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Zusammenfassung

Gordon E. Moore beschrieb 1965 einen wegweisenden Trend für die Chipentwicklung: Er sagte

voraus, dass sich die Anzahl der verwendeten Schaltkreise pro Flächeneinheit für einen Prozessor

alle zwei Jahre verdoppeln würde. Dieser Trend hat sich bis heute bewahrheitet und ermöglicht

seitdem dramatische Veränderungen des Prozessorentwurfs. Insbesondere im Bereich der Pro-

tokollverarbeitung (TCP/IP/Ethernet) wurde die Entwicklung neuer Prozessoren durch enorme

Zuwachsraten an Internet-Nutzern und innovativer Anwendungen wie Voice-over-IP, Internet Tele-

fonie u.a. (die heute längst Standard sind) befeuert. Aus dieser Situation heraus entstand die

Vision eines Netzwerkprozessors (NPU), welcher die effiziente Verarbeitung hoher Datenvolumen

mit der Flexibilität zur Entwicklung neuer Algorithmen verbindet. Der Spagat zwischen diesen

unterschiedlichen Anforderungen bewirkt zeitaufwändige Entwurfszyklen, so dass automatisierte

Entwurfsmethoden und entsprechende Werkzeuge zwingend notwendig sind, um mit vertret-

barem Aufwand ein NPU-System zu entwerfen. Compiler-in-the-Loop Architektur-Exploration

wird heutzutage als der richtige Weg angesehen dieses Problem zu lösen. In diesem Zusammen-

hang spielen automatisierte Compiler-Erzeugung und Instruktionssatz-Erweiterung (ISE) wichtige

Rollen. Beide Techniken ermöglichen Prozessordesignern den Instruktionssatz (ISA) einer NPU

an die Anforderungen von Netzwerkanwendungen komfortabel anzupassen und darüber hinaus ein

entsprechendes Programmiermodell durch einen Compiler für Anwender bereitzustellen. Diese Ar-

beit präsentiert Fallstudien zu Architektur-Exploration und Compiler-Optimierung in Verbindung

mit ISE für NPUs. Motiviert durch die gewonnenen Erkenntnisse wird ein Rahmenwerk zur au-

tomatisierten Compiler/Architektur Co-Exploration entwickelt. Der Vorteil dieses Rahmenwerks

begründet sich auf der Möglichkeit durch Analyse von C-Anwendungen eine optimierte ISA und

einen passenden Compiler zu entwickeln und dadurch den Entwurf programmierbarer Prozessorar-

chitekturen für diese Anwendungen zu unterstützen. Gleichzeitig wird der Ablauf der Architektur-

Exploration beschleunigt, da zeiaufwändige Analysen der Anwendungen und Retargierung des

Compilers effektiv unterstützt werden.
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Das Rahmenwerk basiert auf zwei Werkzeugen: Einer Analyse von C-Anwendungen zur Identi-

fizierung von Instruktionen für eine ISE sowie eines Code-Generators zur Erzeugung eines Al-

gorithmus, der, eingebettet in einen Compiler, die automatische Verwendung der Instruktionen

durch einen Compiler ermöglicht.

Die Analyse bezieht vollständige Anwendungen ein und ist nicht auf einzelne Abschnitte der An-

wendungen beschränkt. Durch ihre polynomische Laufzeitkomplexität können mit diesem Ansatz

auch komplexe oder mehrere Anwendungen verarbeitet werden. Das Ergebnis dieses Verfahrens

ist eine Beschreibung der Instruktionen in einer Form, wie sie der Code-Generator verarbeiten

kann.

Basierend auf dieser Beschreibung erzeugt der Code-Generator einen Algorithmus zur Code-

Selektion. Diese besitzt lineare Laufzeitkomplexität und kann beliebig komplexe Instruktionen

erfassen; insbesondere Instruktionen, welche mehrere Ergebnisse gleichzeitig berechnen.

Das gesamte Rahmenwerk ist eingebettet in eine industrieerprobte Methodik zur Architektur-

Exploration. Diese erlaubt die iterative Entwicklung eines Prozessors basierend auf einem Mod-

ell in Architekturbeschreibungssprache. Während der Exploration können relevante Werkzeuge

wie Assembler, Linker oder Simulator aus dem Modell heraus erzeugt werden. So ergibt sich

ein verbesserter Design-Ablauf, wobei der Designer in einem einzigen Entwurfszyklus einen opti-

mierten Satz Instruktionen und einen dazu passenden Compiler erhält. In nachfolgenden Zyklen

übernimmt er die Instruktionen in sein Prozessormodell und evaluiert die Veränderungen anhand

der verarbeiteten Anwendungen mit Hilfe des neuen Compilers und des generierten Simulators.



Abstract

1965, Gordon E. Moore has described a groundbreaking trend for the design of processors: he pre-

dicted a doubling of the number of circuit components fabricated on a single chip every two years.

This trend has proven itself to be true and has enabled spectacular rates of progress in semicon-

ductor technology since then. Particularly in the field of protocol processing, system design has

been driven by the continuously growing number of Internet users and traffic accompanying the

rise of new network protocols like Voice-over-IP, VPN or Internet TV (which have long become

standards). This development has led to the rise of a new type of Application-Specific Instruction

Set Processor (ASIP) especially designed to support high-level programmability of network pro-

tocols and efficient packet processing at the same time, called Network Processing Unit (NPU).

Designing such systems under increasing time-to-market pressure imposes clear requirements for

systematic and, moreover, automated design methodologies for building NPUs, so that time and

effort to design a system containing both hardware and software remains acceptable. Compiler–

in–the–Loop (CiL) architecture exploration is widely accepted as being the right track for fast

development of ASIPs like NPUs. In this context, automatic application-specific Instruction Set

Extension (ISE) and code generation by a compiler have received huge attention in the past. To-

gether, both techniques enable processor designers to quickly adapt a processor’s Instruction Set

Architecture (ISA) to the needs of a certain set of applications and to provide an appropriate high-

level programming model. This manuscript presents a detailed analysis of architecture exploration

for NPUs. It develops a scalable framework for automatic compiler/architecture co-exploration,

targeting the domain of network applications.

First, the framework is based on a novel code-selection technique for the compiler and an appropri-

ate code-generator for this technique. The code-generator takes a description of the ISA as input

and produces a set of C-functions allowing for comfortable implementation of the aforementioned

code-selection. The code-selection algorithm features linear runtime complexity and — in contrast

to traditional approaches of this type — is capable of handling arbitrary complex instructions;

especially inherent parallel instructions computing multiple results at the same time.
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Second, the framework is based on a novel methodology for automatic identification of possible

ISEs. It identifies new instructions through the analysis of complete applications and is not

restricted to selected hotspots of these applications. Its polynomial runtime complexity enables

the analysis of (a set of) complex real-world applications. It results in a grammar description of

the most efficient hardware instructions, which can in turn be processed by the aforementioned

code-generator.

By embedding this tool flow in an industry-proven architecture exploration framework, a method-

ology for simultaneous compiler/architecture co-exploration is derived, which allows for iterative

development of a processor model, written in Architecture Description Language (ADL). During

architecture exploration, relevant tools like assembler, linker and simulator can be generated based

on the processor model. Thereby an improved design flow is created that enables designers to

retrieve an optimized ISA and appropriate compiler in a single iteration. In subsequent itera-

tions, he integrates the instructions in the processor model and evaluates the effects on the target

applications with the help of the retargeted compiler and generated simulator.



Acknowledgments

First and foremost I would like to thank my thesis supervisor Professor Rainer Leupers for pro-

viding me with the opportunity to work in his group as well as for his important advice and

constant encouragement throughout the course of my research. He always left me a lot freedom

and contributed much to an enjoyable and productive working atmosphere. I am also thankful to

the Professors Gerd Ascheid and Heinrich Meyr. I want to thank all of them for the lessons they

gave me on the importance of details for the success of a scientific or engineering project. It has

been a distinct privilege for me to work with them.

There were a number of people in my everyday circle of colleagues who have enriched my personal

life in various ways and who were also true friends. I am particular indebted to my colleagues

Manuel Hohenauer, Kingshuk Karuri, Jiangjiang Ceng and Stefan Kraemer who worked together

with me from the first minute. Without their contributions, their support and the inspiring

atmosphere within our team, this work would have not been possible. I thank all of you. Special

thanks goes also to David Kammler who were my partner in many publications. His expertise in

hardware generation was an invaluable asset for my work.

I am particularly indebted to Jonghee M. Youn, Matthias Stiefelhagen and Robin Stemmer for

their cooperation and support during my studies. I hope the best for you wherever you are.

I am also very grateful to Manuel Hohenauer, Jeronimo Castrillon and Nina Hildebrand who

were patient and brave enough to carefully proofread this thesis. Their constructive feedback and

comments at various stages have been significantly useful in shaping this thesis up to completion.

At last, I would like to thank the people who I care most in the world, my mother and my

wife Jenny. I would like to thank Jenny for the many sacrifices she had made to supporting me

in undertaking my doctoral studies. Her true affection and dedication were the most valuable

support and gave me the power to thrive in hard times.

Finally, my biggest thanks goes to my mother Inge without whom I would not be sitting here in

front of my computer typing these acknowledgements. I owe her much of what I have become. I

dedicate this work to her to honor her love, patience and support throughout my whole life.

vii





Contents

1 Introduction 1

2 An Overview of Network Processors 7

2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Network Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Internet Protocol Version 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Multimedia Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Architecture Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Design Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Hardware Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Industry Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Programming Network Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Programming language/Compilers: . . . . . . . . . . . . . . . . . . . . . . 30

2.5.3 MP-SoC Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Compilation and Instruction Set Extensions 37

3.1 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Intermediate Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Instruction Set Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



x Contents

3.2.2 Procedure Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Case study: Compiler-Agnostic Architecture Exploration 57

4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Synopsys Processor Designer . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Target Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Exploration Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Application Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Architecture Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Architecture Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Case study: Compiler-Driven Instruction Set Extension 77

5.1 Driver Architecture: Infineon Convergate . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 A Low Overhead Calling Convention for Network Processors . . . . . . . . . . . . 80

5.3 Optimized Selection of Calling Conventions . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.4 Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Automatic Compiler-Driven Utilization of Custom Instructions 91

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Code-Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Candidate Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.2 Candidate Set Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.3 Pre-Cover Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 Hardware Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Automatic Compiler-Driven Identification of Custom Instructions 109

7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



Contents xi

7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 Subgraph Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.2 Isomorphism Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.3 Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Future Work 127

9 Conclusion 129

A The IRISC Architecture 133

A.1 Architecture Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.2.1 Conditional Execution and Compare-Instructions . . . . . . . . . . . . . . 134

A.2.2 Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2.3 Memory-Access Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.2.4 Load Immediate Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2.5 Branch-Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.3 Instruction Set Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.3.1 Encryption Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.3.2 Protocol Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B Programming Interface of CBurg 141

B.1 C-functions for Code-Selector Implementation . . . . . . . . . . . . . . . . . . . . 141

B.2 Code-Selector Specification within CBurg . . . . . . . . . . . . . . . . . . . . . . . 142

B.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.2.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.2.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.2.4 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C Partitioned Boolean Quadratic Programming 147

Glossary 149

List of Figures 155

List of Tables 159

Bibliography 161





Chapter 1

Introduction

Presently, embedded systems are one of the mainsprings for product innovation in industrial

sectors, like consumer electronics, automotive- or medical-engineering. About 80% of the total

production in these sectors contains embedded system components. The global market value of

embedded systems is estimated at 135 billions Euros, growing annually by 9% [8]. At the moment,

Germany (along with USA and Japan) is leading in the field of engineering application-specific

electronic semiconductors, which are applied in embedded systems. However, the pressure of

competition is rapidly growing, particularly from Asia [8].

In contrast to classic Information Technology (IT), the basic conditions of the construction phase

of embedded systems are entirely different: First of all, resources of processors and memories

are significantly smaller compared to the classic IT domain; low code size and high execution

performance are therefore of highest priority. Secondly, many embedded systems have to provide

a maximum level of security, reliability and integrity, particularly if they control critical func-

tionality in cars, planes or machines. In order to meet these requirements, the design complexity

of processors used in this domain comes with very high engineering costs, which feature, as a

result of Moores Law [208], an exponential growth. To control and amortize these non-recurring

engineering costs, efficient design methodologies (for a short time–to–market) and a growing sub-

stitution of Application-Specific Integrated Circuits (ASIC) by programmable processors (for a long

time–in–market) are necessary. Due to these conditions, the demand for early system evaluation

rises. Rapid prototyping, with early system level evaluation and retargetable code-generation, is

considered to be an effective instrument for conquering the continuously increasing complexity

in the embedded systems domain. As a result, new design methodologies for Application-Specific

Instruction Set Processors (ASIP) [140], such as Network Processing Units (NPU) have emerged

in recent years, which rely on the principle of iterative application simulation/profiling and archi-

tecture refinement of virtual processor prototypes [151] (Figure 1.1). Based on profiling results,

bottlenecks are identified, the instruction pipeline is fine-tuned and Custom Instructions (CI) are

1



2 Chapter 1. Introduction

added to gradually improve the architecture’s efficiency. In this scenario, automatic Instruction

Set Extension (ISE) and code-generation through a compiler adopt an important position.

Figure 1.1 – Survey of Compiler–in–the–loop architecture exploration.

On the one hand, compilers represent the interface between the Instruction Set Architecture (ISA)

of an ASIP and high-level programming languages like C/C++, eliminating the need for error

prone and time-consuming assembly programming. This is important since the amount of software

in the embedded domain is projected to double every two years [279]. Indeed, Design Space

Exploration (DSE) without the Compiler–in–the–Loop (CiL) can be meaningless. For example, a

modification of the ISA or the addition of a coprocessor is of no use unless a compiler is capable of

producing code to exploit such architectural features. Furthermore, a smart compiler can obviate

the necessity of implementing costly architectural features.

On the other hand, a compiler may place certain requirements on the architecture, e.g. the

presence of instructions to load 32-bit immediates into a register. However, a compiler capable

of utilizing advantages of microarchitectural features is critically needed in order to effectively

explore application-specific design spaces.

Moreover, the automatic identification of profitable ISEs in accordance with execution performance

and hardware efficiency, enables processor designers to quickly adapt a given processor template

to one or more applications. It then allows for an efficient, yet flexible processor architecture.

Consequently, iteratively refining a given virtual prototype during architecture exploration is

improved drastically. In fact, this is important especially for Multi-Processor System–on–Chip

(MP-SoC) architectures like NPUs that employ a set of dedicated cores with customized ISAs.

During the DSE for such systems, multiple cores have to be developed simultaneously. Within

this scenario, manual iterative architecture exploration for each core may become prohibitively

slow.
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Network Processing Units: One of embedded systems’ major tasks within modern consumer

electronic products is Internet access. In this context Internet access is not simply limited to

browsing websites: new access protocols using the infrastructure of the World Wide Web (WWW)

have appeared that enable applications like Voice–over–IP (VoIP) and/or Internet TV. Such

innovations in combination with mobile Internet processing via embedded systems, have boosted

product innovations by extending and integrating multimedia/Internet access into products.

While the industry has settled on the Internet Protocol (IP) as the de facto layer-3 protocol,

IP, as a protocol suite, is still in flux. The packet format is constantly being fine-tuned with

both vendor-specific and standard-based implementations [97]. Additions such as Differentiated

Services, Internet Protocol Security (IPSec), encapsulation/tunneling, Layer 2 Tunneling Proto-

col (L2TP) tunneling–over–IP represent only some recent developments. These options require

additional functionality of routers and switches [97]. Moreover, the increasing number of mobile

devices with wireless Internet access like Personal Digital Assistants (PDA), smart phones, tablets

and laptops, as well as Virtual Private Networks (VPN) have made security one of the most im-

portant features of contemporary Internet traffic. There is also the anticipated development of

IPv6, which implies a fundamental change to the packet header structure. The speed at which

IPv6 will become widely adopted is unclear, however protocols will continue to evolve. Beyond

the IP packet format itself, there are routing protocols used for IP that are also in a continuous

state of evolution. This increasing network “intelligence” and the fact that Internet traffic is

also steadily growing (Figure 1.2), puts tight constraints on hardware development for efficient

Internet/network protocol processing [97].

This development has triggered a demand for programmable high performance network equip-

ment, allowing Internet packets to be processed at wire speed and new protocols/applications to

be implemented without the necessity to change any hardware components. In comparison, system

vendors with ASIC-based equipment have had difficulties extending the overall packet process-

ing functionality and using completely programmable Central Processing Units (CPU) prevented

products from being competitive from a performance point of view. That was the rise of NPUs:

Cost-efficient, programmable system solutions for evolving applications that allow packet pro-

cessing at high data rates. NPUs exhibit a wide range of architectures for performing similar

tasks; from simple Reduced Instruction Set Computer (RISC) cores with dedicated peripherals,

in pipelined and/or parallel organization, to heterogeneous MP-SoCs, based on complex multi-

threaded cores with customized ISAs [247]. Programming such concurrent systems still remains an

art form. Programmers are not only required to partition and balance the load of the application

manually amongst multiple Processing Elements (PE), due to the lack of good programming mod-

els. It is also necessary to implement each task of the application in low-level assembly language

and to run all tasks simultaneously (each on a different a PE) in order to get reliable performance

estimates of the tasks’ collaborations. A large group of contemporary programming solutions for

NPUs is built on Domain-Specific Languages (DSL), which enable programmers to directly map
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Figure 1.2 – Number of Internet users 2009 [9].

blocks of high-level code to parts of an NPU architecture. Nevertheless, this still has its limita-

tions. Legacy code, which is mostly apparent in C, becomes useless, and the expressiveness of

such DSLs is limited compared to classical Turing-complete high-level languages like C/C++. In

fact, the increasing complexity of looming new network protocols and the need to support legacy

protocol implementations require sophisticated compiler support to exploit special-purpose ISA

for efficient application development based on NPU architectures.

Within this scenario, effective DSE for programmable NPUs is a central prerequisite for handling

the increasing complexity and variety of network protocols and applications. Since architecture

exploration for an NPU naturally includes the design of multiple PEs, iterative architecture ex-

ploration becomes excessively slow for large numbers of heterogeneous PEs. Therefore, automatic

ISE tailored to the identification of reusable CIs in combination with retargetable code-generation

is vitally required for simultaneous fast-pace development of multiple programmable PEs. Thus,

a CiL architecture exploration methodology that considers simultaneous ISA and compiler design

of PEs is key to a high-level programmable, yet efficient, NPU architecture.
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Contribution: This thesis addresses the issue of automatic identification and utilization of cus-

tom instructions with special focus on network applications and related architectures. While

automatic ISE has been thoroughly investigated for the embedded systems domain in general,

automatic utilization of identified CIs by the code-selector of a compiler has not received much

consideration. In addition, network applications place different constraints on the analysis. Con-

trary to other embedded applications, core network applications like IPv6 or Ethernet processing

feature a high amount of I/O interrupts and little computation intensity, which explains why the

“one and only” hotspot is not easily identifiable by profiling. An effective methodology for archi-

tecture exploration of NPUs should therefore be adapted to this problem. This thesis presents

a detailed analysis of architecture exploration/ISE for NPUs. It develops a scalable framework

for automatic compiler/architecture co-exploration, targeting the domain of network applications.

The tool flow is very effective as it runs in polynomial time, allowing even large applications to

be processed. The herein contained research contribution is twofold:

On the one hand, a novel code-selection technique is introduced that is integrated in a code-

generator generator tool bearing similarities with tools like Iburg [115] and Olive [256]. The tool

produces C-code to enable comfortable implementation of a graph-based code-selection algorithm.

Its retargetable design makes it easily adaptable to different compiler frameworks. The generated

code-selection algorithm runs in linear time and allows for matching arbitrary complex hardware

instructions. Thus, it is particularly applicable for so called Multi-Output Instructions (MOI),

which are considered to provide the most speedup benefit in the context of ISE [126].

On the other hand, this thesis introduces a novel tool for automatic ISE. Due to its polynomial

runtime, the tool is scalable to be applied for large (sets of) applications consisting of several thou-

sand lines of C-code. The tool implements an ISE methodology that allows for recurrence-aware

CI identification. Contrary to existing approaches like [184], not only selected basic blocks are

analyzed, but entire applications. Identified CIs are evaluated regarding their overall contribution

to the application’s execution profile, while intersections of identified CIs are considered. Finally,

a set with the most beneficial CI patterns is selected and a code-selector description is generated

for the extended ISA, in order to automatically retarget the compiler’s code-selector.

The proposed framework is seamlessly integrated into an industry-proven ADL-based architecture

exploration methodology, creating an improved design flow that allows for simultaneous proces-

sor/compiler co-exploration. Through the file-based I/O format, the framework is completely

independent of any special compiler or processor framework. Thus, it can easily be integrated

within every conceivable processor/compiler development system.

Thesis Organization: The outline of the thesis can be roughly structured into four parts:

background, motivation, framework description, as well as outlook and conclusion. Results, proving

the success of the present work, are shown just–in–time within the chapters they belong to. To

provide a relevant background in related work and compiler knowledge, first, Chapter 2 provides
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a brief report on network protocol processing. This includes both, processor architectures and

programming paradigms. Next, Chapter 3 explains related techniques for compilation and ISE.

The motivation section consists of two approaches towards the design of sophisticated hardware

support for protocol processing. Chapter 4 introduces the ADL-based architecture exploration

methodology, which is used and improved throughout this thesis. It presents a case study of

the according architecture exploration flow by the design of an encryption-specific coprocessor.

While compiler-related issues are entirely neglected within this methodology, Chapter 5 presents

another case study targeting the contrary approach. The chapter continues with a description of

a NPU-specific compiler optimization, suggesting certain ISEs for the underlying architecture.

Based on the conclusions of these studies, a framework for automatic code-selector generation and

compiler-driven ISE is proposed in Chapter 6 and Chapter 7. The explanations start with the

introduction of a technique for automatic code-selector generation, easily integratable in arbitrary

compiler frameworks. The hereby generated heuristic algorithm works on entire basic blocks

and is able to match arbitrary complex instruction patterns; particularly patterns with a fan-out

larger than one. Subsequently, a methodology for automatic computation of ISEs is described.

The presented methodology is capable of analyzing complete applications and takes recurrences

of instruction patterns into account. The technique also does not rely on any specific compiler

system and produces a code-selector description that includes the identified CIs.

The thesis concludes with an outlook on future work in Chapter 8 and an overall conclusion

concerning the presented research in Chapter 9.



Chapter 2

An Overview of Network Processors

Many semiconductor manufacturers like LSI, EZChip and Intel have begun to sell a new type

of ASIP over the past years: the Network Processor (NP) or Network Processing Unit (NPU).

NPUs are programmable chips (like general purpose microprocessors), optimized for the packet

processing required in network devices. Network devices are a growing class of embedded systems

and include traditional Internet equipment like routers, switches, and firewalls, newer devices

like VoIP bridges, VPN gateways, and Quality of Service (QoS) enforcers, as well as web-specific

devices like caching engines, load balancers, and Secure Socket Layer (SSL) accelerators. Network

equipment can be divided into two categories: core/metro (high-speed routers and switches etc.)

and access equipment (VoIP bridges, VPN gateways etc.) [269]. Core and metro equipment

constitute the “backbone” of the Internet and are therefore at the leading edge in terms of data

rates [268]. They include high-speed routers as well as interfaces to other networks, which reside at

the edges of carrier networks. Access equipment in contrast, utilizes the “metro” of the Internet to

support sophisticated communication functionality. In accordance with the underlying equipment,

network applications/protocols are also categorized in metro (IPv6, Ethernet) and access (VPN,

IP-TV) applications/protocols.

The NPU trend goes back to the days of the Internet boom in the late 1990s. It was launched with

all the hype surrounding anything related to the Internet as “the new technology on the block”.

As may be expected with a new technology, promoters promised a new revolution in sight, which

resulted in tens of startup companies dedicated to this area. Several applications were envisioned

at different layers of the network architecture. As time passed, not all high expectations were

realized and the bubble burst along with that of the Internet. The demand for increased processing

speed (a result of communication speed surpassing processing speed), and for adaptability (a result

of converging voice and data networks) coupled with the prospect of a whole new set of emerging

services added to the need for a new paradigm in network devices. A high level of programmability

was sought to support new services and protocols at a very high performance level. Additionally,

short time–to–market and longer product life-time were important factors driving the concept

7
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of NPU. In the end, NPUs did significantly improve network “product development”, but did

not revolutionize the network architecture itself. Overall, it remains a promising technology

with significant potential to shape of future network architecture. The remainder of this section

discusses the history (Section 2.1), applications (Section 2.2), architectures (Section 2.3) and

programming issues (Section 2.5) of NPUs in detail.

2.1 History

Over the past 20 years, engineering of network systems has changed dramatically. Their architec-

tures can be divided into three main generations [91]:

• The first generation dates back to the 1980s when standard processors were used for network

applications, like a minicomputer for routing.

• By mid 1990’s, speed and complexity of systems had increased to such extent that designers

added special hardware blocks to relieve the load on the CPU.

• The third generation systems employed specialized hardware in ASICs and even attempted

to use multiple ASICs for higher performance systems. Because the protocols consolidated

around Ethernet and IP at that time, little flexibility was needed and fully hardware-fixed

solutions were satisfactory.

On the other hand, with the introduction of optical fibers in transport networks, the serial

Time-Division Multiplexing (TDM) Synchronous Optical Network/Synchronous Digital Hierarchy

(SONET/SDH) transmission speed grew exponentially and reached 40 Gb/s rate by 2000 [75].

Although the speed increase was not expected to go beyond 100 Gb/s, because of the limits of

transceivers, this had already put pressure on the network device designers. To make the situation

more challenging, deployment of Wavelength Division Multiplex (WDM) transmission technology

has brought radical changes by increasing transmission capacity of fiber links to 1.6 Tb/s and

above [75]. As can be noted in the transition above, network device programming was upgraded

at higher speed by increasing hardwired components with each new generation. Towards the end

of the 1990s, the Internet boom period, the convergence of voice and data networks became more

imminent. As a result, the industry needed to develop a new and wider range of protocols and

services, e.g. multimedia services. The pace at which new services and their further upgrades

were introduced accelerated, shortening the product cycle and requiring faster time–to–market.

More complex services were expected to become the norm, for example moving the routers beyond

just store and forward machines and increasing the required processing power on several order of

magnitudes.

Bringing back programmability, the hallmark of the first generation network, without forfeiting

performance, the hallmark of second generation network, seemed to be the best solution. The
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result was a new hardware known as NPU. NPUs need to deliver the speed of an ASIC combined

with the intelligence and flexibility of programmable microprocessors. Key to the NPU success is

an architecture that enables implementation of high-level applications in high-speed networking

environments [107]. When designing the new hardware, several design choices were to be made.

The most important tasks were to optimize packet processing through either full hardware support

or acceleration, type, technology and speed of memory interface and I/O interconnect, as well as

software tools and programming languages. The variety of choices led to much trial and error by

designers at multiple startup companies, including Clearwater, Cognigine, Brecis, Lexra, Alchemy,

SiByte, Maker etc. [247]. Today, only a few of these companies remain in business.

In 2005, the NPU market had only $174 million in revenue, although an earlier estimation from

2001 predicted a billion dollar revenue for 2003 [75]. At that time, a list of 30 companies developing

or selling NPUs could be found. The biggest players were AMCC, Intel, Agere, Hifn, Wintegra and

EZchip listed according to market share [2]. As of 2007, the only companies that were shipping

NPUs in sizable volumes were Cisco Systems, Marvell, Freescale, Cavium Networks and AMCC

[15]. Sales of embedded processors rebounded strongly in 2010, renewing a linear growth trend

interrupted by the 2009 downturn, according to the newest market-share report by The Linley

Group [12]. Intel and Freescale claimed the top rankings; no other company came close to their

size. Freescale were as big as all the smaller suppliers combined.

2.2 Network Applications

PHY
layer Packet Processing

Framing Classification Modification Encryption/
Authentication Queueing

Host Processing
(slow path and/or 

control processing)

Switching

Figure 2.1 – Typical structure of packet processing applications [97].

A networking device can be broken down into four overall functions: PHY (physical) layer pro-

cessing, host processing, packet processing and switching. Figure 2.1 depicts the primary elements

of a networking device, including the five functions that make up packet processing. Packet pro-

cessing includes parsing the header, classification of the packet so as to assign a packet to a
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QoS class, determination of the next hop (forwarding), evaluation of Service Level Agreements

(SLA) (i.e. policing), queuing and finally link scheduling. Whether all tasks are required and how

complex they may become depends on the service that the network node wants to provide. By

parsing the header of an incoming packet, information about the packet is made available for later

processing such as the length of the packet, the destination address and the protocol type. A

subsequent filter stage with a small set of rules decides — based on the extracted header infor-

mation — whether the packet is allowed to pass further processing stages or whether it should be

dropped immediately. In case of admission, a classification stage uses the extracted header fields

to associate the packet with its context information like the corresponding QoS class (a traffic flow

identifier) and the reserved rate. A forwarding stage, which can be combined with the classifier,

uses the destination address of the packet to determine whether the packet is passed directly

onto an outgoing link, or to further internal processing tasks. Further internal processing may

be required at the network edge (end systems), where higher layer protocol processing also takes

place. In case of forwarding the packet to an outgoing link, a policer uses the context information

assigned by the classifier to identify a corresponding traffic flow by evaluating the traffic profile.

A traffic profile may specify properties like the rate of incoming traffic. A profile is typically part

of a SLA between a customer and an Internet Service Provider (ISP). A SLA states that as long

as traffic complies with a certain profile, the ISP will ensure a certain QoS, e.g. in terms of delay

and loss. Thus, the profile marks a packet as conforming or as non-conforming to a flow’s profile.

Non-conforming packets may be immediately dropped. Before the packet can finally be trans-

mitted through the outgoing link, it must be queued until the link scheduler chooses the packet

for transmission. The policy by which the scheduler chooses packets depends on the header and

context information.

Software functions of systems can generally be categorized as residing in the data plane or the

control plane. Data plane functions are applied on packets moving through the system and there-

fore face real-time performance constraints. Control plane functions however, are very broad.

They include management functions also required for internal coordination among components of

a system, and between the system and peripherals. Control plane software handles furthermore a

number of other less time-consuming operations dealing with traffic passing through the system.

2.2.1 Internet Protocol Version 6

IP is designed for use in interconnected systems of packet-switched computer communication

networks. It provides facilities to transmit blocks of data, identified by fixed length addresses,

from sources to destinations. The protocol is specifically limited in scope to provide the functions

necessary to deliver a datagram from source to destination, and there are no mechanisms for other

services commonly found in host–to–host protocols.

Mainspring for the development of an improved IP-functionality were the results of the workgroup

Address Lifetime Expectation launched by the Internet Engineering Task Force (IETF). Due to
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their computations, the 32-bit address space of IPv4 should suffice not longer than 2005. Besides

this acute address scarcity, it suffers from further constraints: IPv4 is insufficiently suited for

new technologies like WebTV, Video-on-Demand or electronic commerce. To overcome these

limitations, the designers of IPv6 introduced a set of improvements. The most important ones

are:

• extended address space

• augmented routing functionality

• simplified IP-header information

• Quality-of-Service

• support for authentication and security

Larger Address Space

Widely the most prominent modification of IP is its augmented address space. The extension of

the address length from 32 to 128 bits results in an astronomic variety of addresses. Since the exact

number of addresses cannot be easily grasped by ordinary mortals, clever mathematical wizards

created the comparison that the number suffices to assign each sand grain of the Sahara its own

IP address. Thanks to the enlarged address space, workarounds like Network Address Translation

(NAT) do not have to be used anymore. This allows full, unconstrained IP connectivity for today’s

IP-based machines as well as mobile devices like smart phones, tablets or smart watches – they

all will benefit from full IP access through General Packet Radio Service (GPRS) and Universal

Mobile Telecommunication Service (UMTS).

Security

Security was another requirement for the successor of today’s IP version. As a result, IPv6 protocol

stacks are required to include IPSec [170, 255]. IPSec is probably the most transparent way to

provide security to the Internet traffic. In order to achieve the security objectives, IPSec provides

dedicated services at the IP layer that enable a system to select security protocols, determine

the algorithm to use, and put in place any required cryptographic keys. This set of services

provides access control, connectionless integrity, data origin authentication, rejection of replayed

packets (a form of partial sequence integrity), confidentiality (encryption) and limited traffic flow

confidentiality. Because these services are implemented at the IP layer, they can be used by any

higher layer protocol, e.g. Transport Control Protocol (TCP), User Datagram Protocol (UDP),

VPN etc.
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Except for application-level protocols like SSL or Secure Shell (SSH), all IP traffic between two

nodes can be handled without adjusting any applications. The benefit of this is that all applica-

tions on a machine can benefit from encryption and authentication, and that policies can be set

on a per-host (or even per-network) basis, not per application/service.

