers are able to perform a process called lemmatization. Words such as ‘give’,
‘gives’, ‘gave’ all belong to the same lexeme. The canonical form used to refer to such a
lexeme, in our example the form ‘give’, is called the lemma or citation form, and such
lemmata correspond to the headwords of dictionaries. For verbs this is by convention
often the infinitive form, though sometimes other conventions may be used, as in the
case of Arabic, where the masculine third-person singular past tense form of verbs is
chosen. Lemmatization will serve as an alternative to conventional stemming in our
approach, because word stems often are not morphologically correct words. It should be
pointed out that morphological analysis may require disambiguating between multiple
possibilities with respect to the local context, e.g. the prefixes and suffixes of ‘unionizable’
could be analysed as either ‘un-ion-izable’ or ‘union-izable’ (Russell and Norvig, 1995,
p. 703).

2.3.2 Word Sense Disambiguation

Word sense disambiguation (WSD) algorithms attempt to choose the most appropriate
or probable from a set of potential meanings that a term might have in particular con-
text. Disambiguating word senses allows for more accuracy in text classification. The
word ‘case’, for instance, can be used to refer to a container for objects, an instance or
example, a legal case, the distinction between majuscule or minuscule forms of letters,
a grammatical case (e.g. genitive case), or a showcase. Nevertheless, in the phrase ‘The

judge dismissed the case’, it is fairly clear to a human reader that what is being referred
to is a legal case. It is not, however, evident how such inferences could be made algo-
rithmically. Most existing approaches look at co-occurrences of words, exploiting the
fact that the words ‘judge’ and ‘dismissed ’ are more likely to occur when the phrase is
referring to a legal case. One approach is to regard the terms surrounding a word in
the text document as the word’s local context string, and then attempt to construct a
similar context string for the candidate senses. Theobald et al. (2003) make use of
the fact that the lexical resource WordNet (see Section 2.3.4) provides English-language
descriptions for each sense that it lists. They create context strings for the candidate
senses by concatenating the respective descriptions with additional descriptions of closely
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“river”

“account”

θ t , ci

t

ci

c j

Figure 2.5: Cosine similarity measure: ci is closer to t than cj because the term ‘internet’ occurs
more often in the respective context. This proximity is characterized by θt,ci . Note
that in reality, word stems are used rather than full words.

related senses. For all context strings, TF-IDF feature vectors as described in Section
2.2 are then constructed. Given two feature vectors t and ci representing the contexts
for a human language term and a candidate sense, respectively, one can then determine
their similarity using the so-called cosine measure which assumes that the angle θt,ci

between the two vectors characterizes their similarity (Figure 2.5), for vectors that point
in similar directions are based on context strings containing similar terms. The angle
can be computed using the inner product:

cossim(t, ci) := cos θt,ci =
〈t, ci〉
||t|| · ||ci||

(2.13)

Instead of directly using θt,ci , one uses the cosine because it is easier to compute, and,
since all vector components are nonnegative, we obtain −π

2 ≤ θt,ci ≤ π
2 and thus receive

cosine values in the range [0, 1]. The candidate sense with the highest corresponding
cosine value is taken to be the most likely sense of the word.

2.3.3 Machine Translation

Machine translation (MT) is the automatic translation of texts from one language to
another language. Proper machine translation normally involves some kind of parsing
of the original source text, a dictionary lookup step where words and more complex
expressions in the source language are translated to the destination language or to some
intermediate form, and the final output according to the grammar of the destination
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language. The translation process thus is a very complex one, and the current state
of the art technology still is highly inferior to human translation work. Some of the
challenges that make machine translation particularly difficult are problems such as am-
biguity (e.g. synonyms), the complexity of the grammatical structures in the source
language, and the fact that different languages structure the world differently making
one-to-one translations of terms difficult. Consider for example that an English text
might not contain enough inherent information in order to decide whether an English
‘you’ should be translated as French ‘vous’ or rather as the informal form ‘tu’ (Russell

and Norvig, 1995, p. 693). This example shows that what would be required in order
to attain the level of quality reached by human translators would indeed be an under-
standing of both cultures involved as well as additional intelligence. However, despite
the imperfections of current translation software, such systems do have useful applica-
tions, for example for translations in very limited domains such as weather reports, or
when someone desires to quickly arrive at a basic understanding of the meaning of a text
without waiting for costly professional human translations to be performed. In Section
3.2 we will describe approaches that make use of translations for solving multilingual
text classification problems.

2.3.4 Thesauri and Ontologies

Later on we will attempt to use multilingual lexical resources and so-called ontologies in
order to establish a common form of representation for documents written in different
languages.

A thesaurus, according to the ANSI/NISO standard Z39.19, is ‘a controlled vocab-
ulary arranged in a known order and structured so that the various relationships
among terms are displayed clearly and identified by standardized relationship indicators’
(ANSI/NIZO, 2005). Synonyms are grouped together, whereas homonyms are distin-
guished. Roget’s Thesaurus, first published in the 19th century, is the most famous such
resource for the English language. Table 2.1 provides an example of what a thesaurus
might list under the headword ‘scholarly ’, though a number of other relationship types
are possible, some of which are presented in Table 2.2.

An ontology, from ancient Greek ‘-logÐa’ (science) and ‘întoc’ (of being), is a theory
of what possesses being in the world or in a limited domain. In knowledge represen-
tation, such theories are heavily formalized in a formal language such as the Knowl-
edge Interchange Format (KIF) or Web Ontology Language (OWL) and their objective
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Table 2.1: Example thesaurus entry (source: Kipfer (2006))

Entry: scholarly

Synonyms: bookish, cultured, educated, erudite, intellectual, learned, lettered, literate,
long-hair, scholastic, schooled, studious, taught, trained, well-read

Antonyms: illiterate, uneducated

Table 2.2: Relationships captured by thesauri

relation type inverse relation type description

synonymy synonymy nearly identical meaning

similarity similarity similar meaning

antonymy antonymy opposite meanings

hypernymy hyponymy more general term / less general term (‘a
kind of ’)

holonymy meronymy whole/part-relations (further distinction
possible: part, location, member, ‘made

of ’, or portion holonymy and meronymy)

causes is caused by Physical causality

involves agent has role of agent e.g. ‘hunting ’ involves agent ‘hunter ’
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is to support the sharing and reuse of knowledge by different applications. Gruber

(1993) defines an ontology as an ‘explicit specification of a conceptualization’ and refers
to Genesereth and Nilsson (1987) who define a conceptualization as ‘the objects,
concepts, and other entities that are presumed to exist in some area of interest and
the relationships that hold among them’. There is a considerable amount of dissent,
however, on what exactly constitutes an ontology. For example, according to many def-
initions, it suffices for ontologies to simply describe relations holding between entities
rather than axiomatically defining the entities, so lexical resources such as thesauri, too,
are sometimes construed as implying weakly formalized ontologies. In Section 5.2 we
thus provide our own definition that corresponds very well to the specific needs of our
approach to multilingual text classification.

Princeton WordNet is a lexical database for the English language that organizes terms
into so-called synonym sets or synsets, which in turn are linked by different relations
such as hypernymy, hyponymy, and meronymy (Fellbaum, 1998), as shown in Figure
2.6. While WordNet is frequently regarded as a thesaurus, it is also often perceived
as defining an ontology. The original WordNet later inspired the creation of similar
resources for other languages. Some of these are strictly aligned to the original, while
others require the use of mappings in order to establish cross-lingual correspondences,
e.g. in the case of the EuroWordNet project an interlingual index was created for this
purpose.
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Figure 2.6: Sample of information stored in Princeton WordNet
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Related Work

While Chapter 2 described the standard way of performing monolingual text classifica-
tion, relying on the TF-IDF bag-of-words model, we will now provide an overview of
certain alternative approaches that are related to the path pursued in our work.

3.1 Semantic Text Representation Methods

The conventional monolingual bag-of-words-based approach presented in Chapter 2 fails
to properly uncover the meaning of terms, so synonyms such as ‘car ’ and ‘automobile’
are treated as distinct. With varying levels of success, several authors thus have sought
to use ontologies and thesauri to develop text representation models that purport to
be semantic rather than remaining at the surface level, for instance de Buenaga Ro-

dŕıguez et al. (1997), Moschitti and Basili (2004), Rosso et al. (2004), and
Ifrim et al. (2005). Most authors retain the bag-of-words-based features, choosing to
augment them with additional features rather than replacing them. These additional
features are constructed by mapping the original terms occurring in the document to
ontology concepts or to thesaurus entries. The additional features are hence based on
the meanings of terms rather than on the terms themselves, so ‘car ’ and ‘automobile’
will normally be represented by one single feature rather than by two distinct ones.

While, in theory, such methods should be able to outperform term-based approaches,
these endeavours often produced rather discouraging results. A lack of precise word sense
disambiguation methods is frequently cited as the main inhibiting factor for an increased
accuracy. Our results confirmed that word sense disambiguation is important for dis-
tinguishing homographs, i.e. words sharing the same spelling yet differing in meaning,
however, we will also attempt to show that overly fine-grained discrimination between
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word senses is not desirable when attempting to represent the general topic of a docu-
ment. In Section 4.3.2 an extensive list of arguments against a simple concept mapping
approach will be presented. A few authors have experimented with the use of hypernyms
for increased efficiency (e.g. Scott and Matwin, 1998; Bloehdorn and Hotho, 2004).
Ramakrishnanan and Bhattacharyya (2003) additionally attempted to use certain
other direct neighbours, following e.g. pertainym relationships, which link adjectives
such as ‘educational ’ to words they pertain to (‘education’ in this case), however, even in
monolingual text classification there apparently has not been any research on using an
activation spread model as employed by our Ontology Region Mapping algorithm.

3.2 Multilingual Solutions

In our work, we attempt to devise a text representation scheme that is not only semantic
but also works with documents provided in different languages. It should be noted that,
although language identification can be a part of multilingual text classification, the
main goal is not to classify by language but rather to classify documents in different
languages by topic or similar criteria.

There has been research on reaching this goal in the case of enough training documents
being available for every language, as discussed in Section 4.2.2. In such cases, Bel

et al. (2003) use one single classifier for all languages. Their results prove that whether
this can be done without a very negative impact on the level of accuracy depends on
how the learning algorithm operates, e.g. the Rocchio algorithm, which attempts to
form centroids, does not handle this situation very well. In the cross-lingual case, they
propose translating selected terms from the documents. Garćıa Adeva et al. (2005)
test additional setups for dealing with this scenario of enough training documents being
available in each language, and their results suggest that using separate classifiers for
each language leads to a higher accuracy than using a single classifier for all languages.
Such scenarios do not fall under what we will later define as genuinely multilingual text
classification problems, for they can be resolved using separate monolingual solutions.

In our work, we focus on more interesting cases when this condition of enough training
documents being provided for each language is not given. For such cases, a simple ad
hoc solution is to translate documents such that the problem is reduced to a monolin-
gual one (Jalam, 2003; Olsson et al., 2005), and then e.g. simply use conventional
bag-of-words TF-IDF feature vectors as described earlier in Chapter 2. Rigutini et al.

(2005) present a similar approach that additionally applies the EM algorithm in order
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to exploit unlabelled examples already provided in the destination language in addition
to the translated training documents. Relying on machine translation is also the dom-
inant approach in cross-lingual information retrieval (CLIR) (see Oard and Dorr,
1996), although in this case mostly only user queries are translated rather than the doc-
uments to be indexed. CLIR has a long history going back to at least Salton (1969)
and has recently developed into a rather active area of research with workshops such as
the Cross-Language Evaluation Forum (CLEF, see Peters et al., 2005). Translations
in CLIR have been performed with professional machine translation tools, dictionaries,
parallel corpora, and comparable corpora, and most research focuses on optimizing these
translations, for instance by developing sophisticated word sense disambiguation algo-
rithms and exploiting the corpora better. A similar approach has also been applied to
multilingual text clustering, where Mathieu et al. (2004) use a bilingual dictionary
to establish a cosine similarity-like distance measure. Our work, however, shows that
simple translations alone lead to suboptimal results when performing multilingual text
classification.

An alternative approach related to the path pursued in our work is to use multilingual
thesauri. Loukachevitch (1997) uses a semi-automatically created bilingual Russian-
English thesaurus. She does not use a machine learning approach but rather requires
rules to be specified manually for the classes involved. Her method involves looking for
occurrences of terms from the thesaurus in the document, leading to a small number
of topics (‘thematic nodes’) that are considered relevant, and then identifying which of
these topics are the most important, assuming that co-occurrence with other important
topics in the document is what characterizes them. If these most important topics match
the demands of the manually specified rules, the document is assigned to the respective
class.

Lauser and Hotho (2003) use the AGROVOC thesaurus, a controlled vocabulary for
the agricultural domain, for multilingual subject indexing, meaning that their objective is
to label documents with keywords from the vocabulary rather than supporting arbitrary
text classification tasks. Steinberger and Pouliquen (2003) use the EUROVOC
thesaurus for this purpose.

In CLIR, some systems use a controlled vocabulary for indexing documents, so only a
very limited number of terms can be searched for (Soergel, 1997). There has been
some research on using larger thesauri to create concept-based document and query
representations, e.g. Verdejo et al. (2000) use EuroWordNet. Many implementations,
however, just use thesauri for creating pseudo-translations. None of these approaches
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use a region weighting model like the one described in Chapter 5.

There has been further related work on multilingual solutions based on latent semantic
analysis (LSA). Gliozzo and Strapparava (2005) adapt LSA for multilingual text
classification by exploiting comparable corpora and requiring that the languages share
certain terms (which is not necessarily the case for language pairs such as Chinese and
French), and Dumais et al. (1997) use latent semantic indexing for CLIR where the
initial training is based on documents present in or translated into multiple languages.
Latent semantic analysis does not use formal background knowledge like our approach
but rather identifies concepts implicitly present in a set of documents, computed statis-
tically by identifying terms with similar occurrence patterns.
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Chapter 4

Analysis of Problem and of Existing

Approaches

The central goal in this chapter will be a thorough analysis of multilingual text classifica-
tion and of strategies to tackle such problems. First, a clearer definition of multilingual
text classification will be presented. This will be followed by a study of the different
kinds of scenarios one might encounter. Subsequently, some possible approaches will be
judged mostly in terms of their appropriateness from a linguistic perspective.

4.1 Multilingual Problems

Conventional text classification methods as described in Chapter 2 are based on the tacit
assumption that the text classification problem is monolingual. Our goal is to devise
methods for dealing with multilingual text classification problems while maintaining
a high level of effectiveness. Bearing in mind how text classification problems were
defined in Section 2.1, a formal distinction between monolingual and multilingual text
classification problems ought to be established.

Unfortunately, our conventional notion of languages is rather vague, and the distinc-
tion between a language and a dialect, for instance, is often purely based on historical
and political circumstances. We thus use the more precise notion of a language form,
which we define as a maximal set of variants of written languages (or languages that are
symbolic in some other way), such that all variants are sufficiently similar in phenotype
to be processed by the same methods. In many cases, such language forms correspond
directly to our conventional understanding of languages. However, we may observe the
following.
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1. In certain cases, two arguably distinct languages correspond to the same language
form. For instance, the Romanian and Moldovan languages are virtually identi-
cal in their standard written variants. Similarly, the standard form of Simplified
Written Chinese should be treated as a single language form, although it does not
correspond to one particular spoken language, considering that several different
mutually unintelligible languages or dialects exist.

2. In other cases, two variants of what is considered one single language may corre-
spond to distinct language forms. For instance, Norwegian can be written using
either Bokm̊al or Nynorsk, and thus the two language forms are regarded as dis-
tinct. Similar distinctions are made when languages have undergone significant
reforms, as in the case of modern Turkish.

