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Introduction 
The numerical analysis of harmonic wave propagation in 
corrugated pipes is studied in this paper. Such corrugated 
pipes are part of the engine fuel supply in automobiles and 
are located in the fuel supply module as depicted in Fig. 1, 
between the electric fuel pump and the fuel rail. The pipe is 
treated as a waveguide with periodic properties in direction 
of wave propagation. The analysis of these guided waves 
leads to dispersion curves showing the strong frequency-
dependence of different wave modes. A complete 
understanding of the wave propagation in fuel-filled 
corrugated pipes is of major interest due to its potential of 
transmitting acoustic waves which may lead to undesired 
noise levels in the interior of vehicles. Mace et al. [1] have 
developed a method based on using standard FE-code in 
order to predict dispersion curves in solid waveguides 
called Waveguid-FE in the following. This technique is 
complemented by Maess at al. [2] for problems concerning 
acoustic-structure-interaction.  

Computation of Dispersion Curves 
Details about FE-Modelling and the non-symmetric 
representation of the fully coupled equations are given in 
[3]. Following the idea of Mace et al. [1], a periodic 
segment model of the corrugated pipe is meshed using a 
standard FE-package as depicted in Fig. 1 (in this study 
ANSYS is used). The pipe segment consists of 10873 
DOFs. Linear 8-node elements are used, both for the solid 
and fluid partition, and full FSI-coupling is applied. 
Equations are given in the references mentioned above [2],  

   Figure 1: Fuel supply module (courtesy of Robert Bosch 
GmbH) including fuel pump and corrugated pipes (A) and FE-
model of a fuel-filled corrugated pipe segment (B). 

 

this section only summarizes the main steps to solve for the 
dispersion curves. The assumption of harmonic wave 
propagation in the waveguide leads to the dynamic stiffness 
matrix. On the interface, continuity of the Dirichlet and 
Neumann data is imposed. The next critical step is the 
partition of the DOFs into a left and right portion with 
respect to the position on the pipe segment, whereas interior 
DOFs are condensed dynamically. A transfer matrix 
representation and an associated eigenproblem is obtained 
after applying periodicity conditions at successive cross-
sections. From the eigenvalues, wave numbers are 
recovered, whereas the eigenvectors lead to wave mode 
shapes. Computations are performed for a corrugated pipe 
segment with a length of 4 mm. The material of the pipe 
shell is a Rilsan polymer ( 31050 mkgs =ρ  and 

MPaE 330= ), whereas the fluid domain is a standard 
engine fuel ( 3800 mkgf =ρ  and MPaK f 1250= ). The 

dispersion curves of the corrugated pipe are displayed in 
Fig. 2. Group velocities and power flows are obtained by 
postprocessing the different branches (Fig. 3 and Fig. 4) [2]. 

To avoid numerical errors, it is more convenient to compute 
group velocities as the ratio of the net power flow and the 
time-averaged energy density. Four different branches are 
visible in the complete observed frequency domain. The 
bending mode starts with zero velocity and is highly 
dispersive for low frequencies (branch 1). The torsional 
mode (branch 4) is characterized by the dispersion curve 
with the smallest slope (and therefore the highest velocity) 
and the fact that all the energy is located in the structure. 
The energy and phase velocity of the fluid-type mode   
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Figure 2: Dispersion curves: 1 bending mode; 2 long. mode; 3 fluid 
mode; 4 torsional mode; 5 1st cut-on mode; 6 2nd cut-on mode. 
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Figure 3: Group velocities. 

(branch 3) decreases for higher frequencies. Moreover, two 
cut-on modes are visible (branch 5 and 6). Note that the 1st 
cut-on mode starts with a negative group velocity. Fig. 4 
shows power flows in the fluid domain relative to the 
energy located in the structure. Partially, negative power 
transmissions are obtained. This indicates that the energy 
propagates against the direction of phase. 

An animation tool (Structural Dynamic Toolbox) is used to 
visualize the different wave modes. Eleven periodic 
corrugated pipe segments are assembled and the wave 
forms of free wave modes are displayed by continuing the 
segment results periodically. As representative examples, 
the fluid-type mode and the bending mode are shown in 
Fig. 5. The animation of the fluid mode reveals that a 
positive pressure field leads to an expansion of the pipe 
shell and bending of the segment radii, whereas a negative 
pressure of the acoustic fluid results in a contraction of the 
structure. In addition, this animation tool helps to interprete 
the wave form of the cut-on modes. The 1st cut-on mode 
turns out to be a bending-type mode, whereas the 2nd cut-on 
mode is characterized by an elliptical deformation of the 
cross-section.  

Figure 4: Energy distribution in the fluid in %. 

 

 

 

 
Figure 5: Illustration of the fluid mode (top, longitudinal 
section) and bending mode (bottom). 

 
Conclusion 
It is shown that the Waveguide-FE technique from Mace et 
al. [1] and Maess et al. [2] is useful for practical examples 
of waveguides with more complicated geometries where 
analytical solutions of dispersion curves are not available. 
Wave numbers, group velocities and power transmissions 
are computed for a corrugated pipe. The use of standard FE-
packages simplifies the computation of dispersion curves 
and allows the consideration of a large class of fluid-filled 
pipe problems. 
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