One common use of IPSec implementations is to provide VPN services. A VPN is a virtual

network, built on top of existing physical networks, which can provide a secure communication

mechanism for data and IP information transmitted between networks. Since a VPN can be

used over existing networks, it can facilitate the secure transfer of sensitive data across public

networks. This is often less expensive than building dedicated private telecommunications lines

between organizations or branch offices. VPNs can also provide flexible solutions, such as securing

communications between remote telecommuters and the organization’s servers, regardless of where

the telecommuters are located. A VPN can even be established within a single network to protect

particularly sensitive communications from other parties on the same network.

An introduction to IPSec with a roadmap to the documentation can be found in [229], the core

protocol is described in [234].

2.2.2 Multimedia Networking

The past years have witnessed an explosive growth in the development and deployment of end–

to–end networked applications, which transmit and receive audio and video content over the

Internet. New multimedia networking applications, such as entertainment video, IP telephony,

Internet radio, multimedia WWW sites, tele-conferencing, interactive games or virtual worlds

distance learning, seem to be announced daily. The service requirements of these applications

differ significantly from those of traditional data-oriented applications such as the web text/image,

e-mail or File Transfer Protocol (FTP). In particular, multimedia applications are sensitive to

end–to–end delay, but tolerant to occasional loss of data. These fundamentally different service

requirements suggest that a network architecture designed primarily for data communication may

not be well suited for supporting multimedia applications. Therefore, new service architectures

have been designed for transmitting multimedia data over the Internet.

Available Services

In this section, the most common end–to–end service classes provided by the contemporary Inter-

net are introduced. Integrated Services [67] are well suited for reliable real-time communication

and offer a connection-oriented distinction among flows. Differentiated Services [61] define a rela-

tive priority scheme that distinguishes a fixed number of service classes, which represent aggregates

of flows. If the network does not support any differentiation of traffic, flows will be forwarded by

best-effort. The interested reader may refer to [176] for more extensive explanations on available

services and Internet technology in general.
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Best-effort service does not guarantee or define any bounds, reliable service or QoS at all.

All packets are handled in the order they arrive in the system, as long as there are sufficient

resources available for the process. The system does its best to forward all incoming traffic; flows

are not distinguished and therefore not protected against each other. Service is never denied, but

potentially deteriorates with higher load for all participants. Despite its flaws, best-effort is still a

suitable solution and can be found in a majority of contemporary Internet routers. All incoming

packets are stored within First–In–First–Out-organized (FIFO) queues and served in First–Come–

First–Serve (FCFS) order. No admission or schedulability tests are performed. Congestion may

be avoided and/or resolved by the queue manager or by overprovisioning of network resources.

Integrated Services (IntServ) is a framework developed within the IETF to provide individ-

ualized QoS warranties to distinct applications. It is characterized by resource reservation, i.e.

each traffic flow has to set a path through the network and reserve resources at each network

node. That is, routers are expected to maintain per-state information. The Resource Reservation

Protocol (RSVP) [68] is usually applied as a signaling protocol for this purpose. Traffic is policed

at the IntServ network and may be reshaped to a defined profile within this network.

Differentiated Services (DiffServ) working group [61] is developing an architecture for pro-

viding scalable and flexible service differentiation — that is, the ability to handle different “classes”

of traffic flows in different ways within the Internet. The need for scalability arises from the fact

that hundreds of thousands of simultaneous end–to–end traffic flows may be present at a back-

bone router of the Internet. Service levels in DiffServ are based on relative priorities with different

sensitivities to delay and loss, but without quantitative guarantees. DiffServ does not require sig-

naling to take place for each traffic flow. Dynamic SLAs may be negotiated by using an enhanced

version of RSVP. Opposed to IntServ/RSVP, the resource reservation is then initiated from the

source and not from the destination node.

Access Networks

The topology of the Internet, i.e. the structure of the interconnection among various pieces of the

Internet, is loosely hierarchical. Roughly speaking, from bottom–to–top, the hierarchy consists of

end systems connected to local ISPs through access networks. An access network may be a so called

Local Area Network (LAN) within a company or university, a dial telephone line with a modem

or a high-speed cable-based access network. In the Internet various ISPs have evolved in last

years, offering services like video-on-demand, voice telephony, radio streams or news. Due to the

large range of available services and their continuous evolution, ISP customers’ access links to the

Internet have to handle different protocols of different services. Access links nowadays are no longer

restricted to only a single service. Therefore, customers establish typically concurrent connections

at the same time. Moreover, the customer’s traffic has to be delivered by the underlying Internet
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Figure 2.2 – Network structure with a single access link and multiple content network of ISPs.

infrastructure independently of the ISPs’ contents. Since contemporary access technologies like

Digital Subscriber Lines (DSL) provide access to the Internet with several MBits per second,

the distinction of QoS has become more and more important. For example, enterprises have

several SLAs for telephony, Internet access and reliable interconnections of VPNs. Also, private

customers consume movies, Internet contents and telephony services from different ISPs. The

SLA between customer and ISP of the access link is responsible for a reliable distribution of traffic

from/to different content ISPs. Customers may also have SLAs with content ISPs themselves.

Alternatively, the access link and different contents/services may be supplied by the same ISP. In

any case, customers use several virtual line-like traffic classes at the network access point. Traffic

classes may further be divided into subclasses according to the type of application or its origin.

The resulting network structure is sketched in Figure 2.2. This objective shift from the provision

of raw bandwidth to service oriented access networks is detailed in [209].
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2.3 Architecture Survey

As the problems associated with continuously increasing network intelligence and traffic have

become more acute and apparent, a number of companies have sought to develop programmable

devices optimized for processing packets in the data plane. A NPU is an application-specific

programmable microprocessor optimized for packet processing through three types of architecture

characteristics [154]:

• application-specific ISA

• hardware accelerators

• multiple programmable cores

Application-specific ISA: The first type of characteristic occurs in the basic ISA defining

hardware functions of a microprocessor. Most NPU vendors use modified versions of standard

RISC ISAs, although they differ in terms of the degree of modification. The added instructions

provided to these processors are designed to speed up operations that appear in time-critical

portions of application code. Bit manipulation instructions, specialized data structure searching

and addressing instructions, as well as Cyclic Redundancy Code (CRC) calculation instructions are

examples of ISEs. Naturally, the greater the difference to the standard ISA, the more difficult it is

for software developers to write packet processing code in industry-standard, high-level languages

like C/C++.

Hardware Accelerators: The second type of characteristic involves the addition of hardwired

function blocks designed to accelerate the performance of those functions that are common across

packet processing applications. For example, Intel’s IXP2855 [163] features dedicated hardware

support for symmetric encryption, as this is one of the most time consuming tasks within packet

processing. In some cases, where the use of these task-optimized function blocks is more prominent

and function specific, they increase performance and/or reduce costs by incorporating functions

that would normally be external to the NPU. Such hardware accelerators can be regarded as

another (very expensive) type of hardware instruction and therefore fit into in the first type of

architecture characteristic, discussed earlier.

Multiple Programmable Cores: The third and most prominent NPU characteristic involves

developing architectures that exploit parallelism and pipelining. Since different packet flows are

independent, it is possible to route them to different on-chip processor cores. This allows for

parallel operations across packets distributed between multiple processor cores. Concerning this

issue, Intel’s IXP architecture [157, 162, 163] can be referenced, too. All of these processors apply

a set of dedicated cores in parallel organization to enable efficient packet processing in the data
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plane. An example for a pipelined organization of cores is EZChip’s architecture [110]. Here, a

set of cores is applied, each of which is dedicated to a special task of packet processing.

2.3.1 Design Attributes

[248] provides very detailed examination of available network processing approaches and their

characteristic hardware features. The following sections discuss some of the prevalent architec-

tural issues in the design of high performance NPUs. Section 2.3.2 analyzes exploited parallel

processing of NPUs and identifies three levels of parallelism, which NPUs have taken advantage

of, in order to meet increasing line speed requirements: PE level, instruction level, and word/bit

level. The second strategy, to implement common functions in hardware instead of having a slower

implementation using a standard Arithmetic Logic Unit (ALU), is described in Section 2.3.3. Fi-

nally, the effect of different memory architectures is discussed in Section 2.3.4.

2.3.2 Parallel Processing

In most NPU applications, different tasks related to one flow or similar tasks related to multiple

flows can be processed concurrently. By replicating functional units and exploiting the parallelism,

NPUs can achieve higher performance.

Processing Element Level Parallelism

The design trend of employing multiple PEs to take advantage of data-flow parallelism has spawned

two prevalent configurations:

Pipelined: Each processor is designed for a particular packet processing task. In the pipelined

approach, inter-PE communication bears many similarities to data flow processing — once a PE

has finished processing a packet, it forwards the packet to the next downstream element. Compa-

nies offering such architectures are, for example EZChip [110], Vitesse [262] and Xelerated [273]

all described in Section 2.4. Such architectures are generally easier to program as communication

among programs running on different PEs is restricted by the pipeline model. However, meeting

the required timing constraints for smooth communication complicates matters.

Symmetric: Each PE is capable of performing similar functionality. In contrast, NPUs with

symmetric PEs are usually programmed to perform similar tasks. Numerous coprocessors are

typically added to accelerate computation-intensive parts of network processing. To further

control access to the many shared resources, arbitration units are often required. Intel IXP

[157, 162, 163] and Cisco [87] are prominent representatives of this biggest group of architectures

(c.f. Section 2.4). While these architectures provide higher flexibility, appropriate programming

is difficult.
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Instruction Level Parallelism

While exploiting Instruction Level Parallelism (ILP) is a well-proven way to accelerate the pro-

cessing speed of Digital Signal Processors (DSP), not many NPU designers take acount of the

multi-issue architecture design principle [248]. This is likely based on the observation that most

networking applications do not feature enough ILP to warrant promising effects for the utilization

of such architectures. However, some architects have chosen to implement processors that issue

multiple instructions per cycle per PE. Within this design, two main strategies exist in order to

determine available parallelism: at compile time (e.g. Very Long Instruction Word (VLIW)) or

at run time (e.g. superscalar). While superscalar architectures have been successful in exploit-

ing parallelism in general-purpose architectures (e.g. Pentium), VLIW architectures have been

effectively used in domains like signal processing, where compilers are able to extract enough

parallelism. VLIW architectures are often preferred, because they usually come along with less

power consumption. The success of VLIW architectures in networking will largely depend on their

target applications.

The LSI Routing Switch Processor and Cisco’s PXF [86] are the only architectures that belong

to the class of VLIW architectures. In fact, Cognigine features also multiple-issue PEs (4-way),

yet the architecture provides a runtime configurable ISA [90].

2.3.3 Hardware Accelerators

The major concern in using special-purpose hardware for NPUs is the granularity of the imple-

mented function. There is a trade-off between the applicability of the hardware and the speedup

obtained. The type of special-purpose hardware used can be broadly divided into two categories:

coprocessors and Special Functional Units (SFU).

Coprocessors

Coprocessors are basically employed for complex tasks, like computation of checksums etc. Nat-

urally they feature an internal state and have direct access to memories and buses. Due to this

complexity, coprocessors are typically shared among multiple PEs, such that coprocessors are

often accessed via a memory map, special hardware instructions or bus transaction. Most NPUs

have integrated coprocessors for common networking tasks; many have more than one coproces-

sor. Operations that are well defined, cumbersome to execute within an ISA and furthermore

prohibitively expensive to implement as a SFU are ideally suited for coprocessor implementation.

The functions of coprocessors vary from algorithmic dependent operations to entire kernels of

network processing. Mostly lookup and queue management functions are executed on integrated

coprocessors, but also checksum computation, pattern matching as well as encryption/authenti-

cation are popular candidates.
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Special Functional Units

Many NPUs apply SFUs for operations like bit-manipulation. The computation of bit-level access

is very circuitous and error prone, based on an implementation for a standard ISA, yet very easy to

be implemented in hardware. For example the protocol engines of Infineon’s Convergate [155, 156]

architecture (PP32 Network Processor) offer bit level access for all instructions of their ISAs, such

that for every operation either complete register contents or certain bit areas of registers are used

as input [212]. Another example is the Intel IXP 2850 [163], which provides SFUs for symmetric

encryption and authentication of IPSec processing.

2.3.4 Memory

The major memory-related design issues concerning NPUs are: multithreading and task specific

memories. Since the stalls associated with memory access are well known to waste many valuable

cycles, hiding memory access latency is key to efficiently using the hardware of a NPU. This

is commonly approached through multithreading by which a PE’s hardware can be efficiently

multiplexed. Multithreading allows for continuous allocation of hardware units, by switching the

processing context in case of memory wait cycles. Without this dedicated hardware multithreading

support, necessary storing and reloading — for example triggered by an Operating System(OS) —

of the entire process state would dominate computation time. As a result, many NPUs (LSI,

AMCC, Intel, and Vitesse) contain separate register banks for different hardware threads to

support low overhead context switches.

Along with multithreading, memory management is also handled by the Intel IXP2800 [163]:

Static Random Access Memory (SRAM) Last-In First-Out (LIFO) queues are used as free lists,

thus obviating the need for a separate OS service routine.

Finally, examples of task-specific memories are: Xelerated Packet Devices (c.f. Section 2.4) has

an internal Content Addressable Memory (CAM) for classification and on the Vitesse IQ2200

(c.f. Section 2.4), the Smart Buffer Module manages packets from the time they are processed

until they are sent to an output port.

2.4 Industry Products

The next paragraphs are based on information from [220, 247, 248], several white papers as

well as information from the WWW. Table 2.1 lists the NPU architecture approaches that are

introduced in this section. The table additionally includes features pertinent to this thesis. The

majority of NPUs applies symmetric PEs with customized ISAs. These ISAs are mostly based on a

typical RISC architecture that has been extended by dedicated CIs to support packet processing

most efficiently. The table includes four columns designated as: Vendor, Type of Parallelism,

Maximum Number of PEs and Field of Application. Each row of the Table 2.1 briefly outlines
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the technological approach of a certain vendor while referring to the flag ship of its product line.

Where no information was available, it is marked by n.a.

Industrial NPUs

Vendor Type of Processing Hardware Field of

Parallelism Elements Accelerators Application

AMCC symmetric PEs three PEs/ NISC ISA + metro/access

24 HW threads coprocessors

Broadcom none single RISC CIs/SFUs metro

core

Cavium symmetric 16 RISC CIs/SFUs + metro/access

PEs coprocessors

Cisco n.a. 40 PEs n.a. metro

EZchip pipeline three PEs full customized metro/access

ISA

Freescale symmetric four RISC CIs/SFUs metro

PEs

Intel symmetric three RISC PEs/ CIs/SFUs access

eight HW threads coprocessors

LSI pipelined three PEs full customized metro/access

(partially VLIW) ISA

Mindspeed symmetric 1-2 RISC CIs/SFUs metro/access

PEs

PMC-Sierra superscalar n.a. CIs/SFUs access

Vitesse symmetric four RISCs CIs/SFUs metro/access

PEs

Xelerated pipelined 200 PEs PISC ISA metro

architecture

Table 2.1 – Overview of industrial NPUs.

Applied Micro Circuits Corporation: Applied Micro Circuits Corporation (AMCC) is a

global leader in network and embedded Power Architecture processing, optical transport and

storage solutions. Its corresponding product portfolio for NPUs revolves around the nP architec-

ture series [46] (Figure 2.3). This is described best as a scalable processor infrastructure whose

underlying technology is designated as Network-optimized Instruction Set Computing (NISC).
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The infrastructure allows for arbitrary combinations of nP cores [54] depending on the desired

link speed. The nP cores implement the NISC ISA as well as packet buffers, coprocessors and

interconnects all managed by a host CPU. The latest product release of the AMCC NPs is the

nP3750 [18], which contains three embedded nP cores, each of which supports 24 hardware threads.

Furthermore, the cores are surrounded by multiple on-chip coprocessors for sophisticated packet

processing tasks like classification, metering, gathering statistics, context searching and so on.

AMCC also further optimized the architecture by eliminating redundant general-purpose RISC

instructions unnecessary for protocol processing.

Figure 2.3 – Block diagram of AMCC 3700 architecture [46].

Broadcom: Airforce BCM4704 and BCM4703 [73] (Figure 2.4) are dual-band wireless NPUs.

At the heart of the processors, customized MIPS32 cores are integrated. Airforce BCM94704AGR

is a wireless NPU, capable of wire-speed Ethernet routing/bridging, and VPN termination on an

integrated IPSec security acceleration engine [72]. For advanced security, the BCM94704AGR

integrates an on-chip IPSec acceleration engine that supports a broad range of industry-standard

security features, such as symmetric-key encryption and authentication algorithms including the

latest 256-bit AES, DES, 3DES, SHA-1, MD5, HMAC-SHA-1 and HMAC-MD5.

Cavium: The OCTEON product family [19, 20, 21] comprises several product lines, separated

by performance, feature and cost requirements issues. With the OCTEON product family, Cav-

ium offers multi-core processors, based on customized 64-bit MIPS64 architectures (cnMIPS).

Depending on the concrete architecture, up to 48 cnMIPS cores are applied. Additional hardware

accelerators include security acceleration for AES, RSA, Elliptic Curve Cryptography (ECC) and

SNOW 3G, TCP/IP packet processing, packet classification and QoS [20]. The OCTEON proces-
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Figure 2.4 – Block diagram of BMC 4703 architecture [73].

sors are optimized for use in high-end core and edge routers, metro Ethernet, enterprise security

gateways and appliances [13]. For all product lines, Cavium offers a software development kit,

which is based on C/C++ and provides application-specific libraries.

Cisco: Cisco Systems is an American multinational corporation headquartered in San Jose that

designs, manufactures, and sells networking equipment. 2008, Cisco introduced the Cisco Quan-

tumFlow Processor [87]. It consolidates 40 customized multi-threaded 32-bit RISC cores called

Packet Processing Engine (PPE) in a non-pipelined parallel array with a centralized shared mem-

ory. Each PPE can access hardware features like acceleration of network address and prefix

lookups, hash lookups and, particularly, an off-chip cryptographic engine. Cisco claims that the

unique software architecture of the Cisco QuantumFlow Processor will allow Cisco to evolve this

NPU over time and use the same software across generations of hardware. Cisco QuantumFlow

Processor uses a software architecture based on a full ANSI-C development environment imple-

mented in a true parallel processing environment [87].

EZchip Technologies: EZchip is a NPU-focused company with strong ties to IBM. It develops

extremely integrated products that eliminate the demand for multiple chips on switching cards.

EZchip currently offers three main NPU families: the NP-2 [111], the NP-3 [112], as well as

the NP-4 [109] and the NP-5 [17]. Unfortunately, EZChip does not disclose product details of

its NP-5 architecture. All of EZchip’s NPUs are based around its Task Optimized Processing

Core Technology (TOPCore) [110], which integrates many high-speed processors in a single core

and delivers high performance task-based processing. There are four types of Task Optimized

Processors (TOP) that can be used in a TOPCore:

TOPparse: handles header field extraction and packet classification
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TOPsearch: handles routing table lookup

TOPresolve: handles buffer management and packet forwarding

TOPmodify: handles any changes needed to be performed on the packet

In addition to the TOPs’ on-chip memory, external memory and on-chip queuing mechanisms

can also be used by the various TOPs. The parallel nature of each pipeline stage is purely for

performance and scalability reasons. Since identical TOP types execute exactly the same code, the

application programmer for the NP-2/3/4/5 does not need to be aware of the underlying parallel

nature of the TOPcore. An application programmer only has to program the four different types

of TOPs and an integrated hardware scheduler dynamically assigns packets to available TOPs at

runtime. The most important property of the NP-3 is the pipelined structure in which the packet

processors are organized; this influences the design of the rest of the architecture. The memory

available to the TOPs is restricted, such that it can only be accessed by the TOPs in a single stage

of the pipeline. The overall organization of the TOPs as a pipeline, although their actual function

is not fixed at manufacture time, leads to a slightly restrictive architecture for the application

programmer.

In addition to the aforementioned high-speed NPUs, EZChip offers a set of access NPUs, too.

They feature the same programmable processing architecture, integrated traffic management and

software compatibility with EZchip’s higher-speed NPUs: NPA-1/NPA-2/NPA-3 [108].

Freescale Semiconductor: Motorola developed the C-Port [121] series of NPUs under the

Freescale brand. Freescale Semiconductor Inc., formerly a Motorola Company, became a publicly

traded company in July 2004 after more than 50 years as part of Motorola Inc. At that time, the

product series consisted of the C-3e [122], the C-5e [124] and the C-10e[139].

The architectures of this product line were centered around clusters of packet processors called

Channel Processors (CP), which are at the heart of prevailing products, too. These CPs pro-

cess the majority of packets in-band. There are two Serial Data Processors (SDP) in each CP,

one for ingress and one for egress processing. The CP ISA is a subset of the MIPS processor

[207]. The core can therefore be programmed in C/C++ using standard publicly available tools

(e.g. GNU GCC [120]). The SDPs must be programmed using specialized microcode; Freescale

supplies microcode modules for a range of applications. The executive processor is generally used

as a control processor for the CPs, it can be custom programmed using C/C++ or configured to

run an OS. The CPs are extremely programmable and thus flexible processors.

The current product line of NPUs offers a vast field of System-on-Chip (SoC)-architectures [24].

The flagship (PowerQUICC III) applies two CPs for network processing within a so called QUICC

Engine [123]. In future, PowerQUICC will cease development in favor of the software-compatible

QorIQ platform featuring all PowerPC e500 based processors, from single core, through multi-
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core, up to 32 cores [23]. In 2011 Freescale announced the development of a 12 core processor

quadrupling the performance of its NPU series [11].

Figure 2.5 – Block diagram of Intel IXP 2855 architecture [163].

Intel: Internet Exchange Processor (IXP) family [164] has the reputation of a reference architec-

ture for network processing and is probably the most prominent. The former Intel IXP2xxx series

[162] applied a single embedded RISC processor — an Intel XScale — and eight multi-threaded

32-bit RISC processors called “microengines”. It provided a fast bus for communication between

the microengines, MACtrl ports and memory. The microengines supported four hardware threads

with zero overhead context switch and allowed for programming either in assembly or in Intel

C. In normal operation, the Intel IXP2400 used the microengines to support data plane and the

more general XScale to support the control plane. The last product from 2xxx series was intro-

duced in 2005 featuring higher speed and 16 microengines. IXP2800 [158] was targeted for high

performance, and scalable network edge and core applications to OC-192 (10 Gbps). IXP2855

was another variant of IXP2800 and included specialized cryptography engines for DES, AES,

SHA algorithms. Tight coupling of the cryptography elements with microengine elements allowed

the developer to take full advantage of the parallelism and execute security processing as pipeline

stages within the multi-threaded IXP2855 architecture [113, 163] (Figure 2.5).

IXP4xx [160, 161, 165] is the prevailing product line of Intel concerning NPU architectures. With

this new product line, Intel clearly steps towards the direction of access and multimedia protocols.

Each processor combines a high performance Intel XScale processor with additional two to three

Network Processor Engines (NPE), running instruction streams in parallel, to achieve wire-speed

packet processing performance. The NPEs complement the Intel XScale processor for many
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computationally intensive data plane operations. The extensive hardware capabilities of the NPEs

are under the control of micro-coded algorithms that are accessed via APIs released as a software

library with the processor. Customer applications configure and interact with the NPEs through

the high performance API layer running on the Intel XScale processor.

Figure 2.6 – Block diagram of LSI APP 650 architecture [196].

LSI Logic Corporation: is a semiconductor vendor from California that has taken over Agere

Systems, a spinoff from Lucent Technologies. Agere focused on developing semiconductors for

communication applications. Its original business was based on its PayloadPlus [35] series of

NPUs. It is still a market leader in NPU-based products, in a broad range of communications and

computer equipment. The original PayloadPlus NPU was based on a three chip set comprising

the Fast Pattern Processor (FPP) [34], the Routing Switch Processor (RSP) [33] and the Agere

System Interface (ASI). The FPP acts as a classifier for incoming packets. The RSP uses the

information from the FPP to determine which direction the packet takes through the switching

fabric and ultimately which network to be sent to. The ASI handles exceptions, from the FPP and

RSP, it maintains state information and manages the interface to the host CPU over a Peripheral

Component Interconnect (PCI) bus. More recent versions of the PayloadPlus combines these three

components on a single die. There are three main families of the Agere PayloadPlus the APP100

[192], APP300 [194], the APP530TM/APP550TM [197] and the APP650 [196] (Figure 2.6) as well

as a series of communication coprocessors [193, 195]. The APP100 series of NPUs are coprocessors,

the APP300 series are primarily targeted at access networks.
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The LSI PayloadPlus has a unique architecture, which differs markedly from other NPUs, in

that it is not based on a fundamentally RISC design, but rather on LSI’s patented Pattern

Matching Optimization design. This design combines the performance of an ASIC-based design

with the flexibility of a RISC-based design. LSI claims that this design allows them to achieve the

performance of ASIC-based designs, while maintaining the flexibility of RISC-based NPUs. They

also claim that their architecture has less overhead than RISC, while requiring less clock cycles and

processing more data per clock cycle. One of the main advantages of the PayloadPlus over other

NPUs is programmability. The PayLoadPlus contains an architecture consisting of pipelines,

threading and contexts similar to other NPUs. However, unlike other NPUs the PayloadPlus

succeeds in hiding a lot of the complexity of this parallelism from the application programmer. It

does this by offering a high-level programming language called Functional Programming Language

and a scripting language called Agere Scripting Language. The PayloadPlus is clearly one of the

most restrictive although powerful NPU architectures. One of the most interesting features of

the FPP processor is its ability to reconfigure its operation at runtime. Its three processor design

results in a highly optimized, but also domain specific and restrictive architecture. This three-chip

design inevitably results in a distinctly proprietary architecture, with proprietary interconnects

and per-processor memory.

As of May 2010, LSI announced the development of the Axxia Communication Processor Family

[198]. It is an asymmetric multicore architecture providing up to 20 Gbit/s throughput. The Axxia

architecture uses a so called Virtual Pipeline technology, which is a message-passing technique for

intra-processor communication between the acceleration engines, CPU complex and SoC subsys-

tem components. In addition, the Axxia family includes a comprehensive eclipse-based software

development environment.

Mindspeed: The foundation of Mindspeed’s Traffic Stream Processor (TSP) architecture fam-

ily [206] is based on programmable customized processors called Octave. These cores are basically

32-bit RISC engines, whose ISA is comprised of customized hardware instructions for commu-

nications processing. The TSP family consists of four processors: M27480 [202], M27481 [203],

M27482 [204] and M27483 [205]. The former two are targeted for the access segment of the NPU

market, while the latter two represent core NPUs.

PMC-Sierra: Sierra Semiconductor was originally founded 1984 in San Jose, California, and

went public in 1991. In October 2010 it overtook Wintegra’s product line of NPUs. This product

portfolio is focused exclusively on access processor design. Wintegra originally produced the

WinPath family with two versions: WinPath1 [26] and WinPath2 [27]. WinPath2 extends the

architectural concepts of WinPath1 through six data processing engines (WinGines) and hardware

accelerators. PMC-Sierra extended the WinPath family by the WinPath2 Lite [28], the WinPath3

[29] and the WinPath3 SuperLite [30] architectures.
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WinPath3 – as the current flagship – integrates control plane and enhanced data plane processing

components. Control plane processing is based on two high performance MIPS 34K multi-threaded

processors running at 650MHz while applying up to 12 RISC cores for data plane processing. In

addition, data plane processing uses renewed hardware accelerators (compared to WinPath2),

which have been added to off-load common processing tasks.

Figure 2.7 – Block diagram of Vitesse IQ2200 architecture [262].

Vitesse: Vitesse is a worldwide provider of Integrated Circuits (ICs) for a wide range of products,

optical modules, communications ICs and NPUs. It is an established company with a 20 year

history of designing, developing and marketing a diverse range of semiconductor solutions. Its

flagship product is the IQ family of NPUs which, when paired with its framers, PHY and MACtrl

chips, offer a complete NPU solution. The IQ2200 [262, 263] (Figure 2.7) is the most notable

of the IQ range of NPUs, it is an OC-48 (2.5 Gbps) NPU capable of packet processing between

OSI-layers four and seven [99]. It consists of four 32-bit RISC CPU PPEs called FACETs, which

carry out the majority of the packet processing. They have significant additional instructions to

facilitate data movement between themselves and other IQ2200 elements. The FACET CPUs also

feature SFUs for a range of functions useful for packet processing, and for developing applications

targeting packet processing. The packet processors are extremely flexible and unrestricted RISC-
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based processors, which can be assigned to any task. In this way they are similar to the AMCCs

nP packet processors.

Xelerated: Xelerated Packet Devices is a leading fables semiconductor company, which has

successfully combined the efficiency of ASIC-based designs with the programmability of NPUs.

Rather than attempting to start with a flexible RISC-based design and optimizing it for packet

processing, they have started with an ASIC-based design and successfully introduced increased

programmability to the circuit. This approach results in a high efficiency and high performance

design with programmability approaching that of traditional NPUs. Xelerated Packet Devices

designs can still be classified as NPUs, because the resulting products more closely resemble

traditional NPUs rather than traditional ASIC-based products. The leading design and the most

successful commercial NPU-based product from Xelerated Packet Devices is the X10q [274] and

X11 [275], respectively. The internal architecture of the X10q/X11 NPU shows an ASIC-like

core surrounded by programmable coprocessors and hardware assist units. More specifically, the

programmable pipeline is made up of a linear array of 200 processors [277], forming one single

packet processing pipeline through which every packet flows. These packet processors, called

Packet Instruction Set Computer (PISC), are fundamentally data flow processors that process

packets as they flow through them. There are three models in the X10q range, the X10q-e, X10q-m

and X10q-w, which in turn are optimized for enterprise Ethernet and OC-48 (2.5 Gbps), advanced

Ethernet applications and finally SONET applications. Also the X11 family is comprised of four

models X11-s200, X11-d200, X11-d240 and X11-d240t. In addition to the PISC processors, the

X10q/X11 also contain coprocessors including a hash engine, meter engine and a counter engine.

2010, Xelerated announced the release of the HX family of NPUs [10]. The HX processors are

based on the same architecture as the X11 family, yet operating at 100 Gbit/s [276].

2.5 Programming Network Processors

The majority of contemporary NPU architectures belongs to the class of heterogeneous MP-SoCs

featuring a set of dedicated Intellectual Property (InP) cores tailored to suit the software require-

ments of modern protocols and network applications. The characteristics of MP-SoC architectures

render software development a difficult task. Typically, applications are specified by developers

as sequential programs using high-level languages such as C/C++ or Matlab. Unfortunately, the

sequential nature of such specifications does not reveal the available concurrency of the underlying

application, because only a single thread of control is considered. Also, memory is global and all

data resides in the same memory source. As a consequence, system designers need application-

specifications – resembling the composition of concurrent tasks – with a well defined mechanism

for inter-task communication and synchronization, such that the programming of multiproces-

sor systems can be accomplished in a systematic and automated way. Nowadays, to program
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a NPU system, designers have to partition an application into concurrent tasks starting from a

sequential program (delivered by application developers) as a reference specification, assign these

tasks to different processors and finally write specific program code for each programmable core.

Partitioning of an application into tasks and their architecture-specific implementation consumes

a lot of time and effort, because the system designers have to study the application in order to

reveal possibly available task- and/or data level parallelism. They need a deep understanding of

each core’s architecture and ISA to produce effective code for the assigned task(s). Moreover,

an explicit synchronization of data communication between the application tasks is needed. This

information is not available in the sequential program and has to be specified by the designers

explicitly. Therefore, an approach and tool support is needed for application partitioning and

code generation (i.e. architecture-specific assembly code for each processor of an MP-SoC) to

allow effective, systematic and automated programming of MP-SoCs.

2.5.1 Overview

Due to the performance sensitivity of network applications, it is an undeniable advantage to

use low-level assembly language approach for implementation, as this leaves complete control

of application execution to the programmer. Despite the control advantages of low-level code,

high-level programming models are strongly required to support short time–to–market through

enhanced architecture explorations and long time–in–market through comfortable programming of

NPUs. As presented in [249], there are many different solutions (i.e. libraries of application-specific

functionality, programming languages, runtime systems) to solving the programming problem of

NPUs, which is best described as a gap between architecture details and high-level abstraction of

a language.

