
COMPUTER ENGINEERING I

Summary of the Lectures held by Prof. Dr. Thiele

Lukas Cavigelli, July 2011
lukasc@ee.ethz.ch

MIPS ASSEMBLER

REGISTERS

NAME NMBR USE STORE

pc - Program Counter -
hi - Special Arithmetic Register -
lo - Special Arithmetic Register -
$zero 0 Constant Value 0 -
$at 1 Reserved for Assembler No
$v0-$v1 2-3 Values for Function Results No
$a0-$a3 4-7 Arguments No
$t0-$t7 8-15 Temporaries No
$s0-$t7 16-23 Saved Temporaries Yes
$t8-$t9 24-25 Temporaries No
$k0-$k1 26-27 Reserved for OS Kernel No
$gp 28 Global Pointer Yes
$sp 29 Stack Pointer Yes
$fp 30 Frame Pointer Yes
$ra 31 Return Address Yes
$f0-f31 0-31 Floating Point Regs Yes

ASSEMBLER DIRECTIVES

.data [start_addr]

.rodata[start_addr]

.bss [start_addr]

.kdata [start_addr]

.ktext [start_addr]

.text [start_addr]

Data Segment
Read-Only Data Segment
Zero-Initialized Data Segment
Kernel Data Segment
Kernel Text Segment
Text Segment (actual program)

.ascii ”str”

.asciiz ”str”

.byte

.double

.float

.half

.word

.space

String in mem., no null-termination
String in mem., null-terminated
 successive bytes in mem.
 successive doubles in mem.
 successive floats in mem.
 successive 16-bit quantities in mem.
 successive 32-bit quantities in mem.
Alloc bytes of space in current seg.

.extern sym size

.globl sym

sym is the name, size is in bytes
Declare label sym is global accessable

.align n

.set at

.set noat

Align following data to byte borders
Make SPIM complain, if $at is used

Make SPIM not compl., if $at is used

Use labels as usual to be able to address it.

CORE INSTRUCTION SET PROPERTIES

O: May cause overflow exception
S: SignExtImm = { 16{immediate[15]}, immediate }
Z: ZeroExtImm = { 16{1b’0}, immediate }
B: BranchAddr = { 14{immediate[15]}, immediate, 2’b0 }
J: JumpAddr = { PC[31:28], address, 2’b0 }
U: Operands considered usigned

CORE INSTRUCTION SET (32-BIT-WIDE, INCOMPLETE)

Mnemonic For-
mat

Comment Operation (Verilog) Properties

O S Z B J U

add

addi

addiu

addu

sub

subu

R
I
I
R
R
R

Add
Add Immediate
Add Imm. Unsigned
Add Unsigned
Subtract
Subtract Unsigned

R[rd] = R[rs] + R[rt]
R[rt] = R[rs] + SignExtImm
R[rt] = R[rs] + SignExtImm
R[rd] = R[rs] + R[rt]
R[rd] = R[rs] - R[rt]
R[rd] = R[rs] - R[rt]

x
x

x

x
x
x

x
x

x

and

andi

nor

or

ori

xor

xori

R
I
R
R
I
R
I

And
And Immediate
Nor
Or
Or Immediate
Xor
Xor Immediate

R[rd] = R[rs] & R[rt]
R[rt] = R[rs] & ZeroExtImm
R[rd] = ~(R[rs] | R[rt])
R[rd] = R[rs] | R[rt]
R[rt] = R[rs] | ZeroExtImm
R[rd] = R[rs] ^ R[rt]
R[rt] = R[rs] ^ ZeroExtImm

x

x

sll

srl

sra

sllv

srlv

srav

R
R
R
R
R
R

Shift Logical Left
Shift Logical Right
Shift Arithm. Right
Shift Logic. Left Var.
Shift Logic. Right Var.
Shift Arith. Right Var.

R[rd] = R[rs] << shamt
R[rd] = R[rs] >> shamt
R[rd] = R[rs] >>> shamt
R[rd] = R[rs] << R[rt]
R[rd] = R[rs] >> R[rt]
R[rd] = R[rs] >>> R[rt]

slt

slti

sltiu

sltu

R
I
I
R

Set Less Than
Set Less Than Imm.
Set Less Than Imm. Unsign.
Set Less Than Unsign.