In what follows, we are going to assume that each document is provided in a single
language form. When a document is available in multiple languages, each version may
be treated as a separate document. Documents where multiple language forms are mixed
within the text can be accommodated by regarding them as being provided in a pseudo
language form Lmixed, and then processing each part of the text language-specifically.

At this point, the desired definition of multilingual text classification problems can finally
be made as follows:

Definition 4.1.1. A text classification problem T is a monolingual text classification
problem if and only if all documents D ∈ D are expected to be given in a single language
form L (L 6= Lmixed). A text classification problem T is a multilingual text classification
problem if and only if T is not a monolingual text classification problem.

4.2 Problem Analysis and General Framework

We will now propose a framework for analysing a given multilingual text classification
problem T , for, as it turns out, not all such problems demand similar solutions. The
first step involved is an identification of the language forms that need to be supported.
We assume that a machine learning approach is going to be used and that the following
information can be determined, based on the specific requirements of the task:

1. the set of class labels C that need to be supported
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2. the learning algorithm that is going to be used as well as its requirements (see
Chapter 2 for algorithms that have proven to work particularly well in text classi-
fication)

3. Ltr: the set of language forms that will need to be supported when parsing training
documents

4. for every language form L ∈ Ltr the kinds of training documents that are going to
be available to the system in terms of the classes C they are expected to belong
to, including knowledge e.g. about whether all classes are going to be covered by
them

5. Ltst: the set of language forms that are to be supported when classifying documents
in a test or operational setting

Note that in this chapter, when referring to test documents, we mean any documents
that might need to be assigned class labels rather than just a limited test set used for
evaluating the performance of a system. Similarly, the term training documents shall
henceforth refer to any documents used for training, whether they are pre-classified or
not, for the strategies presented here can also be used with semi-supervised learning
methods that attempt to benefit from additional unlabelled examples (Zhu, 2005).

Our analysis will continue with an evaluation of whether simple language transformations
can be applied. After that, in certain cases, our problem T might turn out to be rather
trivial, allowing for a reduction to simpler monolingual problems.

4.2.1 Simple Language Transformations

We observed earlier in Section 4.1 that language forms can be highly related yet distinct.
For instance, one might expect test documents written in Serbian using the Cyrillic
alphabet yet only have training documents available that are written in Croatian using
the Latin script. In order to proceed with our analysis of the problem, we need to consider
whether certain documents can be converted from a language form L1 to another form
L2 by means of some simple transformations, as this might affect the scenario we are
dealing with.

Such transformations need not be completely lossless, and may involve the following:

• A transliteration (or transcription) may be applied when multiple scripts exist for a
single language or for extremely closely related languages, e.g. Serbian, Croatian,
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and Bosnian can be transformed to use the same script. Similarly, Simplified
Chinese Characters can be converted to Traditional Chinese Characters and vice
versa (although the mapping may not always be trivial).

• Orthographic changes: Transformation rules can be applied when multiple lan-
guage forms are very closely related, e.g. when they merely differ in terms of
different spelling systems being used, or when they correspond to very closely
related dialects, sociolects, or other varieties of the same language.

Note that in the case of mixed-language documents, each part needs to be processed on
a language-specific basis.

4.2.2 Monolingual Reduction

We then proceed with our analysis by determining whether a sufficient number of training
documents are going to be available for every language form in Ltst, i.e. for every
language we expect test documents to be provided in. In such cases, a multilingual
text classification problem can in fact be reduced to one or more monolingual problems.
While the exact requirements will depend on the classification task and on the particular
learning algorithm used, in general, many algorithms require for each language and class
(or class pair) a certain amount of positive and negative examples.

If it turns out that enough training documents are going to be available in every relevant
language form, one can simply reduce the problem to a monolingual one. The following
solutions are conceivable:

• Whenever enough training documents are available for every language form, a mul-
tilingual text classification problem T with |Ltst| different possible test document
languages can be reduced to |Ltst| separate monolingual text classification problems
T1, T2, . . . , T|Ltst| by training a separate classifier φ̂i for each such language form.
One then creates a meta-classifier φ̂ which dispatches documents to the appropri-
ate base classifier φ̂i based on the language of the document, e.g. sending French
documents to a French classifier and Portuguese documents to a Portuguese clas-
sifier. This reduction corresponds to the polylingual training approach suggested
by Bel et al. (2003).

• Alternatively, if the learning algorithm chosen is able to handle classes that are
very heterogeneous, one does not need to proceed very differently from conventional
text classification as described earlier in Chapter 2. Every training document with
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a language in Ltst is processed using language-specific tokenization, stemming, etc.
(see Section 6.3), and then a single classifier φ̂ is trained using all those docu-
ments (cf. the NP1C approach by Garćıa Adeva et al., 2005). Later on, one
can then use φ̂ to classify any test document that has been processed using such
language-specific techniques because enough training documents were submitted
to the learner for each language form.
Bearing in mind that each class can contain documents written in different lan-
guages, the learning algorithm used in such a case must be able to cope with
heterogeneous classes comprising training examples that do not share very much
in common. With some such algorithms one will have to ensure for every single
class that the numbers of training documents per language are well-balanced. The
K-nearest neighbour algorithm (see Mitchell, 1997, p.231ff), which we would ex-
pect to work rather well with such heterogeneous classes, has no such requirement.

• Another possibility arises when every training document and every test document
is available in all language forms L ∈ L (where L is a set of language forms
containing more than one form). In such a case, one optionally can additionally
use techniques from multi-view learning (please refer to Muslea, 2002) to increase
the accuracy of the results. Separate classifiers φ̂i for each language form are
created as explained above, and then a meta-classifier is constructed that evaluates
each document using multiple (perhaps all) base classifiers φ̂i. This meta-classifier
then determines the final result by combining the single results in an appropriate
manner, perhaps using some voting system.

In each of these cases, one will have to rely on certain multilingual natural language
processing techniques as explained later on in Section 6.3, in particular in order to
identify the language of the document when necessary.

4.2.3 Genuinely Multilingual Problems

If the conditions mentioned above fail to be met in spite of the simple language trans-
formation processing, then our text classification problem T is what one might call a
genuinely multilingual one in the sense that the classifier will need to detect similarities
between documents despite them being in different language forms.

Definition 4.2.1. A text classification problem T is a genuinely multilingual text
classification problem if and only if it cannot be reduced to one or more monolingual

34



Chapter 4 Analysis of Problem and of Existing Approaches

text classification problems using the simple language transformation and monolingual
reduction steps.

There is an interesting subclass of genuinely multilingual problems where this challenge
becomes particularly clear.

Definition 4.2.2. A text classification problem T is a cross-lingual text classification
problem if and only Ltr∩Ltst = ∅, i.e. test documents are always expected to be provided
in language forms distinct from the language forms used for training.

In the rest of this chapter, we are going to take a closer look at several existing solutions
for tackling such genuinely multilingual problems.

4.3 Approaches to Multilingual Text Classification

We have seen that only certain multilingual text classification problems can be reduced
to one or more monolingual problems. Other problems, so-called genuinely multilingual
problems, require special solutions. The main challenge is finding a way of representing
texts such that positive examples can be distinguished from negative ones, although the
texts are provided in different languages. At the surface level, an Italian article from
the field of molecular biology shares a lot more in common with an Italian text about
renaissance art than with a Norwegian or Korean text about molecular biology. Ideally,
however, the representation chosen should lead to data allowing a linear separation of
positive and negative examples despite different languages being involved.

In what follows, several approaches will be studied from a linguistic perspective. We
will begin by determining whether it makes sense to simply use the bag-of-words model
as in conventional monolingual text classification, however with words from different
languages.

4.3.1 Multilingual Bag-Of-Words Approach

Even when a proper monolingual reduction is not possible, we might be able to use
conventional text classification methods, as presented in Chapter 2, to classify texts
in multiple languages. The general idea is to use the conventional bag-of-words model
with words from different languages, hoping that enough of these words are shared
between those languages. Terms that are shared by different languages could enable
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learning algorithms to discriminate classes properly although the documents are provided
in different languages, because documents in different languages that are to be assigned
the same class label might tend to contain certain characteristic terms which do not
occur in documents not belonging to the respective class.

The general procedure is very close to the monolingual case. One first applies preprocess-
ing techniques such as tokenization and stemming, paying care, however, to language-
specific issues as described in Section 6.3, and the resulting terms from different languages
are then all represented in one single feature space. The learning algorithm, aided by
feature selection, will then presumably be able to identify terms relevant for establishing
the classification.

4.3.1.1 Shared Terms

The effectiveness of this approach depends mostly on the level of agreement that can be
exposed between terms taken from two documents in different languages.

A significant contribution is made by named entities, i.e. names of people, places, things,
etc. Many named entities are transliterated, transcribed, or even translated in different
languages but others remain unchanged. Named entities include:

• names of people (however, Leonardo da Vinci is ‘Léonard de Vinci ’ in French,
‘Gorbachev ’ is ‘Gorbatjov ’ in Swedish, ‘Ãîðáà÷¼â’ in Russian, and ‘»�®�e’
in Chinese)

• names of groups, organizations, and companies (however, the ‘UNO’ is called ‘ONU’
in many languages)

• many names of locations, rather often for instance ‘Berlin’ and ‘Madrid ’, not that
often ‘Cologne’ (‘Köln’ in German), ‘London’ (e.g. ‘Londres’ in French)

Another important contribution is made by loanwords and internationalisms that are
shared between languages, for instance words such as ‘radio’, ‘tennis’, ‘information’ and
‘tsunami ’ occur in many languages.

Of course, this always depends on the languages involved, as shown in Table 4.1. The
word ‘civilisation’ has the same spelling in French, Swedish, and usually also in British
English. However, alternative spellings such as ‘civilization’, common in the USA, Canada
and also in certain British publications, could negatively affect the performance of text
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Table 4.1: International word ‘civilization’

Language Term

English civilization

civilisation

German Zivilisation

Swedish civilisation

French civilisation

Spanish civilización

Portuguese civilização

Estonian Tsivilisatsioon

Hungarian civilizáció

classification tasks, since two variations of the same word might not be recognized as
such.

The examples demonstrate that we can yield further correspondences between language
forms by performing stemming, for instance although English ‘revolution’ is distinct from
Spanish ‘revolución’, the process of stemming could conflate both words to the common
stem ‘revol ’. The same holds for English ‘civilization’ and Spanish ‘civilización’ in Table
4.1.

Such shared words often have a Latin or Greek background, though perhaps equally
many, especially in science and technology, come from English. One positive aspect is
that precisely these international words present in many languages sometimes are the
most relevant words. For our purposes, we do not need prepositions, pronouns, and
other auxiliaries to be similar.

Another advantage that we have is that written language is a lot more conservative
than spoken language, leading to cognates having identical spellings, as in the case of
‘civilisation’, despite great differences in pronunciation between different languages. A
special situation arises with writing systems such as the Chinese one, which historically
gave birth to the Japanese kanji, the Korean hanja, and the old Vietnamese Chữ nôm,
the latter two not being in common use anymore. Despite certain shifts in meaning, there
is a large overlap between these writing systems, which can help when classifying.

Unfortunately, terms with different meanings but similar appearance, often called false
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friends, might also be matched. For instance, the German word ‘Roman’ corresponds
to the English ‘novel ’ rather than referring to the Roman culture. French ‘pain’ means
bread rather than the sensation of pain. However, we do not expect such cases to exert
a significant influence on the effectiveness of the classifier.

4.3.1.2 Discussion

Despite having seen that documents written in different languages may share many
important terms, it remains clear that the learnt classifier will only work well if the level
of concordance between the involved languages is sufficiently high and this agreement
exhibited by them is amenable to identification by means of stemming. In the case of the
German and Estonian words for ‘civilization’ in Table 4.1, we can observe that stemming
does not suffice to identify the two words despite their obvious similarity.

Figure 4.1: Lack of agreement between French and Chinese at the surface level.

Looking at Figure 4.1, we can get an idea of how difficult it would be to use this method
in the case of two very different languages such as French and Chinese, for in Chi-
nese normally even all non-Chinese names are transcribed, so ‘Victor Hugo’ becomes
‘�.õ·¥*’ (‘Wéikèduō Yǔguǒ’) in Mandarin Chinese, and likewise, in western lan-
guages such as French and English all Chinese names are romanized using Hànyǔ P̄ınȳın
or other systems. If we used conventional text classification techniques on French and
Chinese documents, there would usually be nearly no overlap between the features used
for either language. The feature set would fall into two nearly disjoint subsets for each
language, which is highly undesirable.

Another significant problem arises when the training instances for certain languages are
not distributed very equally among all classes. For instance, if there are several classes
C1, . . . , Ci−1 for which all training examples are provided in Swedish, and another class
Ci for which all training documents are provided in Portuguese, then an extreme case of
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underfitting for Ci is very likely to occur: Due to the overwhelming amount of agreement,
the learning algorithm will likely end up associating all Portuguese test documents with
class Ci regardless of what they are about thematically. Not in all cases will one be able
to adapt the training set to solve such problems.

Using conventional text classification for multilingual problems thus is only viable in a
limited range of cases, depending on the distribution of training documents, the level of
correspondence between the languages, the required effectiveness of the system, as well as
the type of documents and classes involved, among other things. It is desirable, however,
to establish a more universal solution to the task of performing genuinely multilingual
text classification.

4.3.2 Conventional Bag-Of-Words Model with Translations

The problem of simply using conventional text classification for multilingual documents is
that documents provided in two languages may be related semantically but nevertheless
might not exhibit any similarities at the surface level.

One general strategy for multilingual systems is to perform translations such that all doc-
uments are present in a single pivot language. Jalam (2003) suggests simply translating
all documents and then adopting conventional monolingual text classification methods.
Typically, the pivot language would correspond to one of the language forms for which
a large number of training documents are present.

This amounts to an extension of the idea of simple language transformations described
in Section 4.2.1 in the sense that one not only performs simple syntactic transformations
but also more complex transformations that involve actual translation based on the
semantics of a text, and then exclusively uses the results instead of the original text. If
all required translations succeed, then the entire collection of training and test documents
in the document collection D will be available in a single pivot language form and we
can perform a reduction of our problem T to a single monolingual problem T ′ for which
conventional monolingual text classification methods may be used.

This approach can be expected to work rather well. However, while grammatically
correct translation results are not strictly necessary, producing properly disambiguated
translations is a rather complex process, and high-quality machine translation software
tends to be very expensive. Furthermore, some of the general drawbacks of the bag-of-
words approach become particularly severe when using translations.

39



Chapter 4 Analysis of Problem and of Existing Approaches

1. lexical variety: The representation scheme requires documents that belong to
the same class to contain the same terms. However, this might not always be the
case when using translations. The machine translation process usually involves a
built-in translation dictionary that associates a particular sense of an input lan-
guage word with one specific term in the destination language but not to any of
the other relevant synonyms in the destination language. This means that the out-
put documents do not contain the same variety of synonyms as a human-written
document would.
Considering the current availability of machine translation software, the pivot lan-
guage is very often going to be the English language, which unfortunately makes
this problem of synonymy particularly severe, as it has an extraordinarily large
vocabulary, many words existing in both a Germanic form and a Romance form
(e.g. ‘whole’ vs. ‘entire’).

A further aggravation might occur when multiple source languages need to be
translated. Translation method A might always map a certain word sense in lan-
guage form L1 to word w1 in the destination language LD, whereas translation
method B for source language L2 might always map to a different word w2 of LD,
although w1 and w2 have the same meaning. For instance, we might have:

Spanish ‘coche’ 7−→ ‘car ’

French ‘voiture’ 7−→ ‘automobile’

Such differences in lexicon can present an impediment to the learning algorithm’s
task of detecting similarities between documents of the same class.