Library of application-specific functionality approaches export a collection of manually

designed blocks to the application developer, who stitches these together to implement the ap-

plication. The advantage of this methodology is a better mapping to the underlying hardware,

as the components are manually implemented and consequently optimized towards certain PEs

of the underlying architecture. In addition, these components implement an abstraction, which

is natural for a software developer of network protocols, as components are often similar to ap-

plication model primitives [249]. Obviously, the disadvantage of such an approach lies in the

restricted expressiveness of such DSLs. Only those applications can be comfortably implemented,

whose functionality can be expressed by an appropriate collaboration of already existing language

components. Otherwise, manual implementation of new components is carried out. Furthermore,

mapping components to certain PEs requires software developers to know the architecture in de-

tail. If new components have to be implemented from scratch, the microarchitectural constraints

are again of high importance to guaranteeing (nearly) optimal performance results for the exe-

cution of these components. This implies low-level assembler programming of the components,
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which has already been identified as time-consuming and error prone; consequently as prohibitively

difficult.

Programming language approaches utilize a high-level programming language like C/C++

that can be compiled to the target architecture. Since it has been long established that RISC pro-

cessors benefit most from compiler optimizations [150], modern optimizing compilers are mostly

targeted to RISC architectures. With this methodology, a compiler needs to be written only

once for an underlying target architecture and all compiler optimizations are available for every

implementation of arbitrary applications. The principal difficulty with this solution is the need to

compile for heterogeneous architectures comprising multiple PEs with customized ISAs, special

purpose hardware, numerous task-specific memories and various buses. In addition, the program-

ming abstraction required to effectively create a compiler for such an architecture would likely

force the programming language to include many architectural concepts that would be unnatural

for the application programmer. Examples of this alternative include the numerous projects that

have altered the C programming language by exposing architectural features [159].

Another class of approaches uses refinement from formal Models of Computation (MoC) to imple-

ment applications. MoCs define formal semantics for communication and concurrency. Because

they require applications to be implemented in a MoC, these approaches are able to prove prop-

erties of the application (such as maximum queue size required and static schedule that satisfy

timing constraints). Like DSLs, MoCs suffer from restricted expressiveness.

Runtime systems represent another solution to the implementation gap between network ar-

chitectures and programming models. They originate largely from the problem of investigating the

deployment of multiple coexisting execution environments through OS support and an active net-

working encapsulation protocol. Active networks [41, 179, 254] allow an individual user, or groups

of users, to inject customized programs into the nodes of the network. “Active” architectures mas-

sively increase the complexity and customization of computation performed within the network,

e.g. that is interposed between the communicating end points. Runtime systems introduce dy-

namic operations (e.g. thread scheduling) that enable additional freedom for the development of

applications. This can also be used to provide software developers with an abstraction of the un-

derlying target architecture (a view of infinite resources). While runtime systems are necessary for

general-purpose computing, for many data-plane applications they represent a significant process-

ing overhead, unacceptable to the high performance sensitivity of network protocols/applications.

Nevertheless, motivated by earlier work on extensible OSs [57, 105, 210], researchers have defined

extensible router architectures that support runtime customization of router functionality. These

architectures accommodate changes to the router’s control plane, as required by programmable

networks [59, 179] and the router’s data plane as allowed by active networks [41, 267]. Conse-

quently, some ASIP architectures have included hardware constructs to subsume simple runtime
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system tasks like thread scheduling on the Intel IXP1200 and inter-process communication (ring

buffers on the Intel IXP2800).

2.5.2 Programming language/Compilers:

From a programmer’s point of view, one of the most tedious tasks in packet processing is header

field extraction. Such fields are usually represented as packets of consecutive bits within a word.

Depending on the sizes and offsets, a field might be aligned at the start or the end of a word, it

might reside inside a word or it could even straddle a word’s boundary. To extract a field requires

in general a different sequence of high-level language commands. Therefore, most NPUs provide

hardware instructions for bit packet addressing in order to more effectively process the packet

stream data. [266] targets this area; its major contribution is the development of a bit level true

DFA, which led to several further publications. The work is based on the Infineon PP32 NPU,

described in Chapter 5, which also has been the target architecture needed to handle bit level

access in previous approaches [264, 265] via CKFs.

A different approach to bit packet addressing is presented in [142]. This publication introduces a

program representation that enables reasoning in bit packet entities in registers. Additionally, it

introduces a global analysis algorithm for constructing this program representation. It examines

bit operations in expressions and establishes explicit relationships among different bit packets.

This bit packet analysis has been applied to a compiler for the ARM architecture explained in

[187]. Finally, a speculative register allocation algorithm for bit packets was developed and takes

place after the regular register allocation pass [188]. The algorithm uses profiling information and

the described bit level analysis to exploit hardware instructions handling bit packets.

Effective utilization of registers is in general a very interesting research area for NPUs, since

this usually comes along with reduced memory accesses. NPUs often contain different register

files to allow for effective context switches between different tasks. However, such architecture

design requires sophisticated register allocation passes in the compiler. Concerning the Intel

IXP1200 architecture [157], register bank access and resulting conflicts have been examined in

[282, 283, 285]. The Intel IXP NPU has a dyadic register file comprising two banks, of which only

one bank can be connected to the ALU at any time. [282] presents three different approaches

of register allocation in combination with bank assignment. For this, a new structure called

the register conflict graph is introduced, which captures the dual-bank constraints. While this

approach targets intra-thread register allocation, [283] goes a step further by targeting inter-

thread register allocation. The designed compiler aims to distribute available registers to different

threads according to their needs. [284] proposes a complete compiler solution to automatically

insert explicit context switch (ctx) instructions provided on the NPU, such that the execution of

threads is better manipulated at runtime to meet real-time constraints.

Other approaches as well concentrated on the Intel IXP architectures [157, 162, 163] as a target.

[131] presents a compiler that works with NOVA, a new programming language, which can be
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compiled to a FORTRAN-like runtime model. Yet, in order to allow for small code size compila-

tion, several language features like stacks, recursive types etc. have been left out, thus restricting

expressiveness of the language.

Based on the LSI Payload Plus architecture (see Section 2.4), compiler-controlled data partitioning

for the clustered VLIW engines of the RSP is presented in [78]. The engines of the RSP are

programmed via C-NP, a version of C specifically targeted for the LSI NPUs. C-NP is restricted

to assignment statements, if/switch-statements, and is augmented to allow data placement of

variables and direct byte addressing of the register file. However, the programmer is responsible

for the proper data layout of application parameters. The major contribution of [78] is the removal

of the need for manual partitioning of code for the engines of the RSP by a greedy code-generation

approach.

While the preceding publications are mostly target-specific, a number of publications have looked

into retargetable compiler support for NPUs. A hybrid approach of target-specific and retargetable

compilation is described in [191]. The basis of this work is the Cognigine architecture [90]. For

this architecture the Cognigine C compiler has been implemented by retargeting the SGI Pro64

Compiler, originally designed for the MIPS R10000 processor. Since this approach targets the

VISC architecture, it is limited to instructions with at most two results and four operands.

[172] reports on a compiler for the commercial NP Paion PPII based on the Zephyr compiler

infrastructure [45]. Several architectural challenges posed by the architecture and compiler tech-

nologies exploiting these features are presented such as virtual data path, compiler intrinsics and

interprocedural register allocation. Similar to this, [230] presents also an evaluation of different

compiler optimizations for NPUs. Here, the focus is on multiple-issue architectures that exploit

static scheduling like VLIW processors.

Shangri-La [82] is a compiler for the DSL Baker [136], which incorporates various optimizations

for NPUs, specifically the Intel IXP series processors. It features process transformation, stack

reduction, memory access consolidation, and other techniques. Baker is a platform-independent

language designed for the development of network applications. It bears many similarities to Click

[249], particularly in regards to its modeling of communication channels.

2.5.3 MP-SoC Programming

In the literature, a variety of different tool flows have been developed to program MP-SoCs. One

category are the classical compiler-based approaches, e.g., MAPS [183], Compaan [251]. A con-

ventional sequential language, for instance, C, C++, or Matlab, is used as the initial application-

specification from which the compiler automatically extracts parallelism. To ease the job of com-

pilers, explicit Application Programming Interfaces (API) for instance, Message Passing Interface

(MPI) [16], Open Multi-Processing (OpenMP) [22], Task Transaction Level (TTL) interface [258]

or Portable Operating System Interface (POSIX) [14], are often used to identify data-independent

blocks of code within an application. The major problem of compiler-based approaches is that the
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level of abstraction of the underlying hardware exposed to application programmers is often too

low, thereby lacking a uniform and scalable manner to specify concurrency of computation and

communication of an application. The consequence is that system-level verification and software

synthesis of a target system are often difficult.

An alternative are MoC-based approaches. By restricting an application to a certain MoC, the

semantics of computation and concurrency can be mathematically defined. As a result, quanti-

tative analysis pertaining to, for instance, schedulability tests and worst-case behavior, can be

tackled in a reasonable manner. Furthermore, software synthesis can be applied, i.e., automati-

cally generating implementations, whose behavior is consistent with the abstract model behavior.

Despite this, it is quite unlikely that a general revolutionary change of programming paradigm

will occur in the near future, and as such the C programming language will continue to dominate

among embedded software developers (with parallel extensions, e.g., pthreads [14], OpenMP [22])

[79]. However, DSLs have been gaining momentum, especially if they build on top of well known

languages and if there is a clear road to migrate legacy code [79].

Amongst other MoCs, the Kahn Process Network (KPN) [167] and its ramifications are widely

used, because of their simple communication and synchronization mechanisms as well as coarse-

grain parallelism. Besides this, many other tool flows, for instance, Ptolemy [25], Metropolis [55],

Koski [168], and Artemis/SESAME/DAEDALUS [214, 221], have been described in the literature.

The most well-known subclass of KPN is Synchronous Data Flow (SDF) [180, 181] that enables

static analysis of the specified application during compile time. Tool flows based on SDF are,

for instance, SHIM [104], PeaCE [HKL+ 07], and StreamIt [TKA02]. Furthermore, Ptolemy [25]

supports heterogeneous modeling and Metropolis [BWH+ 03] defines a meta-model that can be

refined into a specific MoC.

Distributed Operation Layer (DOL) is a design flow for Model-Driven Development (MDD)

[1] of multiprocessor streaming applications, which has been developed at the ETH Zurich in the

context of an European research project called Scalable Software/Hardware Architecture Platform

for Embedded Systems (SHAPES) [219]. The programming model of DOL can be described as

a concrete instance of a dataflow process network MoC [180], which is a subclass of KPN [167].

Basically, a dataflow network process expresses an application as a set of parallel autonomous

processes – called actors – that communicate exclusively via point-to-point FIFO queues. The

actors’ task is to map a set of input streams to a set of output streams. In this context, the

developers describe computation by implementing individual, sequential actors that manipulate

data streams and coordination by the connection of actors using FIFO queues.

Contrary to the original model introduced in [180], the process network model used in DOL applies

finite capacity channels for the FIFO queues, which raises the question for deadlock prevention.

However, according to the designer’s (of DOL) experience, such deadlocks (caused through finite

communication queues) are quite unlikely [146].
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To allow for reusing existing legacy code, actors are implemented in C++. For communication,

actors can access ports that serve as an interface to the FIFO queues. The Extended Markup

Language (XML) is used for describing the topology of a dataflow process network, i.e. the

instantiation of actors and their connection by the FIFO queues.

MP-SoC Application Programming Studio (MAPS) aims to reduce the gap between

growing software requirements of contemporary embedded systems and current software produc-

tivity. [183] claims to provide solutions to several problems a designer is faced with, like partition-

ing of legacy code, parallel programming through KPNs. The MAPS flow receives applications

written in C syntax and processes these within several phases. Initially, applications are parsed

into an IR (analysis phase), while the application code is instrumented to obtain runtime traces.

These traces are used to provide dynamic information, which is annotated to the control and

dataflow edges of the IR to steer partitioning [81]. A subsequent semi-automatic partitioning

phase allows for identification of independent code blocks. Each application is further analyzed

during a mapping and scheduling phase producing scheduling configurations for each of them.

A multi-application analysis phase utilizes these configurations to analyze different application

scenarios in accordance to a so called Application Concurrency Graph (ACG). Once the user is

satisfied with a configuration for a given multi-application scenario, he can proceed to the code

generation phase to evaluate the results.

HOPES is a parallel programming framework based on a novel programming model, called

Common Intermediate Code (CIC) [177]. In a CIC, the functional and data parallelism of ap-

plication tasks are specified independently of the target architecture and the design constraints.

Information on the target architecture and the design constraints is separately described in an

XML-file, called Architecture Information File. Based on this information, the programmer maps

the tasks to the processing components, manually or automatically. Then, the CIC translator

automatically translates the task codes in the CIC model into the final parallel code following the

partitioning decision.

DAEDALUS is a tool-suite and methodology [213, 215] targeting the automated design, pro-

gramming, and implementation of MP-SoCs. Starting from a functional specification of an appli-

cation (written in C), several specifications are derived (the latter two specifications are obtained

from DSE through the SESAME tool [221]):

• a MoC-based application-specification capturing its parallel form in terms of a KPN. This

specification can either be created manually or generated by a tool called PNGen [260].

• a platform specification describing the topology of an appropriate MP-SoC

• a mapping specification defining a mapping between code blocks (defined in the application-

specification) and platform elements (defined in the platform specification)
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These specifications serve as input for the ESPAM tool [214], which delivers – amongst others

– a hardware (synthesizable VHDL code) description of an MP-SoC and appropriate high-level

language code to realize the application on the processor cores of the MP-SoC.

2.6 Concluding Remarks

As Moore’s Law predicted [208] (published in 1965 and refined in 1975), the number of circuit

components fabricated on a single silicon chip doubles every two years. Since then, the spec-

tacular rate of progress in semiconductor technology has made dramatic advances in computers

possible and has led to the emergence of the embedded (electronic) SoC concept, which in turn

has significantly altered almost all areas of human endeavor. In particular, the embedded systems

(like NPUs) have become one of the major forces for product innovations of modern consumer

and industrial devices, from automobiles to satellites, from washing machines to high-definition

TVs, from cellular phones to complete base stations. Through the years, the increasingly demand-

ing complexity of applications (like network applications/protocols) have significantly expanded

the scope and the complexity of these SoCs, i.e. with every new generation of technology, more

resources are available to implement more and more sophisticated and diverse system features.

Currently, for modern NPU systems in the realm of high-throughput multimedia, the complexity

of network applications has reached a point where the performance requirements can no longer be

supported by NPUs based on a single processing component. Thus, the emerging embedded SoC

platforms are becoming increasingly MP-SoCs, encompassing a variety of hardware and software

components. The continuously increasing requirements for efficiency and performance imply, that

in such a MP-SoC different application tasks have to be executed by different types of PEs, opti-

mized for the execution of specific networking tasks. Concerning the task execution, it is common

knowledge that higher performance is achieved by a dedicated (customized and optimized) pro-

grammable core (i.e. ASIP), because it works more efficiently than a general purpose processor.

Evidently, the highest efficiency and performance while considering high-level programmability,

is achieved by MP-SoCs consisting of only dedicated PEs, featuring SFUs, either implemented as

coprocessors or hardware instructions, tailored to the requirements of targeted network applica-

tions. Therefore, most of contemporary NPUs are heterogeneous in nature, i.e. a constellation

of programmable ASIPs and dedicated ASICs delivering high flexibility and high performance at

the same time. The long design cycles and the increasing time-to-market pressure impose clear

requirements for systematic and, moreover, automated design methodologies for building hetero-

geneous NPUs, so that time and effort to design a system containing both hardware and software

remains acceptable. Although embedded systems have been designed for decades, the systematic

design of MP-SoC systems with well defined methodologies, automation tools and programming

models has gained attention primarily in the last years [186].
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In recent years, a lot of attention has been given to the building of MP-SoCs. However, insufficient

attention has been given to the development of concepts, methodologies, and tools for efficient pro-

gramming of such systems, so that the programming still remains a major difficulty and challenge

[200]. Today, system designers experience difficulties in programming MP-SoCs, because the way

an application is specified by an application developer, typically as a sequential program, does not

match the way multiprocessor systems operate, i.e. multiprocessor systems contain PEs that run

in parallel. Moreover, sophisticated compiler support is critically needed for the heterogeneous

core architectures applied on a MP-SoC to allow for comfortable implementation of application

tasks while considering the varieties of special-purpose hardware features.





Chapter 3

Compilation and Instruction Set Extensions

Compilation and ISE are closely related topics, which can be regarded in combination. Therefore,

this chapter gives a brief overview of both research areas to provide the background knowledge

necessary to understand the contribution of this thesis. The chapter begins by describing the

common structures and concepts of compilers in Section 3.1. Subsequently, the commonly accepted

concepts of automatic ISE are going to be explained in Section 3.2. Finally, the presented methods

are summarized and set into relation in Section 3.3.

3.1 Compilation

Compilers are programs that transfer abstract system/algorithm descriptions into equivalent

machine/processor-specific descriptions. Most prominent compiler-related languages for high-level

specification of functional system behavior are C and C++. Symbolic processor-specific program-

ming languages however are usually summarized under the term assembly. As programs written in

assembly typically consist of symbolic calls to functional hardware units of a processor, compilers

fill the gap between high-level and machine-specific programming. The process of compilation

hides the complexity of analyzing syntax and semantic of a certain high-level program as well as

the complexity of transferring it into equivalent and efficient assembly code. In order to manage

this, compilers follow a common structure (Figure 3.1), which is widely accepted as the right track

to solve the problem [39, 44, 211, 228].

Relevant components of a compiler are Frontend (Section 3.1.1), Intermediate Representation

(Section 3.1.2) and Backend (Section 3.1.3). In the remaining sections, this common structure of

compilers is explained and the applied techniques executed in each single phase.

37
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Figure 3.1 – Typical compiler structure.

3.1.1 Frontend

The frontend of a compiler — which finally produces an Intermediate Representation (IR) as its

result — is responsible for the analysis of input program code with respect to syntax and semantic.

It comprises three main phases called lexical, syntax and semantic analysis that perform the

analysis and generate the IR.

Lexical Analysis (Scanner) is the process of reading the language’s tokens. Herein, charac-

ters of the underlying language’s alphabet are scanned and keywords, names of identifiers etc. are

recognized via regular expressions. Given a regular expression for every token of the program-

ming language, a deterministic Finite State Machine (FSM) can be constructed, such that all

keywords are recognized and the according tokens are forwarded to the syntax analysis/parser.

Furthermore, for prominent representatives of programming languages like C/C++, off–the–shelf

scanner-generators like GNU Flex [135] are available, which take a set of regular expressions as

input and produce program code specifying a FSM to scan the language.

Syntax Analysis (Parser) is the process of identifying valid sequences of tokens with respect

to the language’s grammar, which is — due to parsing issues — typically a context free grammar.

This phase typically builds a parse tree, which replaces the linear sequence of tokens with a

tree structure, built in accordance to the production rules of the grammar, which define the

language’s syntax. The parse tree is often analyzed, augmented, and transformed by later phases

in the compiler. In a parse tree, interior nodes represent nonterminals, whereas the leaf nodes

are terminals. The edges of a parse tree represent derivations from nonterminals with respect to

production rules of the underlying grammar.
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Again, given a context free grammar, parser generators are available for C/C++ like GNU Bison

[134] that generate high-level program code tailored to the implementation of a parser.

Semantic Analysis is the process of evaluating semantic issues like type checking, definite

assignment (e.g. requiring all local variables to be initialized before use), which have not been

taken into account by the parser. This can be achieved by enhancing the parse tree with attributes

[173]. At each nonterminal and terminal, a set of attributes A(x) is annotated, which enables

the encoding of semantic information of the symbol’s type or scope. Attributes are generally

categorized into two groups: inherited and synthesized attributes, depending on the information

flow to compute the attributes content with respect to the parse tree.

Similar to code generators FLEX and BISON for the preceding compiler phases, generators like

OX [58] exist that allow for dynamic creation of C-code for the objective to implement integrated

semantic analyzes based on an extended context free grammar.

3.1.2 Intermediate Representation

The IR is the final result of a compiler’s frontend and reflects the compiler’s view of the program

code. It separates the frontend from the backend and allows thereby arbitrary combinations of

front- and backends in case of a common IR. The field of appliance for an IR is by no means

restricted to a compiler. In fact, graph-based IR adopts an important role for ISE as well, since

application analysis is typically performed on an IR. Hence, this section is not only relevant for

compilation, but for ISE as well and therefore, relevant components and algorithms pertinent for

both compilation and ISE are explained in this section.

Several types of different IRs have evolved in the past, such that there is not the “only one”. The

most prominent and important IR-format is based upon tree and/or graph structures (Figure 3.2).

3.1. Definition (Directed Graph). A directed graph is a graph G = (V,E) consisting of

finite sets of vertices V and ordered pairs of vertices E ⊆ V × V called edges, such that

∀(vi, vj), (ui, uj) ∈ E : (vi, vj) = (ui, uj) ⇔ vi = ui ∧ vj = uj.

Directed Acyclic Graphs (DAG) and trees are very similar data structures. Both are directed

graphs in the first place, containing no directed cycles. However, trees additionally satisfy the

condition that every vertex v ∈ V has only one successor: ∀(vi, vj) ∈ E : ¬∃(vi, vk) ∈ E ∧ vk 6= vj.

Typically, an IR represents program code in terms of expressions and statements. The statements

denote trees of expressions (Figure 3.2 (b)) and are in turn organized in basic blocks. Basic blocks

are identified through IR nodes modifying the control flow of the program like goto.

3.2. Definition (Basic Block). A basic block B = 〈s1, . . . , sn〉 is a maximal sequence of IR

statements, for which the following conditions are true: B can only be entered at statement s1 and

left at sn. Statement s1 is called leader of the basic block. It can either be a function entry point,

a jump destination, or a statement that follows immediately after a jump or a return.
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Figure 3.2 – Examples of Data Flow Graph (a) and Data Flow Trees (b).

Basic blocks are an important structure. If the first statement of a basic block is executed,

consequently all following statements are executed as well. This observation is the basis for

code-selection and ISE as well, since these techniques attempt to find mappings of IR nodes to

hardware instructions. In case of mapping multiple IR nodes to the same hardware instruction, it

is mandatory that selected IR nodes are either executed completely or not at all during program

execution. Code-selection and ISE both rely on data dependencies between statements.

3.3. Definition (Data Dependency). A statement sj of a basic block B = 〈s1, . . . , sn〉 is said

to be data dependent on a statement si, with i<j, if si defines a value that is used by sj, i.e. si

needs to be executed before sj.

A dependency analysis in its simplest form evaluates the data dependencies inside a single basic

block and is called local Data Flow Analysis (DFA). During DFA, a data flow equation is created

for each statement, such that the resulting system of equations provides information on data

dependencies for all statements of the basic block. The DFA results in a structure called Data

Flow Graph (Figure 3.2) (a).

Data Flow Graph

The vertices of such trees and graphs represent operators/operands and the edges represent data

dependencies. These structures are consequently referred to as Data Flow Tree (DFT) and Data

Flow Graph (DFG), where DFGs are the more important structure, since DFTs usually derive

their structure from an according DFG.

3.4. Definition (Data Flow Graph). A DFG for a basic block B is a DAG GB = (VB, EB),

where each leaf node v ∈ VB represents either an input operand (constant, variable) or an output

(variable) operand and each interior node an operation. Edges (vi, vj) ∈ EB ⊂ VB × VB indicate

that a value defined by vi is used by vj, i.e. vj is data dependent on vi.
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Vertices of a DFG emanating more than one edge are called Common Subexpressions (CSE). If

a DFG does not contain any CSE, it is called a DFT. DFTs are usually constructed by splitting

a DFG at its CSEs and by inserting copies of the according CSE into each resulting DFT at

appropriate positions, such that each vertex in a tree has not more than one successor.

In practice, a compiler performs a DFA not on the level of a basic block, but for complete

procedures. For this purpose (and others as well), a Control Flow Graph (CFG) is computed.

Control Flow Graph

While DFGs mirror program behavior internally of a basic block, the CFG reflects the global

control flow of a function or procedure. Basically the CFG provides a different view than DFGs

and consequently extends the compiler’s perspective on the source code.

3.5. Definition (Control Flow Graph). A CFG of a function F is a directed graph

GF = (VF , EF ). Each node v ∈ VF represents a basic block, and EF contains an edge (v, v′) ∈

VF × VF , iff v′ might be directly executed after v. The set of successors succ of a basic block B

is given by succB = {v ∈ VF | (b, v) ∈ EF} and the set of predecessors pred of a basic block B is

given by predB = {v ∈ VF | (v, b) ∈ EF}

The obvious edges are those resulting from jumps to explicit labels like the last statement sn of a

basic block. If sn is a conditional jump or a conditional return, an additional fallthrough edge to

the successor basic block is created. Blocks without any outgoing edges have a return statement

at the end. In case the CFG contains unconnected basic blocks, there is so called unreachable

code, which can be eliminated by dead code elimination without changing the semantics of the

program code.

Dominators

The notion of dominators is widely applied in the context of compilation and ISE. Especially for

ISE (pertinent for this thesis), the enumeration of dominators adopts an important role, because

subgraph enumeration is realized by enumerating multiple-vertex dominators. For compilation,

probably one of the most prominent applications of dominators is loop analysis. Loops are of

high interest, since they usually represent execution hotspots of an application and therefore offer

beneficial optimization potential.

3.6. Definition (Dominator). Given a rooted graph1 G = (V,E, r), a vertex v ∈ V dominates

a vertex w ∈ V in G (v ¹G w), iff every path 〈r, . . . , w〉 emanating at the graph’s root r leading to

w includes v as well. Accordingly, a vertex v ∈ V post-dominates a vertex w ∈ V , iff every path

1A graph G is called a rooted graph, if one vertex r has been designated the root, in which case the edges

have a natural orientation, towards or away from the root r. If all paths are leading towards r, it is sometimes

called the sink of G.
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〈w, . . . , r〉 emanating at w leading to the graph’s root r includes v as well. The vertex v is called

dominator of w and Dom(w) designates the set of all dominators of w.

The binary dominance relation ¹G is reflexive (a ¹G a), transitive (a ¹G b ∧ b ¹G c ⇒ a ¹G c)

and antisymmetric (a ¹G b∧ b ¹G a ⇒ b = a). Furthermore, in case the underlying flow graph G

is obvious from the context ¹ is used instead of ¹G.

While the dominance relation captures every node that dominates a certain different node, it is

often useful to know the immediate dominator of a certain node.

3.7. Definition (Immediate Dominator). Given a rooted graph G = (V,E, r), a vertex

v ∈ V immediately dominates a vertex w ∈ V (v idom w), iff every other dominator of w

also dominates v

v idom w ⇒ Dom(w) − {w} = Dom(v).

The vertex v is called the immediate dominator of w (v = IDom(w)).

Intuitively, the immediate dominator of a node w is the node, which is closest to w and dominates

it. The immediate dominance relation forms a tree of nodes — called dominator tree — whose

root is the entry node, whose edges represent immediate dominance between nodes and whose

paths display all dominance relationships. In the dominator tree, each node is a child of its imme-

diate dominator. The analysis of dominators has been extensively studied in the past literature

[148, 149, 182, 227, 253]. In general, the set of dominators can be represented as

Dom(r) = {r}

Dom(v) = {v} ∪




⋂

w∈pred(v)

Dom(w)



 (3.1)

However, solving these equations as a forward dataflow problem [149], results in quadratic runtime.

Nevertheless, the algorithm described in [182]2 is capable of computing the dominators for a flow

graph in O(n · log(n)) time. It is one of the best known and widely used algorithm for fast

dominator computation. By traversing the vertices of an underlying flow graph G = (V,E, r) in

depth-first order, the algorithm constructs a spanning tree T and an enumeration (dfnum(v)) of

all vertices v ∈ V (Figure 3.3). The tree features several helpful attributes for the computation

of dominators. For all vertices v 6= r and their according path P〈r,v〉 in the spanning tree T , the

following holds:

• ∀w ∈ P〈r,v〉 ∧ w 6= v : dfnum(w) ≤ dfnum(v)

• obviously, every dominator of v lies on the P〈r,v〉, such that

∀d ∈ Dom(v)(d ¹ v ⇒ dfnum(d) ≤ dfnum(v))

2A modified version of this algorithm is applied for subgraph enumeration described in Chapter 7
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• for the computation of IDom(v), only predecessors of v have to be regarded

• if dfnum(w) ≤ dfnum(v), u and v have at least one common ancestor3 in the depth-first

tree T

Based on the spanning tree and its implied enumeration, a value called semidominator is computed

for each vertex v 6= r (Figure 3.3). A semidominator of a node v can be described as the minimal4

predecessor of v in T , which is originating a path to v including nodes beyond v’s search path

P〈r,v〉.

3.8. Definition (Semidominator). A semidominator is defined as

sdom(v) = min{w|∃〈w = v0, v1, . . . vn = v〉 : vi ≥ v,∀1 ≤ i ≤ n − 1}.
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Figure 3.3 – Example of depth-first enumeration of semi-dominators in a flow graph: Solid red

edges represent spanning tree edges; black edges are nontree edges; numbers and letters in parentheses

designate depth-first number and semidominator of an according vertex.

3Node a is an ancestor of node b if a = b or there is a path from a to b in T . Furthermore, a is a proper ancestor

of b if a is an ancestor of b and a 6= b.
4Minimal in terms of the depth-first enumeration
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In order to compute semidominators for the flow graph’s vertices, every vertex v and its prede-

cessors w are evaluated in accordance to the following issues:

• If w ∈ P〈r,v〉 of T such that dfnum(w) ≤ dfnum(v), w is a candidate for sdom(v).

• If w 6∈ P〈r,v〉 of T (i.e. dfnum(w) ≥ dfnum(v)), semidominators of w and its successors u

with dfnum(u) ≤ dfnum(w) are candidates for sdom(v).

Afterwards, the candidate featuring the minimal depth-first number is selected. On the path

P〈sdom(v),v〉 be u the node whose semidominator sdom(u) features the minimal depth-first number.

Then

IDom(v) =

{

sdom(v) : if sdom(u) = sdom(v)

IDom(u) : if sdom(u) 6= sdom(v)

Finally, the algorithm explicitly sets IDom(v) for each v, processing the nodes in depth-first order.

The asymptotic complexity of this methodology has been further reduced to linearity as described

in [42]; these improvements however did not result in reduced runtime. Interestingly, by turning

the problem of dominator identification back into a forward data flow problem, [93] presents an

algorithm that features significant faster runtimes compared to [182] even for flow graphs with

more than 400 nodes.

In the preceding explanations, only single-vertex dominators have been considered. However, the

notion of dominator can be generalized to include sets of vertices, which collectively dominate a

given vertex [141].

3.9. Definition (Generalized Dominator). Given a rooted graph G = (V,E, r), a set of

vertices U ⊆ V dominates a vertex v ∈ V (U ¹ v), iff the following two conditions are met:

1. all paths from the root r of G to vertex v contain at least one vertex w ∈ U ;

2. for each vertex v ∈ V , there is at least one path from the root r of G to vertex v that contains

w, but not any other vertex in U .

The computation of generalized dominators features in general exponential runtime [141]. In the

algorithm described in [141], generalized dominators are computed, similar to Equation 3.1, by

taking the intersections of the dominator set of (immediate) predecessors. The algorithm is based

upon the observation that, if a vertex v is dominated by another vertex u, then u must also dom-

inate all predecessors of v. In accordance to this, first, all single-vertex dominators are computed.

Generalized dominators for a certain vertex are determined by considering combinations of domi-

nators of its predecessors. In order to verify whether a set of vertices U ⊆ V with cardinality |U |

dominates a vertex v, it is ensured that no subset W ⊂ U dominates v. This procedure requires

computation of all dominator sets of cardinality less than |U | in advance such that dominator sets

are computed by successively increasing the cardinality of the sets.
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3.1.3 Backend

In the backend of a compiler, the IR is transferred into equivalent assembly code of the underlying

target processor. This process comprises three main phases: code-selection, register-allocation and

instruction-scheduling. Each of these phases has to deal with a NP-complete problem [130], i.e.

all known exact algorithms require super polynomial runtime, why compiler backend phases are

typically solved by heuristic5 algorithms. The phases of a compiler backend are interdependent

on each other, which means that decisions of one phase influence other phases as well. While this

works fine for regular architectures, code quality for irregular architectures may deviate from the

optimum [286], which is known as the phase coupling problem.

Code-Selection is basically a pattern matching problem. The constituents of the compiler’s

IR are analyzed and compared against available instruction patterns, such that an appropriate set

of instruction patterns can be composed that covers the complete IR. Amongst several different

approaches, code-selection via tree parsing and dynamic programming [36, 37, 246] has evolved to

the most widely accepted one, as it leads to the optimal solution in linear time for typical ISAs.

This approach works on DFTs, which can be obtained from a DFG as described in the previous

Section 3.1.2. It has been applied to a variety of machine models including stack machines,

multi-register machines, infinite register machines as well as superscalar machines [66].