R[rd] = (R[rs] < R[rt]) ? 1 : 0
R[rt] = (R[rs] < SignExtImm) ? 1 : 0
R[rt] = (R[rs] < SignExtImm) ? 1 : 0
R[rd] = (R[rs] < R[rt]) ? 1 : 0

x
x

x
x

beq

bne

blt

bgt

ble

bge

I
I
P
P
P
P

Branch On Equal
Branch On Not Equal
Branch Less Than
Branch Greater Than
Branch Less Than Or Equal
Branch Greater Than Or Eq.

if (R[rs] == R[rt]) PC = PC + 4 + BranchAddr
if (R[rs] != R[rt]) PC = PC + 4 + BranchAddr
if (R[rs] < R[rt]) PC = PC + 4 + BranchAddr
if (R[rs] > R[rt]) PC = PC + 4 + BranchAddr
if (R[rs] <= R[rt]) PC = PC + 4 + BranchAddr
if (R[rs] >= R[rt]) PC = PC + 4 + BranchAddr

 x
x

j

jal

jr

jalr

j
J
R
R

Jump
Jump And Link
Jump Register
Jump And Link Register

PC = JumpAddr
R[31] = PC + 4; PC = JumpAddr
PC = R[rs]
R[31] = PC + 4; PC = R[rs]

 x
x

move P Move / Copy R[rd] = R[rs]

lb

lbu

lh

lhu

lui

lw

li

la

I
I
I
I
I
I
P
P

Load Byte
Load Byte Unsigned
Load Halfword
Load Halfword Unsigned
Load Upper Immediate
Load Word
Load Immediate
Load Address

R[rt] = { 24’b0, M[R[rs]+ZeroExtImm](7:0) }
R[rt] = { 24’b0, M[R[rs]+ZeroExtImm](7:0) }
R[rt] = { 16’b0, M[R[rs]+ZeroExtImm](15:0) }
R[rt] = { 16’b0, M[R[rs]+ZeroExtImm](15:0) }
R[rt] = { imm, 16’b0 }
R[rt] = M[R[rs]+SignExtImm]
R[rd] = immediate
R[rd] = immediate

x

x

x

x

x

sb

sh

sw

I
I
I

Store Byte
Store Halfword
Store Word

M[R[rs]+SignExtImm](7:0) = R[rt](7:0)
M[R[rs]+SignExtImm](15:0) = R[rt](15:0)
M[R[rs]+SignExtImm] = R[rt]

 x
x
x

div

divu

mult

multu

R
R
R
R

Divide
Divide Unsigned
Multiply
Multiply Unsigned

Lo = R[rs] / R[rt]; Hi = R[rs] % R[rt]
Lo = R[rs] / R[rt]; Hi = R[rs] % R[rt]
{Hi, Lo} = R[rs] * R[rt]
{Hi, Lo} = R[rs] * R[rt]

x

x

bc1t

bc1f

FI
FR

Branch On FP True
Branch On FP False

if (FPCond) PC = PC + 4 + BranchAddr
if (!FPCond) PC = PC + 4 + BranchAddr

 x
x

c.x.s*

c.x.d*

FR
FR

FP Compare Single
FP Compare Double

FPCond = (F[fs] op F[ft]) ? 1 : 0
FPCond = ({F[fs],F[fs+1]} op {F[ft],F[ft+1]})?1:0
*(x is eq, lt or le)(op is ==, < or <=)

add.[d/s]

div.[d/s]

mul.[d/s]

sub.[d/s]

FR
FR
FR
FR

FP Add [double/single]
FP Divide [double/single]
FP Multiply [double/single]
FP Subtract [double/single]