2. variety of expression: Different languages may offer similar but not identical
ways of expressing things. For example, in one language it might be common
to say you take the bus, while in another language you more generally speak of
using public transportation, perhaps just referring to the name of the local public
transportation authority. Often one term has a more general meaning than the
term in the other language. Consider also the following example.

English I have a headache I have a headache

Spanish Me duele la cabeza *It hurts the head to me (Babel Fish)

French J’ai mal à la tête *I have pain at the head

It is a well-known problem that machine translation software such as Babel Fish
(AltaVista, 2006) rarely produces texts with the expressions that would most
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naturally be used in a language. In the example above, the use of literal trans-
lations would not reveal the links between the term ‘headache’ and the concepts
corresponding to ‘head ’ and ‘to hurt’.

3. lexical ambiguity in destination language: The problem of lexical ambiguity,
too, is aggravated by the use of translations. Of course, lexical ambiguity is gen-
erally an issue when dealing with texts. However, for instance when translating
the Indonesian word ‘timbal ’ to English ‘lead ’, meaning the chemical element, we
introduce even more lexical ambiguity because ‘lead ’ is a homograph that could
also mean the verb ‘to lead ’.

4. lexical lacunae: In certain cases, the destination language might not be able to
express certain ideas very well unless new terms are defined or borrowed from other
languages. For instance, Latin might not be the language of choice for discussing
hydraulic engineering. The Portuguese term ‘saudade’ refers to a very specific kind
of longing for something that is gone, might return in the distant future, though
very likely is gone forever.

5. overstemming and understemming: A general problem of conventional text
classification is that stemming might identify terms which semantically have noth-
ing or very little in common, e.g. the word ‘organ’, representing a musical instru-
ment, with the words ‘organic’, ‘organization’, ‘organism’, a phenomenon sometimes
called overstemming. Another problem is understemming, when related-words are
not conflated to the same form, e.g. ‘acquire’ might be stemmed to ‘acquir ’, but
‘acquisition’ to ‘acquis’ (Paice, 1996).

In order to solve such problems, we investigate alternative approaches to multilingual
text classification that exploit knowledge from ontologies and thesauri.

4.3.3 Ontology-based Concept Mapping

Many of the shortcomings of the translation-based approach can be addressed by exploit-
ing resources such as ontologies (or thesauri) and using concept-based representations
as discussed earlier in Chapter 3. The basic idea is to map all words to identifiers
representing language-independent concepts specified by an ontology and then counting
occurrences of such concepts rather than occurrences of the original words. The main
advantage of this approach is that it resolves the issue of lexical variety because all
synonyms will ideally be associated with the same concept. By mapping to concepts,
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one also overcomes the problem of lexical ambiguity in the destination language. Over-
stemming is avoided by making use of a lemmatizer instead of a stemmer (cf. Chapter
2).

In multilingual settings, the idea of mapping terms from different languages to language-
neutral semantic concepts seems rather attractive from a theoretical perspective. Unfor-
tunately, an approach that simply maps each term to the respective candidate concepts
from an external resource still has several shortcomings, for certain issues mentioned ear-
lier such as variety of expression, lexical lacunae, and understemming are not resolved.
Indeed, it turns out that this approach causes some entirely new problems that might
outweigh the merits of adopting it, in particular because the mappings often remain very
fine-grained compared to conventional text classification using the bag-of-words model,
and thus fail to comply with the demands of classification tasks. The following problems
can be identified:

1. understemming: While lemmatization removes various types of transforming
morphemes from words and thus tends to handle inflected forms much better than
stemming, it does not remove as many suffixes as stemming does. For instance,
the concepts corresponding to the terms ‘educational ’ and ‘educate’ are treated as
distinct, despite being closely related.

2. family resemblance and polysemy issues: Word sense disambiguation
obviously is useful in the case of true homonyms (e.g. the word ‘bank’ which
can be used for a river bank as well as for a financial institute) and heteronyms
(such as the word ‘bass’, which can be used to describe low-frequency tones in
music but with a different pronunciation can also refer to certain fish species).
However, the lexical database Princeton WordNet 2.1, described earlier in Section
2.3.4, distinguishes many senses of the word ‘school ’ of which at least seven can be
seen as a thematic cluster, listed in Table 4.2. Even if it were universally possible
to capture the intended use of a word in the document context very accurately,
choosing only the correct sense would mean that other highly related senses are
neglected, which might compromise the performance of text classification systems.
The table seems to suggest that sometimes even lexical category information ought
to be ignored.

When dealing with multiple human languages, additional problems may arise.

1. incongruent concepts: It might not be possible to map words in different
languages to the exact same concept, for different languages tend to structure
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Table 4.2: Polysemy: Some of the senses of the term ‘school ’ distinguished by Princeton WordNet
2.1 (see Section 2.3.4). Here (n) is used for nouns and (v) indicates a verb.

Lexical category sense

(n) (an educational institution) ‘the school was founded in 1900 ’

(n) school, schoolhouse (a building where young people receive
education) ‘the school was built in 1932 ’; ‘he walked to school

every morning ’

(n) school, schooling (the process of being formally educated at a
school) ‘what will you do when you finish school? ’

(n) school (an educational institution’s faculty and students) ‘the

school keeps parents informed ’; ‘the whole school turned out for

the game’

(n) school, schooltime, school day (the period of instruction in a
school; the time period when schools is in session) ‘stay after

school ’; ‘he didn’t miss a single day of school ’; ‘when the school

day was done we would walk home together ’

(v) school (educate in or as if in a school) ‘The children are

schooled at great cost to their parents in private institutions’

(v) educate, school, train, cultivate, civilize, civilise (train to be
discriminative in taste or judgment) ‘Cultivate your musical

taste’; ‘Train your tastebuds’; ‘She is well schooled in poetry ’
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reality differently. For instance, the concept corresponding to the English word
‘woods’ is much narrower than the respective ones for Danish ‘skov ’ or French
‘bois’ (Hjelmslev, 1943). Similarly, Vietnamese ‘xanh’ corresponds to both ‘blue’
and ‘green’ in English, and English ‘wall ’ corresponds in German to both ‘Wand ’
(an interior wall) and ‘Mauer ’ (an exterior wall) (Hutchins, 2003).

One might come to think that this is merely a matter of word sense disambiguation
but in fact this is not always the case. Rather, the concept corresponding to the
French word ‘bois’ may be regarded as a super-concept of the concepts correspond-
ing to English ‘wood ’ and ‘woods’, and the Vietnamese ‘xanh’ as a hypernym of
‘blue’ and ‘green’. Even that would be a simplification, however, as all of these con-
cepts are rather vague ones with fuzzy boundaries and connotations that vary from
language to language. This means that even terms that seem to correspond, such
as Spanish ‘selva’ and French ‘forêt’ in reality may have slightly different meanings
and an ontology may or may not represent them using the same concept. Consider
also the Welsh word ‘glas’, which, though usually translated as ‘blue’, is also used
to refer to the colour of grass or of silver.

2. lexical lacunae: Due to the idiosyncrasies exhibited in different languages, con-
cepts lexicalized in one language are not necessarily lexicalized in another. For
example, an ontology might link the commonly used German word ‘Friedensnobel-

preisträgerin’ with a concept representing women awarded the Nobel Peace Prize,
yet be unable to map any English term to this same concept, simply because the
English language does not possess a fixed term with the same designation. Fortu-
nately, in some cases, the words might correspond to commonly used compound
terms for which we also have an appropriate ontology mapping in the second lan-
guage (e.g. German ‘Pech’ corresponds to English ‘bad luck’). In other cases,
however, the term might be less common in one language, e.g. in Japanese and
Chinese, there are separate words for older and younger sisters, but a typical En-
glish ontology mapping is not that likely to provide a mapping for the expressions
‘younger sister ’ (‘��’, ‘mèimei ’ in Mandarin Chinese, ‘°’, ‘imouto’ or ‘°.l’,
‘imoutosan’ in Japanese depending on whether it is the own or an other family)
or ‘elder sister ’ (‘��’, ‘jiějie’ in Mandarin, ‘»’, ‘ane’ or ‘#».l’, ‘oneesan’ in
Japanese). In even other cases, one might encounter concepts that are lexicalized
in one language but truly unlexicalized in another language, e.g. Cantonese Chi-
nese has a word for the paternal younger great uncle’s wife (‘Rº’). In certain
polysynthetic languages, one single word can capture enough information to repre-
sent a complex statement, e.g. the Finnish ‘juoksentelisinkohan’ meaning ‘I wonder
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whether I should run around aimlessly ’ (Wikipedia, 2006).

3. variety of expression: Furthermore, as mentioned before, even aside from such
fundamental differences in morphology and lexicon, different languages may sim-
ply choose different words when expressing the same idea. Recall the difference
between French ‘J’ai mal à la tête’ vs. Spanish ‘Me duele la cabeza’ mentioned
earlier in Section 4.3.2. This problem is not solved by merely mapping to concepts
because the French noun ‘mal ’ will be mapped to a concept distinct from the one
corresponding to the Spanish verb ‘doler ’.

This simple concept mapping approach thus turns out to be inadequate for identifying
connections between terms in different languages, although a well-structured ontology
would be expected to reflect the connections present between such similar concepts.

4.4 Summary

Our formal characterization of multilingual text classification problems has shown that
different classes of problems need to be distinguished. While certain problems can simply
be reduced to monolingual ones, others require specifically multilingual solutions. The
multilingual bag-of-words approach is limited to a narrow range of cases. Translation-
based solutions, in contrast, are universal; however a linguistic analysis shows that they
suffer from several drawbacks. Some of these issues may be resolved by mapping terms
to concepts specified by an ontology or lexical resource, however this introduces several
new problems, including polysemy issues and incongruent concepts.

45



Chapter 5

Ontology Region Mapping

In order to overcome many of the shortcomings of the simple concept mapping approach
and other approaches outlined in Chapter 4, we present an alternative solution for text
classification problems, called Ontology Region Mapping, where ontologies are construed
as semantic networks (see Figure 5.1), for all of the shortcomings mentioned earlier
involve concepts being treated as distinct despite being closely related. The intuition is
that we should not only map terms occurring in a document to the respective concepts
representing their meaning, but rather map to entire regions of semantically related
concepts in the network, for whole groups of concepts or even entire topics are relevant
when classifying, not just individual concepts.

Figure 5.1: Ontologies as graphs: Concepts are linked via various types of relations.

By propagating weight from concepts to other related concepts we fully exploit the
background knowledge offered by the ontology and overcome many of the problems
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mentioned in Section 4.3.3. For instance, even if terms in different languages correspond
to incongruent concepts, the respective concepts may nevertheless have a lot in common
and are expected to be related. Similarly, when certain concepts are unlexicalized in
one language but lexicalized in another, it is assumed that the ontology will relate the
complex concept to some of the simple concepts it is based on, e.g. the concept associated
with the German term ‘Friedensnobelpreisträgerin’ is expected to be related to concepts
associated with terms such as ‘Nobel prize’ and ‘peace’. The same holds for issues such as
understemming, variety of expression as well as problems arising from family resemblance
and polysemy.

This is akin to how semantically related words presumably lead to similar regions of
neurons being activated according to many theories of cognition. One of these theories,
going back to Quillian (1968), Neely (1977), and many others, attempts to elucidate
the phenomenon known as semantic priming (Meyer and Schvaneveldt, 1971) by
assuming that an activation of neurons associated with specific concepts results in ac-
tivation energy being spread to neurons associated with semantically related concepts
(see McNamara, 2005).

5.1 Overview of Procedure

Since we can map words from several languages to the same concept space, this ap-
proach can be used directly for multilingual text classification. However, given that this
method may also be applied to monolingual problems, an alternative setup is possible for
multilingual problems, involving the use of our technique in conjunction with machine
translation in order to overcome at least some of the deficiencies of using translations
with conventional text classification. In this case, all documents are translated to some
pivot language, and then monolingual text classification is performed using Ontology
Region Mapping.

Regardless of which of these alternatives is chosen, the following tasks will need to be
tackled in order to establish a representation of a document’s content. After tokenizing
the document and eliminating superfluous stop words, each source term will be mapped
to one or more concepts specified by an ontology. This process is far from trivial as it
involves word sense disambiguation, i.e. determining which candidate concepts are the
most appropriate for a given occurrence of a term, and lemmatization, i.e. reducing
inflected word forms such as ‘children’ to their citation form (‘child ’).
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Whenever a direct mapping from a term to some concept has been established, additional
related concepts will be evaluated. For this, a graph algorithm will be used in order to
repeatedly propagate weight from one concept to another according to the relations
captured by the ontology, thereby activating entire regions of concepts.

In the end, when all source terms have been mapped to concepts and all propagation
steps have been completed, the sum of all weight assigned to any given concept will be
used to compute its corresponding feature value. Together, all such feature values then
constitute the final feature vector that represents the document.

5.2 Ontologies

In order to develop this idea of mapping terms to regions of concepts, we shall first
attempt to formally characterize some of the vague notions of ontologies presented earlier
in Chapter 2.3.

For our purposes, it suffices to see an ontology as a system of concepts with binary
relations between them. We do not require ontologies to provide us with formal defini-
tions for entities, because all that is needed is a set of identifiers for concepts (concept
terms) and a function that returns information about the relations holding between such
concept terms. We thus propose the following definition.

Definition 5.2.1. An ontological resource is a tuple

O = (CO, RO, τO)

where CO is a set of terms that specify concepts (concept terms), RO is a set of relations
that may hold between concept terms, and

τO : CO −→ P(CO ×RO × [0, 1])

provides information about how concept terms are related by returning finite sets of
entries in CO ×RO × [0, 1] such that for each entry (c, r, w) the concept term c refers to
a related concept, r ∈ RO indicates the type of relation between the two concept terms
(hypernymy, antonymy, etc.), and w ∈ [0, 1] is the relation weight, a value that specifies
to what degree the two concept terms are related, ranging from 0.0 (unrelated) to 1.0
(fully related). Here, P(S) denotes the power set of a set S, i.e. the set of all subsets of
S.
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For an extremely simple example, consider an ontological resource O =
(CO, RO, τO) using a universe of terms consisting only of CO = {‘Kenya’,
‘Nairobi ’, ‘country ’, ‘national capital ’, ‘city ’}. The relation types list could be
RO = {rinstance, rholonymy, rhypernymy}, and the knowledge specified could include
τO(‘Nairobi ’) = {(‘national capital ’, rinstance, 1.0), (‘Kenya’, rholonymy, 1.0)} as well as
τO(‘national capital ’) = {(‘city ’, rhypernymy, 1.0)}, meaning that Nairobi is the national
capital of Kenya and a part of Kenya, and that every national capital is a city.

The set CO may be uncountable and can contain terms for any type of entity, including
various types of particulars, properties, and relations, and we refer to the meanings of
any such terms as concepts. In fact, CO may even include terms that denote states of
affairs and similar entities, considering that the human language terms we would like
to map to concept terms might include cases like the Finnish word ‘juoksentelisinkohan’
which means ‘I wonder whether I should run around aimlessly ’ or Turkish ‘Nasılsınız ’ which
means ‘How are you’. Mapping such words to concept terms may be possible because
the latter can be complex expressions constructed in some formal language LO rather
than just simple identifiers. Knowing which language LO is used for the concept terms is
not required for our purposes, although we do assume that the concept terms in CO are
somewhat normalized so that identical concepts tend to correspond to identical concept
terms1.

The ontological resource further provides us with knowledge about relations that hold
between concept terms from CO. For every ontological relation between entities there is
a corresponding semantic relation between concept terms or other words. For instance,
identity of concepts implies synonymy of concept terms, super-concept relationships
correspond to hypernymy of terms, and part-whole relationships between concepts are
captured by meronymic term relations. Although one may deny that thesauri and similar
lexical resources define ontologies, it is clear that they fulfil our requirements for onto-
logical resources. However, ontologies may, of course, also capture much more specific
relationships between entities, e.g. expressing that one entity was created by another
entity.