Tree parsing is twofold: First, IR-patterns matching hardware instructions have to be identified

and evaluated with respect to their execution efficiency. Second, the patterns have to be covered

in the way that every part of the IR is assigned to an according hardware instruction of the target

processor and the overall execution costs are minimized.

The basic idea is to describe the ISA of a processor in terms of a context free tree grammar.

3.10. Definition (Context free tree grammar). A context free tree grammar G is a quin-

tuple G = (T,N, P, S, w), where T denotes a finite ranked alphabet of terminals equal to the set of

IR-operators6, N a finite alphabet of nonterminals equal to the set of storage classes, P : n → a

is a set of production rules, with n ∈ N and a ∈ AT (N), where AT (N) designates the associated

term algebra7. S ∈ N is the start symbol and w is a cost metric P → R for the production rules.

In the context of tree pattern matching, the set T represents the set of IR nodes and N can be

regarded as some type of temporaries or storage locations (e.g. registers or memory) to transfer

intermediate results between operations. The cost metric describes the costs emerging from the

5A heuristic is a technique designed for solving a problem quicker when classic methods are too slow, or for

finding an approximate solution when classic methods fail to find any exact solution. By trading optimality,

completeness, accuracy, and/or precision for speed, a heuristic can quickly produce a solution that is good enough

for solving the problem at hand, as opposed to finding all exact solutions in a prohibitively long time. [31]
6A ranked alphabet consists of symbols having an arity, e.g. PLUS(Reg,Reg) is of arity two.
7A term algebra is, in this context, the set of all trees composed of symbols in T ∪ N according to their arity,

where nonterminals are considered nullary.
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Terminals = {PLUS, SHIFT , LOAD}

Nonterminals = {Reg, Imm, ǫ}

Startsymbol = Reg

Rules:

1: Reg → PLUS(Reg,Reg), costs = 1

2: Reg → PLUS(Reg, Imm), costs = 1

3: Reg → SHIFT (Reg,Reg), costs = 1

4: Reg → SHIFT (Reg, Imm), costs = 1

5: Reg → Imm, costs = 1

6: Imm → Const, costs = 0

7: Reg → Load(Reg), costs = 1

8: ǫ → Assign(Reg,Reg), costs = 1

Figure 3.4 – Example Tree Grammar: Rules consists (from left to right) of a rule number, the

nonterminal representing the result, a terminal designating the operator, operand nonterminals given

in parentheses as well as the associated costs.

execution of the corresponding hardware instruction, i.e. with regard to performance, code size or

power consumption. The target code is generated through the reduction of the DFT by recurrent

application of production rules p ∈ P , i.e. a subtree S can be replaced by a nonterminal n ∈ N if

the rule n → S is in P .

As a typical example for a tree grammar rule, consider the rule for a register to register ADD

instruction:

Reg → PLUS(Reg,Reg){costs} = {actions}

with Reg ∈ N and PLUS ∈ T . If the DFT contains a subtree matching a pattern whose root is

labeled by “PLUS” and its children are labeled with “Reg”, it can be replaced by Reg8. Each

rule is associated with a cost and an action section. The latter usually contains the code to emit

the corresponding assembly instructions, but might also contain code to produce another lowered

form of IR. It might happen that multiple production rules can be applied to cover a single subtree.

In general, a covering is regarded as being optimal, if the sum over all involved costs is minimal.

This can be accomplished by dynamic programming. A tree pattern matcher traverses the DFT

T twice: First of all, T is traversed in bottom-up manner from the leafs to the root, while each

visited node v ∈ T is labeled9 with a comma-separated list of

• the set of nonterminals it can be reduced to (this includes also those nonterminals, which

might be produced by a sequence of production rules),

8It should be noted here that both children might be the result of other tree grammar rules, which have been

applied before.
9This phase is sometimes referred to as labeling or the labeler.
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• for each nonterminal n ∈ N the most beneficial rule p ∈ P producing n (if available) and

• the total costs (i.e. the costs covering the subtree rooted at v).

When the root node of T is reached, the rule that produces the start nonterminal with minimal

costs is at hand. After the first bottom-up traversal, the nodes of the DFT are revisited a second

time top-down from the root to the leafs. In this run, the pattern matcher exploits the fact that

a rule annotated at a node v determines the nonterminal the subtrees rooted at v have to be

reduced to. Hence, starting at the root of T , the pattern matcher determines which nonterminal

must be selected at the next lower level in T . Therewith for each nonterminal the corresponding

rule p can be obtained whose action section is executed. Figure 3.5 illustrates this process on the

basis of the tree grammar specification given in Figure 3.4.

Reg, 5, 1
Imm, 6, 0

Reg, 5, 1
Imm, 6, 0

Reg, 5, 1
Imm, 6, 0

Reg, 2, 1 + 0

Reg, 4, 1 + 1Reg, 5, 1
Imm, 6, 0

, 7, 1 + 2ε

++

xx zz

>>>>

yy

==

&x&x

Covered Rule

Figure 3.5 – IR tree with annotated grammar rules. For each node and each nonterminal, those

rules providing minimal accumulated costs are annotated. The annotations consists of the produced

nonterminal, the rule number in accordance to Figure 3.4 and the appropriate costs.

Due to the wide acceptance of tree parsing it has been further developed to yield code-generator

generators [80, 133]. A number of code-generator generators are nowadays available, which con-

sume a tree grammar and produce C-code to implement a code-selector. The most prominent

representatives of such tools are BEG [143], BURG [77, 117], IBurg [115, 116], Lburg (the code-

selector of the lcc compiler) [76], OLIVE (used in the SPAM compiler project) [250] and finally

Twig [36, 256].

Tree parsing works well for regular architectures (like general-purpose or typical RISC/Complex

Instruction Set Computer (CISC) processors). For irregular architectures or those featuring spe-

cial CIs (like Single Instruction Multiple Data (SIMD) or MOIs), it may lead to suboptimal

results. Under such constraints, DFG-based code-selection is necessary [40]. Since this approach

is NP-complete in general [38, 74, 225], most approaches either feature heuristic methodologies or
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exponential runtime, making them impracticable for real world applications. However, for some

ISAs it is possible to perform optimal DFG-based code-selection in polynomial time [106].

An alternative method of code-selection, which is better suited for linear (e.g. 3-address code),

as opposed to tree-like, IRs is to incorporate code-selection into peephole optimization

[94, 98, 118, 119, 171]. Within peephole optimization [201], pattern matching transformations

are performed over a small window of operations, the “peephole”. This window may be either

a physical window, where the operations considered are only those scheduled next to each other

in the current operation list, or a logical window where the operations considered are just those

that are data or control related to the operations currently being scanned. When performing

peephole-based code-selection, the peephole optimizer simply converts a window of IR operations

into target-specific hardware instructions. If a logical window is being used, then this technique

can be considered a heuristic method for DFG-based code-selection.

Register-Allocation determines a mapping between variables and physical storage distributed

over the period of program execution. Register-allocation can be classified into local [84, 125]

and global [85, 125] register-allocation. The former is restricted to the scope of a single basic

block, whereas the latter works on the scope of a complete function (CFG); consequently takes

control flow into account. Global register-allocation has gained wide acceptance amongst compiler

engineers, since it leads to more efficient results than local register allocation, due to its extended

scope. Typically, during global register-allocation, instruction operands are assigned to so called

virtual registers, whose life range is analyzed via DFA.

3.11. Definition (life range). A virtual register r is live at a program point p, if a path

exists in the CFG, starting from p to a use of r on which r is not defined. Otherwise r is dead at

p.

Beside different approaches like [218, 222, 226], global register-allocation via graph coloring

[69, 125, 235] has become the most frequently used method in compilation. The method is based

on the construction of an interference graph.

3.12. Definition (interference graph). A graph G = (V,E) is called interference graph, iff

all v ∈ V are virtual registers and all edges (v, w) ∈ E imply that v and w have intersecting life

ranges.

The vertices of the interference graph are colored, such that no two adjacent vertices feature the

same color. The number of colors equals the number of physical registers.

3.13. Definition (graph coloring). A graph G = (V,E) is called k-colorable, iff a function

f : V → {1 . . . k} exists, such that ∀(x, y) ∈ E : f(x) 6= f(y).
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Since graph coloring is an NP-complete problem, no optimal solution can be obtained in acceptable

time and therefore heuristic approaches are used. The bedrock of this idea is the observation that

vertices v ∈ V with degree deg(v) < k (deg(v) equals the number of edges emanating v) can be

eliminated from the graph without destroying the colorability of the graph G, i.e. let G′ = (V ′, E ′)

be the graph that can be constructed from G by removing v and its emanating edges from V and

E, respectively. Then it holds:

G k-colorable ⇒ G’ k-colorable.

Consequently, the interference graph is stepwise decomposed and vertices, which are not k-

colorable due to their deg(v) > k are marked and eventually spilled, i.e. stored in memory.

Another pass recomposes the graph, while assigning colors to the nodes.

Instruction-Scheduling determines the temporal execution order of hardware instructions un-

der given resource constraints to exploit as much existing ILP as possible. This is necessary, since

most contemporary processors feature ILP either in a pipelining model or in terms of VLIW

architectures. The available ILP is generally restricted through data dependencies among instruc-

tions, such that the temporal execution order of instructions is not freely selectable. They can

be classified into true dependence (read after write), antidependence (write after read) and output

dependence (write after write). As with register-allocation, scheduling can be classified into local

and global approaches. Local schedulers’ scopes are restricted to single basic blocks, while global

schedulers work at the level of complete functions, i.e. optimizing control flow. One example

of global scheduling is trace scheduling [166]. The underlying idea of this approach is based on

execution frequencies of basic blocks, which have to be obtained by profiling. According to these

execution frequencies, a trace is a cycle-free path in the CFG that is handled as “one” basic block.

In contrast to global scheduling, local scheduling has gained wide acceptance. It is referred to as

scheduling in the remainder of this paragraph.

The objective of scheduling is the identification of the order of instructions, consuming the minimal

amount of cycles, such that

• every instruction has to be executed at some point of time,

• dependencies are not violated and

• only available resources are utilized.

Due to the absence of optimal solutions for this problem, list scheduling [178] — a fast heuristic

— has evolved as the state–of–the–art in instruction-scheduling. List scheduling is built upon a

dependency graph, which sets the instructions in relation to each other on the basis of consumed

cycles and data dependencies. List scheduling is an iterative method, featuring a worst-case

complexity of O(|V |2), yet dominated by the construction of the dependency graph.
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3.14. Definition (Dependency Graph). A dependency graph is an edge-weighted DAG

G = (V,E, delay), where each vertex v ∈ V represents a schedulable instruction. An edge

e = (v, w) ∈ E indicates a dependency between vertices v and w and it is weighted with the mini-

mum delay cycles, given by delay(e), the instruction w can be started after v.

At every point of time, list scheduling keeps a so called ready set, which contains exactly those

vertices of the dependency graph, whose direct predecessors have already been scheduled. Several

heuristics have been designed in the past to select a vertex from the ready set. Typically, those

vertices of the ready set are selected next for scheduling that are part of the critical path.

3.15. Definition (critical path). Let G = (V,E) be a dependency graph. Each longest path

P in G is called critical path. The length of P lc =
∑

e∈P delay(e) is determined by the sum over

all edge-weights along P and is called critical length.

List scheduling successively selects vertices from the ready set according to the critical path,

eliminates the vertices from the dependency graph and inserts them into a partial schedule. Sub-

sequently, the ready set is updated by recomputing the critical path and the algorithm proceeds

with the next instruction taken from the ready set.

However, list scheduling although very widespread, has its limitations. In case of antidependencies,

list scheduling is not able to handle negative latencies efficiently, which is necessary to fill delay

slots. A solution to this are backtracking schedulers [233]. Backtracking allows for retraction of

previously taken scheduling decisions. Furthermore, the available ILP in control flow dominated

program code is usually very low, since the basic block sizes are low on average. In particular,

loops feature strong control flow and usually represent hotspots of program execution at the same

time. Therefore, loops are primary candidates for instruction-scheduling.

Software pipelining [199] implemented through iterative modulo scheduling [53] is a prominent

solution for scheduling within loop bodies.

Code Emission as the last phase, emits assembly code (typically into an assembly file) ac-

cording to the previously computed information. Although it is not a big issue for single slot

machines, it might be difficult for VLIW architectures, which typically impose constraints on the

composition of instruction words. Finally, the produced assembly file can be fed into assembler

and linker in order to produce a valid executable file.

3.2 Instruction Set Extensions

ISE is the process of identifying optimized hardware instructions for efficient processing of a

given application or set of applications. Automating this process is an important step for design-

automation of embedded processors, both for extensible processors [43, 48, 137, 278] and the
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iterative ADL-based development of ASIPs. Two basic categories of approaches exist to solve

ISE: complete and partial customization [126]. While the former develops an entire processor ISA

from scratch, the latter focuses on a small number of selected special instructions providing a high

benefit in terms of speedup for a certain application. Due to the high diversity of the problem,

an exhaustive illustration of every dimension of ISE is not in the scope of this thesis. Interested

readers may refer to [126], which provides a detailed survey of the ISE problem. Within the

remainder of this section, only common principles of partial ISE are tackled.

3.2.1 Problem Statement

The ISE problem represents a well known topic requiring diverse engineering and graph theory

concepts. Particularly the latter is the dominant approach and is widely regarded as the right

track. Starting from high-level code, applications are thus transformed into directed graphs and

new CIs are described as subgraphs featuring certain properties. Irrespective of the type of

customization, complete or partial, two related approaches of granularity exist: fine-grained and

coarse-grained. The first one works at the operation level implementing small clusters of operations

in hardware [49, 50, 51, 127, 128, 129, 145, 259], while the latter identifies critical loops and

procedures within the target application and displaces them from software to hardware as a whole

[52, 132, 231, 272]. The main differences concerning these two approaches are in terms of speedup

and flexibility: Although a coarse-grained approach could produce a large speedup, its flexibility

is limited, i.e. given that the analysis of CIs is based on a single application and its hotspots, it

is quite unlikely that the same CIs will reappear within other applications on the critical path as

well.

ISE’s target of identifying a set of operations within an application (or a set of applications) that

should be implemented in hardware, while other operations are left for software execution can

be described as a hardware/software codesign or partitioning problem concurrently balancing the

presence of hardware and software at design time. Operations implemented in hardware are incor-

porated into the processor’s architecture either as new instructions in the form of SFUs integrated

on the processor or are implemented as peripheral devices. The interface between these system

parts is usually in the form of special purpose instructions embedded in the instruction stream.

Hardware components generally feature a more or less tight coupling with the processor core,

which involves different synchronization costs. Hence, it might become necessary to implement

an appropriate communication and synchronization scheme in the processor architecture, too. In

general, the implementation of clusters of operations in hardware as new CIs, whatever nature

they have, will benefit the overall performance only if the time the hardware platform takes to

evaluate them is less than the time required to compute the same operations in software. As a

result, compilation and initialization of resources have to be considered as well.
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3.2.2 Procedure Description

Typically, application source code is preprocessed by a compiler frontend to transfer the applica-

tion(s) into an appropriate IR that is easier to analyze. The ISE procedure, which is pertinent

to this thesis (c.f. Chapter 7), can be roughly structured into three steps: subgraph enumeration,

detection of isomorphic subgraphs and graph covering.

Subgraph enumeration computes every possible CI (regardless of its applicability) for a given

IR-representation of an application. CIs in general encapsulate the computation of frequently

executed subsets of the IR. Since compilers most often apply DFG structures as IR format, CIs

consequently represent arbitrary subgraphs of these DFGs, which have to be convex at the same

time.

Figure 3.6 – Examples of subgraphs.

3.16. Definition (subgraph). A graph S = (V ′, E ′) is said to be a subgraph of another graph

G = (V,E), iff its node set V ′ is s subset of that of G and whose adjacency relation is a subset of

that of G restricted to this subset:

V ′ ⊆ V ∧ E ′ ⊆ E

3.17. Definition (convex subgraph). Given a DFG G = (V,E), a subgraph S is called con-

vex, iff no path exists from a vertex v ∈ S to another w ∈ S, which contains a vertex u /∈ S.
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Such subgraphs can be classified according to their number of input and output operands (sin-

gle/multiple input/output operands) as well as according to their connectivity, i.e. if a subgraph

comprises disconnected patterns or not. Furthermore, the microarchitecture may pose several

additional constraints on the subgraphs that can be considered valid. First of all, the maximum

number of input and output operands (Nin, Nout) may be limited due to usually limited encod-

ing space or the number of read/write ports in the register file. Secondly, some vertices may be

forbidden as they represent nondesirable operations for CIs, e.g. loads and stores, if the planed

functional unit is not going to have memory ports. In addition, other vertices are considered

invalid implicitly, because their contents are computed outside to the current basic block. Thus,

given a DFG G, the maximum number of input and output operands Nin and Nout and the set

of forbidden vertices F , the objective is to find all convex subgraphs S = (V ′, E ′) under the

constraints that

|I(S)| ≤ Nin ∧ |O(S)| ≤ Nout ∧ V ′ ∩ F = ∅,

where I(S) and O(S) denote the set of input and output nodes of the subgraph S, respectively.

The enumerated subgraphs are furthermore very often evaluated by a merit function, which typ-

ically reflects for each pattern the number of saved clock cycles under the assumption that the

equivalent hardware instruction is executed within a single clock cycle of the underlying processor

architecture. The result of this phase is a set of subgraphs for a certain DFG, representing all

possible ISE instances ranked by a merit function metric.

Several methodologies have been developed in the past, which tackle subgraph enumeration from

different purchases. First of all, a limited number of allowed input and output operands is the basis

for several efficient approaches towards subgraph enumeration. Because exhaustive enumeration

of arbitrary subgraphs features exponential runtime complexity [223], earlier approaches concen-

trated on Multiple-Input-Single-Output (MISO) subgraphs [49, 92], which can be enumerated in

linear time [224]. Furthermore, many approaches are restricted to only connected subgraphs

[49, 56, 64, 89, 92, 224, 280], although including multiple disconnected components in a subgraph

increases the potential to exploit parallelism on the level of IR-operations, which is particularly

attractive for single-issue architectures [50, 70, 129, 184, 223, 281].

Isomorphic Subgraph Detection or graph matching in general is the process of finding a

correspondence between vertices and edges of two (sub)graphs, which satisfy certain constraints,

such that equivalent substructures of two (sub)graphs are matched together.

3.18. Definition (graph isomorphism). A graph isomorphism is a bijective graph homomor-

phism between two graphs Gα = (Vα, Eα) and Gβ = (Vβ, Eβ), such that

∃f : Vα 7→ Vβ with ∀v, w ∈ Vα ∧ (v, w) ∈ Eα ⇔ (f(v), f(w)) ∈ Eβ (3.2)

Probably the most prominent method for isomorphism detection is the approach described by

Ullmann [257]. The underlying idea of [257] is to describe graphs Gα = (Vα, Eα) and Gβ = (Vβ, Eβ)
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as adjacency matrices A and B, respectively. In addition a |Vα|×|Vβ|-matrix M ′ with mij ∈ {0, 1}

is constructed, such that every row contains exactly one 1 and every column contains not more

than one 1. The algorithm’s objective now is to construct a matrix C = M ′(M ′B)T , such that

(∀i∀j) 1 6=i≤|Vα|
1 6=j≤|vα|

(aij = 1) ⇒ (cij = 1)

holds and an isomorphism is found. The algorithm iteratively refines the matrix M ′ starting from

a matrix

M0 =

{

1 : deg(vj) ≥ deg(vi), vj ∈ Vα ∧ vi ∈ Vβ

0 : else

and changing systematically the elements of M i in each iteration, such that all possible matrices

M ′ in accordance to Equation 3.2 are generated and evaluated. The algorithm features runtime

complexity between Θ(n3) in the best and Θ(n!n2) in the worst case.

Graph isomorphism has spawned a wealth of literature in the past, which is not in the scope

of this thesis. The interested reader may refer to [4], which provides an enumeration of existing

literature. The final result of this phase is a partition of the set of subgraphs of a certain DFG into

equivalence classes in accordance to the isomorphic information, i.e. all elements of an equivalence

class being isomorphic to each other.

Graph Covering finally completes, based on the results of the preceding phases, ISE by select-

ing the most beneficial set of subgraphs to be implemented into an architecture. The benefit of a CI

can herein be computed as the number of saved cycles compared to an implementation with prim-

itive operations. Covering has gained wide attention in the past. For simple tree-shaped patterns

[36], optimal results can be obtained in linear time as already described in Section 3.1.3. However,

this is mostly too restrictive as CIs are usually represented by Multiple–Input–Multiple–Output

(MIMO) patterns. Such patterns are not matchable within a single DFT. Therefore graph-based

covering methodologies have to be applied, which naturally feature exponential runtime complex-

ity (if optimal) due to the NP-completeness of the problem.

3.3 Concluding Remarks

Although being orthogonal in general, automatic ISE and compilation of high-level languages

feature an essential commonness: both processes identify a mapping from a given program rep-

resentation to hardware instructions of a processor’s ISA. It is exactly this commonness, which

motivates a combined treatment of compilation and ISE. Typical approaches of ISE are restricted

to only a small number of basic blocks of an application, which have been identified in advance

as hotspots by some profiler. Based on these basic blocks, instruction patterns are identified

under the premise of maximizing the number of contained operations inside each pattern. Such
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patterns naturally bear a high degree of complexity and are therefore not easily applicable for

compilation. Especially, if the IR-patterns of identified hardware instructions feature a fan-out

larger than one, DFT-based pattern matching algorithms are not capable of handling them. Com-

plex hardware instructions are therefore usually ignored by the code-selection phase and instead

handled as Compiler Known Functions (CKF) or intrinsics. Basically, CKFs make assembly in-

structions accessible within high-level code, where the compiler expands a CKF call like a macro.

The procedure implies a manual modification of given applications, which is time-consuming,

error-prone and furthermore restricts a utilization of hardware instructions to a small number

of selected hotspots. To overcome this problem, ISE has to identify small reusable instructions,

whose effectiveness is based on a high number of occurrences instead on a high number of con-

tained operations, while the code-selection phase of a compiler has to incorporate a graph-based

pattern matching algorithm in order handle arbitrary instruction patterns including those with a

fan-out larger than one.
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Figure 4.1 – Break-up of tasks in typical VPN traffic.

Integrating security warranties into the IP stack inevitably influences overall IP processing perfor-

mance (c.f. Chapter 2.2.1). Figure 4.11 shows break-ups of VPN-related implementation tasks and

their execution time in correlation to packet sizes. The columns alternately represent implemen-

tations of VPN (via IPSec) in full software and hardware, starting with a software implementation

1Based on a presentation slide of the “Stay Smart” road show by Motorola in March 2004.
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processing an incoming packet size of 64 bytes. The figure identifies data encryption as the most

computation intensive task in IPSec (especially for large IP packets). For the design of application-

specific hardware, it is therefore one of the most promising candidates to increase overall packet

processing performance through dedicated SFUs. Nonetheless, encryption algorithms are a sub-

ject to continuous changes. Regularly they are cracked or replaced by newer ones, which is why

reuse opportunities of SFUs towards newer algorithms have to be considered. The implementation

of such algorithms in hardware (i.e. as a separate ASIC) offers indeed the best performance, yet

it forfeits reusability with respect to different algorithms. For this reason a solution based on a

programmable core is preferable.

This chapter showcases the development of a programmable coprocessor for efficient IPSec encryp-

tion. The case study aims at illustrating the methodology of iterative architecture exploration

using the tool suite of the Synopsys Processor Designer. Through the design of a programmable

coprocessor featuring a customized ISA for the symmetric-key block cipher algorithm Blowfish, a

representative example of the efficiency of customized ISE in the domain of protocol processing is

given. Here, a coprocessor design provides the loosest coupling (e.g. via shared memory) towards

different (main-)processor architectures and hence, increases reusability of encryption-specific CIs

as well. The Blowfish algorithm is representative of a vast spectrum of block cipher algorithms

due to its simple and common structure. Block cipher algorithms are widely used in the area of

encrypting communication channels as found in the Internet. This case study omits the develop-

ment of an optimized compiler for automatic utilization of encryption-specific CIs to stress the

requirement for it (Figure 4.2).

Figure 4.2 – Overview of compiler-agnostic architecture exploration.

In fact, encryption-specific CIs are manually utilized through CKFs, which implies the manual

modification of targeted applications.

The remainder of this chapter is organized as follows: First, Section 4.1 surveys the applied

architecture exploration framework and its methodology. The following Section 4.2 gives an

illustration of the target application while focusing on the encryption functionality. This is followed
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by a detailed presentation of the successive refinement flow for the joint processor/coprocessor

optimizations in Section 4.3 as well as the obtained results. Section 4.4 concludes the chapter.

4.1 System Overview

In order to design an efficient NPU, like any other ASIP, DSE (Figure 4.3) at the processor

architecture level needs to be performed [147, 152]. It is usually an iterative process beginning with

an initial architectural prototype and software implementations of appropriate target applications.

The applications are executed and profiled on this prototype to detect performance bottlenecks.

Based on profiling results, the designer refines the basic architecture improvements step by step

(e.g. by adding CIs or by fine-tuning the architecture) until it is sufficiently tailored to the targeted

set of applications.
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Figure 4.3 – Tool based processor architecture exploration loop.

This iterative exploration approach requires very flexible retargetable software development tools

(C-compiler, assembler, co-simulator/debugger etc.) that can be quickly adapted to varying target

processor/coprocessor configurations, and a methodology for efficient MP-SoC exploration on the

system level. Retargetable tools permit to explore many alternative design points in the explo-

ration space within short time, i.e. without the need of the tedious complete tool re-design. Such
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development tools are usually derived from a processor model given in a dedicated specification

language.

4.1.1 Synopsys Processor Designer

The architecture exploration framework applied in this thesis builds on the Synopsys Processor

Designer, a tool platform for embedded processor design available from Synopsys Inc. [96]. The

Synopsys tool-suite revolves around the LISA 2.0 ADL. An earlier version of this tool-suite and

the ADL itself has been described in detail in [152]. Amongst others, it allows for automatic gen-

eration of efficient ASIP software development tools like instruction set simulator [217], debugger,

profiler, assembler, and linker, and it provides capabilities for VHDL and Verilog generation for

hardware synthesis [240]. A retargetable C-compiler2 [153] is seamlessly integrated into this tool

chain and uses the same single “golden reference” LISA-model to drive retargeting. A method-

ology for system level processor/communication co-exploration for multi-processor systems [270]

is integrated into the LISA tool chain, too. It is supposed that such an integrated ADL-driven

approach to ASIP design is most efficient, since it avoids model inconsistencies and the need to

use various special-purpose description languages.

Architecture Description Language: LISA

A LISA-model can be roughly structured into the processor’s ISA and a description of its resources

like memories, register file or pipeline. Resources are modeled by a separate section inside the

processor model. All herein declared resources are global to all instructions in the model.

The hardware instructions of the ISA are composed of microarchitectural Operations that model

the ISA of the processor in a distributed manner, i.e. Operations represent inherent process steps

of certain instructions. If the processor model contains a pipeline, each Operation is assigned

to an appropriate pipeline stage. Typically, a hardware instruction can be described via several

aspects like assembly syntax, coding and microarchitectural behavior. These aspects are specified

inside the Operations of an instruction within appropriate sections. Additionally, Operations

contain an Activation-section for the purpose of triggering subsequent Operations. Since multiple

instructions can share common parts of the pipeline execution (e.g. instruction fetch), Operations

form a rooted tree in which predecessors are shared by its successors.

Figure 4.4 exemplifies a simplified version of the LISA Operations tree for the IRISC architecture

(c.f. Appendix A). All instructions share one common part of the Operations tree consisting of

Pre-Fetch (PFE), Fetch (FE) and Decode (DC). In the DC stage of the pipeline, the Operations

tree branches to arithmetic, branch and load/store Operations. Each of these paths branches

again at the Execute (EX) stage in correspondence to the appropriate instructions. Finally, in

2Based on CoSy compiler development system from ACE [32].
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the Writeback (WB) stage, the Operations tree consolidates. To implement new instructions, the

tree can only be extended by new Operations in appropriate pipeline stages.

Software Development Tools

Based on the LISA-description of a processor, the Synopsys Processor Designer provides the

generation of a software development tool-suite, which covers the entire range from assembly

source code processing to simulation plus a Graphical User Interface (GUI) for debugging.

Assembler: The generated assembler translates text-files composed of symbolic instruction

names into object code for the present processor prototype. Additionally, the LISA gener-

ated assembler features a set of directives for comfortable handling of data initialization and

a reasonable separation of programs into sections.

Linker: Since large programs typically consist of multiple, separately assembled modules, LISA

offers the generation of a linker to combine these modules into a single executable object

file. A linker command file has to be provided by the user that has to keep a detailed model

of both, the target memory environment and an assignment table of the module sections to

their respective target memory area.

Simulator and GUI: The simulator generated from the LISA-model uses the technique of com-

piled simulation. The simulator comes with a generic GUI to visualize the internal states of
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the simulation process. C-source code and disassembly of the simulated application are dis-

played as well as all registers, pipeline registers and memories of the underlying architecture

prototype.

Moreover, the Synopsys Processor Designer supports a methodology for MP-SoC communica-

tion/processor co-exploration. This methodology allows for seamless integration and evaluation

of multiple LISA processor models with SystemC-based communication platform models.

Compiler Designer

The Synopsys Processor Designer provides the semi-automatic generation of an appropriate

compiler for a given processor model written in LISA. Here, relevant architecture information

(e.g. available registers) is read from the model and is automatically considered during the com-

piler generation. However, a major part of information is not retrievable from the processor itself

(e.g. calling convention) and has to be specified by the user. Therefore, a GUI is provided that

can be applied to complete the required information. The GUI is structured into several dialogs,

which guide the user through the process of configuration. Each dialog handles a different aspect

of compiler specification: register allocation, layout of data types, available nonterminals, calling

conventions, instruction scheduling and pattern matching. The outcome of the Compiler Designer

is a set of Code Generator Description (CGD) files, which describe the entire backend of a com-

piler. CGD is a proprietary file format of Associated Compiler Experts (ACE) from Amsterdam.

The company is the vendor of a compiler framework called CoSy [32] that is used as a backend of

the compiler designer.

CoSy Compiler Framework CoSy features a modular structure consisting of loosely cou-

pled engines that operate on the CoSy Common Medium Intermediate Representation (CCMIR).

CoSy comes already with a large set of standard engines, each of which captures a single process-

component of compilation, but is additionally open to new implementations of engines. Further-

more, CoSy offers numerous configuration options both at the IR and the engine level. For this

purpose, CoSy provides the Full Structured Definition Language (fSDL) and the Engine Descrip-

tion Language (EDL). The fSDL serves as an extensible specification language for the elements

of the CCMIR in a distributed fashion, i.e. the CCMIR is a collection of fSDL-defined elements.

Every engine contains a fSDL-specification of all elements it wishes to access during its runtime.

Based on this view, CoSy creates for each engine the Data Manipulation and Control Package

(DMCP). This is a set C-functions and C-data-types that can be used to access the CCMIR

inside the engines’ source code.

The EDL is used to describe the order of engine execution during the process of compilation. One

of the most important engines of CoSy is the Backend Generator (BEG). BEG consumes CGD

files as input and produces automatically a set of algorithms like code-selection, register-allocation

and instruction-scheduling that are used by other engines to implement a backend for a given
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Figure 4.5 – CiL architecture exploration methodology of the Synopsys Processor Designer.

processor architecture. Figure 4.5(a) illustrates the CiL architecture exploration methodology

provided by the Synopsys Processor Designer. In this context, the CoSy compiler framework

(Figure 4.5(b)) adopts an important role as a compiler generator backend. Since the Compiler

Designer generates “only” the CGD files, CoSy has to provide a global compiler structure into

which the CGD-backend is embedded.

Generation of Hardware Description

The Synopsys Processor Designer also supports the generation of an appropriate hardware de-

scription for a given LISA processor model. The process is hereby neither limited to the LISA

ADL, nor to a specific Hardware Description Language (HDL). The generation process is built

around an IR that captures the explicit information from an arbitrary ADL model and, enhanced

by implicit information, transfers it to HDL-code. Based on the IR, several architecture- and

ADL-independent optimizations can be performed to obtain an efficient architecture design. The

applied IR-format bears many similarities with real HDL code. It is composed of units, processes

and signals, which are at the same time major elements of typical HDLs like Verilog or VHDL.

During HDL-code generation, IR-components are directly mapped to adequate elements of HDL-

code, e.g. processes of the IR are mapped to processes in VHDL, always blocks in Verilog or

sc methods in RTL-SystemC.