F[fd] = F[fs] + F[ft], double-version too long
F[fd] = F[fs] / F[ft]
F[fd] = F[fs] * F[ft]
F[fd] = F[fs] – F[ft]

mfhi/mflo

mfc0/mtc0

R
R

Move From Hi / Lo
Move From / To Coproc 0

R[rd] = Hi / R[rd] = Lo
R[rd] = CR[rs] / CR[rs] = R[rd]

lwc1

ldc1

swc1

sdc1

I
I
I
I

Load FP Single
Load FP Double
Store FP Single
Store FP Double

F[rt] = M[R[rs] + SignExtImm]
F[rt] = M[R[rs] + SignExtImm]; … too long
M[R[rs] + SignExtImm] = F[rt]
M[R[rs] + SignExtImm] = F[rt]; … too long

 x
x
x
x

MIPS SAMPLES

sll $rd, $rt, shiftamt

sub $rd, $rs, $rt

addi $sp, $sp, -8

beq $s1, $s2, [offset+1]

beq $q1, $s2, -1 #endless loop

lw $15, 4($2) #address = $2+4 (Bytes)

big-endian: most signific. byte at lowest address

synchronisation: ll und sc

SYSCALLS

Service $v0 Arguments Result

print_int 1 integer $a0
print_float 2 float $f12
print_double 3 double $f12/$f13
print_string 4 string $a0
read_int 5 integer $v0
read_float 6 float $f0
read_double 7 double $f0
read_string 8 buf $a0, buflen $a1
sbrk 9 amount $a address $v0
exit 10

EXCEPTION CODES

Num Name Cause of Exception

0 Int Interrupt (hardware)
4 AdEL Address Error (load or instruction fetch)
5 AdES Address Error (store)
6 IBE Bus Error on Instruction Fetch
7 DBE Bus Error on Load or Store
8 Sys Syscall Exception
9 Bp Breakpoint Exception
10 RI Reserved Instruction Exception
11 CpU Coprozessor Unimplemented
12 Ov Arithmetic Overflow Exception
13 Tr Trap
15 FPE Floating Point Exception

BASIC INSTRUCTION FORMATS

R
31 opcode 26 25 rs 21 20 rt 16
15 rd 11 10 shamt 6 5 funct 0

I
31 opcode 26 25 rs 21 20 rt 16
15 immediate 0

J
31 opcode 26 25 immediate

 immediate 0

(FR)

31 opcode 26 25 fmt 21 20 ft 16
15 fs 11 10 fd 6 5 funct 0

(FI)

31
 opcode

26

25
 fmt

21

20
 rt

16

15 immediate 0

P Pseudo-Instruction: is translated into other instruction(s)

(FR) and (FI) are floating point instructions (not treated in lecture)

TIPPS, TRICKS & COMMON MISTAKES

 convert for to while and use pointer arithmetics
 after using mult, get result with mflo
 when doing pointer arith. you might want to use +4 not +1
 subi does not exists, use addi with negative immediate
 correct loading: lw t0,0(t1), do not forget brackets and 0
 work from inner to outer loops, assign variables to registers

mailto:lukasc@ee.ethz.ch

INTRODUCTION

Embedded Systems: Hidden part of a whole system.
 real-time capable
 specialized: optimized, not user-programmable
 reliable: high availability
 efficient: energy, size, weight, cost

INSTRUCTION SET

Layer Model:
C program [Compiler] assembly program [Assembler]
program object code (machine language) + object code from
library [Linker] Executable [Loader] Memory
Neumann-Cycle:
Load instructions from memory decode instructions fetch
operands (from memory or registers) execute instruction
save result identify next instruction [start over]

ADDRESSING METHODS

Direct Addressing (also: immediate addressing):

Register Addressing:

Base Addressing: new PC = register value + constant

PC-relative Addressing: new PC = constant + old PC + 4

Pseudo-direct Addressing:
new PC = constant (26 bit) + upper 4 bits of (old PC + 4)

IMPORTANT INSTRUCTIONS

lw $t0, 100($s2) # $t0 = Memory[100+$s2]
sw $t0, 100($s2) # byte-wise addressing
slti $t1, $s2, 100 # if($s2<100) then $t1=1 else $t1=0
slt $t1, $s2, $s3 # if($s2<$s3) then $t1=1 else $t1=0

blbabla

JUMPING & BRANCHING

 jump instr. (j, jal) are pseudo-direct of register addressing
o jal label1 # $ra=PC+4, go to label1
o j label1 # go to label1 (set PC=label1*4)
o jr $ra # set PC=$ra

 branch instructions (beq, bne) are pc-relative
beq $s1, $s2, imm # if($s1==$s2) then PC=PC+4*(imm+1)