The relational knowledge is manifested in a function τO that returns related concepts
with respect to a set RO of relation types. We assume that for any concept term c0 ∈ CO

1For instance, in the description logics AL and ALC (Schmidt-Schauss and Smolka, 1991), the

equivalent concept terms StudentuFemale, FemaleuStudent and Femaleu>uStudent could all

be normalized to FemaleuStudent, where the identifiers are in lexicographical order (u is reflexive)

and no superfluous intersection with the top concept > is carried out, as > by definition contains all

individuals.
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the function τO(c0) provides us with a finite set of relation tuples of the form (c, r, w)
where r indicates the type of relation, c is the related concept term, and w with 0 ≤ w ≤ 1
is the weight of the relation, i.e. roughly specifies to what degree the two concept terms
are related in this way. For instance, for the concept term cschoolhouse representing the
concept of a schoolhouse we might have an entry (cbuilding, rhypernymy, 1.0), indicating
that the concept term representing the concept of a building is a full hypernym, and
for cclass there might be an entry (clesson, rsimilarity, 0.8), indicating to what degree the
concepts of classes and lessons are related.

5.3 Ontology Mapping

Ontological resources on their own cannot serve as lexical resources, for the concepts
they specify are normally not linked to specific terms of a human language. Although it
is advisable to use concept terms that are intuitively understandable, e.g. ‘Undergraduat-

eStudent’, ontological resources might just as well use cryptic names such as ‘X3738 ’.

In order to link words found in a text to concepts from an ontology O, additional auxiliary
ontology mapping functions µ are required, which, roughly speaking, map terms from a
human language LH such as English, Japanese, or Esperanto to concept terms from a
set CO.

Definition 5.3.1. An ontology mapping function is a function

µ : CLH
×∆LH

−→ P(CO × [0, 1])

that maps human language terms from t ∈ CLH
depending on their local context δ ∈ ∆LH

in a text to a set of 2-tuples (c, w) such that c ∈ CO is a concept term that is possibly
relevant and w is the weight, viz. the degree of relevance for c. Here, CO is a set of
concept terms associated with an ontological resource O, and LH is a human language
with terms CLH

and ∆LH
as the set of all texts written in LH, i.e. the set of all finite

sequences of symbols adhering to LH.

Such an ontology mapping function µ could map the word ‘bank’ in the sentence ‘The

nearest bank is the one at the River Thames’ to {(cbankbranch, 0.6), (criverbank, 0.4)}, meaning
that a weight of 0.6 is associated with the concept term representing branches of financial
institutes, while an inferior weight of 0.4 is associated with the concept term representing
river banks.
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The degree of relevance could for example be set based on an estimation of the probability
that c represents the true meaning of term t in the respective context, or more precisely,
a probability estimate for the event X = c given the context δ, where X is a random
variable denoting the concept term that reflects the true meaning of t in the respective
context. In what follows, however, we will argue against seeing the weights as probability
estimates and present our own particular approach to determining them.

5.3.1 Word Sense Disambiguation

Ontology mapping functions need to look up which concepts might correspond to a
human language term, and then tackle the task of determining to what degree the
candidate concepts are relevant in a particular context. While certain lexical resources
such as WordNet (cf. Section 2.3.4) provide a mapping from human language terms
to concept terms, the process of determining which of those concepts are relevant in a
particular context is not trivial. Word sense disambiguation is often considered one of
the most difficult problems in natural language processing (Russell and Norvig, 1995,
687). Given a human language term, the method we propose starts out with all possible
candidate concepts delivered by a resource such as WordNet for that term, except for the
use of lexical category (i.e. part of speech) information determined via morphological
analysis, which allows an elimination of many entries, e.g. if one knows that ‘desert’ is a
verb, then the concept associated with dry landscapes does not need to be considered.

In order to disambiguate among the remaining senses, the mapping functions can use
the technique described earlier in Section 2.3 (Theobald et al., 2003). One regards
the words surrounding a term in the text document as the term’s local context, and
then attempts to construct a similar context string for the candidate concept terms of
the ontology, based on the assumption that the ontology provides human language de-
scriptions for concept terms, written in the same language LH as the text document.
This allows for a concatenation of the description of the candidate concept term with
the descriptions of its immediate holonyms and hyponyms as well as two levels of hy-
pernyms. Feature vectors for both context strings are created using TF-IDF weighting
(in conjunction with lexical analysis, stop word removal and stemming). Given two
feature vectors t, ci for a human language term and a concept, respectively, the mapping
function can then interpret the cosine measure as a measure of the relatedness between
the word in the text document and the respective concept.

Our approach deviates from the one by Theobald et al. (2003) in that we do not
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merely choose the concept with the highest score. Instead, we take all candidate concepts
with their respective weights into account in our mappings. There is a theoretical as
well as a practical motivation for this. Kilgarriff (1996) argues that the senses of a
word should not be conceived as discrete objects. This is in accordance with the later
Wittgenstein’s view that what connects the different isolated uses of a word is simply
family resemblance rather than the existence of some essential core meaning (Wittgen-

stein, 1953, 66ff). Since the ontological resources, however, merely offer a selection of
discrete concept terms, the true meaning of a particular occurrence of a human language
term can be approximated by selecting the closest available concept terms and assigning
weights to them rather than forcing merely one sense to be chosen while neglecting
the others. The practical motivation for this behaviour is that for text classification
purposes, capturing the exact true sense of a term is usually unnecessary because many
related senses might be equally relevant, as has been pointed out in Section 4.3.3.

We thus propose the following heuristic. If S = {c1, . . . , cn} is the set of context vectors
for all candidate concept terms from CO for human language term t with context vector
t, and ci ∈ S is the context vector for concept ci ∈ CO, then the final weight assigned
to concept ci by the mapping function is

w(t, ci, δ) :=
cossim′

δ(t, ci)
n∑

j=1
cossim′

δ(t, cj)
(5.1)

for some constant δ and a function cossim′
δ defined as

cossim′
δ(t, c) :=

cossim(t, c) + δ cossim(t, c) > −δ

0 otherwise
(5.2)

In other words a fixed value δ is added to every cosine similarity, and after eliminating
result values smaller than zero (a negative δ could otherwise result in negative weights),
each result is set in relation to the respective result values of other candidate concept
terms.

Considering that

lim
δ→∞

w(t, ci, δ) =
1
|S|

(5.3)

and that the cosine similarity values lie in [0, 1], we very quickly approach the uniform
distribution with increasingly positive values for δ. In contrast, negative values for δ

tend to produce a stricter disambiguation where concepts with small cosine similarity
values are largely ignored.
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5.3.2 Lemmatizing Ontology Mapping Functions

Our hope is that for a high number of document terms di we are able to obtain a
mapping µ(di, δi) 6= ∅ with our ontology mapping function µ. However, typical external
resources only provide mappings of lemmata, so if di is an inflected word form such as
‘children’ rather than a lemma such as ‘child ’, then the mapping might often simply yield
µ(di, δi) = ∅.

This problem cannot be solved by means of a normal stemmer because stemming algo-
rithms often generate word stems that are not valid word forms and hence are even less
likely to be recognized by the ontology mapping function. Instead, we use a lemmatizing
function σ (see Section 2.3) for each human language, which delivers the most likely base
form of terms in that language based on their local context. These functions are used
to define lemmatizing ontology mapping functions that first look up the inflected form
using the regular ontology mapping, and then, if no entry is found, resort to looking up
the base form returned by σ. Compared to the alternative procedure of simply always
using the lemmatizer, this policy allows for more precise results in the case of words such
as ‘glasses’ which might refer to eyeglasses, whereas the form ‘glass’ cannot be used in
that way.

Definition 5.3.2. A lemmatizing ontology mapping function is a function

µ′ : CLH
×∆LH

−→ P(CO × [0, 1])

µ′(di, δ) :=

µ(di, δ) if µ(di, δ) 6= ∅

µ(σ(di, δ), δ) otherwise

(5.4)

for a set CO of concept terms, a human language LH with a corresponding set of context
texts ∆LH

, an ontology mapping function µ that maps from LH to terms in CO, and a
lemmatizing function σ for LH.

A lemmatizing mapping function is able to provide mappings for terms such as ‘chil-

dren’ even when the original mapping function only has mappings for the citation form
‘child ’. However, in cases when the original mapping function does have mappings for
an inflected form, no lemmatization is performed, so the results for ‘glasses’ in ‘I lost my

glasses’ gives us perhaps {(ceyeglasses, 0.8), (cdrinkingglass, 0.2)} rather than the incorrect
{(ceyeglasses, 0.0), (cdrinkingglass, 1.0)} which one might expect if the singular form ‘glass’
were used.
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5.4 Weight Propagation

The ontology mapping functions as well as the corresponding lemmatizing mapping func-
tions map human language terms to the concept terms that immediately represent their
respective meanings. As outlined earlier, our approach, however, differs from existing
approaches in that we do not merely map to individual concepts but to entire regions
of concepts. For this, we regard the relational knowledge provided by the ontological
resource as a labelled multidigraph, i.e. a directed graph where every node is labelled
with a concept term, every arc is labelled with a relation between concepts, and multiple
arcs are allowed between any two nodes (i.e. there is a multiset of arcs). One can then
traverse this graph of concepts in order to additionally propagate a part of each con-
cept’s weight to related concepts. Consider, for instance, that a lemmatizing mapping
function µ maps a human language term to some concept term c0 with weight 1.0. For
every relation type r ∈ RO we have an associated relation type weight βr ∈ [0, 1), so,
for example, we could have 0.8 for hypernym concept terms and 0.2 for hyponym terms.
If one decides to recursively pass on 80% of the weight to related hypernyms, then the
direct parent hypernym of c0 would receive weight 0.8, and the grandparent would re-
ceive a weight of 0.64, and so on. This propagation stops when the weights fall below
some predetermined threshold. In addition to these relation type weights as parameters
specific to a given term weighting process, the amount of weight passed on from node to
node is also governed by the fixed relation weights delivered by the ontological resource,
which capture the degree of relation between two specific concept terms (cf. Section
5.2).

The model chosen for this in our research avoids feedback and fan-in effects, instead
giving each concept term c′ that is in some way related to the starting concept term c0

the weight associated with the path from c0 to c′ that maximizes the weight of c′. In
order to determine these most optimal paths and assign the correct weights to related
concepts, we thus need to traverse the multidigraph, making sure not to get caught in
cycles or choosing suboptimal paths to related nodes (see Figure 5.2). To this end, an
algorithm inspired by the A* search algorithm is used (see Russell and Norvig, 1995,
p. 92ff).

The objective of Algorithm 5.4.1 is to determine the optimal weights for related concepts
and then accordingly update global concept term counts ctcc which represent the sum of
all weights assigned to a concept while processing an entire document. In addition to the
initial starting concept c0 and its weight wc0 it takes several other parameters as input.
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c
0

c
1

c'

hypernymy
relation 

weight 1.0

hypernymy
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weight 1.0
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Figure 5.2: Suboptimal paths: c′ is reachable from c0 via two different paths, a long one as well
as a direct one with relation weight 0.5. If c0 has weight 1.0 and 80% is passed to
hypernyms (relation type weight 0.8) and 40% for similarity (relation type weight
0.4), then the direct path from c0 to c′ would only lead to a weight of 0.5 · 0.4 = 0.2
for c′ whereas via the indirect path we obtain (1.0 · 0.8)2 = 0.64. The indirect path
is thus the optimal path to c′.

These include the ontology to be used, the concept term counts ctcc to be updated, a
function β that returns the relation type weights βr as well as a threshold wmin that
determines when the weight propagation stops. A more detailed discussion of the wmin

and βr parameters as well as a simple parameter space search heuristic that can be used
to empirically determine suitable values for them will be presented in Section 5.6.

Our weight propagation algorithm maintains a list of nodes to be visited, sorted by
weight, as well as a list of nodes already visited, and each node corresponds to a concept
term. Initially, c0 is added to the list of nodes to be visited in conjunction with its weight
wc0 , as provided by the lemmatizing mapping function. The algorithm then repeatedly
removes the node c with the highest weight from this list of nodes to be visited and
increments the counter ctcc by the weight of c. It then evaluates all neighbours of c, by
computing their weights and adding them to the list of nodes to be visited (provided
their weight is over the pre-determined threshold wmin).

Theorem 5.4.1. When updating concept term counts, Algorithm 5.4.1 always chooses
the weight associated with the optimal path.

Proof. This stems mainly from the fact that the algorithm always chooses the node
with the highest weight from the open list. For a proof by means of a reductio ad
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Algorithm 5.4.1 Ontology-relation-based feature weighting

Input: initial concept c0 with weight wc0 from Ontology O = (CO, RO, τO), initial term
counts ctcc for concepts c ∈ CO, function β which returns the relation type weight
βr ∈ [0, 1) for any relation type r ∈ RO, weight propagation threshold wmin > 0

Objective: update term counts ctcc for all relevant concepts c ∈ CO by following rela-
tional paths

1: weightc0 ← wc0 , weightc ← −∞ for all c 6= c0

2: open← {c0}, closed← ∅
3: while open 6= ∅ do
4: choose concept c with greatest weightc from open
5: open ← open\{c}, closed ← closed ∪ {c} . Move c to closed
6: ctcc ← ctcc + weightc . increase term count
7: for each relation entry (ci, ri, wi) ∈ τO(c) do . visit neighbours ci of c

8: if ci 6∈ closed then
9: w ← weightc · β(ri) · wi

10: if w ≥ wmin then . proceed only if over threshold
11: open← open ∪ {ci}
12: weightci ← max{weightci , w}
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absurdum, assume that the algorithm has arrived at concept term c with computed
weight w but an optimal path to c exists which leads to a computed weight of w∗ > w

for c. For this optimal path c0, c1, . . . , cn, c with computed weights w∗
0, w

∗
1, . . . , w

∗
n, w∗

we have w∗
0 > w∗

1 > · · · > w∗
n > w∗ > w because all relation type weights βr < 1

and, according to Definition 5.2.1, all relation weights wi ≤ 1. Since c0 is our starting
node and initially is the only node available in the open list, the node c1 must have
been seen and added to the open list with weight w∗

1 in the first iteration. Furthermore,
from w∗

1 > w it follows that c1 must have been visited before we reached c. This, in
turn, inductively implies that c2 was seen with weight w∗

2 and visited before c, and so
on. Finally, c must have been seen with the optimal weight w∗ and visited with that
optimal weight before it could have been visited with the suboptimal weight w < w∗.
This contradicts our original assumption.

Theorem 5.4.2. Algorithm 5.4.1 terminates.

Proof. For the relation type weights βr we have 0 ≤ βr < 1 by definition. Also, according
to Definition 5.2.1, the relation weights wi returned by the ontology relation function
τO may not exceed 1. Any concept term added to the open list thus is added with a
weight strictly smaller than that of its predecessor. Since Definition 5.2.1 also specifies
that the number of related concepts returned for any τO(c) must be finite, at some point
no nodes with weights greater or equal wmin will remain in the open list, for we have
required wmin > 0.

Moreover, the fact that cyclic graphs do not cause infinite loops already follows trivially
from the use of a closed list which ensures that each node is removed only once from
the open list. Nevertheless, in order to decrease the runtime, one can optionally limit
the number of iterations to some fixed value n by adding the condition |closed| < n

to the while-loop. When such a limit is in effect, the algorithm will always visit n

highest-ranking concepts.

Theorem 5.4.3. If Algorithm 5.4.1 is stopped after n iterations, n highest-ranking re-
lated concepts are guaranteed to have been visited.