4.2 Target Application

IPSec (as part of IPv6) uses both symmetric and asymmetric forms of cryptography. While sym-

metric cryptography applies the same key for encryption and decryption, asymmetric cryptography

uses separate keys for these operations.

Symmetric cryptography is generally more efficient and requires less processing power than asym-

metric cryptography, why it is typically used to encrypt the bulk of the data being sent over

a communication channel (e.g. VPN). One problem with symmetric cryptography is the key
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exchange process; keys must be exchanged out–of–band to ensure confidentiality. Famous rep-

resentatives of algorithms that implement symmetric cryptography are for example DES, Triple

DES (3DES), AES, Blowfish, RC4, International Data Encryption Algorithm (IDEA), and the

Hash Message Authentication Code (HMAC) versions of Message Digest 5 (MD5) as well as Secure

Hash Algorithm (SHA-1).

Asymmetric cryptography (also known as public key cryptography) applies two separate keys

to exchange data. One key is used to encrypt or digitally sign the data, and the other key is

used to decrypt the data or verify the digital signature. These keys are often referred to as

public/private key combinations. If an individual’s public key (which can be shared with others)

is applied to encrypt data, then only that same individual’s private key (which is known only

to the individual) can be applied to decrypt the data. If an individual’s private key is used

to digitally sign data, then only that same individual’s public key can be used to verify the

digital signature. Common algorithms that implement asymmetric cryptography include RSA

[232], Digital Signature Algorithm (DSA), and Elliptic Curve DSA (ECDSA). Although there are

numerous ways in which IPSec can be implemented, most implementations use both symmetric

and asymmetric cryptography. Asymmetric cryptography is used to authenticate the identities of

both parties, whereas symmetric encryption is used for protecting the actual data because of its

relative efficiency.
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The encryption and authentication algorithms used for IPSec are at the heart of the system. They

are directly responsible for the system security. IPSec generally claims for block cipher algorithms,

which support Cipher Block Chaining (CBC) mode [241], i.e. the encryption of a certain block of

data is affected by the encryption of preceding blocks. The target application of this study is the

publicly available network stack implementation developed by Microsoft Research [101] known

as MSR IPv6. To enhance IPv6 performance, the common path through this protocol including

IPSec encryption has been identified and extracted. Based on this information, an IPv6 testbench

including the Blowfish encryption algorithm was developed. Blowfish is a symmetric block cipher

with 64-bit block size and variable length keys (up to 448 bits) [241]. It has gained wide acceptance

in a number of applications. No attacks are known against it. This cipher was specifically designed

for 32-bit machines and is significantly faster than DES. One of the proposed candidates for the

AES called Twofish [242] is based on Blowfish. As most block cipher algorithms, Blowfish is a so

called Feistel-Network [114, 144], which takes a block of size n, divides it in halves of size n/2 and

executes an iterative block cipher of the form

Li = Ri−1

Ri = Li ⊕ F (Ri−1, Ki)

where Ki is the subkey of the ith round; L, R are the right and left halves, respectively, of size

n/2; and F an arbitrary round function. Feistel-Networks guarantee reversibility of the encryption

function. Since Li is xor -ed with the output of F , the following holds true:

Li−1 ⊕ F (Ri−1, Ki) ⊕ F (Ri−1, Ki) = Li−1

The same concepts can be found in algorithms like DES or Twofish as well. Blowfish supports all

known encryption modes like CBC, Electronic Cook Book (ECB), Output Feedback 64 (OFB64)

and is therefore a good candidate for IPSec encryption. Two main parts constitute the Blowfish

encryption algorithm (Figure 4.6): key expansion and data encryption.

Key expansion converts a given key (up to 448 bits) into different 32-bit subkeys. These

subkeys are 4168 bytes wide and have to be generated in advance. On the lowest level, the

algorithm contains just the very basic encryption techniques confusion and diffusion [241].

• Confusion masks relationships between plain and cipher text by substituting blocks of plain

text with blocks of cipher text.

• Diffusion distributes redundancies of plain text over the cipher text by permuting blocks of

cipher text.

Confusion and diffusion depend strongly on the set of subkeys. 18 subkeys constitute a permu-

tation array (P-array), denoted as P1, P2, . . . , P18 for confusion. Diffusion is controlled by four

substitution arrays (S-Boxes) — each of 256 entries — denoted as

S1,0, S1,1, . . . , S1,255
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S2,0, S2,1, . . . , S2,255

S3,0, S3,1, . . . , S3,255

S4,0, S4,1, . . . , S4,255

Data encryption is basically a very simple function (Figure 4.7) executed 16 times. Each

round is made of a key dependent permutation, as well as a key and data dependent substitution

that constitute the very basic encryption techniques. The used operations are either additions

or xor -connections as well as four memory accesses per round. The exact encryption procedure

works as follows:

Divide x into two 32-bit halves xL and xR

For i = 1 to 16:

xL = xR ⊕ Pi

xR = F (xL) ⊕ xR

Exchange xL and xR

Exchange xR and xL (reverts previous exchange)

xR = xR ⊕ P17

xL = xL ⊕ P18

Concatenate xL and xR

Whereas the algorithm of function F can be described as:

Divide xL into four 8-bit-quarters a,b,c and d.

F (XL) = ((S1,a + S2,b mod 232) ⊕ S3,c) + S4,d mod 232

where Si,j designates index j of S-Box i for i ∈ {1 . . . 4} and j ∈ {0 . . . 255}. Decryption works

exactly the same way, with the only difference that P1, P2, . . . , P18 are used in reversed order.

4.3 Exploration Methodology

In the phase of tailoring an architecture to an application domain, LISA permits a refinement of

profiled application kernel functionality to cycle accurate abstraction of a processor model. This

process is usually an iterative one that is repeated until a best fit between selected architecture

and target application is obtained. Every change to the architecture specification requires an

entirely new set of software development tools. Such changes, if carried out manually, result in

a long, tedious and extremely error-prone exploration process. The automatic tool generation

mechanism of LISA enables processor designers to speedup this process considerably. The design

methodology is composed of mainly three different phases: application profiling (Section 4.3.1),

architecture exploration (Section 4.3.2) and architecture implementation (Section 4.3.3) phase.
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4.3.1 Application Profiling

Application Profiling identifies and selects algorithmic kernels that are candidates for hardware

acceleration. Such kernels typically constitute the performance critical path of a target application.

They can be easily identified on the basis of high-level language execution statistics, which are

obtained by simulating an instrumented version of the target application through the Synopsys

Profiler.

For this case study, a C-compiler for a MIPS32 4K architecture has been generated by applying

the Synopsys Compiler Generator to the related LISA-model. The compiled target application

has been profiled to obtain a general idea about bottlenecks and possible hardware accelerations.

The outcome has been a pure functional specification of reasonable processor instructions to be

implemented. As expected, it has turned out that most of the execution time is spent in the

encryption algorithm. Specifically, on average 80% of the computations is spent on the above

mentioned F function (Figure 4.7) according to its iterative execution.

4.3.2 Architecture Exploration

During the Architecture Exploration phase, software development tools (i.e. C-compiler, assem-

bler, linker, and cycle-accurate simulator) are required to profile and benchmark different archi-

tectural alternatives against the target application.

To implement programmable hardware support for encryption functionality, a coprocessor design

is favored to guarantee a loose coupling and therefore a high reusability towards microarchitectural

constraints. A shared memory serves as a communication interface between coprocessor and main

processor. Presuming a common clock for coprocessor and main processor requires equal clock

speed of both processors to prevent a mutual deceleration.
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Figure 4.8 – Simulation setup for processor/coprocessor collaboration.
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For both processors (Figure 4.8(a)), cycle-accurate simulators automatically generated from the

LISA-models are applied. The processor models contain two bus instances, one for the program

memory requests and one for the data accesses. For high simulation performance, the memory

modules local to one processor are modeled inside the respective LISA-model, e.g. the kernel

segment Read Only Memory (ROM) (kseg rom) and the user segment ROM (useg rom) of the

MIPS32 main processor. Only the memory requests to the shared memory are directed to the

SystemC world outside the LISA simulators. The platform communication is modeled efficiently

using the Transaction Level Modeling (TLM) paradigm [252] supported by SystemC 2.0. A LISA-

SystemC port is applied to translate the LISA memory API requests of the processors to the

respective TLM requests for the abstract SystemC bus model. The SystemC bus model performs

the bus arbitration and forwards the processor requests to the shared memory. This memory is

used to communicate between the processors, thus to exchange parameters and results between

the encryption procedures (running on the coprocessor) and the original IPv6 protocol stack

(running on the MIPS main processor). To access the coprocessor on C-code level, the generated

MIPS C-compiler is extended by dedicated CKFs, one for both, the encryption and the decryption

procedure. These CKFs have the same signature as the original C-functions of Blowfish. Hence,

on C-code level no difference is visible, although the internal implementation has changed. As

Figure 4.8(b) depicts, the CKFs push their parameters into the shared memory block and wait for

the signal to be reactivated. This signal is set by the coprocessor at the end of the computation

and the result is popped from the shared memory block back to the appropriate local memory on

the MIPS for further processing. The coprocessor also waits for an activation signal to start its

computations. The necessary parameters are placed in the memory, the relevant computation is

performed and the result is written back to the shared memory. Once the simulation environment

has been set up, coprocessor instructions that partially cover the behavior of F presented in

Figure 4.7, have to be developed.

Since each coprocessor instruction has to be executed during one cycle of the MIPS processor (due

to the presumed common clock), the first design decision for the coprocessor is to start from a

RISC architecture. This initial LISA-model template revolves around a 4-stage pipeline with FE,

DC, EX and WB stage. In the further discussed architecture co-exploration loops, the coprocessor

core is successively refined in order to reach a certain degree of efficiency.

After performing a standalone simulation of the target application Blowfish on the MIPS processor

(Exploration 1 ) to obtain reference simulation results, the coprocessor is developed within two

exploration phases: Exploration 2 and Exploration 3.

Exploration 2: Implementing the instructions starts with an educated guess (Figure 4.9). Here,

the function F (Figure 4.7) is structured into four independent parts, each of which can be executed

in a single EX stage. Figure 4.12(a) shows the function F in C-code, where each paragraph,

designated with a number, represents the functionality of a corresponding hardware instruction.
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F receives four parameters LL, R, S, P and has three local auxiliary variables u, v and t of type

unsigned long.

• LL and R are 32-bit values, representing the halves of the current block to be encrypted.

• S represents the address of the array that contains the values for the S-Boxes

• P contains the appropriate value of the key array P for each round.

Each of these instructions (designated as 1, 2, 3 and 4 in Figure 4.12(a)) takes an 8-bit quar-

ter of the input of F, reads the corresponding S-Box (S[0], S[256], S[512], S[768]) value

(c.f. Section 4.2) from the memory and processes either a XOR or an ADD operation on this value.

By calling these four instructions in a sequence, a first approach to support Blowfish by dedi-

cated hardware instructions is obtained. However, memory accesses and additions consume lots

of computation time and therefore, the developed instructions most likely will not meet the cycle

length constraint given by the MIPS architecture. This is confirmed by executing the automatic

hardware synthesis and the design compiler for the coprocessor model (For simplicity, results are

presented en bloc in Section 4.3.4). Furthermore, due to the deep functionality of each hard-

ware instruction, their reusability, with respect to other block cipher algorithms, is also still very

limited.

Exploration 3: Refining the first approach (Figure 4.10), the core S-Box access is separated

from the remaining operations and is implemented as a dedicated hardware unit. This unit is

placed into the EX stage of the coprocessor, such that parallel execution to other operations are

enabled (Figure 4.11). As a consequence, the memory latencies related to S-Box accesses are

completely hidden inside the execution of the encryption instructions and do not affect system

performance. Additionally, the encryption instructions are modified by concerning primarily the

number of additions in each of them. As a result, four instructions are developed, one for each

S-Box. Every instruction covers a single S-Box access by calculating the address and pushing the
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result to a Special Purpose Register (SPR). This is read by the hardware unit responsible for the

pure S-Box memory access in the next clock cycle. Furthermore, an add-xor (AX)- and add-xor-xor

(AXX)-instruction is created to process the results from the S-Box accesses. This results in the

functionality for the instructions to perform the computations of F as depicted in Figure 4.12(b).

Each paragraph presents the functionality encapsulated by an according hardware instruction. In

addition, the functionality of the newly added unit is presented in the right column.

The first four paragraphs compute a memory address that is used to read a certain S-Box

(S[0], S[256], S[512], S[768]) value. These addresses are stored in newly added local auxil-

iary variables a, b, c and d. Each of the individual S-Box contents of a, b, c and d, are stored

in variables t1, t2, t3 and t4, respectively. These variables are later used in Paragraphs 5 and

6 of Figure 4.12(b) to perform further computations on the S-Box values. The assembly syntax

of the new instructions is shown in Figure 4.13, where the core of the encryption procedure is

depicted. This portion of code is executed once for each round of the Blowfish algorithm. After

the last execution, the algorithm writes back the result of its computations and returns into a wait

state until the next event occurs. The parameter designations in Figure 4.13 are chosen in accor-

dance to their semantical meaning. Of course, in the real assembly program, they are replaced by

certain register designations. The registers for parameters R and S of the S BOX instructions are

only read, whereas the parameter registers for u and v are read and written. The same holds for

parameter T inside instructions AX and AXX, respectively. Although the depicted assembly instruc-

tions of the coprocessor use bypass registers for a fast parameter transfer amongst each other, they

write their results redundantly back to normal General Purpose Registers (GPR). For example,
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#define BF_M 0x3fc

#define BF_0 22L

#define BF_1 14L

#define BF_2 6L

#define BF_3 2L

#define ulong unsigned long

#define uchar unsigned char

u=R>>BF_0;

1 u&=BF_M;

t= *(ulong*)((uchar*)&S[ 0]+u);

u=R>>BF_2;

v=R>>BF_1;

2 v&=BF_M;

t+=*(ulong*)((uchar*)&S[256]+v);

v=R<<BF_3;

u&=BF_M;

3 t^=*(ulong*)((uchar*)&S[512]+u);

v&=BF_M;

t+=*(ulong*)((uchar*)&S[768]+v);

4 LL^=P;

LL^=t;
(a) Instructions without parallel memory access

u=R>>BF_0;

u&=BF_M;

1 a=&S[ 0]+u; t1=*(ulong*)

((uchar*)a);

v=R>>BF_1;

v&=BF_M;

2 b=&S[256]+v; t2=*(ulong*)

((uchar*)b);

u=R>>BF_2;

u&=BF_M;

3 c=&S[512]+u; t3=*(ulong*)

((uchar*)c);

v=R<<BF_3;

v&=BF_M;

4 d=&S[768]+v; t4=*(ulong*)

((uchar*)d);

T = t1 + t2;

5 T ^= t3;

T + = t4;

LL^=P;

6 LL^=T;
(b) Instructions with parallel memory access

Figure 4.12 – Functionality of implemented hardware instruction presented as C-code.

registers for result parameters t1 to t4 in Figure 4.13 are actually not used by the application.

Nevertheless, this WB functionality has been added, to increase reusability of these instructions.

Therefore, they are also adaptable to other combinations of S-Box accesses, e.g. it is possible to

emulate a pure ADD instruction by just setting the third parameter of AX to NULL. By designing

four instructions, each of which performs one S-Box access without any additional memory la-

tency, and two further instructions for the utilization of the obtained S-Box values, it is possible

to conform the coprocessor’s clock cycle length to that of the MIPS processor. The development

of a proper bypass mechanism for the mentioned S-Box instructions enables the invocation of all
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six instructions in a direct sequence without any delay slots or stall cycles. Additional redundant

output registers (which are not used in this case study), augment the flexibility, necessary to

apply these instructions in arbitrary orders. Therefore, other combinations of S-Box accesses and

further utilization of their values is feasible. Although no experimental confirmation is at hand, it

is anticipated that arbitrary algorithms based on Feistel-Networks could be implemented on the

coprocessor, too.

4.3.3 Architecture Implementation

At the last stage of the design flow, the architecture implementation phase, the ADL architecture

model is used to generate an architecture description on Register Transfer Level (RTL). The RTL–

Processor–Synthesis is triggered to generate synthesizable HDL-code for the complete architecture.

Key numbers on hardware costs and performance parameters (e.g. design area, timing) are derived

by running the generated HDL processor model through the standard gate level synthesis flow.

On this level of detail, the designer can use the obtained parameters to further optimize the

architecture implementation. the architecture implementation in this case study consists of three

phases: Synthesis 1, Synthesis 2, and Synthesis 3.

Synthesis 1: First results from the architecture defined in Exploration Phase 3 (c.f. Table 4.1)

underline the potential for area improvements in the pipeline and the GPR file. In order to reduce

chip size, two further optimizations are applied on the coprocessor.

Synthesis 2: In the first implementation iteration, unnecessary and redundant functionality

is removed (e.g. MUL, ADD and SHIFT operations). For example, simple ADD instructions can be

emulated executing an AX instruction. Furthermore, the architecture is equipped with increment

and decrement operations. These operations can be used for the processing of loop counters,

instead of using 32-bit adders.

Synthesis 3: In the second implementation iteration, the number of GPRs is reduced from 15

to 9. The number of ports of the GPR-file is also reduced. Now, the remaining coprocessor archi-

1 t1 = S_BOX1 (u, R, S)

2 t2 = S_BOX2 (v, R, S)

3 t3 = S_BOX3 (u, S)

4 t4 = S_BOX4 (v, S)

5 T = AX(t1, t2, t3)

6 LL = AXX(T, t4, P)

Figure 4.13 – Assembly code for encryption procedure running on the coprocessor.
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tecture only consists of general purpose instructions for memory access, register-copy, increment,

decrement and XOR. Along with these, six dedicated instructions for symmetric encryption as well

as nine GPRs and three SPRs to hold the S-Box values are implemented. Due to the simple

and common structure of Blowfish, it is anticipated that this processor architecture is sufficient

to implement encryption, decryption and key generation functions for symmetric block cipher

algorithms based on Feistel-Networks in general.

4.3.4 Experimental Results

The architecture parameters, considered when making design decisions in the exploration phase,

are the number of executed clock cycles and the application code size. During the implementation

phase, chip area and timing are taken into account. In Tables 4.1 and 4.2, the processed iterations

in the exploration phase are numbered from Exploration 1 to Exploration 3, and from Synthesis 1

to Synthesis 3 in the implementation phase.

simulation results

Exploration 1: Exploration 2: Exploration 3:

(standalone (first coprocessor (second coprocessor

simulation) approach (Figure 4.9)) approach (Figure 4.10))

code size (bytes) 531 235 (-55.74%) 267 (-49.72%)

number of cycles 917844 117546 (-87.19%) 176319 (-80.79%)

Table 4.1 – Simulation results in the architecture exploration phase.

area consumption (kGates)

Synthesis 1: Synthesis 2: Synthesis 3:

(extended by (eliminated (with reduced

encryption redundant register ports)

architecture part instructions) instructions)

total (kGates) 31.4 25.8 (-17.83%) 22.2 (-29.30%)

pipeline (kGates) 21.1 15.0 (-28.90%) 14.9 (-29.38%)

register file (kGates) 10.1 10.5 (+0.04%) 7.1 (-29.70%)

Table 4.2 – Area consumption in the architecture implementation phase.

As Table 4.1 shows, the employment of the coprocessor developed in Exploration 3 results in an

overall speed-up of the Blowfish encryption algorithm by a factor of five. The values are obtained

from the execution of a complete encryption and decryption procedure in CBC mode on a 40 bytes
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data stream. For the subkey-generation in advance, a key of 16 bytes size has been used. Although

the number of necessary instructions in phase Exploration 2 is smaller than the corresponding

number of Exploration 3, the timing constraint given by the MIPS could not be met by the model

in Exploration 2, whereas the final model of the exploration phases provides an equivalent timing

for the MIPS processor (200 MHz). Table 4.2 confirms the statements from Section 4.3.3. The

initial synthesis results in a core with an area consumption of 31.4 kGates. It has been feasible to

reduce this area size to 22.2 kGates. In the first implementation loop, the area consumption of the

pipeline is reduced from 21.1 kGates to 15.0 kGates. Furthermore, in the second implementation

loop, the area of the register file is decreased by 3.4 kGates to 7.1 kGates. All three architectures

reach the required timing of 5.2 ns (200 MHz). Synthesis results have been obtained with 0.18µ

Complementary Metal Oxide Semiconductor (CMOS)-library and the Synopsys Design Compiler

Version 2003.06-SP1 (1.2V,25◦C)

4.4 Concluding Remarks

This chapter has illustrated the typical iterative refinement flow of ASIP architectures using

the Synopsys Processor Designer. This particular case study has used an IPv6 protocol stack

implementation developed by Microsoft Research applying the Blowfish block cipher algorithm

for the IPSec encryption. A coprocessor has been developed supporting efficient implementation

of symmetric block cipher algorithms by providing an application-specific ISA. This approach

has led to efficient performance results compared to pure GPP execution, while requiring only

moderate hardware effort by the coprocessor. However, in general such approaches ignore any

issues concerning usability by a compiler. First, due to missing off–the–shelf compiler support for

complex instructions, new hardware instructions often have to be applied as CKFs. This implies

manual modification of source code, probably leading to significant overhead for large and/or

new unknown applications. Second, developing customized compiler optimizations for automatic

utilization of developed instructions is not considered during architecture exploration.

To provide warranties on usability for developed hardware instructions, designers are required to

• thoroughly select a (set of) representative application(s) for a certain application domain,

• carefully analyze the common structure of representative applications,

• verify that identified application hotspots belong to the common structure of targeted ap-

plications.

Despite the presented approach of ISA-design, the development of an application-specific ISA

or ISA-extension should involve the utilization of developed instructions by a compiler to ensure

high-level programmability of the developed processor architecture. It is supposed that small, and

therefore more reusable, instruction patterns can also lead to high speedup results through their
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utilization by a compiler. This is particularly the case, if the architecture design targets a set

of multiple applications. This, indeed, implies the simultaneous design of compiler optimizations

and hardware instructions during architecture explorations as presented in the next chapter.





Chapter 5

Case study: Compiler-Driven Instruction Set

Extension

Compiler-agnostic instruction set development faces multiple limitations on the applicability of

the created instructions. In particular, if compilers are involved in the tool chain of the processor

architecture, it is insufficient to simply create instructions for a single hotspot and presume that

compiler designers will be able to utilize the instructions by sophisticated optimizations. This

chapter presents a different approach towards ISE. Contrary to Chapter 4, ISE is regarded from

the viewpoint of a compiler; particularly from a compiler optimization, designed for network

protocol processing. For this study, relevant network applications have been examined in advance

with focus on promising purchases for code optimizations. It has turned out, that especially

memory accesses are one of the most frequently occurring operations within network applications.

A significant part of these memory accesses are induced by function calls. On the one hand,

functions provide an appropriate technique to reduce code size and structure program code of

complex modern applications by encapsulating recurring portions of code. On the other hand,

saving and loading the functions’ states, realized by several memory accesses, is the main cause

for the overhead introduced by function calls.

Function inlining is a well-known technique used in many compilers for GPPs, which replaces

function calls with copies of the related function’s body. In this way, the function is turned into

a high-level macro. Since the overhead associated with function calls (parameter passing, call

and return instructions, saving and restoring register contents) is eliminated, function inlining

tends to increase performance. However, function inlining also drastically increases code size and

is therefore not always applicable for embedded system processors like NPUs, due to their very

limited program memory.

In Chapter 2, multithreading was presented as a key feature to hide memory access latencies and

therefore, to efficiently use the hardware of a NPU. It enables the architecture to process other

streams, while another thread is waiting for memory access (or a different interrupt). Without

77
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hardware support, the cost of switching between different contexts (threads, processes etc.) would

dominate computation time. Thus, NPUs support multiple hardware threads and register files to

avoid storing and reloading the entire state of the machine during a context switch.

As a consequence, a “low overhead” calling convention is presented in this chapter, which utilizes

free register files of hardware threads for function calls. The bedrock of this idea is that during

code execution not all hardware threads may be utilized at the same time by the tasks of a given

application. Thus, the available free resources can be used by the compiler to optimize the code

for the present tasks. Naturally, this technique requires compile-time knowledge of the processor’s

task load. For NPUs this information is usually at hand, since the use of OSs and dynamic task

creation are uncommon in network processing.

The technique exploits separate register files for function calls and thus, eliminates the necessity

of storing and reloading register contents in order to save the caller’s state. However, due to the

limited number of available register files, it is not possible to execute every function call with a

new register file. Therefore, appropriate candidates have to be selected to maximize the benefit

of this technique.

To demonstrate feasibility and performance gains, the proposed technique is integrated into a

generated C compiler [153] based on LISA ADL-model of the Infineon PP32 Network Processor1

[212]. In addition, for the implementation of this optimization, the LISA-model of this industry-

proven NPU is additionally extended by new hardware instructions.

The remainder of this chapter is organized as follows: The Sections 5.1, 5.2 and 5.3 represent

the core of this study. Although, the presented compiler optimization was developed before

the architecture was changed, the ISE of the underlying architecture is illustrated first, since

explanations of the compiler optimization involve the added CIs. Therefore, first of all the ISE of

the driver architecture, Infineon’s PP32 (which is applied as a PE for the Convergate architecture

of Infineon), is described in Section 5.1 with a subsequent introduction to calling conventions in

general and a proposal of a “low overhead” calling convention for NPUs in Section 5.2. Finally, in

Section 5.3, an insight is given into the realization of the proposed calling convention incorporated

in the compiler. This includes an overview of the system and an explanation of a heuristic

algorithm for the selection of appropriate functions. In the last sections, the obtained results

(Section 5.4) and conclusions (Section 5.5) are presented.

5.1 Driver Architecture: Infineon Convergate

Infineon’s Convergate architecture belongs to the field of access NPUs, as it is primarily targeted

for Asynchronous Transfer Mode (ATM) or Ethernet based xDSL traffic on IP-DSLAM line cards.

1Unfortunately, this model does not allow for hardware generation and Infineon does not disclose enough details

of the PP32 architecture to enable a re-implementation. Therefore no results on timing and area consumption are

available for the described architecture modifications.
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The Convergate family comprises two models: Convergate-C [155] as well as the Convergate-D

[156], each of which revolves around four 32-bit protocol processors (PP32) [212] containing a local

data and program memory. The processor array is further surrounded by several coprocessors for

computation-intensive tasks like classification and table look-up as well as fast on-chip memories.

The PP32 (Figure 5.1) architecture is a RISC-based core that provides a customized ISA for

efficient IP packet processing and is programmable in C. The Informatik Centrum Dortmund

(ICD) [6] has developed a compiler for the PP32 [264, 265]. The PP32 features several special

instructions (e.g. bit-level instructions) and four Hardware Contexts (HC) for fast task switches in

multi-threaded applications, each comprising a separate register file. Every register file contains

16 GPRs and several SPRs (e.g. Program Counter (PC)), such that each task keeps its own PC,

identification (task1, task2) and also PC and task identification for the program execution after

its termination (oldPC, oldTask).

PP32 Core

<R0,…,R15>, PC, oldPC, task0, oldTask

<R0,…,R15>, PC, oldPC, task1, oldTask

<R0,…,R15>, PC, oldPC, task2, oldTask

<R0,…,R15>, PC, oldPC, task3, oldTask

Branch
Unit

ExecutionIDEC

Register
Banks

Interrupt
Unit

Data
Memory
Interface

Code
Memory
Interface

Debug
Unit

PortPortPort

PortPort
Co-

Processor

Data Memory Code Memory

OCDS

Figure 5.1 – Block diagram of the PP32 architecture.

The simulation model of the PP32 data path consists of a four-stage pipeline, I/O ports and

supports instructions for

• data transfer (e.g. LDW, STW),

• branch and thread control (e.g. BRREG, RET), and

• logic + arithmetic (e.g. ADD, SUB).
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It also supports predicated execution determined by certain flags. To implement a low overhead

calling convention, particularly three dedicated hardware instructions have been extensively used

that provide the base functionality:

RUNREG: The run-operation RUNREG starts a new task with a given task number and a given

32-bit branch address. It assigns the branch address to the PC and switches to the register

file, indexed by the task number. At the same time, the old PC and task number are stored

in additional SPRs that can be later used by STOP to return to the old task.

MVR2R: The move-operation MVR2R receives four parameters in registers: source register

(RS) and task number (src taskno), as well as destination register (RD) and task num-

ber (des taskno). The operation transfers the value in RS of register file src taskno into

the register RD of register file des taskno.

STOP: The STOP-operation does not receive any parameters. It reads the return PC and task

number from certain SPRs and performs a jump back to the old task.

The first two instructions RUNREG and MVR2R have been added to the ISA of the processor archi-

tecture in order to enable comfortable handling of hardware threads. In its original version, the

Infineon PP32’s ISA did not provide any facilities to move register values between different hard-

ware threads, which is a necessary prerequisite for comfortably implementing the proposed calling

convention. Furthermore, existing instructions like RUN and RUNX are limited to jump addresses of

at most 13 bits. This makes it very difficult to apply them to arbitrary context switches, where

jump addresses may exceed a 13-bit length. The hardware overhead of the added instructions is

negligible, since none of them comprises either arithmetic computations or memory accesses.

5.2 A Low Overhead Calling Convention for Network Pro-

cessors

The calling convention [39] is a contract between two functions — the caller and the callee —

specifying the procedure of switching from the caller to the callee and back. Whereas the caller

is responsible for passing the callee’s function arguments in registers, the callee has to conserve

the caller’s state, to guarantee the validity of scopes for local variables. This is accomplished

through the extension of each function by a prologue and an epilogue. These two code paragraphs

enframe the function body of every function. Together, they perform the callee’s part of a calling

convention. The job of prologue and epilogue inside a calling convention is to save (prologue) and

reload (epilogue) the caller’s state, represented by the actual register values before the caller’s

function call of the callee. Figure 5.2 gives an example of a traditional calling convention.

After the caller has placed necessary function arguments in according registers and executed a

call instruction (Figure 5.2), first the caller’s Frame Pointer (FP) is saved and afterwards, the
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Prologue :
STW caller's FP;
MOVE caller's SP into callee's FP
for (all registers to be saved)  do

STW register on stack;
end for

SUBI SP SP frame-size;

Epilogue:
for (all registers to be loaded) do

LDW register from stack;
end for
MOVE callee's FP into caller's SP;
LDW caller's FP;
RET to caller program code;

Caller:

Callee:

Function Call:
for (all parameters in register) do
either load or move value 
into  according register;

end do
LDI    _Callee >>16;
ADDI _Callee&0xffff0000;
BRREG _Callee;

Function Call

Figure 5.2 – Traditional calling convention.

caller’s Stack Pointer (SP) becomes the callee’s FP in the callee’s prologue. Subsequently, all

register values that represent the caller’s state have to be saved onto the stack and the new SP

for the callee is computed. SP and FP of a function are special register values that denote the

base addresses, used for accessing local variables and parameters.

In the epilogue of Figure 5.2, first all register values that represent the caller’s state have to be

reloaded from the memory. After this, the callee’s FP is moved into the caller’s SP and the caller’s

FP is also reloaded from the memory.

Prologue:
MVR2R caller's SP into callee's FP;
SUBI SP FP frame-size;
if( function has return value ) then

STW index of caller's register file;
end if
for (all parameters in register) do

MVR2R parameter into new equivalent register;
end for

Epilogue:
if( function has return value ) then

LDW index of caller's register file;
MVR2R return value into caller's return register;
end if
STOP;

Function Call:
for (all parameters in register) do
either load or move value 
into  according register;

end do
LDI    _Callee >>16;
ADDI _Callee&0xffff0000;
RUNREG _Callee TaskNo;

Caller:

Callee:

Function Call

Figure 5.3 – Low overhead calling convention.

Figure 5.3 shows the exact procedure of the calling convention using a separate HC for the callee.

Here, the caller uses RUNREG to invoke the callee. In the callee’s prologue of Figure 5.3, the caller’s
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SP is moved into the callee’s FP and the new SP is computed by subtracting the current frame

size from the FP. In case of a return value, the index of the register file has to be saved for later

utilization in the epilogue. In a final step, all parameters residing in registers are moved to the

HC. In the epilogue of Figure 5.3 just the return value — if necessary — is moved to the caller’s

register file and the callee’s task (function) is stopped. Consequently, no load/store-instructions

have to be executed in order to save/reload the caller’s state.

The trade-off between these two calling conventions lies on the quantitative relation of parameters

and memory accesses, necessary to save and reload the caller’s state. That is, if the number

of parameters is less than the amount of necessary memory accesses, the low overhead calling

convention will introduce less overhead than the traditional one, but vice versa, if there are more

parameters to be transferred between the register files than memory accesses are necessary to save

and reload the caller’s state, then the traditional calling convention will be more advantageous.