DATA FORMAT

Data Formats: byte (8 bit), half word (16 bit), word (32 bit)
Endianness: big endian is opposite of little endian. Big endian:
Most significant byte of a word is at its lowest address. A word is
addressed with the byte address of its most significant byte.
Later instructions are at a higher address.
Unsigned integer: ∑

Extension : ∑
 ∑

Signed Integer (two’s complement):

 ∑

Extension:
 ∑

 ∑

Determine sign: () ()

Negation: ()
 ∑ ()

SYNCHRONIZATION

Special Instructions:
 ll $t1,offset($s1) # load linked

 sc $t0,offset($s1) # store conditional

Usage: (Example)
try: addi $t0, $zero, 1

ll $t1, 0($s1)

bne $t1, $zero, try

sc $t0, 0($s1)

beq $t0, $zero, try

…

sw $zero, 0($s1)

$t0 = 1

ll on lock var

if lock!=0 -> try

sc on lock var

if sc fails -> try

use memory

lock = 0

exit: …

ASSEMBLER & MACHINE PROGRAM

Assembler: Translates the assembler prog. to a machine prog.
The assembler program contains: comments, symbolic opcodes,
symbolic register names, symbolic marks (line marks), macros
The assembler also handles pseudo instructions and latencies.
Pseudo-Instruction: move $t0, $t1 add $8, $0, $9
Latency: load operations (e.g. lw) are only available in the
second instructionafter the load operation. This is handled.
branch delay slot: the first instruction after a branch operation
(e.g. bne) is always executed. This is handled by the assembler.

ASSEMBLER

BRANCHING

while-loop:
while (save[i] == k) i = i + 1;

$s3 = i, $s5 = k, $s6 = &save[0]

loop: sll $t1, $s3, 2 # $t1 = 4 * i

 add $t1, $t1, $s6

 lw $t0, 0($t1)

 bne $t0, $s5, exit

 addi $s3, $s3, 1

 j loop

exit: …

FUNCTIONS

Context of a subprogram(’activation record’,‘procedure frame’):
arguments, register contents, local variables
Function call: [caller]: 1: Save temporary registers (transfer
values from $a0-$a3, $t0-$t9, $v0-$v1 to stack) 2: put

arguments into $a0-$a3 (and on the stack, if needed) 3:
Jump-instruction (jal)
[callee]: 4: Allocate frame on stack (decrease $sp) 5: Store
saved registers, if needed ($fp, $ra, $s0-$s7) 6: set frame
pointer $fp 7: store results in $v0, $v1 8: restore saved
registers 9: deallocate frame 10: jump back (jr $ra)
[caller]: 11: restore temporary registers
Function call: jal funcLbl
Function return: jr $ra
Temporary registers have to be saved by the calling program.
Stored registers have to be saved by the called program
Memory Arrangement: a: before, b: after

Example Code:
void swap(int v[], int k) {
 int temp; temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; }
steps 1 to 3?!

step 11

INTERRUPTS

Reasons: interrupt signal, arithmetic except. (e.g. zero division),
address error, bus error, software (break, syscall), debug, timer
Implementation: 3 registers:

 Status-Register $12: masks hardware & software interrupts

 Cause-Register ($13 on coprocessor 0):

 EPC-Register ($14 on coprocessor 0)
Flow: interrupt routineis executed, if an interrupt occurs,
corresponding hardware or software mask in $12 is set, global
mask ist set in $12 and the automatic mask is set in $12.

 - programm execution is stopped, PC is stored in EPC register
and set to 0x80000180. There we find a user defined interrupt
handler.
 - Further interrupts are prevented through the automatic mask.
 - the cause register is set (pending interrupts, exception code)
 - interrupt handler is executed
The left program has not saved any registers (!)
Jump back instruction: rti
Example – Enable Interrupts:
li $t4, 2
sw $t4, 0($t0) # set bit 1 of receiver control register
li $t4, 0x0801 # create bitmask for interrupt status
mtc0 $t4, $12 # write status to status reg of coproc
Example – Interrupt Routine:
.ktext 0x80000180 # forces interrupt routine to 0x80000180
set noat # tell assembler to stop using $at
sw $at, save_at # now we can safely use it
.set at # give back $at to the assembler
sw $t0, save_t0 # save registers (also the t registers)
 do whatever you want
mtc0 $0, $13 # clear cause register
lw $t0, save_t0 # restore registers
.set noat
lw $at, save_at # restore $at register
.set at
eret # exception return
.kdata # alloc memory to save variables
save_at: .word 0
save_t0: .word 0