Proof. Imagine, for sake of argument, that the node associated with concept term c would
be visited at the m-th iteration with m > n, but that the weight w that would be assigned
to c is greater than the weight w′ assigned to some concept term c′ visited in one of the
first n iterations. Then there exists some path c0, . . . , ck, c from the starting concept
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term c0 to c that causes c to receive weight w. Let the associated computed weights be
w0, . . . , wk, w, respectively. We then have w0 > · · · > wk > w because all βr ≤ 1 and
all wi ≤ 1 (Definition 5.2.1). The algorithm obviously chooses the starting node c0 first,
because initially it is the only node available. When expanding the neighbours of c0,
the algorithm will add c1 to the open list. In virtue of the fact that w1 > w > w′, node
c1 is guaranteed to be chosen before c′. When selecting c1 and visiting its neighbours,
the algorithm will then see c2 with weight w2 > w > w′ and visit it before choosing c′,
and so on. Finally, the algorithm will see c and choose c before c′ because w > w′. This
contradicts our original assumption.

5.5 Feature Vector Construction

The general procedure is thus as follows. In order to use the ontology to generate fea-
ture vectors for text classification, we import the documents and identify the languages
involved, as described earlier. If language forms turn out to be used for which no appro-
priate ontology mapping function is available, we may perform language transformations
or resort to machine translation, though in this case, the original versions are not retained
in addition to the transformed or translated ones.

The documents are then tokenized and stop words are removed, resulting in a repre-
sentation of the source document text as a finite sequence of terms t = (t1, . . . , tk), as
described earlier.

These terms are then mapped to ontology concepts, based on a weighting configuration
Ω = (O,µ, β, wmin) that specifies the ontology O to be used, the lemmatizing mapping
function µ for the language of the document, a function β(r) which returns the relation
type weight βr for any relation type r ∈ RO, as well as the weight transfer threshold
wmin.

The conventional bag-of-words representation described in Section 2.1 is based on count-
ing the number of occurrences of a particular term t in the term sequence t = {t1, . . . , tk}
for the document obtained after preprocessing. Here, however, for each term ti in the
term sequence, the ontology mapping function µ lemmatizes and disambiguates as de-
scribed earlier, returning a list of candidate concepts with associated weights (concept
terms ci,j ∈ CO with associated weights wi,j). Instead of counting how often a particu-
lar human language term t occurs, we count how often a concept term c occurs among
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the ci,j , incrementing the counter ctcc by wi,j whenever ci,j = c for some i and j, i.e.
whenever one of the concepts ci,j that a term ti from t is mapped to turns out to be c.

Additionally, each concept term ci,j is submitted as input to Algorithm 5.4.1 with its
respective weight wi,j such that the concept term counts ctcc for any further relevant
concept terms are updated, too. Formally, one might say that the final concept term
counts are returned by a function ctcΩ where ctcΩ(t, c) returns the sum of all weight
values associated with concept term c when the terms in t are mapped to concept
terms using the Ontology Region Mapping configuration Ω. These concept term counts
normally have fractional values rather than the integer values corresponding to normal
term counts for conventional text classification (as defined in Chapter 2).

Simply adding up weights, however, does not suffice to arrive at an adequate feature
space for texts such that documents with similar topics are positioned close to each other.
The concept term count values depend to a large extent on the length of a document
because the longer a document is, the more often certain source language terms will
tend to appear. A more adequate representation thus needs to capture the relative
importance of terms. In order to accomplish this, we embrace ideas from conventional
text classification and compute concept term frequencies that are very similar to normal
term frequencies as defined earlier in Equation 2.7.

Definition 5.5.1. The Concept Term Frequency ctfΩ is defined as

ctfΩ(t, c) :=


ctcΩ(t, c)∑

c′
ctcΩ(t, c′)

ctcΩ(t, c′) 6= 0

0 otherwise

(5.5)

for a processed token sequence t, a concept c, and an Ontology Region Mapping con-
figuration Ω as defined earlier, and c′ iterating over the set of all unique concept terms
occurring in t.

Finally, one can further improve the performance by taking into account the number
of documents a concept term is associated with, as in the case of the conventional TF-
IDF weighting scheme (Equation 2.10) where the inverse document frequency is used.
However, applying such a factor to concept term frequencies is a bit less straightforward.
The rationale behind the multiplication with the inverse document frequency is the idea
that terms that may be found in a vast number of documents bear little discriminatory
information and thus should receive less weight. The notion of occurrence required for
such document frequencies, however, does not emanate from our definition of concept
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term counts as it does in the case of conventional term counts, for it is unclear whether
a concept term with a minuscule weight should count as occurring in the document. We
thus allow the use of different thresholds α when deciding whether a document is to be
considered as containing a particular concept term.

Definition 5.5.2. For a term sequence t for some document (that need not be from
the training set), a concept c ∈ CO, a constant α ∈ R, a set of training document term
sequences Dtr = {t1, . . . , tm}, and an Ontology Region Mapping configuration Ω, we
define

ctfidfΩ,α,Dtr(t, c) := ctfΩ(t, c) · log
1

cdfΩ,α,Dtr(c)
(5.6)

with
cidfΩ,α,Dtr(c) :=

|{ti ∈ Dtr | ctcΩ(ti, c) > α}|+ 1
m + 1

(5.7)

Here, adding 1 to the numerator and denominator avoids undefined results when m = 0.

The feature space is then constructed by associating each concept term with a sepa-
rate dimension, and then the respective ctfidf Ω,α,Dtr

values can be used to create the
individual feature vectors which are then normalized, as described in Section 2.2.

5.6 Parameters and their Tuning

This algorithm has introduced new parameters that need to be adapted to the respective
classification task. The relation type weight settings depend on the following factors:

1. The set of class labels C: Very fine topic distinctions, between municipal bonds and
mortgage-backed bonds for example, tend to require lower relation type weights
than more general distinctions, as in the case of biology vs. physics.

2. Precision vs. recall trade-off: higher relation type weights typically induce an
improved recall but often also a lower precision (cf. Section 7.2.4). Which values
work best will thus depend on the particular application.

3. The structure of the ontology: When ascending the hierarchy of hypernyms of
a concept term, for instance (i.e. moving along a path of nodes in the graph
constituted by the ontology corresponding to a series of hypernym concept terms),
having an initial weight of 1.0, a relation type weight of βh and some propagation
threshold wmin means that blogβh

(wmin)c levels of hypernyms will receive some
weight, assuming that all relation weights are 1.0. Setting βh = 0.7, wmin = 0.3
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causes blogβh
(wmin)c = b3.38c = 3 levels of hypernyms to receive weight before the

threshold is reached. In Princeton WordNet 2.1, for the first sense of ‘academy ’
the following path of hypernyms would be followed: ‘secondary school ’, ‘school ’,
‘educational institution’. However, another ontology might more directly lead from
‘academy ’ to ‘school ’, ‘institution’, and then to ‘entity ’, which would be too general.

4. The type of documents: There is a big difference between categorizing very long
articles and cases when just a short abstract or perhaps merely the title is available.
Generally, the shorter the available text fragments are, the greater the problem of
recall becomes (cf. Section 7.2.4) since we have fewer words we can match with. A
single occurrence of a word might have to make the difference between a positive
and a negative example. The relevance of this word thus is more likely to be
recognized when higher relation type weights are used, leading to more related
concepts being weighted.

5. Performance issues: In order to ensure the termination of the algorithm we specified
earlier that the relation type weights βr must not have the value 1. However, if one
does not impose a limit on the number of concepts to visit, even values that come
too close to 1 are not very practical. Defining β = maxr βr, the maximum distance
from the initial concept turns out to be blogβ(wmin)c. According to Definition
5.2.1, the number of related concept terms for any concept is finite. Let k be the
maximal number of related concepts a concept can be assigned to. Then for each
initial concept our algorithm visits O(k + k2 + · · ·+ kblogβ(wmin)c) = O(klogβ(wmin))
related concepts. This also means that the memory requirements, too, are expo-
nential with respect to the maximum distance. Great care thus needs to be taken
not to use extremely high βr values.
Concern about performance issues, however, is not a factor that is completely
independent from the previously mentioned factors that influence the choice of
parameters. Too big numbers of visited concepts normally also indicate that ex-
cessively many concepts are being visited that do not have very much in common
with the original concept from a semantic perspective. Our experiments showed
that configurations bringing forth useful results do not require overly large quan-
tities of related concepts to be visited.

Since all of these issues need to be considered, determining fixed relation type weights
that universally lead to optimal results is impossible. Instead, a suitable configuration
will have to be found for each particular text classification problem. Indeed, this is
a general challenge in machine learning, as many algorithms, from neural networks to
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support vector machines, are highly configurable.

Since testing all possible configurations generally turns out to be infeasible, we propose
a simple procedure for searching the parameter space based on hill-climbing algorithms
(see Russell and Norvig, 1995, p. 111ff). If there are n parameters to be optimized,
i.e. n− 1 relation type weights in addition to the threshold wmin, then an n-dimensional
parameter value vector w = w0, . . . , wn is used to capture their current values. Initially,
one may begin with values randomly chosen from their respective domains.

In each iteration, one then creates new neighbouring parameter vectors vj of the original
vector w, by keeping all values unchanged except for one single parameter value wi

(vj,k = wk for each k 6= i). The value of wi is instead increased or decreased by a
reasonable amount, for example moving from 0.6 to 0.5 (vj,i = wi − 0.1 in this case).
Since each of the n parameter values wi can be increased as well as decreased, but not
all such moves are valid (e.g. the relation type weights cannot become negative), there
are up to 2n neighbours that can serve as candidates. As mentioned above, it is best to
avoid moving to values higher than 0.8 for the relation type weights in order to avoid
the problem of a combinatorial explosion of the number of concepts to be visited by the
Ontology Region Mapping algorithm, unless of course a fixed limit has been imposed on
this number. One should also avoid making moves to parameter values that are very
close to the original because it might not be possible to detect any particular tendency
if two neighbouring settings are very close.

Each candidate setting vj is then evaluated by running the text classification system on
a small training and validation dataset, using the parameter configuration designated
by vj , and the performance is evaluated, perhaps in terms of averaged F1 scores (see
Section 7.2.4) obtained with different feature selection parameters.

The neighbour candidate vj that has received the highest score then becomes the new w,
and another iteration can begin. The optimization stops when no more improvement is
made. However, since hill climbing algorithms might end up encountering mere local op-
tima rather than global ones, multiple runs with different random starting configurations
w may be performed.

Optionally, the process of convergence can be accelerated whenever multiple candidates
vj exhibit significant performance increases compared with w. In such cases, the next
configuration w can be set to a combination of the respective vj by modifying multiple
component values of w simultaneously rather than just changing one value.
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5.7 Combined Representations

The ontology-based feature weighting schemes still have one major downside: Document
terms that cannot be mapped to an ontology concept are completely ignored. Yet,
specialized technical terms as well as names of politicians, organizations, or companies,
for instance, often are very helpful – occasionally even crucial – in correctly categorizing
a document despite not being covered by an ontology mapping function. The same
applies to product names, or simply new buzzwords that have not found their way into
lexical resources yet. Some lexical resources go so far as to even exclude, as a matter of
principle, terms such as ‘England ’ because they are names.

Most machine translation approaches simply maintain the original term in the translation
whenever they do not recognize it. In a similar fashion, one may thus choose to maintain
the original human language term whenever the ontology mapping is unable to map some
t to a concept term from CO, i.e. whenever µ(t, δ) = ∅. As explained in Section 4.3.1,
such terms often are identical in different languages. Alternatively, one can also combine
all concept terms with all original human language terms.

This ideally can be generalized to encompass arbitrary combined representations. Two
different scenarios need to be dealt with. In many cases, two representations will be based
on different feature types, e.g. features based on concept terms differ significantly from
the human language term features of the bag-of-words model. In other cases, however,
two representations will be able to share the same feature space, e.g. when two different
translations are used as input to our Ontology Region Mapping approach.

The general approach thus is as follows. Each base representation is associated with
a zone identifier. When constructing the base representations for a document, we en-
sure that representations sharing the same zone identifier are constructed in a shared
vector space, which implies that the same terms are associated with the same feature
dimensions. The first combination step then involves merging all representations that
share the same zone identifier. If one document has representations u = (u1, . . . , un)
and v = (v1, . . . , vn), then the combined representation will be the linear combination
w = (u1 + v1, . . . , un + vn). This gives us one vector for each zone identifier.

In a second step, the vectors for the different zones are combined as suggested by
Siersdorfer (2005, p.95) by creating a combined vector space. If we have two vec-
tors u = (u1, . . . , un) and v = (v1, . . . , vm), then the combined representation will be
w = (u1, . . . , un, v1, . . . , vm).
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One can then use a variety of combined representations, including one that incorporates
four base representations: Ontology Region Mapping using some translation method A

(Zone 1), Ontology Region Mapping using some translation method B (also Zone 1),
bag-of-words weighting with translation method A (Zone 2), and finally bag-of-words
weighting with translation method B (also Zone 2).

In such cases, the ctfidf Ω,α,Dtr
values are computed globally with respect to all term

counts and the feature space has dimensions for all zones, e.g. dimensions for concept
terms as well as additional dimensions for stems of the original terms occurring in the
text.

5.8 Summary

We have seen that Ontology Region Mapping is a document representation technique
allowing us to exploit background information from ontologies and lexical resources such
as thesauri, thereby, however, going beyond a direct mapping from document terms
to concepts. This is achieved by adopting a graph traversal algorithm that identifies
additional concepts that characterize the contents of the document. The techniques pre-
sented can be used for genuinely multilingual problems, either by employing multilingual
ontological resources, or alternatively by first applying machine translation and then us-
ing monolingual ontological resources. Since such resources do not necessarily cover all
terms one might encounter in the document, one can attempt to further increase the
performance by combining this concept-based approach with conventional term-based
approaches. A simple heuristic can be used to determine suitable parameter values for
the algorithm.
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Implementational Issues

This chapter presents additional ideas intended to contribute to a well-designed imple-
mentation of the approach mentioned in Section 5, based on our own experience gained
from developing a general multilingual framework for testing and deploying alternative
text representation methods, which consists of over 18,000 lines of Java code (physi-
cal LOC) in over 80 classes, organized into five main packages, not including external
libraries.

The Java programming language was chosen for our framework because it offers a high
level of portability, is widely supported by third-party libraries, and, unlike many rapid
prototyping languages, facilitates the development of very robust code. Ideally, much
of the system architecture should already have been specified when the platform and
programming language is chosen, as special care needs to be taken in ensuring that any
external libraries one wishes to use are available for the setup chosen.

Figure 6.1 provides an outline of the main operations that need to be performed. After
loading labelled training documents, feature vectors are created that represent their
contents. A learning algorithm is used to establish a classifier based on a model of the
training data. Subsequently, the feature vectors of new test documents can be passed to
the classifier in order to obtain class predictions. If the test documents are labelled, one
can evaluate the performance of the classifier.

This setup suggests four main packages to be implemented. A machine learning (ml)
package is responsible for classifying as described in Section 2.1 and thus needs to im-
plement machine learning algorithms. A second nlp package must implement natural
language processing methods as described in Sections 2.2 and 2.3. A util package will
normally be used for small helper functions, including for example input/output, string
manipulation, configuration, and logging routines. Finally, one needs some kind of main
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Figure 6.1: Simplified model of our implementation’s general operation
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package that ties everything together and is responsible for loading the configuration, us-
ing the NLP routines to create appropriate feature vector representations for documents
as described in Chapter 5, using the learning algorithms in order to train a classifier,
and perhaps evaluate the performance of that classifier for testing and tuning purposes,
creating output in log files. An additional tools package may be used for various small
tools that are created in order to manage resources and data.