5.3 Optimized Selection of Calling Conventions

Due to the limited number of available HCs (four in case of the Infineon PP32 NPU), not every

function can be executed in a separate HC. As a consequence, an appropriate set of candidate

functions has to be identified by the compiler, such that the benefit of using separate HCs for

function calls can be maximized. The problem of identifying this set, can be formulated as a

covering problem for an application’s call graph, i.e. each node of the call graph has to be covered

by an appropriate HC. Since graph covering is known to be NP-complete, solving this by an optimal

algorithm might result in exponential runtime making it impracticable for large applications.

Hence, a heuristic solution is favored. In order to evaluate every function’s quality according to

the previously described calling conventions (Section 5.2), a metric has been established to sort

functions and to decide, which convention is most applicable to each function. Based on this

metric, the compiler is able to select the best candidates for each path in the call-graph of the

source application, worth being executed in a separate HC.

5.3.1 System Overview

Figure 5.4 presents a complete system overview of the applied compiler framework that has been

used to implement a low overhead calling convention. The simulation model of the Infineon PP32

(Section 5.1) has been developed with the Synopsys Processor Designer.

The algorithm for candidate selection is implemented as a single engine that has been inserted

into the backend of the PP32 compiler. Since the algorithm needs special register information,

the engine is executed after the register allocator. Furthermore, runtime information is required

to determine the number of dynamic calls2 for each function. To provide this information, the

2The number of dynamic calls of a function are strongly coupled to the type of input. Hence, a profiling-based

optimization is no option in general. However, through the characteristics of network protocols, it is anticipated
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Figure 5.4 – System overview of integrating candidate-selection in the compiler.

source application is profiled in advance by the freely available GNU profiler gprof. Gprof stores

the obtained runtime information in files, such that the number of dynamic function calls can

later be accessed by the PP32 compiler.

5.3.2 Candidate Selection

For a given application C source code, the technique requires the following input data

• A static call-graph G = (V,E, r). G is a rooted directed graph, where each node vi ∈ V

represents a function fi and each edge (vi, vj) ∈ E depicts a call dependency from vi to vj.

In order to avoid infinite loops, recursive functions and functions with a call cycle have to

be excluded from the algorithm. Also top-level functions, i.e the main function, or functions

not called anywhere in the source code are not considered as candidates by the algorithm.

Furthermore, functions without a body, i.e. standard library functions like printf, are not

taken into account.

• The number P (f) of parameters residing in registers for each function f .

• The number R(f) of registers to be saved and reloaded by traditional calling convention

for each function f .

that the number of function calls depends only on the number of packets, since typically the same set of functions

is executed for packets of the same QoS class. Therefore, dynamic calls can be determined for a representative set

of packets. Nevertheless, this is sufficient for a case study, but needs more in-depth evaluation in general.
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• The number N of HCs available in the target architecture.

• The number D(f) of dynamic calls for each function f . This information is obtained by

profiling.

For candidate selection, all paths pi = 〈r, . . . , vn〉 of G have to be considered, starting at the root

r that corresponds to the main function in a C program. As one HC is always occupied by main,

due to its liveness throughout program execution, N −1 nodes (instead of N) have to be identified

within every path pi, such that applying the low overhead calling convention for these nodes leads

to the highest gains in code quality.

Let Q denote the set of all subsets q = {f1, . . . , fN−1} with length N − 1 of a given path pi. That

is, each fi in q corresponds to a particular function along a call graph path. For a subset q the

benefit B(q) is defined as

B(q) =
∑

∀f∈q

(R(f) − P (f))D(f).

B(q) measures the cost savings as the difference of registers to be stored and loaded (traditional

calling convention) and the number of register parameters (low overhead calling convention),

scaled by the number of dynamic calls of function f . The best selection of candidates obviously

corresponds to determining the optimal subset q∗ ∈ Q, such that B(q∗) is maximal among all

q ∈ Q.

The heuristic algorithm recursively traverses the call-graph G in depth-first order, starting at the

root, and identifies possible function candidates for being executed within separate HCs. The

recursion is terminated at the leaf nodes/functions, which do not contain any function calls.

The strategy applied by depth-first traversal is, as its name implies, to traverse “deeper” in the call-

graph, whenever possible. In depth-first traversal, unknown edges of the most recently discovered

vertex v are explored. When all of v’s edges have been explored, the traversal “backtracks” to

explore edges leaving the vertex from which v was discovered. This process continues until all

vertices, reachable from the original source vertex, have been visited. If any undiscovered vertices

remain, then one of them is selected as a new source and the traversal is repeated from that

source. The entire process is repeated until all vertices have been traversed.

Figure 5.5 presents the pseudo code of the heuristic candidate selection. An essential part of the

algorithm is the sorted cands input. Sorted cands is an array that keeps up to N-1 function

nodes in ascending order of their benefits B. In case of an overflow, the node with lowest benefit

B is excluded from the array and the remaining nodes are ordered by their benefits. Using the

sorted cands array, the candidate selection takes place in two phases for each node. First, the

node’s benefit is computed and, if positive, inserted into sorted cands. While traversing deeper,

the node’s adjacency list is examined and consequently, sorted cands keeps for each node the

N-1 best previously selected candidates. Secondly, if the node’s adjacency list has been entirely

examined, and the node is an element of sorted cands, it is removed from the array and finally

annotated in the call-graph G as being executed in a separate HC.
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The algorithm results in an annotated call-graph G+ = (V +, E), where V + designates the set of

nodes V including a subset of marked nodes that represent the selected candidates for separate

HCs. Since the IR of CoSy is a graph, the call-graph is a subset of the IR. Therefore, the

information about selected candidates is available for succeeding compiler-phases like the code-

emitter, which produces the assembly code for calling conventions as described in Section 5.2.

algorithm depth first traversal

input: Graph G = (V,E),

Node v ∈ V ,

sorted cands[1 . . . N-1];

output: Annotated graph G+ = (V +, E)

begin

01 f = v;

02 if (f is not recursive) then

03 if (B(f) > 0) then

04 Sort f into sorted cands ;

05 Assign f to a register file;

06 end if

07 end if

08 for ( all callees of f ) do

09 depth first traversal( G, callee, &sorted cands );

10 end for

11 if ( f in sorted cands ) then

12 delete f from sorted cands ;

13 delete assignment of register file;

14 annotate selection of f in G;

15 end if

Figure 5.5 – Pseudo code of the candidate-selection algorithm.

5.3.3 Example

Consider the static call-graph of Figure 5.6, with four function nodes and corresponding benefits

B(f), annotated for each node F in the graph. The corresponding traversal of the graph is

presented on the right hand-side of Figure 5.6, where the nodes present the appropriate states of

the sorted cands array (Figure 5.5). The number of available HCs N is 3, hence the number of

candidates is 2.
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The algorithm starts at the root main, takes the first available callee F1, inserts it into

sorted cands, proceeds to F2 and finally inserts this node into sorted cands as well. Arriv-

ing at node F3, both slots of sorted cands are occupied with predecessors of F3, such that the

“weakest” node F2 is excluded while sorting F3 into sorted cands. Since F3 has an empty ad-

jacency list, no further callees have to be visited on this path. The algorithm tracks back to a

predecessor with a non-empty adjacency list and eliminates the passed nodes from sorted cands.

These functions are at the same time selected for the execution in a separate HC. The correspond-

ing nodes in the graph traversal are marked dark to emphasize the final selection of a function by

the algorithm.

F3

F4

F1

F2

main

B(F1) = 3

B(F3) = 5

B(F4) = 3

B(F2) = 2

F4      F1

F1          

F2   F1     

F1      F3

F1         

F1       F1       

Static Call-Graph Depth-First Traversal

Figure 5.6 – Example call-graph and traversal with corresponding states of sorted cands.

5.3.4 Algorithm Complexity

Due to its ability to compute an optimized solution in a short runtime a depth-first traversal

has been chosen: Lines 1–7 and lines 11–15 of Figure 5.5 take time O(V ), excluding the time to

execute the recursive calls for the adjacency list of the actual vertex v in lines 8–10 of Figure 5.5.

The loop in lines 8–10 is executed |Adj[v]| times, because it is called for every callee of the actual

node v. Consequently,
∑

v∈V |Adj[v]| = O(E) and therefore, the total cost of the algorithm is

O(V + E). Since the “MVR2R” instruction (Section 5.1) receives all of its operands in registers,

the corresponding runtime HC can be dynamically determined for each function call. Therefore,

no global dependencies between function calls inside different paths of the call-graph exist.
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5.4 Experimental Results

To evaluate the proposed technique, application studies for several typical network applications

provided by Infineon, have been performed. The benchmark suite comprises an IPv6 Router,

an Ethernet Router and a test program for the signal ports. As presented in Table 5.1, the

benchmarks contain between 1180 and 2223 lines of code. The number of functions and the

quantitative portion of selected functions are also shown in Table 5.1.

In its main part, Table 5.1 presents simulation results for the network applications. All results

have been obtained from the same compiler, once with enabled and once with disabled candidate

selection. The results represent the relative speedup of the optimization given in percentage. As

with function inlining, the optimization relies strongly on the application’s partitioning of func-

tions. Consequently, both optimizations are orthogonal and cannot be executed independently.

Thus, function inlining has been switched off at all times, to obtain more reliable results when

examining a larger set of functions. The obtained results are therefore relative values based on

the available set of functions.

Results of Benchmarks

IPv6 Ethernet Port Average

Router Router Access

lines of code 2075 1180 2223 –

functions 31 28 29 –

sel. functions 26 25 21 –

speedup (1) +13.1% +9.7% +16.6% +13.1%

speedup (2) +17.5% +13.0% +21.5% +17.3%

speedup (3) +20.7% +15.5% +25.0% +20.4%

speedup (5) +24.9% +18.8% +29.3% +24.3%

speedup(10) +30.2% +23.1% +34.6% +29.3%

code size −2.7% −2.2% −2.0% −2.3%

LOAD −36.6% −33.8% −41.3% −33.9%

STORE −43.1% −36.0% −42.8% −40.6%

Table 5.1 – Overview of experimental results for low overhead calling convention.

The values have been obtained for different configurations of the memory’s wait cycles. Assuming

that apart from ideal memories, every memory produces at least a single wait cycle per access,

the memory model has been configured for wait cycles between 1 and 10, which are given in

parentheses for each row. Even for an extremely fast memory (1 wait cycle), a significant speedup
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(13.1% on average) has been measured. Naturally, the speedup grows with a more realistic wait

cycle count (e.g. up to 29.3% for 10 wait cycles).

A secondary optimization effect is an average code size reduction of 2.2%. This is due to the

lower number of instructions needed for context switching. Hence, as compared to a related

interprocedural optimization (function inlining), the speedup does not need to be compensated in

code size.

In the last part of Table 5.1, the relative reduction of dynamic memory accesses for all benchmarks

is highlighted. LOAD instructions have been reduced by 33.9% and STORE instructions by 40.6%

on average. These results will also most likely affect the power consumption of a NPU, because

memory accesses usually belong to the most power consuming hardware instructions.

5.5 Concluding Remarks

Contrary to Chapter 4, this case study has presented an ISE for an industry-proven NPU from

the viewpoint of a compiler optimization. Due to the utilization of the hardware instructions

by a compiler, the instructions have been automatically reusable for arbitrary applications and

multi-threaded architectures. Furthermore, a very good benefit has been obtained by investing

little hardware effort, thus proving the effectiveness of such approaches.

The presented methodology has started with an intensive analysis of targeted applications re-

garding common characteristics in terms of repetitive operations. The analyzed applications have

not featured a small number of unambiguous hotspots, but rather a stack of functions that are

equal-frequently executed according to the processed IP-packet. Due to these profiling results,

memory-I/Os and address arithmetic have therefore been identified as the dominant operations

inside network applications. The knowledge of characteristic operations inside the applications

has further been applied to develop a compiler optimization tailored to optimize computations

based on these characteristic operations. At the same time, an ISE has been developed in order

to enable the implementation of the compiler optimization.

This distinct ISE approach has utilized the fact that many NPUs are equipped with hardware

multithreading support by means of different HCs. The added hardware instructions have only

featured a negligible small hardware overhead since no arithmetic computation or memory access

has been involved. This ISE has enabled the implementation of a novel compiler optimization,

which exploits HCs that are not fully utilized by the tasks of an application. It has attempted to

reduce the overhead of high-level function calls, which largely result from memory accesses in the

prologue and epilogue of each function. The technique has been implemented into a C compiler for

the Infineon PP32 NPU and has been successfully tested for different typical NPU applications.

As a result of this case study it is concluded that the proposed code optimization is very effective

as it leads to a significant speedup of the executables. As a secondary effect, it also results in a

small code size reduction. Although no experimental confirmation is present, it is anticipated that
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a significant saving in power consumption results as well, due to the large reduction of memory

accesses via LOAD and STORE instructions.

The presented case study underlines the effectiveness of compiler-aware ISE. Due to compiler

utilization, the developed CIs are automatically available for arbitrary applications and not lim-

ited to a small number of hotspots of a single application as in Chapter 4. ISE in combination

with appropriate compiler techniques, allows for the development of reusable CIs, such that the

architecture design affects a broad range of applications; a longer time–in–market is the conse-

quence. Therefore, it is supposed that a combination of architecture exploration (c.f. Chapter 4)

and compiler-driven ISE, in an automated fashion, is a promising approach for an effective de-

sign methodology of programmable processor architectures. In general, application-specific ISE

requires sophisticated compiler support, since customized ISAs often contain instructions too

complex to be utilized by traditional compiler techniques. Yet, a fully automatic utilization of

instructions is a prerequisite for programmability issues of a given architecture.
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Automatic Compiler-Driven Utilization of

Custom Instructions

(a) Natural ADL-based CiL (b) Advanced CiL

Figure 6.1 – Survey of iterative CiL architecture exploration flow.

As concluded from previous chapters, the extremely heterogeneous landscape of NPU architec-

tures requires flexible programming tools to explore many architecture alternatives within short

time (Chapter 2). Such architectures are usually developed in an iterative manner during which

the architecture is incrementally refined (Chapter 4). Obviously, compilers have to be easily

retargetable in order to support arbitrary types of ISAs during the processor development. In

this context, many design platforms including retargetable compilers have been developed in the

past [140, 147, 152, 174]. Figure 6.1(a) summarizes the already presented iterative design flow

of Chapter 4. Design flow iterations comprise usually the compilation, simulation and profiling

of C/C++ applications for a certain virtual architecture prototype. Based on profiling results,

bottlenecks are identified, the instruction pipeline is fine-tuned and CIs are added to stepwise

improve the architecture’s efficiency. New instructions are declared to the compiler in order to

evaluate their benefit for the targeted applications during the next compilation-simulation cycle.

91
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Whereas simple instructions can be declared within the tree grammar of the code-selector, inher-

ent parallel instructions referred to as MOIs are typically implemented as CKFs or inline assembly

as they cannot be targeted by the compiler’s code-selector. This implies the manual modification

of application and compiler, respectively, which may lead to high overhead for large applications.

Since usually only the bottlenecks themselves are implemented through MOIs, further utilization

of the developed MOIs remains unexplored and reusability towards different applications cannot

be ensured.

MOIs naturally comprise several parallel executed operations like ADD, MUL or MAC and produce

multiple results at the same time. It is exactly this property that distinguishes MOIs from other

forms of instructions. Whereas simple instructions (Figure 6.2 (a)) and chained instructions

(Figure 6.2(c)) can be represented as tree patterns in the IR, MOIs will always have a fanout

larger than one (Figure 6.2 (b)).

++

bbaa

++

bbaa

**

cc+

bbaa

/

bbaa

a) b) c)

Figure 6.2 – Examples of IR-patterns for instructions.

In the area of DSPs, MOIs are already a natural way to increase code performance. Prominent

examples are instructions to support access of different memory banks at the same time. For

example in Sony pDSP processor, an instruction such as PLDXY r1, @a, r2, @b can load variables

a and b from memory into registers r1 and r2 simultaneously [282]. These instructions can

access memory faster by performing loads and stores in parallel on partitioned memory banks

using parallel data and address buses. Designers for embedded DSPs prefer such techniques

over more complicated hardware mechanisms. By the encapsulation of parallel operations in

hardware instructions, impressive speedups can also be obtained for protocol processing without

forfeiting too much flexibility for the implementation of applications [238]. However, the increasing

complexity of network protocols makes it prohibitively difficult to implement CIs in assembly

language. Sophisticated compiler support is therefore strongly demanded in order to guarantee fast

application development and consequently consumer acceptance for a processor. This implies the

problem of handling MOIs by a compiler, which is currently not possible, since typical compilers

rely on tree parsing [36] during the code-selection phase. If the target processor architecture

contains inherently parallel instructions, the code produced by tree parsing may strongly deviate

from the optimum. The reason for this is that the scope of tree parsing is restricted to DFTs.
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Consequently, instructions comprising functionality that exceeds the scope of one DFT cannot be

matched by tree parsing, as their associated IR-patterns feature a fan-out larger than one. In

order to overcome this, the scope has to be extended at least to the size of a basic block, which

is then represented as a DFG.

To support a maximum of different compilation frameworks and to overcome the compiler-related

limitations within architecture exploration, this chapter describes a graph-based code-selection

algorithm incorporated into a retargetable code-generator generator called Cburg. The several

existing code-generator generators (such as Burg [117], Iburg [115], Olive [256]) produce code-

selector descriptions in C based on a tree grammar. Since this tree grammar only comprises

tree patterns, the produced code-selectors lack capability to exploit MOIs. Cburg’s code-selection

algorithm, however, is capable of matching arbitrary complex instructions, particularly MOIs that

cannot be handled by current off–the–shelf compiler techniques. The tool bears many similarities

to Olive [256], which takes a configuration file as input and produces a set of data structures

and code-selection functions for a certain target ISA. In contrast to Olive, Cburg’s code-selection

algorithm works on DFGs rather on DFTs as described in Section 6.3. The input file contains the

description of the target ISA in terms of IR-patterns and a set of functions, necessary to access

the compiler’s IR. The IR-patterns represent the grammar that is used to identify patterns in

the compiler’s IR and map them to adequate assembly language or lowered IR. Rules inside this

grammar have the form of both, simple tree shaped Rules (Section 6.2 Equation 6.2) and complex

graph-shaped Rules (Section 6.2 Equation 6.1). The generated data structures and functions

provide the complete methodology based on the described algorithm. Compiler designers can

use these to comfortably implement a code-selection algorithm for arbitrary target machines with

MOIs. Thereby, it is possible to declare every kind of hardware instruction to the compiler and thus

render the manual modification of source application and/or compiler unnecessary (Figure 6.1(b)).

The remainder of this chapter is organized as follows: Related work on code-selection for embedded

processors is mentioned in Section 6.1 and a general system overview of the applied compiler is

given in Section 6.2. Section 6.3 explains the developed heuristic algorithm to exploit MOIs

during the code-selection phase. Subsequently, experimental results are presented in Section 6.4

and Section 6.5 concludes the chapter.

6.1 Related Work

Due to the limitations of tree parsing, several contributions have been published in the past,

dealing with a generalization of tree-based code-selection.

In [106], optimal graph-based code-selection is described for regular data path architectures with-

out ILP. ASIPs mostly feature irregular ISAs comprising parallel instructions. Especially in the

domain of signal processing, where it is most natural to have MOIs, further approaches have been

developed for irregular architectures.
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[47] presents a solution to effectively break up the DFG into expression trees, while taking irregular

register architectures into account.

It is shown in [185] that tree parsing leads to suboptimal results in the presence of MOIs. To over-

come this, a new technique based on the splitting of instructions into register transfer primitives

and recombining these primitives in an optimal manner using ILProg is proposed.

[189] solves the same problem by augmenting a binate covering formulation. Unfortunately, [189]

does not provide results on the applicability of their algorithm. Furthermore, both approaches

[185, 189] feature exponential runtime in the worst case based on the size of considered DFGs.

This might be disadvantageous for large benchmarks.

[190] has proposed a graph-based instruction selection methodology that features a flexible pat-

tern representation style. This style includes data-flow, control-flow and mixed data/control-flow

information.

In [103], a code-selection methodology is described for complete functions in order to take control

flow into account. A Static Single Assignment (SSA)-Representation is used as IR and pattern

matching is solved numerically. As code-selection was tested for a VLIW-processor, ILP in terms

of MOIs is not an issue for this approach.

Another approach to graph-based code-selection is presented in [88]. Herein, code-selection algo-

rithms for hardware accelerators based on unate covering are targeted. As only single connected

IR-patterns are considered, MOIs are not in the scope of [88]. In contrast, MOIs can also comprise

multiple independent patterns on IR-level.

A recent approach to graph-based instruction selection has been published in [175]. It is based

on a linear-time instruction selection algorithm called NOLTIS. [175] claims that the algorithm

produces optimal results in 99% of the time. However, NOLTIS does only consider normal tree

patterns for instruction selection. This makes it difficult to be applied for application-specific

ISAs containing arbitrary complex instructions.

6.2 System Overview

Figure 6.3 provides a survey of the tool flow based on Cburg. The presented code-generator gener-

ator Cburg extends the existing concept of Olive. Olive is based on Iburg and Twig, implementing

a tree-based code-selection algorithm applying dynamic programming and tree-pattern matching.

Cburg consequently consumes an input file that contains a grammar description of the underlying

ISA and related C-functions implementing support for the code-selector’s actions. This input file

features a fixed structure that revolves around four separate parts: definitions, declarations, rules

and programs.

Definitions and programs both comprise C-functions providing certain functionality of the code-

selector actions (c.f. Appendix B). The core of the input file is contained in the sections called

declarations and rules. Within the declarations-section, terminal and nonterminal symbols that
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Figure 6.3 – System overview of code-selection integration in the compiler.

are applied inside the rules, are declared in advance. For every hardware instruction, rules exist

in the tree grammar (c.f. Section 3.1.3) of the form:

NT → opcode(op1, . . . opn)
︸ ︷︷ ︸

Simple Rule

{costs} = {actions}. (6.1)

Since this presentation is not sufficient for MOIs, Cburg’s grammar extends this concept of rules

in the way that rules have the form:

NT1, NT2, . . . → opcode1(op1, ...)
︸ ︷︷ ︸

Split Rule

, opcode2(op1, . . .)
︸ ︷︷ ︸

Split Rule

, . . . (6.2)

In the Rule-Specification (6.2), multiple nonterminals NT1, NT2 . . . are produced by a so called

Complex Rule. Such a Complex Rule is composed of several rules as presented in (6.1) called Split

Rules. For simplicity, costs- and action-sections are not shown in Rule-Specification (6.2). Cburg

finally emits a set of C-functions that allow for comfortable implementation of a graph-based

code-selection algorithm. A detailed explanation of CBurg’s grammar specification, is provided

in Appendix B.

6.3 Code-Selection Algorithm

Before explaining the algorithm, the terminologies used throughout the remainder of this chapter

are defined.
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• Rule: represents an instruction pattern in the tree grammar

• Simple Rule: represents a typical tree patterns like ADD, MUL, MAC

• Complex Rule: consists of several Simple Rules, producing multiple nonterminals

• Split Rule: is a Simple Rule that is a part of a Complex Rule

As shown in Figure 6.4, the presented algorithm consists of four major phases: Split Rule Extrac-

tion, Candidate Enumeration, Candidate Set Selection and Pre-Cover.

Tree-based Code-Selection

Tree Pattern
Matcher Graph-based Code-Selection

Split Rule
Extraction

Candidate
Enumeration

Candidate Set
Selection

Pre-Cover

Cover

Figure 6.4 – Structure of code-selection algorithm.

First, all Complex Rules in the tree grammar are analyzed and divided into their Split Rules

(Section 6.3.1). These Split Rules are used to find Candidate-nodes in the IR, representing opera-

tions that are part of some MOI. The labeler (Section 6.3.1) annotates Simple Rules and all Split

Rules at each Candidate-node where they match. After annotating the Rules, a Split Rule Map

(SRM) is created containing Split Rules and related IR-nodes. Using this map, Candidate-node

Sets (CS) are identified for every Complex Rule, such that a clear picture exists about all possible

covering solutions. During the subsequent CS-selection phase (Section 6.3.2), the data flow of

the different CSs is examined in order to eliminate invalid CSs. Furthermore, the remaining CSs

are evaluated by a new cost metric, which has been introduced to compare the costs of Simple

and Split Rules. In case of overlapping CSs, additionally the most valuable CSs have to be se-

lected. This decision is mapped to the problem of finding the Maximum Weighted Independent

Set (MWIS) of a graph. Finally, the resulting CSs for all Complex Rules are selected and checked

whether every CS can be really covered by its associated Complex Rule (Section 6.3.3). At the

end, a normal cover algorithm can process the output of the presented heuristic, emitting valid

assembly code.

6.3.1 Candidate Enumeration

In contrast to normal tree-parsers, which annotate at each node for every nonterminal only those

Rules with minimal costs (c.f. Section 3.1.3), the developed labeler annotates additionally all

matched Split Rules at each node regardless of their costs and nonterminals. For this, Split Rules

are extracted from each Complex Rule and Rule numbers are assigned to them acting as identifiers.

Figures 6.5(a) and 6.5(b) give an example about this procedure.
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Figure 6.5 – Example ISA grammar plus annotated IR snippet during Candidate-node enumeration.

The grammar in Figure 6.5(a) features Simple (numbered in black) and Complex Rules (numbered

in bright) as well as according Split Rules (numbered in gray). This grammar is applied to the IR

snippet presented in Figure 6.5(b). Herein, appropriate Rule numbers are annotated at according IR

nodes (marked by bright circles). At nodes 7 and 8, Split Rules and Simple Rules are annotated, each

of which is producing the same nonterminal. For sake of simplicity, costs and produced nonterminals

are not presented within this figure.

After the labeling phase, a SRM is created that stores node–to–Split Rule relations. Succeeding

phases can use this information to figure out CSs for every Split Rule, e.g. node 7 is a Candidate-

node for Split Rule 11.
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6.3.2 Candidate Set Selection

During the CS-selection phase, the best CSs for all MOIs are identified and evaluated. For this

purpose, the information of the SRM is applied. A CS of a MOI contains all valid combinations of

nodes for this instruction. A valid node combination designates a set of Candidate-nodes, each of

which is matched by a different Split Rule of the same Complex Rule. Since Candidate-nodes can

also be complete tree patterns like Multiply-Accumulate (MAC), only the Root-nodes are stored

inside a CS: Root-nodes are those nodes, which have no successor node inside their patterns. For

the example given in Figure 6.5(b), the only CS for Complex Rule 10 is {7, 8}. The number

of CSs is further reduced by checking data dependencies in the DFG between Candidate-nodes

and eliminating CSs containing dependent nodes. The remaining CSs are evaluated in order to

maximize the benefit of code-selection. The CS-evaluation takes place in relation to the other

available Rules for a certain node. The basis for this evaluation is obviously the cost metric

of the Rules. Unfortunately, the typical cost evaluation of tree patterns is also insufficient for

the evaluation of MOIs. Traditional cost metrics for Rules only concern fixed costs of Rules like

the number of emitted instructions. However, applying Complex Rules affects several statement

trees and therefore, causes different costs in different statement trees at the same time depending

strongly on the ongoing matching situation. Such costs can be described as dynamic or opportunity

costs, which are orthogonal to the fixed costs of Simple Rules.

Cost Computation for Complex Rules

If an IR-node can be matched by a Simple Rule (rulesmpl) and a Split Rule (rulesplit) reduced to

the same nonterminal, Cburg compares the costs of the Simple Rule and the costs of the Split

Rule to determine the best covering solution for this node. The cost computation of a Complex

Rule (rulecplx), consists of two parts: Saved Costs and Duplication Costs :

Saved Costs Csaved(CS) designates the difference of fixed costs between a covering solution

with Simple Rules and a solution with a Complex Rule for a certain CS:

Csaved(CS) = (
∑

nodes∈CS

Cfix(rulesmpl)) − Cfix(rulecplx)

where Cfix describes the fixed costs of arbitrary Rules (simple/complex), producing the same

nonterminal.

Duplication Costs Cdup(CS) are produced by the appearance of CSEs inside of a node pattern

in the IR that can be covered by a Split Rule. Split Rule Patterns (SRP) can express arbitrary

tree patterns like MAC or other chained instructions, consisting of several sub-nodes. The set of

sub-nodes can be separated into the Root Node (R) and the Child Nodes (K). In contrast to the

Root Node, whose result is at the same time the result of the SRP, every Child Node has exactly
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one successor inside the pattern of the Split Rule. If a CSE is a Child Node of an SRP, its result

is not available anymore for successor nodes outside the SRP since chained instructions compute

only one result. Therefore, the node has to be duplicated in order to compute the result and

maintain the validity of the produced assembly code. Accordingly, it is defined:

K(CS) = {node | node ∈ {SRP} ∧ node 6= R}

CSE(CS) = {node ∈ K(CS) | node is a CSE}

Cdup(CS) =
∑

node∈CSE(CS)

(
∑

fanout(node)

Cfix(rulesmpl))

Here, fanout denotes the number of outgoing edges of a node ∈ K(CS) emanating the SRP. For

each of these edges, Cfix(rulesmpl) represents the costs of the according Simple Rule that produces

the required nonterminal for the successor node.

Opportunity Costs Copp(CS) of a CS are the costs that denominate the overall cost-

difference between the application of a Complex Rule and an alternative covering by a set

of Simple Rules for the nodes in the CS:

Copp(CS) = Csaved(CS) − Cdup(CS).

Split Rule Costs: Finally, the costs of the Split Rule are calculated by the average opportunity

costs of the Complex Rule’s CS:

C(rulesplit) = Cfix(rulecplx)/Crulesmpl
+ Copp(CS)

where Cfix(rulecplx) are the fixed costs of the Complex Rule.

Example: On the basis of an example, cost computation shall be clarified. Consider the ISA

grammar presented in Figure 6.5(a). This grammar is extended via a new Complex Rule shown

in Figure 6.6(a). The Rule consists of two SRPs: one multiply and one MAC. Both SRPs are

executed in a single pipeline cycle. For the already presented IR snippet of Figure 6.5(b), this

results in new annotated Split Rules as shown in Figure 6.6(b).

Three CSs for the Complex Rules 10, 20, and 30 exist: {7, 8}, {4, 8} and {7, 5}. The CS {4, 8}

is not applicable since both nodes are data-dependent on each other. For the remaining two, cost

computation is illustrated in the following figures. Figure 6.7(a) explains the cost computation

for CS {7, 8}. Both involved SRPs 11 and 12 are highlighted bright. Since each one is executed

within the same pipeline cycle, the application of Complex Rule 10 results in a benefit of one

cycle compared to a covering based exclusively on Simple Rules for nodes 7 and 8. Next to it,

cost computation for CS {7, 5} is described in Figure 6.7(b), which includes the computation of

Duplication Costs as well. Herein, the involved SRPs are marked Gray. In Figure 6.7(b), node 5
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Figure 6.6 – Example of ISA grammar extension and labeled IR graph.

is labeled with SRP 32. Since SRP 32 describes a MAC, two cycles can be saved compared to a

separated covering of the multiplication (node 5) and the addition (node 8) by Simple Rules 4 and

5, respectively. Yet, this benefit is reduced, because node 8 is a CSE, which has to be copied as

its result is not available if it is covered by SRP 32. The copied patterns are highlighted orange in

Figure 6.7(b). Due to this, both alternatives Complex Rule 10 and 30 result in the same benefit.

==
1

&x&x
3

<<<<
4

dd
10

ee
11

**
7

1

2

4

11

21

31

==
2

**
5

&y&y6

++
8 cc

9

aa
12

bb
13

5

4

2

12

32

101 =−=−= DupSavedOpp CCC

(a) Cost Computation for CS {7, 8}

==
1

&x&x
3

<<<<
4

dd
10

ee
11

**
7

1

2

4

11

21

31

==
2

**
5

&y&y6

cc
9

4

2

++
8

aa
12

bb
13

5

12

32

++
8

aa
12

bb
13

5

12

112 =−=−= DupSavedOpp CCC

(b) Cost Computation for CS {7, 5}

Figure 6.7 – Example of cost computation during code-selection.

Benefit Optimization

After the CS-validation, the CSs cannot be further reduced and the remaining nodes have to be

covered by the according Complex Rules. Nevertheless, intersections among CSs may occur. This

is the case when a node is a candidate for several MOIs and consequently is listed in several

CSs. Such a node is called a Shared Node. Since nodes can only be covered by one Rule, the

covering decision for Shared Nodes has to ensure that the benefit in terms of costs is maximized.