CISC V. RISC, IA -32

RISC: simple encoding, all instructions have the same size,
suitable for high frequency & parallelization, many usable
registers.
IA-32: The Pentium architecture translates IA-32 instr. to RISC.

PROGRAM TO EXECUTION

Flow overview: high level language [compiler] assembler
program [assembler] object program + libraries [Linker]
 machine program [Loader] machine program in memory
High level language: short, readable, maintainabe, architecture
independent, can be problem specific (matlab, lisp, …)
Assembler Language: architecture specific, symbolic
representation of machine program, contains directives for
translation to object code, contains comments, sumboli
opcodes, symbolic register names, symbolic labels, macros.
Assembler: translates opcodes, register names and labels.
Creates a list of non-resolved global labels and references.
Object Program: contains executable code, symbols (mapping
of function & variable names to addresses), data (init values,
size, addresses, … of global variables & constants), references to
data & functions in other object-files, relocation information,
debug information (e.g. line numbers). Object Format:

Examples on page 4-11.

Linker: Links all the program parts together, leaving no
unresolved labels. Includes all the necessary references to
libraries. Sets the memory spaces for program segments, …
Example: page 4 – 14
Loader: Defines the size and address range of text and data
segment. Copies program text and data into address range. Puts
arguments of the progam on the stack, initializes registers.
Typical memory layout:

PERFORMANCE

Evaluating a computer: cost, energy consumption, execution
time (latency, cpu time), throughput, response time on
interrputs (for embedded systems), …

Performance Assessment: frequency, CPI (avg. cycles per instr.),
MIPS (millions instructions per second), MFLOPS (millions
floating point operations per second), Benchmarks (real
applications, kernel parts, synthetic benchmark, mixture)

 -

 -

 ∑

 ⁄

with : # different instructions, : cycles for instruction type
 : fraction of instruction of all instructions of the program
 : # instr. of type in the program, : #instr. in the program

INFLUENCE ON PERFORMANCE BY LEVEL

 # instr. CPI Frequency

algorithm x x
compiler x x
instruction set x x x
architecture x x
technology x

Criteria for the instruction set: efficient translation possible,
few instructions per program, efficient implementation, few
cycles per instruction, resources used where useful (large)

SPEC-Benchmark: √∏
 -

 -

, : program id

SPECINTC2006 (CPU, no I/O): List of programs on page 5 – 11.

INPUT & OUTPUT

Transaction-I/O: lots of small amounts of data, frequent access
File-I/O: large amounts of data per time
Event-I/O: short reaction-time, as many events should be

processed per time
I/O data rate or bandwidth: amount of data per time
I/O response time: overall time for a single I/O operation

BUSSES

Bus: Common used communication link
 - pro: new units can be added easily, cheap
 - contra: bottle neck of communication, throughput limited by
bus length and # devices, has to support very different devices
Bus organization:
 - control lines: request, acknowledgement, reservation, …
 - data lines: data, addresses, complex control information, …
I/O-Transaction: reserve bus, send address, send or receive
data, release bus
Master/Slave:
Master: starts and ends bus transaction, sends the address.
Slave: responds to request and address, sends/receives data.
Types of busses:
 CPU-Memory-Bus: short, high speed
 I/O-Bus: has to serve many different units
 AGP-Bus, PCI-Bus, …
Design Decisions:

SYNCHRONOUS PROTOCOL S

Synchronous: Common clock line for synchronisations, protocol
relative to this clock. Pro: fast, if clock skew small.
Con: every unit has to support the same frequency
Example (read from slave):

Timing:

ClktoQ delay from rising clock edge to valid reg output
ClkSkew delay of the clock signal between registers
ClkPeriod period of the clock
SetupTime
/HoldTime

time the input signal has to be valid before/after
rising clock edge

SPD/LPD shortest/longest delay between output and input
of all registers

Possible Improvements:
 - generate clock at data source (same delay as data) (SDRAM)
 - clock is lead back to clock generator. Each unit reconstructs

the original clock signal (RAMBUS)

ASYNCHRONOUS PROTOCOLS

Properties:
 - no clock line, ‘handshake’-protocoll
 - pro: no common clock, delay independent function, support of

heterogenous units
 - con: requires asynchronous handshake-logic

Specification using a Finite State Machine (FSM):
A deterministic finite state machine is a 6-tupel ()
with : finite input set, : finite output set, : finite state set

and init state, state transition
function, output function.

Model of an async protocol, all values not specified are 0:

Transmission mechanisms:
 block transmission: multiple words (1 block) are transmitted

per transaction, address is only sent once, bus blocked until
last word is transmitted.

 split transaction: bus transmits small data chunks (e.g.words)
Arbiter Mechanisms:

One Busmaster control all bus accesses: initiates and controls all
bus reservations, slave responds to read & write requests,
master (e.g. CPU) takes part in all transactions

Use of Arbiter Schemes: A busmaster signals a bus request. It
cannot use the bus until access is granted. The busmaster
signals the end of its transaction.

Arbiter mechanisms:
 distributed arbitring by self selection: Each unit sets

identification number on the bus unit with highest priority
can access the bus.

 distributed aritring through collision detection: unit signals
reservation, is bus is empty, otherwise it waits.

 daisy chain: Arranging the unit in a priority chain. Grant-signal
is handed on. Very simple, but not fair (starvation possible)

 central arbitring: star-like arrangement of the units.

OPERATING SYSTEM

The operating system is the interface between the IO-hardware
and the user programm requesting a transaction.

I/O-System: is used by different systems (resource conflicts),
uses interrupts, is handled by lower levels of the OS

Tasks of the OS: protection of resources, abstraction for
programms, mutual exclusion of the users, fair access for
all users.

Ways of communication:
 Instructions (OS IO): Addressing: memory mapped I/O (like

memory address, but instead of memory a device)
 Messages (IO OS): Polling: periodical sampling of the status

registers, Interrupt: Unit interrupts current programm
(special hardware), usage of cause/status-registers

 Data (OS IO): needs a lot of performance DMA-Function:
outside of the CPU, is bus master, transactions CPU-
independent. DMA has direct memory access.

Storage hierarchy:
Register Cache Main Memory Disk Memory
Access time to a hard drive:

 Access time = search time + rotation latency + transmission
time + controller latency + queue delay

More on hard drives, RAID, … TIK II summary

CPU – S INGLE-CYCLE IMPLEMENTATION

Data Path: processing and transportation of instructions and
data, supports all operations and transports

Control Path: processing and transportation of control data.
Hardware interprets instructions, e.g. as micro programming

language
MIPS subset:

Elementary Operations:

CONTROL FLOW & PETRI NETS

Control Flow Graph (Petri nets):
 Nodes: operations to be executed
o flow node: activated, if there is a marking on each input

edge. On sparking a marking disappears on each input edge
and a new one appears at each ouput edge.

o connection node: activated, if at least one of the input
edges has a marking. On sparking for each a input marking
disappears and a new one appears at each output edge.

o branching node: activated, if there is a marking on each
input edge. On sparking a marking is removed on each
input edge and a marking is added to the selected output
edge (e.g. if-branching)

 Edges: direction of the control flow
 Markings: current state

blabla schooner formulieren, seite 8-9 ff
Example:

Examples for R, beq, j, lw, sw on pages 8-11 ff, all on one: p.8-18
Unified net (R, bew, lw, sw, but not j):

Principal flow:

ALU: (as a component of the data path)

Control Path: Represents the structure of the Petri net:

ALU Control & Control Units:

Control Unit:

Entire single-cycle implementation: (with j)

Parallel instruction Processing:
 Single Cycle: all instructions are processed in one clock cycle.
 if long instructions have to be implemented, the clock has
to be very slow

 Multiple Cycle: splitting instructions into multiple segments,
which need one clock cycle each. faster clock, but more
registers necessary