6.1 Main Program

In our implementation, the main program is highly configurable and thus begins its oper-
ation by loading configuration files. The configuration system uses an XML format that
allows for a specification of multiple values for each parameter such that each combina-
tion of parameter values is evaluated in a separate test run. Furthermore, dependencies
between these parameter values can be captured. For example, one might want to test
a feature selection of 500 and 1000 features when using one learning algorithm, but in-
stead 300, 500, and 700 when using another. This approach is useful when many different
configurations need to be evaluated, in particular for parameter tuning.

For each classification task, the program needs to load the respective sets of documents.
One might choose to use an external database as the data source for such documents.
This gives the program the advantage of being able to execute very specific data queries,
e.g. in order to quickly retrieve all documents assigned to a specific class without having
to open many single document files or having to specifically cache such information in
a separate class association list. A disadvantage is that it might not always be possible
to set up a database server on all computer systems one desires to use, so in our im-
plementation, the documents are loaded from files stored in a proprietary XML format
developed for our data, or alternatively using the Reuters newsML format. A propri-
etary format such as the one chosen in our implementation is preferred since it permits
caching of several processed versions of the document text, each version being identified
using the processing steps involved to generate it. For example, we might first need to
annotate the text with lexical category tags and lemmata by performing morphological
analysis, then generate a translation, and finally morphologically analyse the transla-
tion. Our system would cache three different processed versions of the document in this
case.

The next step then is to create feature vectors for the training documents. In addition to
the caching system mentioned above which is mainly intended to cache annotations and
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translations, it is advisable to also cache additional processing steps in order to increase
performance, because when dealing with multiple classes, documents will normally be
used multiple times. One such caching step should occur before computing the TF-
IDF values as those values depend on the entire document set rather than on single
documents. In our implementation, we use a proprietary binary format for this since
this reduces the overhead compared to XML or text-based formats. If no cached version
of the document is available, the feature vector is created using appropriate document
versions (e.g. translations, annotated versions) and then plugging various token stream
providers and manipulators from the nlp package together, as will be described later on.
Post-processing of the feature vectors then occurs, involving for example a conversion of
term counts to TF-IDF and optionally also feature selection.

The program then needs to learn a classifier using classes from the machine learning
package. As shown in Figure 6.1, this classifier is evaluated on feature vectors created
for the test set using the error rate as well as F1 and other performance measures in
our implementation (see Section 7.2.4), and various log files are written to disk during
operation in order to allow manual supervision and evaluation.

6.2 Machine Learning Classes

Our machine learning (ml) package contains classes for dealing with feature vectors, lists
of feature vectors, as well as for performing feature selection, classification learning, and
making actual classification predictions.

The FeatureVector and FeatureVectorList classes aid in managing feature vectors
including such tasks as conversion to TF-IDF and determining cosine similarities.

Feature selection is performed by interfacing with version 3.4.8 of the WEKA library
(see Witten and Frank, 2005) developed at the University of Waikato, New Zealand,
and using its implementation of Information Gain or χ2 rankings (see Section 2.2.4 and
Sebastiani (2002)). For learning and deploying classifiers, we use version 6.01 of SVM-
light (described in Joachims, 1999) as well as various algorithms provided by the WEKA
library. While SVMlight is a very efficient implementation of Support Vector Machine-
related algorithms, WEKA offers an enormous variety of machine learning algorithms
for many different purposes. For this reason, we chose to support both libraries.
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6.3 Natural Language Processing Classes

The natural language processing (nlp) package of our implementation offers a wide array
of services, including, inter alia, token management and processing, stop word removal,
stemming, morphological analysis, translation, ontological resource interfacing, and word
sense disambiguation.

6.3.1 Text Import and Lexical Analysis

Many systems dealing with multilingual data need to support international characters
going beyond what is offered by conventional 8-bit character sets such as ISO 8859/1.
The most flexible solution is to internally use the Unicode standard or the roughly
equivalent ISO 10646.

Most multilingual text classification techniques presume that the language and the char-
acter set used for the document text are known. If no additional meta-information is
provided within the file format used to store it or through the database that delivers
the documents, one may attempt to automatically detect the character set and language
form, a task frequently performed using learning algorithms applied to feature vectors
representing character n-grams, explained e.g. by Beesley (1988) and Kikui (1996).

The process of tokenizing the document or separating words from another becomes less
trivial in multilingual settings because it must be implemented language-specifically.
First of all, the set of characters that may occur as part of words is often distinct from
the Latin alphabet as used for the English language, and may even include characters
such as the colon (‘:’) which in Finnish sometimes is added to terms before appending
suffixes. There are a few rare cases of languages that use characters other than a normal
space for interword separation, e.g. the Ethiopic wordspace used in Ethiopian languages.
However, a much more common case is when writing systems have not incorporated any
general indication of interword separation at all, as in Japanese, Chinese and traditionally
also often in Ancient Greek and Latin. In these cases, specialized word segmentation
algorithms such as maximum matching (Palmer and Burger, 1997) or stochastic finite-
state models (Sproat et al., 1994) need to be employed. Special attention might also
need to be paid to clitics, which include e.g. the abbreviated form of ‘to be’ in ‘you’re’, or
‘me’ and lo in Spanish ‘dámelo’. In certain languages, separating clitics and contractions
turns out to be much more important than for English, e.g. to ensure that the term
‘information’ is extracted from French ‘l’information’. The tokenizers implemented in
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our framework support languages that have interword separation by using whitespace
and certain interpunctuation characters in order to detect word boundaries, while also
attempting to recognize abbreviations such as ‘E.U.’. Most interpunctuation characters
are discarded, as they are not relevant when classifying. Languages without interword
separation such as Japanese are not supported, with the exception of the Chinese written
language, for which we implemented the simple character-as-word algorithm, treating
each Chinese Hanzi character as a separate token. This algorithm is known to work
reasonably well for information retrieval tasks (cf. Palmer and Burger, 1997), although
better alternatives may be considered.

6.3.2 Term processing

In order to support weighted translations as well as establish an extensible program
architecture we recommend storing all tokens with an associated weight and with other
optional token attributes such as lexical category and lemma. Although the tokenizer
simply gives all tokens a weight of 1.0 and does not set any additional attributes, this
model allows an efficient integration of various operations into a single chain of token
stream processors. The initial token stream is normally provided by a tokenizer, and
then additional subsequent token processors may be added to create a token pipeline
that can include operations such as case normalization, stop word removal, stemming or
lemmatizing, mapping from terms to ontology concept terms as well as weighting related
concept terms from the ontological resource. A simplified model of how this works in
our implementation can be seen in Figure 6.2. In reality, additional processors can
be embedded into such a pipeline, e.g. multiplexers and demultiplexers for arbitrarily
combined representations or binary file input/output for caching feature vectors.

Apart from tokenization, another operation that occasionally becomes less trivial is
the term normalization process. Whereas for monolingual conversion this process often
merely involves a case conversion for the 26 letters of the Latin alphabet, in multilingual
applications several transformations need to be performed, the first being a normalization
of the character encoding. Consider, for example, that in Unicode the letter ‘á’ can be
encoded either with U+00E1 (an ‘a’ with an acute accent) or using a normal U+0061 (‘a’)
followed by U+0301 (a combining acute accent). Moreover, for compatibility reasons,
Unicode has the property of including code points such as U+FB03, which encodes the
characters ‘ffi ’ (as in ‘office’) in the form of a single ligature. It is thus recommended
to use a normalization algorithm as described by the Unicode standard (see Davis and
Dür, 2005). This is usually followed by a conversion to lower-case characters, where
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Figure 6.2: Simplified model of the feature vector construction process in our implementation.

various accented characters and other scripts need to be supported. Additionally, one
also needs to pay respect to language-specific rules, e.g. in Turkish a capital letter
‘I ’ should be converted to a dotless (‘ı’) rather than the normal lower-case letter ‘i ’,
the latter corresponding instead to a variant of the capital letter ‘I ’ with a dot above
(‘İ ’). Finally, the normalization process might also need to take care of certain spelling
variations. This, of course, can be done for English (e.g. ‘organize’ vs. ‘organise’) but
is more important in certain other languages such as Japanese, where often there is a
choice between the kanji and hiragana scripts.

For stop word removal, separate stop word lists are required for each language involved.
Our implementation supports several different languages. For the English language we
use the very popular list of 571 stop words from the SMART information retrieval system
(Buckley, 1985). The Spanish stop word list was also taken from the same source and
contains 351 stop words. Should a stop word list for a specific language not be freely
available (see e.g. Savoy, 2005), one may also resort to generating it manually from
word frequency lists (Fox, 1990).

Stemming needs to be performed differently for each language, yet preferably in a con-
sistent manner so that different language words with the same origins are reduced to the
same stem, making it easier to identify related words across different languages. In our
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implementation we use the Snowball package by Martin Porter due to its support for a
wide range of different languages (see Porter, 2001). The English-language stemmer
included in the package deviates slightly from the original Porter stemmer (Porter,
1980). Improvements include the removal of the ‘-ly ’ suffix and the incorporation of a
small list of exception terms that cannot be processed normally. Goldsmith (2001)
presents an algorithm that is able to learn the morphology of European and other lan-
guages in an unsupervised manner.

6.3.3 Other Techniques and Resources

Since proper morphological analysis is a rather complex process, it is usually best to
use external tools. Our implementation is designed to work with the TreeTagger, a
tool for morphological analysis, including lemmatization, developed at the University of
Stuttgart (see Schmid, 1994), which unfortunately is only available in binary form. The
application has been trained on annotated corpora in several different languages and is
able to estimate transition probabilities for lexical categories using binary decision trees.
Since we do not need very fine-grained distinctions of lexical categories, our interfacing
code converts the various tagsets used for different languages to an internal format that
makes much coarser distinctions than the original ones.

Another task that usually requires external tools is machine translation, and depend-
ing on the languages that need to be supported and on the level of accuracy that is
desired, one might have to resort to commercial software. In our implementation, we
use AltaVista’s Babel Fish online service as well as word-to-word translation based on
bilingual translation dictionaries, as described later on in Section 7.2.1.

A very important component of our approach is the support of ontological resources. In
our implementation, we import and store ontologies in a proprietary binary format that
allows for more efficient access. This enables us for example to precompute the context
vectors of concepts required for our word sense disambiguation technique, presented in
Section 5.3.1. The ontological resources used in our tests are described in detail in
Section 7.2.1.

6.4 Utilities and Tools Packages

A complete implementation of a text classification application will normally require
various additional classes for operations such as I/O, string manipulation, etc. The
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utilities (util) package of our implementation is a general library of such commonly
used functions and contains classes for parsing configuration files and for logging, as well
as simple routines for string manipulation, XML input and output, and comma-separated
value (CSV) output.

Finally, our tools package contains various small programs that facilitate working with
resources and evaluating data. It contains, for instance, code to import ontologies and
lexical resources, in our case Princeton WordNet as well as the Spanish and Catalan
versions of WordNet, including the application of external mapping tables (see Daudé

et al., 2003) in order to synchronize them with version 2.1 of Princeton WordNet.
It also contains tools to import bilingual translation dictionaries as required by our
implementation of word-to-word translation.

Various additional tools are used in order to prepare training and test sets, e.g. for
generating category distribution statistics, for randomly choosing test and training files
for all class pairs and for generating cached lexical category and lemma annotations as
well as translations.

Finally, we created several small tools to assist in carrying out evaluation tests, e.g.
by uploading configuration files to servers via the SSH file transfer protocol (SFTP),
by starting and surveilling tests via SSH, as well as by downloading and evaluating
the classification test log files, for instance generating statistics which can be used for
plotting graphs. The next chapter will provide a detailed description of our experimental
setup.

73



Chapter 7

Experimental Setup and Evaluation

We will now proceed to explain how the new techniques described in the previous chap-
ters were evaluated with the aim of assessing their performance in terms of certain
performance measures that will be described in a moment. The chapter begins with a
description of the resources and then continues to describe the experimental procedure
including the process of fine-tuning certain parameters. This is followed by a presentation
and analysis of the main test results.

7.1 Material and Resources

7.1.1 WordNet

Princeton WordNet, described earlier in Section 2.3.4, is not only a resource that can be
regarded as defining an ontological resource in the sense of Section 5.2, but also provides
all information required for establishing mappings between English words and concepts of
the ontology. We used version 2.1 of the resource, which specifies about 120,000 different
synsets, the majority corresponding to nouns, and provides over 200,000 mappings from
words to synsets.

For the Spanish language, we used the Spanish WordNet, which is structured in the
same way as the original and contains over 100,000 synsets (Farreres et al., 1998).
Although many WordNet-like resources have been created for various international lan-
guages, the majority of them are not freely available for research purposes. A Japanese
version of WordNet currently does not exist, so only translation-based approaches were
tested when Japanese documents were involved.
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7.1.2 Reuters Corpora

Our training and test datasets were extracted from corpora provided to the scientific
community by the Reuters news agency. Reuters Corpus Volume 1: English Language,
1996-08-20 to 1997-08-19 (RCV1) contains over 800,000 English-language news stories
(Reuters, 2000a) and served as a source for English-language articles in our experi-
mental setup. It is one of the most commonly used collections for benchmarking text
classification performance. Another corpus, titled Reuters Corpus Volume 2 (RCV2):
Multilingual Corpus, 1996-08-20 to 1997-08-19, features nearly 500,000 news stories in
several other languages (Reuters, 2000b), viz. Chinese, Danish, Dutch, French, Ger-
man, Italian, Japanese, Norwegian bokm̊al, Portuguese, Russian, Spanish (Latin Amer-
ica), Spanish (Spain), and Swedish.

The documents are labelled with category codes, based on topic, industry, and geo-
graphical region. Reuters’ policies required each document to be associated with at least
one topic category and one region category – most are associated with several relevant
categories. The classification process that produced the labels involved the initial use of
rule-based text classification software and subsequent manual correction (Lewis et al.,
2004).

Comparing the two Reuters corpora used, we noted that, although many classes are
shared, the existing classification schemes differ in many respects. For instance, the class
‘Biographies, Personalities, People’ contains over 5000 documents in the English corpus,
but not one in either of the two Spanish-language collections. The fact that humans
often disagree about classifications (Cleverdon, 1984) is obviously particularly relevant
when classifications are made by people having different cultural backgrounds, but this
is even further amplified when the set of available classes varies. However, although
these factors might compromise the results, the Reuters corpora nevertheless are able to
give us a good idea of how well our approach performs for multilingual problems.

7.1.3 Wikipedia

Wikipedia (Wikimedia Foundation, 2006) is a multilingual enyclopedia created and
maintained collaboratively by Internet users all over the world in an open manner, mean-
ing that anyone can perform changes almost instantaneously and all content is licensed
under the GNU Free Documentation License (GFDL). Some have criticized Wikipedia
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as failing to meet the standards of a reliable, authoritative source of knowledge. Nev-
ertheless, the encyclopedia remains a very valuable resource providing vast amounts of
information that cannot be found in traditional encyclopedias. Currently, several million
articles exist, and a very extensive category system is used to organize them.

The differences in the classification schemes for different languages noted above in the
case of the Reuters corpora obviously is a lot more extreme for Wikipedia, where each
version has an entirely different category scheme and links between these schemes are
only occasionally established on an ad hoc basis.

7.2 Setup

The resources mentioned above were then used for our evaluation setup. Our main
tests were preceded by a number of preparatory steps, including the preparation of the
datasets.