The problem of finding an optimal solution for the covering of Shared Nodes can be reduced to

the problem of finding a MWIS in a weighted undirected graph G = (V,E,W ) without loops and

multiple edges, where W is an unary operation V → R assigning each vertex v ∈ V a vertex weight
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W (v). An independent set in a graph is a collection of vertices that are mutually non-adjacent.

The problem of finding an independent set of maximum cardinality is one of the fundamental

combinatorial problems and known to be NP -complete even when all nodes have uniform weights

[130]. Due to this, a heuristic called GWMIN2 is applied [236]. Generally, GWMIN2 belongs

to the class of minimum-degree greedy algorithms that construct an independent set by selecting

some vertex of minimum degree, removing it and its neighbors from the graph while iterating on

the remaining graph until it is empty. Such algorithms run in linear time in the number of vertices

and edges. GWMIN2 selects in each iteration a vertex v, such that

W (v)
∑

w∈N+

G
(v) W (w)

,∀u ∈ V

is maximized. In [236] it is proven that the resulting independent set has at least a weight of

∑

v∈V

W (v)2

∑

u∈N+

G
(v) W (u)

.

The notation NG(v) designates the neighborhood of a vertex v in G and N+
G (v) the set {v}∪NG(v).

Application of MWISP for Benefit Maximization: For the benefit maximization in the

presence of overlapping MOIs, a graph G = (V,E,W ) is constructed. In G, every vertex v ∈ V

represents a Complex Rule and the associated weight W (v) is equal to its benefit. Basically,

the benefit of a MOI is computed as the negated sum over all costs of comprised Split Rules:

(−1)
∑

Crulesplit
(CS). In between two vertices of G an edge exists, if and only if the associated

MOIs have one or more Candidate-IR-nodes in common. The algorithm now simply selects those

non-adjacent vertices with the highest weight (benefit) in a greedy manner and eliminates them

including their edges from the graph G.

6.3.3 Pre-Cover Phase

In the last phase of the algorithm, the node selection has to be evaluated and pre-covered be-

fore the original cover phase starts, since Split Rules do not necessarily offer minimal costs for

every producible nonterminal at a Candidate-node. Consequently, due to different nonterminal

requirements of subsequent IR-nodes, a Candidate-node might not be covered by a Split Rule

although the Split Rule has minimal costs regarding its produced nonterminal. In this case, it

must be ensured that all other nodes of the same CS are also not covered by their Split Rules.

This is achieved by pre-covering the IR. During this, the cover phase of a tree pattern matcher is

simulated and in case a Candidate-node is not covered by a Split Rule, all nodes of the according

CS are re-matched by Simple Rules.

Figure 6.8(a) shows an example of such a situation. It presents a set of IR-trees, which are already

labeled, and also a selected set of Candidate-nodes, which are marked by their associated Split
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Figure 6.8 – States of IR during pre-covering.

Rules 11 and 12 of Figure 6.5(b). In Figure 6.8(b), Split Rule 12 is not used for covering, since

the succeeding Rule consumes a nonterminal that is produced more cheaply by Simple Rule 2.

However, Split Rule 11 is used for covering at the same time. To solve this antagonism, the Split

Rules are eliminated and all Candidate-nodes are re-matched by Simple Rules as presented in
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Figure 6.8(c). Now, the IR-trees can be traversed by the cover phase and the assembly code is

emitted.

6.3.4 Complexity Analysis

The basis of the code-selection algorithm introduced in Section 6.3, relies on a depth-first traversal

of a DFG = (V,E) in O(V + E) time in the labeling phase. Additional cost computations in

order to maximize the benefit of code-selection are applied at each node. These computations can

be split into two parts: the computation of Csaved and Copp. Whereas the former can be computed

linearly dependent on the number of Candidate-nodes for all MOIs, the latter computation takes

O(
∑

CS⊆V,
V ∈DFG

∑

CSE⊂CS

|Adj(CSE(CS))|)

time. In worst case, this might evolve to an exponential runtime, if every node v ∈ V is a CSE

and at the same time covered by a Split Rule, which indeed is quite unlikely. Furthermore, in case

of overlapping MOI patterns — the MWISP is solved by a greedy heuristic that runs in linear

time, dependent on the amount of overlapped MOIs. The final pre-cover phase visits all nodes in

every CS once. Thereby, its complexity can be expressed as

O(
∑

CS⊆V,
V ∈DFG

|CS|),

which also equals a linear runtime. Overall, the worst case runtime is exponential to the number

of CSEs covered by Split Rules, but it is linear on the size of considered DFGs.

6.4 Experimental Results

In order to evaluate the quality of the proposed code-selection methodology to facilitate a more

efficient ISA design, Cburg has been integrated into the Little C Compiler (LCC) [76]. As the

target architecture, the MIPS architecture [207] has been used. Based on the MIPS ISA, new

MOIs have been developed. The nomenclature of each MOI reflects, through the concatenation

of instruction names, the parallel operations inside the MOI. For example, an instruction “lwlw”

describes the simultaneous execution of two “lw”, which is a simple load in the MIPS ISA. The

benchmark suite comprises typical symmetric encryption algorithms as the 3DES, and the AES

[100]. In addition, an IP stack that comprises an IPv6-layer including authentication, encryption

as well as an Ethernet layer. Finally, an Adaptive Differential Pulse Code Modulation (ADPCM)

DSP-application taken from the DSPStone benchmark suite [271] has been examined.

To develop new MOIs, all benchmarks have been profiled with a fine-grained profiler [169] to

identify execution hotspots and promising candidate instructions. Several MOIs have been de-

veloped giving special attention to the symmetric encryption algorithms, i.e. AES and 3DES.
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Figure 6.9 – Speedup (relative cycle-count).

Since symmetric encryption is one of the major bottlenecks of IPv6 processing [237, 238], it was

also expected that such MOIs will affect the overall performance of the protocol stack, too. The

profiling results have shown that shift (sll/ srl), xor and load (lw) operations are most fre-

quently used in the encryption algorithms. Consequently, the developed MOIs are based on these

instructions. First, all MOIs have been applied separately. Later three and more MOIs have been

combined. Figures 6.9 and 6.10 provide an overview of the obtained experimental results. The

best results have been achieved with the MOIs “lwsll” (+16.96 % speedup/−13.99 % code size)

for 3DES and “lwxor” (+12.83 % speedup/−9.96 % code size) for AES, respectively. Overall

performance improvements of +24.07 % (3DES), +21.76 % (AES) and +17.21% (IP stack) were

possible. Obviously, the MOIs did not lead to notable improvements for the ADPCM benchmark,

since its operator usage significantly differs from those of encryption and protocol processing.

6.4.1 Hardware Synthesis

An isolated consideration of performance acceleration and code size reduction is insufficient,1

in order to evaluate the benefit of identified CI sets. In general, it is a trivial relation that

1This section presents results, which have been obtained during an internship. The model of the MIPS architec-

ture used for evaluating code-selection was not available for the study. The IRISC processor was just developed at

this time and retargeting a compiler, including CBurg’s code-selection algorithm, was not finished. Nevertheless, to

evaluate those instructions used for code-selection results in terms of hardware effort, the IRISC has been extended

by these instructions to obtain numbers on area consumption.
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Figure 6.10 – Code size.

additional area results in additional performance acceleration of a processor. For the benefit

of above mentioned CI sets, a relative performance acceleration compared to individual area

consumption of a certain CI set is much more significant, i.e. if CI sets feature a reasonable

compromise between area consumption and performance gain. To evaluate area consumption and

other related effects of appropriate hardware implementations, the identified CI sets have been

integrated into an ADL-based virtual prototype of a single-issue RISC architecture called IRISC

(c.f. Appendix A).

Figure 6.11 shows the relative area growth of the IRISC architecture, determined by different CI

set implementations. The results prove an acceptable hardware effort for each ISE. However, this

evaluation suffers from two main constraints:

1. Several sets contain “lwlw” operations, in order to perform multiple parallel memory accesses

in one pipeline cycle. The presented results for those ISEs consider only the processor’s area

and do not comprise numbers on required memory area. In fact, to read multiple values

from memory, at least a second read-write port is necessary to be incorporated. This will

probably imply additional area growth of around 30%, which makes an implementation of

these CIs very unattractive.

2. The IRISC architecture has been implemented without bypassing. As a consequence, data

dependent instructions cannot be executed in subsequent processor cycles. For the described

CIs, this may lead to suboptimal results, as the insertion of No-Operations (NOP) eliminate
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Figure 6.11 – Additional area consumption of developed instructions.

gained performance speedup. However, such scheduling issues are not exclusively determined

by CIs. In fact, this is determined by several parameters concerning the compiled application

itself. For example, control-flow oriented applications feature a huge amount of small basic

blocks and imply therefore smaller scheduling freedom of instructions compared to data-

flow oriented applications. In addition, operands are fetched inside the EX stage of the

IRISC’s pipeline, which is the preceding stage of the WB stage. Therefore, not more than

one NOP is necessary to be inserted. In summary, bypassing is an negligible feature for

network applications, since network protocols naturally consist of a set of functions, which

are executed for every processed packet of the same QoS class. Consequently, they are not

control-flow dominated.

Figure 6.12 finally presents the trade-off between additional area consumption and provided

performance speedup for each CI set. For this, the average speedup numbers obtained from

Figure 6.9 have been divided by the average area consumption, which has been computed based

on Figure 6.11. The CI set consisting of “lwsll” and “lwxor” provide the best speedup per kilo

Gate (kGate). In contrast to the multiple arithmetic instructions like “sllsrl”, only one ALU

is necessary. Thus, arithmetic operations are executed in the EX stage during a memory access.

This is, interestingly, the same microarchitectural principle, which led to a successful design of

CIs to accelerate the Blowfish algorithm as described in Chapter 4.
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Figure 6.12 – Speedup per area unit (kGate) of developed instructions.

6.5 Concluding Remarks

The presented code-generator generator Cburg, extends the state–of–the–art in retargetable code-

selection by an efficient heuristic for graph-based code-selection, which is scalable enough to be

applied for real-world applications since its average runtime behavior is linear. At first, it offers a

high-level programming model for customized ISAs through a compiler. This offers at the same

time the opportunity to consider existing legacy code of network protocols during the development

of source code for the underlying architecture.

Through the concept of code-generator generation, CBurg allows for easy compiler adaption to

newly developed ISAs during architecture exploration cycles. Instead of handcoding error prone

inline assembly or CKFs, system designers can model all developed instructions in one grammar

file, which is fed into the compiler’s code-selector. As a consequence, compiled applications com-

prise automatically all CIs without any manual modification. Thereby, the benefit of newly added

instructions can be faster evaluated regardless of their I/O-structure (i.e. number of inputs/out-

puts). Furthermore, the evaluation is not restricted to isolated code fragments. Instead, the whole

application is examined at once, which leads to much more accurate results regarding usability

and achieved code quality. Shorter design cycles and time–to–market periods are the consequence.

From the viewpoint of ISE, developed CIs are automatically available for the implementation of

arbitrary applications, thus leading to a much wider efficiency factor. This, particularly, enables

the development of reusable CIs, resulting in a longer time–in–market of the underlying architec-
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ture. However, in this context, it is still necessary to identify these CIs manually, which requires

detailed knowledge of targeted applications. Indeed, identification of reusable CIs for a set of

applications without appropriate tool support is prohibitively difficult. Especially in the domain

of protocol processing where typical applications/protocols can consist of several thousand lines of

C-code. Additionally, the continuous evolution of the domain of network applications complicates

these matters further. Sophisticated tool support for automatic compiler-driven identification of

(reusable) CIs is therefore highly demanded.



Chapter 7

Automatic Compiler-Driven Identification of

Custom Instructions

As concluded from Chapter 2, CI-extended ISAs are an industry-proven way to improve

speed/throughput of PPEs. Chapter 4 has additionally underlined the high speedup potential

of application-specific hardware instructions, yet revealed a lack of (re)usability of hardware in-

structions due to missing dedicated compiler-support. On the other hand, Chapter 5 presented

the efficiency of compiler-driven ISEs. Consequently, creating application-specific ISAs is ideally

coupled with the design of related compiler-optimizations. Such a compilation-driven ISE, as

a major principle for efficient architecture design of ASIPs, naturally includes the analysis of a

set of representative applications regarding characteristic and promising operations. Dedicated

hardware instructions and compiler-optimizations are subsequently tailored to support these op-

erations efficiently. Automating this process has gained wide acceptance as it enables processor

designers to quickly adapt a processor template to the need of a certain set of applications.

The majority of prior approaches, described in the literature, favor the analysis of only a small

number of basic blocks, which have been identified as an application’s hotspot. Based on these few

basic blocks, maximal subgraphs based on given constraints are identified in order to maximize

the overall benefit of a hardware implementation. From a compiler perspective, this is undesir-

able since reusability of such complex CIs towards different applications is typically very low.

Furthermore, implementing complex CIs often leads to implementation problems in the pipeline,

i.e. extended critical path. Especially for NPUs, such approaches are disadvantageous since pure

network protocol stacks do not feature the “one and only” hotspot, rather a stack of functions that

are equal-frequently executed according to the QoS class of processed packet. In fact, this has been

also emphasized in Figure 4.1 of Chapter 4, which shows the task break-up of a VPN-protocol.

Encryption and authentication are obviously the major bottlenecks in this protocol stack as they

represent the only computation-intensive part of the protocol. Since encryption and authenti-

109
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cation are performed only at the network’s edge, applications running on metro equipment like

routers do not utilize them.

In this chapter, the approach of compiler-driven ISE is formalized and a tool to automatically

explore small, reusable CIs is presented. Based on the identified CI candidates, a CBurg code-

selector description is generated, which is applied to automatically retarget a compiler backend for

the new extended ISA, containing the identified CIs. Experimental results that provide reliable

feedback about speedup and usability from a compiler’s perspective, are presented.

The remainder of this chapter is organized as follows. Section 7.1 surveys literature and dis-

cusses previous approaches. Section 7.2 overviews the design flow of the proposed tool flow. The

methodology of CI identification is described in Section 7.3 and experimental results are presented

in Section 7.4. Finally, the chapter concludes with Section 7.5.

7.1 Related Work

ISE has spawned a wealth of literature in the past [60, 62, 63, 64, 65, 71, 83, 88, 129, 184, 223, 281].

Closest to our approach are [62, 63, 65, 138] and [89]. In [62, 63, 65] the ISE identification is

integrated into a GCC-based compiler that is capable of emitting a simulator description for the

SimpleScalar simulator. Automatic code generation utilizing the new instructions is not described

in detail.

The ISE methodology presented in [62] is focused on the examination of only a small number of

basic blocks, identifying maximal subgraphs. The mentioned approaches do not consider recur-

rences of subgraphs in different basic blocks, explaining why reusability is not a topic of these

approaches. In addition, [62] reports negative effects on experimental results, due to limiting the

search scope towards a single basic block at a time.

In contrast to [62], [63] and [65] do take recurrences of CI patterns into account. The major

differentiator to these works is the approach of selecting the most profitable set of subgraphs.

[65] and [63] as well, consider only non-overlapping subgraphs as valid, i.e. the finally selected

subgraphs feature mutual disjoint node sets. While this constraint is perfectly true for a single

basic block, considering multiple basic blocks, overlapping subgraphs can coexist in different basic

blocks without determining each other’s performance.

[138] and [89] present approaches that regard code generation for the identified CIs as well. The

former is built upon the Xtensa processor template provided by Tensilica. The identified CIs

are automatically inserted into the processor model and into the code selector description of the

compiler, thus while limiting ISE to small, low-latency extended instructions, allowing them to be

applied very effectively. Unfortunately, only loops are analyzed regarding connected subgraphs.

In [89] a heuristic methodology to enumerate subgraphs is described, which allows for fast DSE.

However, as with [138], the considered subgraphs are limited to connected subgraphs, which
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is contra-productive for compiler-aware enumeration since connected subgraphs tend to be too

complex for high number of recurrences.

Beside these approaches, further work has been published in the near past, which shall be men-

tioned here [71, 184, 261]. [71] presents an efficient ISE algorithm, while serializing register file

access. As many other approaches, only a small number of basic blocks is considered, such that

recurrence of patterns is neglected. Additionally, the ISE is evaluated by a speedup model, based

on the assumption that the merit of a subgraph is proportional to its size. However, if the merit

function takes execution frequencies into account, as in case of recurrence-aware ISE, this does

not hold. In [261] an ILProg formulation of the same problem is presented, which shows similar

results as [71], yet with exponential runtime. [184] describes an ILProg approach to generate

a single most profitable CI. In both approaches, [71, 184], all subgraphs are enumerated in an

implicit manner and evaluated by the ILProg-solver. Nevertheless, these approaches also belong

to the class of compiler-agnostic ISE methodologies, focusing only on a small number of basic

blocks at a time.

7.2 System Overview

The developed ISE methodology is integrated into the CoSy compiler framework (Figure 7.1).

This compiler is targeted towards the LISA-prototype of the IRISC core (c.f. Appendix A).
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Figure 7.1 – System overview of ISE integration in the compiler.

Amongst others, CoSy provides a profiler engine, which can be seamlessly integrated into CoSy-

based compiler. The engine annotates execution frequencies of basic blocks in the IR of a CoSy-
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compiler. In the backend of the compiler, the code-selector engine is developed by applying the

code-generator generator CBurg [239]. For this purpose, a code-selector description file is cre-

ated that comprises a grammar for the ISA of the mentioned RISC core. Subsequently, CBurg

is used to generate a set of C-functions for the implementation of the code-selector engine. Ac-

cordingly, the code-selector of the compiler is implemented by employing these C-functions, such

that re-generating and re-linking the functions will immediately affect the code-selector’s behav-

ior. Right after pre-scheduling, a dump engine is inserted that emits the scheduler’s DFGs into

Graph Description Language (gdl)-files [3], which serve as input for the ISE identification. The

ISE identification methodology is implemented as a standalone process. It receives a set of DFGs

in gdl-format and results in an extension of CBurg’s ISA grammar description by new rules for the

identified CIs. Based on this new input grammar, CBurg can automatically generate according

C-functions that affect the code-selector. Additionally, ISE identification consumes a configura-

tion file, containing several parameters that can be used to adapt ISE identification to the needs

of a given application and processor architecture.

7.3 Methodology

The CI-identification methodology as presented in Figure 7.2 receives the following inputs:

• a set of graphs G = {G1 . . . Gn}, representing the DFGs according to the application’s basic

blocks

• the execution frequency fi for each basic block Gi, obtained by profiling

as well as a configuration file, containing

• a set F of forbidden nodes like jumps etc.

• a maximum number of inputs/outputs (Nin/Nout) for considered subgraphs

• a gain function G(Si) for subgraphs representing the expected number of saved cycles by

executing Si in a single cycle

• a maximum “distance” D for disconnected subgraphs

• a lower bound for execution frequencies Nf of considered DFGs 1

These inputs are processed within three phases: subgraph enumeration (Section 7.3.1), isomor-

phism detection (Section 7.3.2) and covering (Section 7.3.3). The initial phase, subgraph enu-

meration, computes all available subgraphs inside each DFG that are amenable for hardware

1The purpose of this parameter is to prune the process by eliminating DFGs with low execution frequencies

from the set of considered basic blocks. Obviously, this can also be used to concentrate only on a single basic block.
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Figure 7.2 – ISE methodology flow.

implementation. The second phase, isomorphism detection, checks for isomorphic equivalence be-

tween the subgraphs and different basic blocks, thus classifying the graphs into a set of equivalence

classes. Finally, the covering phase selects the most beneficial set of subgraphs based on subgraph

intersection, data dependencies and hardware implementation gain.

7.3.1 Subgraph Enumeration

The introduced tool incorporates a subgraph enumeration phase built on a methodology described

in [64]. Herein, an algorithm is introduced that is capable of enumerating all possible convex

subgraphs based on given constraints in polynomial runtime. These constraints comprise primarily

the number of allowed inputs (Nin) and outputs (Nout) for arbitrary subgraphs S. Additionally,

some operations like memory access are excluded from subgraph enumeration in advance. The

manuscript makes use of important observations, which are given here without proof:

7.1. Theorem. If S ⊆ G identifies a convex subgraph, then for every output o of S the set of

vertices Io(S) that are inputs of o is a generalized dominator.

7.1. Definition (B(V,w)). Vertices in between a set of vertices V and a single vertex w are

designated by B(V,w). More exactly, vertices contained by at least one path between an arbitrary

v ∈ V and the vertex w. While the starting vertex of each path is not included in the set B(V,w),

the final vertex w is.

7.2. Theorem. Any convex subgraph S is uniquely identified by its set of input (I(S)) and output

(O(S)) vertices, i.e. two convex subgraphs are equal iff they share the same sets of inputs and

outputs.

7.3. Theorem. Given two sets of vertices I and O, if for every vertex oj ∈ O, there is a set of

vertices Ij ⊆ I such that Ij ¹ oj, then S =
⋃

oj∈O B(Ij, oj)\Ij is a convex subgraph with I(S) ⊆ I.
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With these underlying observations, the subgraph enumeration employs a well known algorithm

to enumerate generalized dominator sets of a given cardinality k [102].

Enumeration of Multiple-Vertex Dominators

The proposed algorithm [102] computes the set of all possible multiple-vertex dominators M(G)

of size k for a given flow graph G = (V,E, r) in polynomial time O(nk). For each seed set

{v1, . . . , vk−1} ∈ V k−1, an edge-reduced graph G′ = (V,E ′, r) is constructed, such that

E ′ = E − {(u,w)|u ∈
k−1⋃

i=1

DomG(vi) ∨ w ∈
k−1⋃

i=1

DomG(vi)}.

In order to compute single-vertex dominators, the well known algorithm described by [182] is

applied (c.f. Section 3.1.2). However, the multiple-vertex computation does not rely on a special

algorithm to compute single-vertex dominators. Finally, let RG(v) be the set of all nodes, reachable

from v inside a graph G2 , i.e. RG(v) = {w|∃P〈v,w〉 ∈ G}, the set M(G) can finally be computed

as

M(G) = {(u, v1, . . . , vk−1)|∀u((∃w ∈
k−1⋃

i=1

RG(vi) −
k−1⋃

i=1

DomG(vi) : u ¹G′ w) ∧ ¬∃vi : u ¹G vi)}.

Figure 7.3 gives a working example for the computation of a multiple-dominator set of cardinality

k = 2.

Enumeration of subgraphs

Within [64] subgraph enumeration takes place by incrementally constructing seed sets for each

admissible output (an output is not admissible, if it is postdominated by another vertex) and

invoking the algorithm for multiple-vertex enumeration in order to find dominator sets for these

outputs (Figure 7.4). Thereby, the algorithm picks an arbitrary output (pick output) and tra-

verses successively all its ancestors in the graph, while examining at each node if the union of it

and previously visited nodes builds a generalized dominator for the regarded output. Subgraphs

featuring multiple outputs are identified by incrementally adding outputs to the set of outputs,

while analyzing their inputs as described. In addition, identified subgraphs are finally checked if

no outputs exist besides O(S) (check cut).

Since multiple-vertex dominator identification does not scale well for large graphs and k > 2 —

as reported in [102] — several pruning strategies have been developed in [64] in order to reduce

the overall set of possible multiple-vertex dominators:

2This is a deviation from the algorithm description given in [102]. Here, the set IG(v) of nodes through which

a vertex v can be reached is used instead of the set RG(v).
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Figure 7.3 – Computation of a multiple-vertex dominator set of cardinality 2. Figure 7.3 (a)

presents the flow graph G. The examined seed set {B} ∈ V 1 is marked by a red circle. B dom-

inates four vertices DomG(B) = {B, D, F, I} and the reachable nodes are RG(B) = {D, F, I, L}.

Figure 7.3 (b) shows the resulting edge-reduced graph G′, i.e. all edges containing nodes dominated

by B are eliminated. In the graph G′ only vertex L is left that is reachable from B. Possible domi-

nator sets for L are highlighted in yellow. In addition, Figures 7.3 (c) and (d) present the according

dominator trees for G and G′, respectively.

• For the enumeration of multiple-output subgraphs, internal outputs (i.e. nodes having

successors inside and outside of a subgraph) are considered, regarding the maximal number

of allowed outputs.

• The algorithm can be set up to enumerate only connected subgraphs.

• Invalid node sets, e.g. subgraphs containing forbidden nodes, can be excluded immediately

from dominator computation.

• No postdominance in between inputs is allowed.

The resulting improvements have been reported as being “quite dramatic”, such that the enumer-

ation becomes practicable even for graphs with more than 1000 nodes.

For the presented tool flow, this methodology has been extended by a further pruning strategy,

which considers “distances” of disconnected subgraphs for enumeration. The purpose of this

technique is to avoid high register pressure caused by CIs. Register pressure in this context emerges
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algorithm: polynomial-time subgraph enumeration

input: a flow graph G = (V,E),

output: The set of subgraphs

01 check cut(I, O, S,Nin, Nout)

02 if O(S) = O ∧ S ∩ F = ∅ then

03 S is a valid subgraph

04 if Nout>0 then

05 pick output(I, O, S, Nin, Nout)

06

07 pick inputs(I, o, O, S,Nin, Nout)

08 //the next line invokes multiple-vertex dominator enumeration

09 for each node w such that I ∪ {w} ¹ O do

10 I ′ = I ∪ {w}

11 S ′ = S ∪ B({w}, o)

12 check cut(I ′, O, S ′, Nin − 1, Nout)

13 if Nin>1 then

14 //add a node to the seed set

15 for each ancestor i of o do

16 I ′ = I ∪ {i}

17 S ′ = S ∪ B({i}, o)

18 pick inputs(I ′, o, O, S ′, Nin − 1, Nout)

19

20 pick output(I, O, S,Nin, Nout)

21 for each admissible output o do

22 O′ = O ∪ {o}

23 S ′ = S ∪ B(I, o)

24 if I ¹ o then

25 check cut(I, O′, S ′, Nin, Nout − 1)

26 else if Nin>0 then

27 pick inputs(I, o, O′, S ′, Nin, Nout − 1)

28

29 poly enum()

30 pick output(∅, ∅, ∅, Nin, Nout)

Figure 7.4 – Pseudo code for subgraph enumeration [64].

from covering disconnected subgraph patterns by a single CI, such that the related operations are
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executed within the same hardware cycle. The results of this CI have to be kept in registers until

they are used. In case of huge distances between the corresponding subgraph patterns, this can

take several pipeline cycles and cause spill code in worst case.

In each DFG, a distance layer D(v) is assigned to every non-leaf vertex v, which is basically a

numeric identifier that reflects the number of edges of the longest path between an input node

and the regarded node v. Given a DFG = (V,E), distance layers D(v) can be computed for all

non-leaf nodes v ∈ V in O(|I| · (|V | − |I|)) time, where I is the set of input nodes of the DFG.

7.2. Definition (distance of vertices). Given a DFG = (V,E), the distance dist(v1, v2) of

two vertices v1 and v2 is defined as the absolute difference of the according distance layers

dist(v1, v2) = |D(v1) − D(v2)|.

The distance of two disconnected subgraphs dist(S1, S2) can be defined as the distance between

their corresponding result nodes (result nodes have no successor within the subgraph). This

approach can be further generalized for multiple disconnected subgraphs by computing the average

distance. However, through the concept of the configuration file, it is up to the user to specify a

gain function and to consider the distances, such that arbitrary functions are possible to consider

the distances of disconnected subgraphs. The distances of subgraphs involved in an instruction

pattern typically affect the according gain function G(S) in the way that longer distances between

the disconnected subgraphs result in a lower gain for the overall pattern. Furthermore, it is possible

to specify a maximum distance inside the configuration file, such that disconnected subgraphs,

which feature a distance that exceeds this limit, are not considered for enumeration.

== ==

&x&x <<<< **
3

&y&y

++
2 cc

aa bbdd ee

**
1

1

2

3

distance-
layers

node number

1S
2S

Figure 7.5 – Example for computation of distances.

Example for Distance Computation: Figure 7.5 illustrates a small example for the compu-

tation of distances for disconnected subgraphs. The figure shows a DFG that is structured into

three distance layers. All vertices within the same layer feature the same D(v), i.e. 1, 2 or 3. The

DFG contains three designated nodes 1,2 and 3 shown in bright circles, which are result nodes of
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certain subgraphs. The result nodes represent operations that are elements of larger disconnected

subgraphs S1 and S2, respectively, presented as bright ellipses.

While both nodes 1 and 2 feature the same distance layer 1, node 3 belongs to distance layer 2.

Consequently, subgraphs of S1 feature a distance of |D(3)−D(1)| = 1 while subgraphs of S2 only

show a distance of |D(1) − D(2)| = 0.

Finally, the output of subgraph enumeration is a set of subgraphs S = {S1, . . . , Sn} annotated

with their specific merit M(Si).

7.3.2 Isomorphism Detection

The subgraph enumeration is followed by a subgraph isomorphism detection algorithm based on

the vf2 library. The vf2 library provides a framework [5] that enables the implementation of an

isomorphism detection equivalent to the concepts described in [95]. [95] declares that the algorithm

is tailored to deal with large graphs without making particular assumptions on the nature of

the graphs. The runtime complexity of this detection method is specified as Θ(n2) in best and

Θ(n!n) in worst case, concluding a superior runtime behavior compared to existing approaches

described in the past literature and particularly to the isomorphism detection described in [257]

(c.f. Section 3.2). The algorithm of [95] is based on the model of a State Space Representation

(SSR) [216], i.e. the process of comparing two subgraphs G1 = (V1, E1), G2 = (V2, E2) is separated

into states s, each of which is associated with a partial matching solution M ⊆ V1 × V2, which in

turn represents a bijective function preserving the structure of the two graphs. According to this

definition, a state transition implies the extension of M by a new pair of nodes (n,m) ∈ V1 × V2.

In [95], a set of feasibility rules is defined and applied in order to guarantee the consistency of

each state transition. As a result, the isomorphism detection classifies subgraphs {S1, . . . , Sn} into

several equivalence classes U = {U1, . . . , Uk} according to isomorphic relations between subgraphs.

7.3.3 Covering

The last phase of ISE is covering. The problem of covering is to select a set of subgraphs for

hardware implementation A = {Sl, . . . , Sk}, such that the overall merit
∑

Si∈A
M(Si) is maximal.

For certain nodes in the IR, naturally multiple options to be covered exist. This is typically caused

by node-intersections of subgraph-patterns. In addition, the presence of overlapping isomorphic

and/or disconnected subgraphs complicates matters further. Figure 7.6 illustrates IR snippets

featuring overlapping isomorphic subgraphs in (a) and non-isomorphic subgraphs in (b). However,

in both cases subgraphs S1 and S2 are designated as overlapping S1 ∩ S2 6= ∅.

7.3. Definition (Subgraph-Overlap). Given a DFG = (V,E). Let Si = (Vi, Ei) and Sj =

(Vj, Ej) be convex subgraphs of the DFG. Si and Sj are called overlapping (Si ∩ Sj 6= ∅), iff one

of the following conditions holds:
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1. Vi ∩ Vj 6= ∅, or

2. ∃(v1, v2 ∈ Vi ∧ u1, u2 ∈ Vj ∧ E(v1, u1) ∧ E(u2, v2))

Accordingly, two equivalence classes of subgraphs Ui and Uj are defined as overlapping (Ui∩Uj 6= ∅),

iff

∃(Si ∈ Ui ∧ Sj ∈ Uj) : Si ∩ Sj 6= ∅.

--

++

>>>>

&&
1S

2S

(a) Overlapping Disconnected Subgraphs

++

++

++

++
1S

2S

(b) Overlapping Isomorphic Subgraphs

Figure 7.6 – Example of overlapping isomorphic/disconnected subgraphs.

Non-Isomorphic Overlapping Subgraphs

Typically, the problem of covering the most beneficial set of subgraphs for a set of DFGs is solved

only for non-overlapping subgraphs, i.e. Si ∩Sj = ∅. From this point of view, the problem can be

formulated as a MWIS-Problem, i.e. a node-weighted graph is constructed, such that every vertex

represents a subgraph with annotated merit and every edge denotes an interference between two

subgraphs. While this formulation is perfectly true for single DFGs, it may lead to suboptimal

results in case of recurrence-aware covering, since two subgraphs overlapping in a DFG can also

occur in other DFGs, such that very little interference is given. Figure 7.7 gives an example of the

problem that is targeted within this section. Three DFGs are shown, each containing subgraphs

whose node sets mutually overlap. The subgraphs are labeled correspondingly to the equivalence

class (U1 − U3) they belong to, such that isomorphic subgraphs feature the same label. Covering

under the constraint of non-overlapping subgraphs, would select only one subgraph pattern for

the three DFGs, while the optimal solution consists obviously of two subgraphs

In order to compute the most beneficial covering of IR nodes by subgraphs Sj, for all classes

Ui ∈ {U1, U2, U3} the following parameters have to be involved:

• the execution frequencies fj of all subgraphs Sj ∈ Ui

• the gain G(Ui) returning the number of saved cycles by executing a graph Sj ∈ Ui in a single

cycle
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1DFG

1U
2U

2DFG

2U 3U

3DFG

1U
3U

++ ++ ++

Figure 7.7 – Example of DFGs containing overlapping subgraphs.