Implementation: Control flow graph Finite State Machine
explicit function to get to the next state PLA (chap. 7)

PIPELINING

Goal: run multiple instructions in parallel
Breakdown of the instructions into 5 phases:

IF (instruction fetch), ID (instruction decode),
EX (execute), MEM (memory), WB (write back)

Comparison of different architectures:

single cycle

multi cycle

pipelining

Calculations – Homogeneous computing time with pipelining:

 : pipelining stages (here 5), : parallel instructions/iterations
Calculations – Inhomogeneous computing time with pipelining:

 ∑

() ()

()

∑
 ()

→

∑

()

Example on page 9-10

Designing a pipelining architecture:

 start with a single-cycle implementation
 the control path does not have an internal state and can

therefore be realized as a purely combinational circuit
 separation of all stages (IF, ID, EX, MEM, WB) by registers
 assignment of the components of the data path to the stages
 exception: the register field is used in ID and WB (in parallel)
Pipeline Diagram:

Design of the pipelined control path:

 - start with the single-cycle implementation of the control path

 - lead the control path through the registers (like the data)

Entire Pipelined Implementation without Forwarding:

HAZARDS

 Structural hazard: Combination of instructions which should
be executed are not supported by the architecture

 Flow hazard: The result of an instruction execution is
required to decide which will be the next instruction (branch)

 Data hazard: Operand of an instruction depends on the result
of an earlier instruction. (instructions using the same regs)

Preventing Hazards: the compiler orders the instructions, such
that no hazard occurs. If necessary it inserts nop instructions.
Stall: insertion of a bubble into an instruction (nop it & repeat it)

FORWARDING : PREVENT DATA HAZARDS

Principle:

Description of the forwarding functionality:

Implementation:

STALLS : PREVENT DATA „LOAD-USE“ HAZARD

 forwarding cannot prevent all data hazards
 insert a bubble to put things right (like a nop)
 the bubble is not inserted in the IF stage, but later
 all instructions in earlier stages stay there
page 9.39: MEM read and forward -> ???
Implementation:

STALLS : TO PREVENT FLOW HAZARDS

Example, if branching decision is known after MEM-phase:
each branch leads to 3 stall cycles.

5-stage pipeline, 30% branches

Static Prediction: assume no branching
Example: assuming no branching, but it should have branched

5-stage pipeline, 30% branches, half of the cases prediction right

Dynamic 1-bit Prediction: if it brached last time, it will again this

time. Useful, because loops usually have the same decision.
Dynamic 2-bit Prediction:

Advance Branching Decision: Already calculate the branch

address in the ID-stage
Branch Delay Slot: The instruction following the branch

instruction is always executed. So no time is lost.
5-stage pipeline, 30% branches, compiler uses 60% of delay slots

INSTRUCTION-LEVEL PARALLELISM (ILP)

Increasing instruction parallelism:
 more pipelinings stages (superpipelining)
 multiple instructions per cycle (multiple issue):

possibility for , but dependencies between
instructions increase the CPI-value

Superpipelining:

consequences: higher frequency, “out of order completion”
(different instructions need a different number of cycles),
influence of hazards is worse.

Static Multiple Issue: compiler groups instructions into very

long instruction words (VLIW) and prevents hazards. Often
arithmetic units are doubled.

Now the registers have to support 4 read and 2 write accesses in
parallel and a separate adder for memory addresses is needed

Implementation on page 10-9
Compiler Techniques: loop unrolling, examples pages 10-11 ff
Dynamic Multiple Issue: CPU loads multiple instructions and

decides which one is run next. Compiler can help prepare
this in advance by sorting instructions. CPU solves hazards
in real-time using advanced techniques.

Superskalar CPUs: (dynamic multiple issue)
CPU decides on how many instructions are run in parallel and

prevents structural and data hazards in parallel.

Register Renaming: Commit unit and reservation stations map

logical registers to physical registers. For intermediate
results there is no register required sometimes.

Speculation: Estimate what will happen and execute it. Restore
original system state if decision was wrong. Is used for dynamic
and static multiple issue.
Compiler can reorder instr. and insert other instr. correcting it
again, if prediction was wrong (e.g. put an lw before branch)
Hardware can reorder instr. Results are stored until final
decision is made. Only then the commit unit really writes it back

STORAGE HIERARCHY (CACHE, . . .)