7.2.1 Training and Test Data

We used the Reuters corpora as well as Wikipedia as sources for our training and test
data. In our tests, we decided to focus on cross-lingual text classification, as it is the
most interesting case and shows how well a given method is able to establish similarities
between documents in different languages. Most importantly, methods that perform well
for cross-lingual problems can easily be adapted to perform well for other multilingual
problems, while the converse, in contrast, is not generally true. Due to the need to
perform machine translation in our tests, we extracted a subset of the corpora for use
in our experimental setup. Two datasets were extracted from Reuters Corpus Volume 1
and 2 (RCV1/RCV2) using English documents from RCV1 for training and Spanish ones
from the RCV2 collection as test documents. One of the datasets was based on the topic
codes and another one on the geographical class codes that are available in the corpora.
The industry codes were not used due to significant inconsistencies in the class labelling
schemes between RCV1 and RCV2. For this extraction process, we initially started out
with the corpora in their entirety, meaning over 800,000 documents from the English
corpus, and c. 80,000 Latin American as well as c. 17,000 European Spanish documents
from the multilingual Reuters collection (differences between the written forms of Latin
American and European Spanish are very small and hence negligible). In neither case
did we manually remove documents that are obviously misclassified (cf. Lewis et al.,
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2004), considering that in production settings, too, such documents may very well occur.
The Reuters newsML files were converted into our own proprietary format.

An additional dataset with Japanese test documents and English training documents was
generated from Wikipedia using all articles assigned to a category or to any subcategory
as members of the respective classes. The wikitext markup language was converted to
plain text and class membership was determined recursively.

In our experimental setup, we decided to focus solely on binary classification. As Se-

bastiani (2002) argues, binary problems are more general than multi-label problems
because the latter can be reduced to binary classification problems using class decom-
position methods, as described in Section 2.1. The converse, in contrast, does not hold:
An algorithm designed for multi-label classification cannot necessarily be used for binary
classification because it might assign 0 or 2 class labels to a document.

In order to create such binary decision problems, we used 15 classes for each dataset,
selected by a random number generator among all classes with sufficient numbers of
documents in both languages involved. The 15 classes led to

(
15
2

)
= 105 class pairs and

binary classification problems. For each pair of classes, we created training datasets
consisting of 100 labelled training documents, and a test set consisting of 600 further
documents (300 in the case of Wikipedia) not occurring in the respective training dataset.
The documents were also selected randomly, however, in order to avoid getting biased
error rates due to an unequal number of positive and negative examples, this was done in
way that ensured that the ratio of positive to negative examples was 1:1 in every training
and test set, and without any overlap, i.e. the respective subsets were disjoint.

The resulting datasets included class pairs where the classes involved should be rather
easy to distinguish, e.g. ‘Labour issues’ vs. ‘Crime, Law Enforcement’, as well as classes
that share a lot in common and thus require more fine-grained distinctions, e.g. ‘Bond

Markets’ vs. ‘Equity Markets’.

For our Reuters topic dataset, we used the contents of the <headline>, <dateline>,
and <text> elements as the document contents, not the <title> element which contains
a semi-automatically inserted country code (Lewis et al., 2004). Our geographical
dataset is slightly different in that we excluded the contents of the <dateline> element,
as it contains geographical references that would have oversimplified the task of classi-
fying the data geographically. In addition, some text entries already had an embedded
dateline preceding the actual article. Such occurrences, too, were removed in order to
eliminate such explicit geographical information.
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We then performed morphological analysis and added English translations for the doc-
uments using two different translation methods. The first was to use AltaVista’s Babel
Fish Translation service, which in turn is based on software by SYSTRAN, in order to
translate Spanish and Japanese test documents to English (AltaVista, 2006). The sec-
ond was a bilingual dictionary-based approach that uses freely available dictionaries (cf.
Röder, 2002) in order to perform word-for-word translations, in our case from Spanish
to English. Here we adopted a policy of maintaining all n translations when multiple
translations were available for a term, assigning each token a weight of 1

n . When a word
is not found in the dictionary, an attempt is made to find a translation of its lemma.

7.2.2 Preparation of Ontologies

As mentioned earlier, for the English language, we used version 2.1 of the Princeton
WordNet project. When looking up terms in WordNet, the setup we tested does not
involve attempting to identify multiple word expressions but this feature could straight-
forwardly be added.

We also imported the Spanish WordNet and used mappings between WordNet 1.6 and
WordNet 2.1 in order to synchronize it with our version of the Princeton WordNet data
(see Daudé et al., 2003). We then merged both language versions of WordNet, creating
a bilingual Spanish-English resource.

7.2.3 Implementation Settings

As mentioned earlier in Chapter 6, our algorithms were implemented into a general
text classification framework that allows for experimentation with alternative feature
weighting models.

Only the training documents were taken into account when defining the feature space,
and the IDF was computed only with respect to the training documents. Following
(Lewis et al., 2004), we perform an L2 normalization of all vectors after feature selec-
tion (as explained earlier in Section 2.2.4).

For testing our representation with Support Vector Machines, we used SVMlight with its
default settings that are known to work well for text classification tasks. In particular,
this means that we used a linear kernel, as is customary in text classification, and the κ

parameter for the soft margin (see Section 2.1), which characterizes the trade-off between
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training error and margin, was set to the reciprocal of the average Euclidean norm of
training examples (which is 1.0 due to the normalization of the feature vectors).

The Voted-Perceptron algorithm by Freund and Schapire (1998) was used in order
to test a simple variant of an Artificial Neural Network. Considering previous results by
Wiener et al. (1995), we chose to use 100 iterations in order to arrive at representative
results.

Additional tests were performed using an implementation of Adaptive Boosting (Freund

and Schapire, 1997) in conjunction with an entropy-based decision stump learner (see
Section 2.1).

7.2.4 Effectiveness Measures

Having learnt a classifier φ̂ using the training set, we would like to evaluate its perfor-
mance by estimating how well φ̂ coincides with the true classification φ. As mentioned
before, pre-classified documents from a test set are normally used for this purpose. For
each document D ∈ Dtst and every class C ∈ C we know whether φ(D,C) holds. We
can then apply φ̂ to the documents in the test set and compare the two classifications.
It should be pointed out that, from a theoretical perspective, the idea of a classification
being correct or incorrect should be taken with care. Since the semantic intensions of the
classes are not formally specified, the choice of whether a document belongs to a specific
class or not is a rather subjective and fuzzy decision (Sebastiani, 2006). For practical
reasons, however, we normatively take any case in which our classifier φ̂ gives us some
φ̂(D,C) 6= φ(D,C) to be error and consider all evaluation measures to be relative to
φ.

For binary single-label classifications, we can then calculate the so-called (sample) error
rate as the percentage of documents that were classified correctly.

As the error rate does not provide a neutral indication of effectiveness when the numbers
of positive and negative examples differ, other effectiveness measures, too, have been
considered in text classification research. Two other popular measures are recall and
precision, originally from the field of information retrieval. The recall value indicates
the sensitivity, and in the context of IR is defined as the ratio of all relevant material
that is actually returned as a search result. The precision, in contrast, indicates the
positive predictive value and is defined as the ratio of truly relevant documents in the
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returned search results. In the context of binary text classification problems, class labels
are regarded as search queries.

Definition 7.2.1. If TP , FP , TN , FN are the set of true positives, false positives, true
negatives, and false negatives, respectively, then precision p and recall r can be defined
as follows:

p :=


TP

TP + FP
TP + FP 6= 0

1 TP + FP + FN = 0

0 otherwise

(7.1)

r :=


TP

TP + TN
TP + TN 6= 0

1 otherwise
(7.2)

Neither precision nor recall is very useful on its own. The trivial classifier φ̂ with
φ̂(D,C) = ⊥ ∀D,C leads to an optimal precision while φ̂(D,C) = > ∀D,C results
in an optimal recall value.

In order to compare different evaluation results, one of several composite measures can be
used, for instance the break-even point of precision and recall (criticized in Sebastiani,
2002, p.36), or the Fβ-measure (van Rijsbergen, 1979, ch.7):

Definition 7.2.2. If p denotes the precision score, and r denotes the recall score, then
the Fβ-measure is computed as

Fβ :=


(β2 + 1)pr

β2p + r
βp + r 6= 0

0 otherwise

(7.3)

for a nonnegative β, where β = 2 for example would imply that precision is weighted
twice as much as recall.

For example, in an e-mail filtering system, letting certain unsolicited e-mails pass through
the filter is less disastrous than deleting important e-mails that in reality were not un-
solicited. Since we are not evaluating our methods with respect to any particular appli-
cation among the ones mentioned in Chapter 1, we set β = 1, adopting the commonly
used F1-measure which is equivalent to the harmonic mean of precision and recall.

F1 =


2× p× r

p + r
p + r 6= 0

0 otherwise
(7.4)
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For instance, obtaining a precision value of 0.9 in conjunction with a recall of 0.4 would
lead to an F1 score of only about 0.55. Obtaining 0.9 for both precision and recall
induces an F1 score of 0.9.

When testing multiple class pairs the results can be combined in two different manners.
Micro-averaged scores are obtained by globally summing over all individual decisions,
i.e. TP , FP , TN , and FN refer to global numbers of documents. Macro-averaged scores
are obtained by averaging the local precision and recall scores obtained for each class
or class pair (Sebastiani, 2002). Micro-averaging, used by the majority of researchers,
gives classes with a large number of examples more weight compared to macro-averaging,
which gives very small classes the same weight as large classes. Since we use a fixed
number of documents for each class, the distinction is not very significant in our case.
We focus on micro-averaged F1 scores in what follows, as this currently is the most
commonly used measure in text classification research.

7.2.5 Tuning of Term Weight Processing

A number of settings need to be made before the machine learning algorithms and our
feature weightings algorithms can be used, and it is not a priori clear which settings
lead to the best performance. Before the actual evaluation, we thus carried out several
preliminary tests in order to find suitable parameter values. Since testing all possible
combinations is not feasible, it is common practice to tune one parameter at a time,
while leaving the others at some default value.

We took care not to use our test sets for tuning, as that would entail biased final results,
instead using a separate validation dataset generated using the same procedure as for
our Reuters topic dataset with English training and Spanish test documents, albeit with
only 10 randomly chosen topic categories and

(
10
2

)
= 45 class pairs.

We started out by examining which term weighting post-processing settings best suit
our algorithm. Our variant of the TF-IDF weighting scheme presented in Section 5.5
can be used with different α-values.

Figure 7.1 shows the experimental results of tests conducted with Support Vector
Machines using four different configurations (see also Table 7.5 in Section 7.3 for an
overview): a simple concept mapping (CM) without weight propagation to related con-
cepts as outlined in Section 4.3.3, Ontology Region Mapping (ORM) from Chapter 5,
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Figure 7.1: Performance when using ctfidf with different α values

simple concept mapping using Babel Fish translations (BCM), as well as Ontology Re-
gion Mapping using Babel Fish translations (BORM). In all cases we used δ = −0.05
for our word sense disambiguation algorithm (cf. Section 5.3.1) and an Information
Gain-based feature selection of 1000 features. The relation type weights were intuitively
chosen on an ad-hoc basis and are listed in Table 7.1.

While the results do not give us a clear indication of which α-value is best, they do
seem to indicate that a threshold of 0.0 is suboptimal. The purpose of the multiplication
with the inverse document frequency is to reduce the weight of high-frequency terms.
The results demonstrate that counting concept terms as occurring in a document despite
them being associated with miniscule weights is not the best approach. We therefore
chose a threshold of 0.5, which had delivered optimal or near-optimal values in a number
of cases.

Since our concept term counts (ctcΩ) are in many ways different from normal term counts,
another test was performed with the aim of ensuring that the conversion to concept term
frequencies and concept TF-IDF values really is beneficial to the effectiveness. Table 7.2
suggests that this is indeed the case. Concept TF-IDF with α = 0.5 consistently led to
the best micro-averaged F1 scores.
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Table 7.1: Relation type weights chosen for preliminary tests

relation type weight βr

hypernymy 0.8
derivation 0.7
derived 0.7
participle 0.7
member/ part holonymy 0.7
substance holonymy 0.4
similarity 0.4
other types 0.0

wmin threshold 0.3

Table 7.2: Comparison of micro-averaged F1 values (in %) for ctcΩ, ctfΩ and ctfidfΩ,0.5,Dtr (our
variant of TF-IDF with threshold α = 0.5 for the document frequency)

ctc ctf ctfidf

CM 88.4 88.9 89.0
ORM 83.7 86.5 89.6
BCM 88.8 89.3 90.0
BORM 86.0 87.5 90.7

7.2.6 Tuning of Word Sense Disambiguation

The next component examined was word sense disambiguation as introduced in Section
2.3.2. We tested different algorithms, using a rather large document text context win-
dow, based on the ‘one sense per discourse’-heuristics according to which a word with
multiple senses, when appearing multiple times in a discourse will nearly always be used
in the same sense within that discourse. Tests by Gale et al. (1992) have shown this
hypothesis to be correct in 97% of the cases.

Our tests were again conducted with Support Vector Machines applied to the validation
dataset that is based on the topic codes of the Reuters corpora. The results in Table
7.3 show that for the simple concept mapping approach (CM and BCM) word sense
disambiguation often does not manage to yield significantly better results than using
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Table 7.3: Comparison of micro-averaged F1 scores (in %) for CM , ORM , BCM , BORM

setups with different WSD methods: equal distribution, CosDscMax, CosDscDist
with different δ values

CM ORM BCM BORM

uniform distribution 88.2 88.8 88.2 89.2
CosDscMax 78.4 85.5 85.9 88.1
CosDscDist (δ = −0.5) 88.2 88.8 88.2 89.2
CosDscDist (δ = −0.1) 87.7 88.7 88.0 89.2
CosDscDist (δ = −0.05) 87.8 88.5 88.2 89.6
CosDscDist (δ = −0.04) 87.8 89.0 88.4 90.0
CosDscDist (δ = 0) 87.9 89.9 87.9 91.0
CosDscDist (δ = 0.05) 88.6 88.7 88.3 89.1
CosDscDist (δ = 0.1) 88.5 88.8 88.4 89.3
CosDscDist (δ = 0.5) 88.1 88.8 88.2 89.4

a uniform distribution, i.e. simply giving each of the n candidate concept terms for a
given human language word the same weight 1

n . One possible reason for this might be
that an overly fine-grained disambiguation makes it more difficult to detect similarities
between feature vectors for documents of the same class. As explained in Section 4.3.3,
often many of the candidate concept terms have very similar meanings.

Our distribution based word sense disambiguation described in Section 5.3.1 (called Cos-
DscDist in this context) is able to compensate for this to a certain extent by allowing
multiple relevant concepts to be maintained. When an appropriate value for δ is used
(see Section 5.3.1), it is shown to lead to better results than merely using the candi-
date term with the highest cosine similarity value as proposed by Theobald et al.

(2003) (the latter approach is labelled CosDscMax in the table). The use of Ontology
Region Mapping (ORM and BORM) acts as another counterforce against a too fine-
grained weighting and thus enables the word sense disambiguation to perform better
than uniform distribution.

It must be pointed out, however, that the fact that our method (CosDscDist) performed
better than the original CosDscMax does not mean that the disambiguation in itself is
more exact, but simply that our method is better suited for text classification purposes.
For our main tests, we chose to use the CosDscDist method with δ = 0.
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Figure 7.2: Feature selection analysis for Support Vector Machines (using a logarithmic scale
from 50 to 10,000 for the number of features) )

7.2.7 Tuning of Feature Selection

Different learning algorithms exhibit different levels of resistance towards irrelevant fea-
tures. We thus tested the effects of feature selection on different classifiers using a wide
range of different numbers of features.

Previous results by Yang and Pedersen (1997) caused us to focus on the Information
Gain ranking as explained in Section 2.2.4. Initial tests showed that this method even
consistently outperformed the χ2 statistic in our setups (for a description of the χ2

measure see Sebastiani, 2002).