Layers: Register 1st &2nd Cache RAM Hard Drive Tape
Technology trends: +55% capacity/y, -8% access time/y
Locality:
 time locality: data or instructions which have been used are

going to be used again soon store near CPU

 space locality: data or instructions are used, which are near
the just used ones store near blocks near CPU

Memory Access:
 - Hit: Data is in the upper layer
 - Miss: Data needs to be fetched from a lower layer
 pipeline stall (IF-stage for instr., MEM-stage for data)
Typical cache values:

Terminology:

Associativity – where should a block be placed:
placement of a block with address 12:
direct mapped: 12 mod 8 = 4, set associative: 12 mod 4 = 0, full

associative: everywhere possible.

Direct mapped: LSBs of memory address are cache address.

Example access sequence:

Further example on page 11-17
Calculating the cache size: 64 kByte data, block size = 1 word =

4byte, byte-wise addressing, address length 32bit
64 kByte = byte = words
cache size = (()) = 803 kBit 100 KB

INCREASING THE CACHE BLOCK SIZE

cache block: cache data with their own tag
increasing the block size: profit from space locality, more

efficient storage, higher miss rate (time for replacement)
memory size: bit wide address, byte-wise addressing, cache

with bytes usable data, bytes per block
address parts. [] tag, [] cache index,

[] block offset
cache size: (()) bit

 byte () bit
Generally an optimal block size exists (minimal miss rate)
direct mapped:

ASSOCIATIVE CACHE

Problems with direct mapping: high miss rate due to a conflict
(multiple memory blocks on one cache index), unfortunate
replacement strategy, bigger or associative cache

Associative cache: entries per index (-way associative),
direct caches work in parallel, cache index selects a set of
blocks and compares address in parallel.

Replacement Strategies: For direct mapping we have no choice.
For associative cache: random choice or longest unused block.
Write Back Options:
 CPU only writes to cache, if block is replaced, it is copied back
 dirty bit: shows whether block was used, copy only if needed
 write through: always write back. Needs a buffer. Requires:

avg_mem_rate < 1/main_mem_write_cycle_time

PERFORMANCE CALCULAT IONS

Example calculations on pages 11-29 ff
Calculations for multiple cache level (L1,L2,L3): pages 11-32 ff.

MEMORY AND BUS

The combination of memory architecture and bus system can
influence the overall system performance massively.

Memory organizations: a: one-word-wide, b: wider, c:
interleaved (multiple memory banks)

Example: 1 bus cycle to transmit address, 15 bus cycles for each
memory access, 1 bus cycle per data transfer

a: block size 4 words, memory & bus width 1 word
miss_strafe = () bus cycles

bandwidth = () ⁄ bytes/bus cycle

b: block size 4 words, memory & bus width 4 words
 miss_strafe = () bus cycles
 bandwidth = () ⁄ bytes/bus cycle
c: block size 4 words, 4 memory banks, bus width 1 word
 miss_strafe = () bus cycles
 bandwidth = () ⁄ bytes/bus cycle

CACHE COHERENCE

Problem of multi processor systems with common memory:
incoherent data in caches and main memory.

Example: variable X is in the caches of the CPUs P1 and P2 and in
the main mem. P1 writes X=1. With write through the main
mem is updated, but P2 read the old values from its cache.
Without write through we will get a similar problem.

Snoopy protocols: all CPUs monitor data transmissions between
all caches an the main mem. This requires an extension of the
status bits of each cache line, an additional cache controller
with the according cache coherence protocol. To provide access
conflict between CPUs, the address tags and status bits are
duplicated (snoop tag).
Protocols are represented by FSMs, if this case states are
mapped to cache lines and represent the current situation.
Protocol example: write invalidate for write through, write
invalidate for write back, MESI (modified, exclusive, shared
invalid)
Write invalidate for write through:

TODO, …

TODO: add instructions ll und sc

UNSORTED: $gp zeigt immer auf die Mitte der statischen
Daten.
MITNEHMEN: Info 1 Zsfg, TIK II Zsg