Figure 7.2 shows our test results for the SVM algorithm, tested with five different setups:
bag-of-words with Babel Fish based translations (BT), simple concept mapping (CM),
Ontology Region Mapping (ORM), simple concept mapping with Babel Fish transla-
tions (BCM), Ontology Region Mapping with Babel Fish translations (BORM), and fi-
nally Ontology Region Mapping combined with bag-of-words weighting using Babel Fish
translations (BORM+BT). All tests were performed with our concept TF-IDF weight-
ing (α = 0.5). Where applicable, we used our word sense disambiguation algorithm
(CosDscDist) with δ = 0.
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Figure 7.3: Feature selection analysis for the Voted-Perceptron algorithm (using a logarithmic
scale from 50 to 10,000 for the number of features)
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Figure 7.4: Feature selection analysis for the Adaptive Boosting algorithm (using a logarithmic
scale from 50 to 10,000 for the number of features)
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Based on previous results by Joachims (1998) and Brank et al. (2002), among others,
many authors have considered Support Vector Machines robust enough to obviate the
need for any additional feature selection process (e.g. Lewis et al., 2004). In accordance
with Gabrilovich and Markovitch (2005), our results indicate that this assumption
is not universally true when alternative text representation methods are used. With
Ontology Region Mapping, the optimum number of features highly depends on the re-
lation type weights chosen. For the weights used in this tuning test, the performance of
ORM, BORM, and BORM+BT peaked at around 1000 to 1100 features, depending on
the configuration. Even with the bag-of-words model (BT), using the Information Gain
ranking led to slightly improved results in one case. For CM and BCM, ceteris paribus,
the best performance is indeed achieved when no feature selection is used.

The test results obtained with the Voted-Perceptron algorithm, shown in Figure 7.3,
demonstrate that the benefit gained from feature selection depends greatly on the algo-
rithm. For the Voted-Perceptron, eliminating too few features or dispensing with feature
selection altogether has a detrimental effect on performance. The AdaBoost algorithm,
in contrast, when used with decision stump functions, in many cases does not seem to
be influenced significantly from feature selection, as evidenced in Figure 7.4. The reason
for this is that the decision stump functions chosen are unlikely to be based on rather
uninformative features such as the ones typically eliminated by feature selection.

For each learning algorithm and each text representation method, we chose the feature
selection threshold that produced the highest performance.

7.2.8 Tuning of Ontology Relation Type Weights

Finally, we fine-tuned the relation type weights βr for the Ontology Region Mapping
algorithm (BORM setup with SVM classifier), starting out with some intuitively chosen
values very close to the ones in Table 7.1 and then using the procedure described in
Section 5.6 to find more preferable values. The final relation type weights are depicted
in Table 7.4.

The importance of hypernymy is rather evident. By going from specific to more gen-
eral concepts, we abstract from irrelevant details. Following hyponymy relations means
moving in the opposite direction, explaining why hyponymy merely received a weight
of 0.3. Derived word forms (e.g. nominalizations) are linked in WordNet by derivation
relations. Such derived forms are obviously semantically very close. Meronymic relations
are most useful when moving from part to whole (holonymy). Instance relations connect
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individuals such as the Amazon River with general concepts such as ‘river ’, in this case,
and thus are obviously very useful.

Table 7.4: Relation type weights chosen for final tests

relation type weight βr

hypernymy 0.9
hyponymy 0.3
derivation 0.5
derived 0.7
participle 0.7
member holonymy 0.45
part holonymy 0.45
substance holonymy 0.5
meronymy 0.0
similarity 0.4
pertainymy 0.0
instance 0.6
other types 0.0

wmin threshold 0.3

7.3 Test Results

Having fine-tuned the relation type weights, feature selection as well as other parameters
using the validation set, we then carried out the main tests. Table 7.6 displays the results
obtained for all three datasets using Support Vector Machines, while Table 7.7 shows
the corresponding results for the Voted-Perceptron algorithm. Results obtained with
Adaptive Boosting are shown in Table 7.8.

First of all, we noticed that using the conventional bag-of-words method without any
translation whatsoever (T method) worked remarkably well for the English/Spanish
setup, probably to a large part due to named entities, which occur particularly often
in news articles, and because of the relatedness of the two languages. Nonetheless, the
error rates delivered are likely to be unsatisfactory for production use and similar results
cannot be expected for arbitrary language pairs. For Japanese, in fact, this method
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Table 7.5: Overview of approaches tested

abbreviation description

T conventional bag-of-words term approach without translations

CM simple concept mapping approach without weight propagation

ORM Ontology Region Mapping

ORM+BT Ontology Region Mapping combined with bag-of-words representation of
Babel Fish translations

DT dictionary translations used with bag-of-words method

DCM/DORM same as CM/ORM but using dictionary translations as input to ontology
mapping

BT Babel Fish translations used with bag-of-words method

BCM/BORM same as CM/ORM but using Babel Fish translations as input to ontology
mapping

BCM+BT same as CM but using Babel Fish translations as input and combined
with terms from BT

BORM+BT same as ORM but using Babel Fish translations as input and combined
with BT

BDORM+BDT both Babel Fish and dictionary translations used for Ontology Region
Mapping as well as for bag-of-words representation
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could not be used directly because it would require the use of advanced tokenization
heuristics. As expected, the translation approach (DT and BT) leads to significant im-
provements compared to T, however, using simple dictionary translations without word
sense disambiguation (DT, DCM, DORM) generally yields inferior results compared to
approaches using higher quality translations (BT, BCM, BORM, etc.) based on word
sense disambiguation.

As predicted in our analysis in Chapter 4, a pure concept mapping approach without
propagation (CM, DCM, BCM) suffers from serious drawbacks, so it is not surprising
that such solutions are unable to generally outperform translation-based approaches.
Ontology Region Mapping (ORM, DORM, BORM), in nearly all cases, has a very posi-
tive impact on the performance compared to a simple concept mapping approach without
propagation. Several reasons for this were given in Section 4.3.3. The results, however,
depend to a large extent on the ontology employed. Combining the English and Spanish
WordNet versions (CM and ORM) did not always produce convincing results. Instead,
we found that we can obtain high levels of accuracy by using Ontology Region Mapping
with translations (BORM) to improve on the results obtained for BT, even more so by
including both the concepts and the terms in the final representation (BORM+BT).
This is a positive result, as it implies that it suffices to use the freely available English
WordNet combined with translation software that also tends to be more available than
multilingual lexical resources. For instance, despite the non-existence of a Japanese ver-
sion of WordNet, we were able to perform multilingual text classification for Japanese
documents. When necessary, one can yield even further improvements by using multi-
ple translations as input and thus effectively combining four different representations as
explained in Section 5.7 (BDORM+BDT).

When thematically classifying news articles and encyclopedic entries, outperforming the
translation approach BT is a rather difficult task because introduction paragraphs exist
with terms that have a lot of discriminatory power. In these cases, our methods delivered
superior results that are significant from a statistical perspective. Geographical refer-
ences, in contrast, are not always explicit and the classes are thus rather heterogeneous,
so the use of our methods pays off even more. Given that the relation type weights were
tuned with respect to the Reuters topic-based validation set, we can presume that sets
of weights exist that lead to even better results than the ones indicated.

A similar situation holds with respect to the learning algorithms tested. Although we
used the same general parameters for all algorithms (with the exception of the feature
selection setup) rather than tuning in accordance with the demands of particular ones,
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very encouraging results were also achieved with the Voted-Perceptron and Adaptive
Boosting algorithms.

Further performance boosts could be made by improving one of the following compo-
nents.

1. more accurate part-of-speech tagging

2. more accurate lemmatization

3. more accurate word sense disambiguation

4. greater coverage of concepts by the ontology

5. greater coverage of terms by the ontology mapping

6. better use of ontology mapping (e.g. by recognizing multiple-word expressions)

7. more adequate relations in ontology (better background knowledge)

8. better choice of relation weighting parameters

9. optimal learning algorithm setup

In summary, our experimental evaluation confirmed our intuitions about the nature of
multilingual text classification made in our linguistic analysis in Chapter 4 as well as
the decisions resulting from them that are described in Chapter 4 and led to our novel
solution. Ontology Region Mapping not only improves on the simple concept mapping
approach but also manages to deliver superior results compared to the approach of using
translations with the bag-of-words model.
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Table 7.6: Main test results for the Support Vector Machine algorithm tested on the Reuters
English-Spanish (Topics and Geography classes) and Wikipedia English-Japanese
datasets using the approaches explained in Table 7.5 (micro-averaged F1 scores in
%, average error rates in % with 95% confidence intervals).

Reuters Spanish
Topics Geography

F1 error rate F1 error rate

T 80.97 18.61 ±0.30 81.86 18.12 ±0.30
CM 89.23 10.49 ±0.24 85.74 14.58 ±0.28
ORM 89.53 10.36 ±0.24 87.33 12.97 ±0.26
ORM+BT 91.88 8.04 ±0.21 91.92 8.22 ±0.21

DT 86.45 13.17 ±0.26 86.14 14.24 ±0.27
DCM 86.74 13.07 ±0.26 89.38 10.98 ±0.24
DORM 88.01 11.75 ±0.25 91.82 8.46 ±0.22

BT 90.96 8.80 ±0.22 88.76 11.43 ±0.25
BCM 90.75 9.06 ±0.22 91.12 9.16 ±0.23
BORM 91.12 8.74 ±0.22 93.89 6.28 ±0.19
BCM+BT 91.50 8.30 ±0.22 90.12 10.08 ±0.24
BORM+BT 92.46 7.43 ±0.20 94.44 5.68 ±0.18
BDORM+BDT 92.47 7.40 ±0.20 94.83 5.29 ±0.17

Wikipedia
Japanese

F1 error rate

BT 86.26 14.00 ±0.38
BCM 85.38 15.10 ±0.40
BORM 86.67 13.52 ±0.38
BCM+BT 86.41 13.91 ±0.38
BORM+BT 87.29 12.86 ±0.37
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Table 7.7: Main test results for the Voted-Perceptron algorithm using the same three datasets
and the same setups as in the case of our tests with SVM classifiers in Table 7.6.

Reuters Spanish
Topics Geography

F1 error rate F1 error rate

T 73.96 25.30 ±0.34 75.97 23.89 ±0.33
CM 84.20 15.60 ±0.28 83.78 16.57 ±0.29
ORM 85.81 13.84 ±0.27 86.27 13.87 ±0.27
ORM+BT 89.17 10.71 ±0.24 89.74 10.47 ±0.24

DT 83.01 16.67 ±0.29 89.03 11.02 ±0.24
DCM 81.98 17.88 ±0.30 90.34 9.91 ±0.23
DORM 85.13 14.65 ±0.28 90.33 10.01 ±0.23

BT 87.80 12.15 ±0.26 91.70 8.35 ±0.22
BCM 85.93 13.81 ±0.27 92.85 7.40 ±0.20
BORM 88.03 11.78 ±0.25 92.58 7.62 ±0.21
BCM+BT 88.31 11.53 ±0.25 92.02 8.10 ±0.21
BORM+BT 89.37 10.49 ±0.24 92.83 7.34 ±0.20
BDORM+BDT 90.02 9.77 ±0.23 93.63 6.54 ±0.19

Wikipedia
Japanese

F1 error rate

BT 80.28 20.46 ±0.45
BCM 78.29 22.83 ±0.46
BORM 84.06 16.22 ±0.41
BCM+BT 81.22 19.39 ±0.44
BORM+BT 83.86 16.23 ±0.41
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Table 7.8: Main test results for the AdaBoost algorithm using the same three datasets and the
same setups as in the case of our tests with SVM classifiers in Table 7.6.

Reuters Spanish
Topics Geography

F1 error rate F1 error rate

T 65.10 39.58 ±0.38 61.22 32.27 ±0.37
CM 74.41 24.94 ±0.34 79.71 18.54 ±0.30
ORM 78.23 21.71 ±0.32 78.35 20.28 ±0.31
ORM+BT 80.72 19.15 ±0.31 83.24 15.73 ±0.28

DT 76.77 24.22 ±0.33 93.66 6.24 ±0.19
DCM 75.37 25.13 ±0.34 93.39 6.47 ±0.19
DORM 81.37 18.46 ±0.30 94.34 5.67 ±0.18

BT 82.02 18.18 ±0.30 95.99 3.97 ±0.15
BCM 79.52 20.15 ±0.31 95.47 4.45 ±0.16
BORM 84.35 15.47 ±0.28 96.53 3.47 ±0.14
BCM+BT 81.00 18.77 ±0.30 96.21 3.76 ±0.15
BORM+BT 83.44 16.47 ±0.29 96.91 3.08 ±0.13
BDORM+BDT 85.08 14.86 ±0.28 96.93 3.07 ±0.13

Wikipedia
Japanese

F1 error rate

BT 76.70 22.58 ±0.46
BCM 72.54 26.59 ±0.49
BORM 79.90 20.12 ±0.44
BCM+BT 77.69 21.79 ±0.46
BORM+BT 82.97 17.00 ±0.41
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Conclusions and Future Work

In the past, studies have been conducted with the goal of using natural language process-
ing techniques in order to improve the performance of monolingual text classification.
Many of these attempts have failed to deliver convincingly superior results (Sebastiani,
2002). An analysis of some of the drawbacks of simply mapping terms to concepts led
us to a novel approach called Ontology Region Mapping where related concepts, too,
are taken into consideration when mapping from terms to concepts, thus allowing us
to exploit additional background knowledge. We have explained why this approach is
particularly useful in multilingual settings, and our experimental evaluation confirmed
our intuitions.

Our new algorithm requires additional resources, however, most of them are freely avail-
able, most notably Princeton WordNet for the English language. Multilingual ontology
mappings, unfortunately, are not that readily available but this issue is alleviated by the
fact that one can instead use translations in conjunction with Princeton WordNet.

Nevertheless, especially considering that multilingual ontologies are hard to come by,
in the future we would also like to devise strategies for arriving at an ontology with
mappings for multiple languages that better reflects the semantic relatedness between
concepts than WordNet. Kilgarriff and Yallop (2000), for instance, point out that
senses that are very closely related from a semantic perspective, often are not closely
linked in Princeton WordNet, where the main focus lies on ontological relations.

In conjunction with such an endeavour, we would also like to evaluate the effects of
integrating and using background knowledge more rigorously. The underlying idea is
that in order to classify certain documents very specific background knowledge might be
required, e.g. knowing that a person used to be a famous sports star might be the only
way of knowing that an article needs to be categorized as being sports-related. Similarly,
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knowing that Álamos is a town in Mexico and that Almendralejo is a small town in Spain
might be the only way of knowing that one document is Mexico-related and another is
Spain-related rather than vice versa. For our research, this might also mean using a
more powerful concept description language and ontology interface, perhaps one that
has inference capabilities. It would make sense to attempt to identify more complex
concepts, for instance using language-specific noun phrase parsing.

Finally, it could be explored how well the feature weighting schemes perform when
used for multilingual information retrieval and multilingual text clustering. The latter
requires an unsupervised machine learning technique that usually involves some kind
of similarity measure. Since such similarity measures are unlikely to ignore irrelevant
feature dimensions in the same way as support vector machines and other classifying
algorithms are able to, we might be required to adapt our weighting schemes such that
the number of features is restricted to a further extent.

Indeed, we believe our feature weighting approach or extensions of it to have a wide
range of interesting applications, in multilingual as well as monolingual settings, because
it captures the general meaning of a text more adequately than mainstream weighting
schemes.
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Teubner Verlag, Stuttgart, Germany.

Buckley, Chris (1985). Implementation of the SMART Information Retrieval System.
Technical report, Cornell University, Ithaca, NY, USA.

97

http://babelfish.altavista.com/


Bibliography

de Buenaga Rodŕıguez, Manuel, Gómez-Hidalgo, José Maŕıa, and D́ıaz-
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