• the merit function M(Ui) =
∑

∀Sj∈Ui
fj · G(Sj)

• the number of mutual overlaps for each pair of subgraph classes |Ui∩Uk| =
∑

∀Sl∈Ui
∀Sm∈Uk

|Sl∩Sm|

• a cost function C(Ui∩Uj) = |Ui∩Uj| · (G(Ui)+G(Uj)) accumulating the sum G(Ui)+G(Uj)

for each overlapping occurrences of Ui and Uj

The situation can be modeled by a graph G = (V,E,WV ,WE), whose nodes represent subgraphs

and edges model intersections of subgraphs. In addition, the graph’s nodes and edges are weighted,

where the weights of the nodes WV are reflecting the merit of the according subgraph and the

weights of the edges WE represent the costs of intersection C(Ui∩Uj) between two adjacent nodes

Ui and Uj. Figure 7.8 presents the situation of Figure 7.7 as such a graph.

1U 2U 3U)( 21 UUC ∩ )( 32 UUC ∩

)( 31 UUC ∩

)( 1UM )( 2UM )( 3UM

Figure 7.8 – Graph-based presentation of the covering situation in accordance to Figure 7.7.

The problem of covering can be described as finding a cut through the graph, such that the

node weights are maximized and the edge weights are minimized. The most general problem

formulation of this is given as follows:

A = arg



max
U




∑

∀Uj∈U

∑

∀Ul∈U

M(Uj) − C(Uj ∩ Ul)







 . (7.1)

To identify the set A, the problem has been mapped to the Partitioned Boolean Quadratic Problem

(PBQP), which is a quadratic optimization problem stemming from operations research. It is one

of the most fundamental combinatorial problems and NP-complete in general (c.f. Appendix C).

However, for a certain subclass of PBQP an efficient solver [7, 245] exists that computes the

optimal solution in linear time and applies heuristics in order to compute a solution for general
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PBQPs in cubic runtime. This solver has been applied to different tasks of a compiler backend like

code selection [103], register allocation [243] as well as address mode selection [244] yielding good

results. The PBQP is formally defined over an n-tuple of boolean decision vectors X = 〈~x1, . . . ~xn〉

as follows:

min f(X) =
∑

1≤i<j≤n ~xi · Cij · ~x
T
j +

∑

1≤i≤n ~ci · ~x
T
i (7.2)

subject to:∀i ∈ 1 . . . n : ~1T · ~xi = 1

In order to formulate the presented covering problem (Equation 7.1) as a PBQP, every class of

subgraphs Ui ∈ U is assigned a scalar boolean value

xi =

{

1 : Ui is selected

0 : Ui is not selected

indicating whether Ui has been selected or not. Furthermore, node-weights M(Ui) are presented

by scalars ci and edge-weights C(Ui ∩ Uj) are presented as scalars cij, such that the overall form

of this distinct PBQP is given as follows:

min f(X) =
∑

1≤i<j≤k

xi · cij · xj + (−1) ·
∑

1≤i≤k

ci · xi. (7.3)

Example: Considering the situation described in Figures 7.7 and 7.8: Let G(U1) = 10,

G(U2) = 15 and G(U3) = 20. Furthermore, let every DFG be executed exactly once, such that the

resulting execution frequency is fi = 2 for every Ui ∈ {U1, U2, U3}. Consequently, the subgraphs’

merits equal M(U1) = 20, M(U2) = 30 and M(U3) = 40. Since every pair of subgraphs overlaps

exactly once, the costs of each overlap can be computed as the sum of gains G of the involved

subgraphs. The resulting equation f(X) in accordance to Equation 7.3 is finally given by

f(X) = x1 · 25 · x2 + x2 · 35 · x3 + x1 · 30 · x3 − 20 · x1 − 30 · x2 − 40 · x3 (7.4)

Selecting for example only subgraph U1 results in

f(X) = 1 · 25 · 0 + 0 · 35 · 0 + 1 · 30 · 0 − 20 · 1 − 30 · 0 − 40 · 0 = −20 (7.5)

Selecting subgraphs U1 and U2 results in:

f(X) = 1 · 25 · 1 + 1 · 35 · 0 + 1 · 30 · 0 − 20 · 1 − 30 · 1 − 40 · 0 = −25 (7.6)

Isomorphic Overlapping Subgraphs

In order to handle the aforesaid case of overlapping isomorphic subgraphs Sl∩Sk 6= ∅∧Sl, Sk ∈ Ui

(as shown in Figure 7.6(a)), new equivalence classes Ui1 = Ui−{Sl} and Ui2 = Ui−{Sk} have to be

generated. The merit of these classes is correspondingly computed as M(Ui1) = M(Ui)−fl ·G(Sl))

and M(Ui2) = M(Ui)− fk ·G(Sk)), respectively. Finally, the problem can be solved as described.
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7.4 Experimental Results

In order to evaluate the quality of the proposed ISE methodology to facilitate a more efficient ISA

design, the tool flow has been applied to analyze several applications. For this purpose, multiple

architecture explorations have been executed starting from a RISC processor template described

in Appendix A.

Architecture Exploration Flow

Each architecture exploration consists of two phases: In the first phase, the architecture-specific

software tools like assembler, linker and simulator are generated. In addition, the config-file for the

CI identification is prepared to start the presented tool flow. This results in a set of CI proposals

ranked in accordance to the number of their appearance. At the same time, the code-selector

description file of CBurg is extended by Rules for the best ranked CIs (the number of Rules to

be generated is specified in the config-file). Subsequently, the action-sections of these Rules are

implemented by the compiler designer and the compiler is produced.

The second phase comprises the microarchitectural implementation of identified CIs through the

processor designer. Hereby, the CIs are dispersed into five operations, each of which is placed in

a certain pipeline stage. During this process, similarities among different CIs are identified and

used to build common hardware units. Finally, an implementation of the extended processor is

generated in HDL on RTL. This RTL implementation is again synthesized to gate level using the

Synopsys Design Compiler. The result of the gate level synthesis allows for estimations on area

consumption and maximum frequency of the processor design.

Evaluation

The evaluated applications can be roughly categorized into symmetric encryption, image process-

ing and IP processing. For each of these categories, an appropriate processor has been developed,

featuring a customized ISA, tailored to the operations of corresponding applications. Addition-

ally, multiple experimental setups have been executed in order to evaluate the effectiveness of the

developed techniques for subgraph enumeration and covering.

Tables 7.1 and 7.2 provide a survey of the obtained results. The tables are structured into seven

parts: application characteristics, ise characteristics, binary characteristics, binary characteris-

tics (considering overlapping subgraphs), binary characteristics (excluding overlapping subgraphs),

architecture characteristics and overall speedup. The first part — application characteristics —

presents data on the C-implementations of the benchmarks. ISE characteristics illustrate the

runtime behavior of the tool flow, while considering/not considering “distances” of distributed

patterns. Binary characteristics contain simulation results, reflecting efficiency of identified ISAs

for the employed applications. First simulation results without any CIs are presented to create a

reference. Second, simulation results are shown for two ISE runs: one that considers overlapping
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subgraphs during covering and one that does not consider overlapping subgraphs. Subsequently,

hardware numbers are presented to characterize the developed processor architectures. Here, only

those ISAs have been taken into account, which result from analyses that considered overlapping

subgraphs. Finally, the overall speedup based on the cycle lengths of the underlying processors

are presented for the applications.

To examine the effectiveness of the presented pruning technique (c.f. Section 7.3.1), runtime val-

ues of the ISEs are presented in Tables 7.1 and 7.2 for both, with and without consideration of

“distances” (ise characteristics). All ISE-analyses have been performed on a Pentium DualCore

D 920 featuring 3.2 GHz and 8 GB RAM. The ISE has been developed and tested under a 64-bit

Gentoo Linux system using a GCC compiler in version 4.1 with -O9. This setup still holds great

potential for runtime optimization in terms of parallel execution on a multi-processor system.

Tables 7.1 and 7.2 show significant speedup for the pruning technique. While the majority of

those runs without considering “distances” did not terminate (n.t.) within one week, running the

ISE with pruning usually led to results in only a few hours, particularly for very large applica-

tions. In order to explore effectiveness of the presented covering technique (c.f. Section 7.3.3), all

ISA analyses have been applied twice: with and without consideration of overlapping subgraphs.

Tables 7.1 and 7.2 (binary characteristics without overlapping graphs) show simulation results on

ISA analyses that exclude overlapping subgraphs from CI identification. This approach resulted

typically in a smaller number of subgraphs for each application. Consequently, fewer patterns were

applied during code selection in the compiler, resulting in less speedup. Naturally, the larger the

application, the higher the chance that a certain subgraph overlaps with some other subgraph,

such that one of them is excluded during the cover phase. Nonetheless, these values strongly

depend on the regarded application and its implementation.

Using the presented methodology and tool flow, the ISA for symmetric encryption has been

identified on basis of the representative encryption algorithms 3DES and AES. To prove reusability

of the developed compiler/architecture design, it has been additionally applied to execute the

Blowfish encryption algorithm. Similarly, the ISA for three different image processing algorithms

used within jpeg-compression and decompression has been derived from img fdct and img idct

and has afterwards been utilized for img ycb. No manual analysis or modification of the code

was necessary to use the existing architectures and compilers for Blowfish and img ycb, because

patterns of the CIs are detected automatically by the retargeted compiler. Therefore, speedups can

also be shown for those applications for which no CI identification was performed, i.e. Blowfish and

img ycb. As another testcase a protocol stack application from the IP processing domain is used.

It consists of an IPv6-layer, IPSec-authentication and -encryption as well as an Ethernet-layer.

All Benchmarks have been compiled and profiled to annotate the execution frequencies to the

basic blocks. CI identification has been configured according to the coding space provided by the

32-bit RISC architecture of the underlying processor template: Nin = 4, Nout = 2. Additionally,
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Experimental Results (Part 1)

name 3DES AES Blowfish IP Stack

application lines of C-code 654 923 1569 4424

characteristics number of DFGs 76 94 n.a. 426

largest DFG (nodes) 1231 928 n.a. 836

distance D 3 3 n.a. 2
ise

runtime without dist. n.t. n.t. n.a. n.t.
characteristics

runtime with dist. 3.38h 4.02h n.a. 9.15h

binary code size without CIs (bytes) 18,856 13,976 7,032 33,544

characteristics cycles without CIs 14,205,064 7,742,393 19,615,079 4,284,973

binary code size with CIs (bytes) 17,478 13,893 6,904 33,125

characteristics rel. code size −7.41 % −1.60 % −1.93 % −1.35 %

without cycles with CIs 12,975,308 7,221,412 17,661,395 3,623,563

overl. graphs rel. cycle count −8.76 % −6.83 % −10.07 % −16.54 %

binary code size with CIs (bytes) 16,559 12,456 6,330 31,616

characteristics rel. code size −12.23 % −10.34 % −9.97 % −5.75 %

with cycles with CIs 10,540,157 5,520,326 15,025,150 2,578,373

overl. graphs rel. cycle count −26.80 % −28.70 % −23.40 % −40.80 %

core area (kGates) 29.0 29.9
architecture

max. freq. (MHz) 575 568
characteristics

number of CIs 7 9

overall speedup +22.71 % +25.07 % +20.32 % +36.58 %

Table 7.1 – Overview of experimental results for compiler/architecture co-exploration, Part 1.

only one memory access and multiplication/division per instruction were allowed in order to keep

the area overhead low.

Identified Instructions

The identified CIs typically comprise multiple parallel and/or chained operations

(c.f. Appendix A.3). Since many of these CIs can be described as inherent parallel instructions

producing multiple results, a graph based code-selection is mandatory. In the presented case

studies, the identified CIs contain two to four operations out of the group of shifts, additions,

logical operations and memory read accesses. For example, ISE for the IP stack produces,

amongst others, hardware instructions like a chained xor-and-xor, a parallel add--xor and

several instructions consisting of parallel shift operations. In contrast, ISE for image processing,

involves instructions like chained diff-add-mul or shift-diff.
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Experimental Results (Part 2)

name img fdct img idct img ycb

application lines of C- code 231 278 295

characteristics number of DFGs 57 74 n.a.

largest DFG (nodes) 167 132 n.a.

distance D 8 8 n.a.
ise

runtime without dist. 5.75h 12.34h n.a.
characteristics

runtime with dist. 2.99h 2.63h n.a.

binary code size without CIs (bytes) 1,904 1,640 840

characteristics cycles without CIs 319,020 18,880 7,045

binary code size with CIs (bytes) 1,728 1,524 825

characteristics rel. code size −10.35 % −0.81 % −0.78 %

without cycles with CIs 281,410 17,745 6,728

overl. graphs rel. cycle count −12.29 % −7.12 % −5.50 %

binary code size with CIs (bytes) 1,536 1,480 776

characteristics rel. code size −19.33 % −9.76 % −7.62 %

with cycles with CIs 243,169 17,116 6,597

overl. graphs rel. cycle count −23.80 % −10.40 % −7.40 %

core area (kGates) 27.0
architecture

max. freq. (MHz) 529
characteristics

number of CIs 6

overall speedup +22.86 % +8.26 % +5.24 %

Table 7.2 – Overview of experimental results for compiler/architecture co-exploration, Part 2.

Figure 7.9 illustrates assembly code examples for some representative CIs. Their nomenclature

reflects their implemented operations. Here, a single underbar indicates an operation-chain and

a double underbar a MOI. This can additionally be inferred from the number of results of the

presented instructions. For example, the second instruction (sll sll) implements two parallel

left-shifts. It receives two operands in registers, which are shifted and two immediates that

indicate the number of shifts. It writes two registers (r2, r3) in the same cycle containing the

shifted values of the input-registers (r2, r3). However, the presented ISE methodology is neither

restricted to these numbers nor to these types of operations. The utilized set of operations rather

results from the target applications as well as the ISE configuration.
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md5.s: r7 = xor_and_xor( r6, r5, r4, r6 )

aes.s: (r2, r3) = sll__sll( r2, 24, r3, 8 )

img_fdct8x8.s: r0 = diff_mul( r0, r12, r15 )

Figure 7.9 – Example assembler code snippets from different benchmarks.

7.5 Concluding Remarks

This chapter has presented a tool providing a new scalable methodology to evaluate applications

regarding promising operations for ISE in a recurrence-aware manner. It finalizes the construction

of a retargetable tool flow for automatic compiler-aware CI-identification and utilization. The

described methodology is very effective as it runs in polynomial time on average. A polynomial-

time subgraph enumeration has been applied, which has been further improved such that the tool

is capable of handling large applications that consist of several hundred basic blocks including

DFGs of more than 1000 nodes.

Instead of examining only hotspots of a single application, the presented ISE methodology consid-

ers all basic blocks of a set of applications and additionally generates a code-selector description

to automatically target the new instructions by a compiler. By the utilization through a compiler,

identified CIs are automatically available for arbitrary C-applications, such that reusability of CIs

is strongly exploited.

Interestingly, the identified CIs (c.f. Section 7.4) show strong similarities to those identified

manually during the evaluation of CBurg (c.f. Section 6.4). These CIs typically feature a simple

structure combined with a high frequency of occurrence and execution. It is exactly this feature,

which separates them from those CIs developed manually during the architecture exploration for

efficient IPSec encryption (c.f. Chapter 4). Although their execution frequency is very high, they

occur only in the F -function of the symmetric encryption algorithm Blowfish. They feature a

complex internal operation structure that includes also a sophisticated memory access strategy.

To ensure reusability towards symmetric encryption, an intelligent microarchitectural operator

coupling enables reusability in the context of Feistel-Networks. However, reusability of these

CIs can only be stated due to detailed knowledge of the common structure of Feistel-Networks.

Contrary to this, it is easily possible to prove reusability towards arbitrary applications of those

CIs described in Chapters 6 and 7 by their utilization through a compiler.
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Future Work

As suggested by [268, 269], a steady rise in demand for application-specific hardware will trigger

research in innovative technologies in upcoming years. Although approaches of architecture design

for NPUs vary significantly (c.f. Chapter 2), the multi- or many core design principle is prevalent

in this area. Vendors like Intel, Freescale and Cisco are prominent examples for this statement.

The reason for this lies in the nature of network applications/protocols, famous for exhibiting a

high data and task level parallelism. Therefore, NPU designers typically utilize several dedicated

cores with application-specific ISAs on a single die. Finding an optimal mapping of customized

PEs and data-independent tasks is obviously a key factor in achieving an optimal performance of

latencies and throughput. For chip designers, this problem is twofold: It implies the identification

of data-independent code-segments of an application, worth being encapsulated as a standalone

task. Furthermore, it implies the development of appropriate PEs with customized ISAs, each of

which is tailored to the processing requirements of its respective tasks.

Consequently, DSE for MP-SoCs as NPUs will comprise the simultaneous development of multiple

application-specific PEs. In turn, this requires the automatic generation of software tools, such as

a linker, assembler, simulator and compiler for each PE. Particularly in this scenario, traditional

iterative architecture exploration will probably become too time-consuming as typically multiple

alternative mappings exist between tasks and PEs. To complicate matters further, the developed

ISAs of the PEs will also affect the evaluation of each mapping, since different ISAs will result in

different numbers for throughput and latencies.

In this context, the presented framework represents an important step towards overcoming the de-

scribed problem and developing an architecture exploration framework for MP-SoC architectures

like NPUs. It reduces the necessity of iteratively refining a given virtual prototype in correspon-

dence to the needs of a given application (or set of applications). In contrast, by automatically

computing the most beneficial ISA and an respective compiler, rapid development of multiple PEs

is enabled.
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Figure 8.1 – Sketch of a potential architecture exploration flow for MP-SoCs.

In future, the presented framework can be combined with approaches for application parallelization

[81] and MP-SoC simulation to establish an integrated design flow for multiprocessor architectures

(Figure 8.1). Herein, applications, written in a high-level language like C/C++, are automatically

analyzed and partitioned regarding independent tasks. For each of these tasks, an appropriate

processor ISA and corresponding compiler is automatically derived. Through the microarchitec-

tural ADL-implementation of PEs, featuring the developed ISAs, tools like linker, assembler as

well as simulator and profiler can be generated. Finally, numbers on overall system performance,

like latency and throughput, can be obtained by cooperative simulation of the PEs, which in turn

can be used to refine task partitioning.



Chapter 9

Conclusion

This thesis has tackled the problem of compiler-driven CI-identification and utilization. This

is particularly an important problem for the development of NPUs. Such efficient, yet flexible

architectures are primary representatives of MP-SoCs. NPUs typically use a set of dedicated cores

with customized ISAs, tailored to specific packet processing tasks. The need for compiler-driven

architecture exploration for NPUs originates from several developments:

• existing legacy code of network protocols prohibits domain-specific programming approaches

and consequently requires compiler technologies

• effectiveness of sophisticated high-level language compilation is strongly related to the ISA

of an underlying architecture

• continuously spawning new Internet protocols (particularly access protocols) requires new

innovative hardware technologies of NPUs

To simultaneously percolate the methodology for developing an architecture’s ISA and an ap-

propriate compiler, intensive studies have been presented and performed to derive the necessary

technologies for automating this process. The following process steps have been identified as being

relevant for such an automation:

• analysis of given applications en bloc regarding common characteristic operations and

hotspots

• identification of promising IR-patterns amenable for an implementation as a hardware in-

struction

• implementation of corresponding compiler-optimizations to utilize the developed hardware

instructions
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Moreover, this thesis has presented the development of a retargetable tool flow for simultaneous

exploration of an architecture’s ISA and an appropriate compiler (Figure 9.1). The framework is

seamlessly integrated into an industry-proven architecture exploration design flow, which results

in a methodology and tool support for simultaneous compiler/architecture co-exploration. It is

the first framework tackling both recurrence-aware ISE and full utilization of identified CIs by a

compiler. To achieve this objective, the framework revolves around two novel developments in the

areas of automatic ISE and code-selection on DFGs.

For the compilation of complex CIs such as MOIs, a code-generator generator called Cburg has

been developed. The tool extends the existing concept of well-known code-generators like Olive

and Iburg through a heuristic approach for graph-based code-selection. As it runs on average in

linear time, the heuristic is very effective. Furthermore, the concept of a code-generator allows

for quick adaption of the compiler’s code-selector to new ISAs during architecture exploration.

Additionally, the tool does not pose any requirements on a compiler. It provides a simple interface

to be implemented by the compiler engineer and produces a set of C-functions for comfortably

implementing a graph-based code-selector. Because all hardware instructions can be fed into the

compiler’s code-selector and hence automatically utilized, the code-generator generator enables

much faster design cycles during architecture exploration. This eliminates error-prone and time-

consuming manual modification of C-source code. Additionally, a high-level programming model

that enables utilization of existing legacy code can be provided for arbitrary customized ISAs.
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A new tool for automatic recurrence-aware identification of promising CIs inside an application

en bloc, finalizes the present thesis. Herein, a covering technique is applied, capable of process-

ing overlapping subgraphs in polynomial runtime. The methodology is available for arbitrary

compilers as it consumes solely DFGs in gdl-format. Furthermore, the tool emits rules for each

identified CI into the configuration file of Cburg, such that the compiler automatically adapts to

the new extended ISA. All in all, iteratively refining a given virtual prototype during architecture

exploration drastically improves through the application of the presented framework. This is,

in fact, especially important for MP-SoCs like NPUs, which apply a set of dedicated cores with

customized ISAs. During DSE of such systems, multiple cores must be developed simultaneously.

Within this scenario, iterative architecture exploration for each core becomes prohibitively slow.

Therefore, this framework presents a first step towards efficient architecture exploration of NPUs

and MP-SoCs in general.





Appendix A

The IRISC Architecture

For the experimental results of Chapters 6 and 7, a RISC template architecture has been applied,

called IRISC.

A.1 Architecture Survey

Figure A.1 – Survey of IRISC architecture.
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As Figure A.1 presents, this architecture evolves around a 5-stage pipeline with conditional instruc-

tion execution. The execute stage contains a single ALU with a multiplier and the register file con-

sists of sixteen 32-bit general purpose registers. The processor’s timing equals 2.98ns ≡ 346MHz

and the area is 25.5 kGates without memory. All hardware syntheses, presented in this thesis,

have been performed using the Synopsys Design Compiler Version 2007.03-SP5 (Ultra high effort/

No design flattening/130 nm standard cell library, 1.2 V, 25◦C).

A.2 Instruction Set Architecture

This section illustrates the available hardware instructions of the IRISC architecture. Herein,

registers are designated by a capital R concatenated with an index (e.g. R1, R2, R3). In fact,

R1, R2 and R3 will be used as placeholders for arbitrary registers. Immediate constants are

denoted by imm concatenated with their bitwidth (e.g. imm12, imm16).

A.2.1 Conditional Execution and Compare-Instructions

Every instruction can be combined with a prefix that determines a condition for its execution.

This prefix consist of the keyword if and an expression, which is evaluated. The expressions work

on two operands. While the first operand is always a register (R1), the second operand is either

a register (R2) or a 12-bit immediate value (imm12). The result is stored in a register (R1), which

can be typically applied for the conditional prefix of an instruction.

Conditional prefix

if( R1 )

The conditional prefix can be applied for every instruction of the IRISC to determine its execution.

If a register, e.g. R1, contains a NULL, the corresponding instruction is not executed. The following

expressions are available for conditional execution.

Equal

R1 = (R2 == R3/imm12)

If content of register R2 equals content/value of operand R3/imm12, register R1 is set to one.

Not Equal

R1 = (R2 != R3/imm12)

If content of register R2 does not equal content/value of operand R3/imm12, register R1 is set to

one.
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Greater or Equal

R1 = (R2 >= R3/imm12)

If content of register R2 is greater or equal than content/value of operand R3/imm12, register R1

is set to one.

Greater Than

R1 = (R2 > R3/imm12)

If content of register R2 is greater than content/value of operand R3/imm12, register R1 is set to

one.

Less or Equal

R1 = (R2 < R3/imm12)

If content of register R2 is less or equal than content/value of operand R3/imm12, register R1 is set

to one.

Less Than

R1 = (R2 <= R3/imm12)

If content of register R2 is less or equal than content/value of operand R3/imm12, register R1 is set

to one.

A.2.2 Arithmetic Instructions

The described arithmetic instructions operate on two operands and one result (R1). While the

result and the first operand are always stored in registers (R1, R2), the second operand is either

stored in a register (R3) or is a 12-bit immediate value (imm12).

Addition

R1 = R2 + R3/imm12

Stores the sum of operands R2 and R3/imm12 in register R1.

Subtraction

R1 = R2 - R3/imm12

Stores the difference of operands R2 and R3/imm12 in register R1.
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Multiplication

R1 = R2 * R3/imm12

Stores the product of operands R2 and R3/imm12 in register R1.

Bitwise AND

R1 = R2 & R3/imm12

Computes a bitwise AND of operands R2 and R3/imm12 and stores the result in R1.

Bitwise OR

R1 = R2 | R3/imm12

Computes a bitwise OR of operands R2 and R3/imm12 and stores the result in R1.

Bitwise XOR

R1 = R2 ^ R3/imm12

Computes a bitwise XOR of operands R2 and R3/imm12 and stores the result in R1.

Left-Shift

R1 = R2 << R3/imm12

Left-shifts content of register R2 and stores the result in register R1. Number of digits to shift are

given in operand R3/imm12.

Right-Shift

R1 = R2 >> R3/imm12

Right-shifts content of register R2 and stores the result in register R1. Number of digits to shift

are given in operand R3/imm12.

A.2.3 Memory-Access Instructions

Memory-accesses are computed by an address-offset scheme. The base-address is stored in a

register (R2]) and optionally an 8-bit offset can be provided, which is added to the base-address.

Additionally, memory-access instructions support a post-increment mode, i.e. the memory-address

is incremented by one after the memory-access. Contrary to the normal address computation, the

sum of base-address and offset is hereby stored in register R2.
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Load

R1 = dmem[R2 + offset8 ]

The content of data memory at address R2 + offset8 is assigned to register R1.

Store

dmem[R1 + offset8 ] = R2

The content of register R2 is assigned to data memory at address R2 + offset8.

A.2.4 Load Immediate Instructions

Load Upper Immediate

R1 |= imm16

Loads a 16-bit immediate value (imm16) into the upper 16 bits of register R1.

Load Lower Immediate

R1 =| imm16

Loads a 16-bit immediate value (imm16) into the lower 16 bits of register R1.

A.2.5 Branch-Instructions

Call

call R1 @R2

The program counter is set to the address stored in register R1. The return address is stored in

register R2.

Jump

jmp R1

The program counter is set to the value stored in register R1.

A.3 Instruction Set Extensions

In the context of ISE (c.f. Chapter 7), the IRISC architecture has been extended by several sets of

CIs, tailoring the IRISC for domains like encryption, protocol processing and image compression.

The instructions presented in this section are either chained instructions or MOIs with two result

registers (R1, R2). The nomenclature of these instructions reflects the inherent operations by

a concatenation of appropriate operation-designations through underbars. A single underbar
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represents an operation-chain while two underbars represent a parallel execution of operations.

Due to the limited coding space (32 bits) of the IRISC architecture, the set of presented MOIs is

restricted to MOIs consisting of two operations and results.

A.3.1 Encryption Processing

Parallel Double Addition

(R1, R2) = add add (R3, R4, R5, R6)

Performs additions of register contents R3 and R4 as well as R5 and R6, respectively. It stores the

results of the additions in registers R1 and R2.

Parallel Double Left-Shift

(R1, R2) = sll sll (R3, imm5, R4, imm5)

Performs left-shifts of register contents R3 and R4 by imm5-values given right next to the registers.

It stores the results of the additions in registers R1 and R2.

Parallel Double Right-Shift

(R1, R2) = srl srl (R3, imm5, R4, imm5)

Performs right-shifts of register contents R3 and R4 by imm5-values given right next to the registers.

It stores the results of the additions in registers R1 and R2.

Parallel Left-Right-Shift

(R1, R2) = sll srl (R3, imm5, R4, imm5)

Performs left and right-shift of register contents R3 and R4, respectively, by imm5-values given

right next to the registers. It stores the results of the additions in registers R1 and R2.

Chained XOR-Load

(R1, R2) = xor lw (R3, R4, R5, R6)

Performs an xor of register contents R3 and R4 and reads the content of data memory at address

R5 + R6.

Chained ADD-Load

(R1, R2) = add lw (R3, R4, R5, R6)

Performs an addition of register contents R3 and R4 and reads the content of data memory at

address R5 + R6.
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Chained AND-XOR

R1 = and xor( R2, R3, R4 )

Performs an AND-operation on register contents R2 and R3 with a subsequent XOR on register

content R4.

A.3.2 Protocol Processing

The ISE for protocol processing includes all instructions of encryption processing plus the following

two:

Chained ADD-XOR

R1 = add xor( R2, R3, R4 )

Performs an addition on register contents R2 and R3 with a subsequent XOR on register content

R4.

Chained AND-XOR-AND

R1 = and xor and( R2, R3, R4, R5 )

Performs an AND-operation on register contents R2 and R3 with a subsequent XOR on register

content R4 and a second AND-operation on register content R5.

A.3.3 Image Processing

Chained Subtraction-Multiplication

R1 = sub mul(R2, R3, R4)

Performs a substraction of register contents R2 and R3 and subsequently a multiplication by

register content R4.

Chained Addition-Multiplication

R1 = add mul(R2, R3, R4)

Performs an addition of register contents R2 and R3 and subsequently a multiplication by register

content R4.

Chained Addition-Subtraction-Multiplication

R1 = add sub mul(R2, R3, R4, R5)

Performs an addition of register contents R2 and R3, subsequently a subtraction by register content

R4 and finally a multiplication by register content R5.
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Chained Right-Shift-Subtraction

R1 = srl sub(R2, imm5, R4)

Performs a right-shift of register contents R2 by a 5-bit immediate value imm5 and subsequently a

subtraction of register content R4.

Chained Right-Shift-Addition

R1 = srl add(R2,R3,R4)

Performs a right-shift of register contents R2 by a 5-bit immediate value imm5 and subsequently

an addition of register content R4.

Parallel Left-Right-Shift

(R1, R2) = sll srl (R3, imm5, R4, imm5)

Performs left and right-shift of register contents R3 and R4, respectively, by imm5-values given

right next to the registers. It stores the results of the additions in registers R1 and R2.

Parallel Double Left-Shift

(R1, R2) = sll sll (R3, imm5, R4, imm5)

Performs left-shifts of register contents R3 and R4 by imm5-values given right next to the registers.

It stores the results of the additions in registers R1 and R2.
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Programming Interface of CBurg

B.1 C-functions for Code-Selector Implementation

For implementing the presented code-selection algorithm (Section 6.3), CBurg exports a set of

C-functions. These functions can be assigned to the different phases of the algorithm (Figure

B.1). In the remainder of this section, the purposes and signatures of CBurg’s exported functions

are illustrated.

Pattern Enumeration Set Selection Pre Cover Cover

burm_label
label_depth

find_split_pattern
complex_rule

burm_update_rule
burm_pre_cover

burm_complex_all_covered burm_exec

Figure B.1 – Survey of code selection functions

burm label

struct burm state* burm label( NODEPTR b )

Performs labeling of an IR-node pointed by NODEPTR (c.f. Section B.2.1 ). Rule-annotations and

cost computations are stored in the structure burm state.

label depth

burm DEPTH label depth( NODEPTR t, int level )

Computes the depth of each node in the current IR graph. This is used to compute the distance

between nodes in a Candidate-node Set (CS). Nodes with shorter distances are preferred to avoid

high register pressure in the register allocation phase. The depth of a node is returned as a

structure burm DEPTH.
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find split pattern

void find split pattern( NODEPTR p, burm DEPTH d, int order of tree,

burm MAPS maps )

Searches for Split–Rule–annotations at IR-nodes pointed by NODEPTR and assigns them to CSs

called Maps. Hereby, the distance d between Split–Rule–annotated IR-nodes is taken into account

to avoid high register pressure.

complex rule

SET TABLES complex rule( burm MAPS maps, SET TABLES sts )

From the overall set of all possible Candidate-nodes called Maps, the most beneficial CSs are

selected and stored in sts. For internal reasons, the most beneficial set of Candidate-nodes is

returned both, as a parameter (sts) and a return value at the same time.

burm update rule

struct burm state* burm update rule( NODEPTR u, SET TABLES sts )

Updates Rule-annotations at nodes pointed by NODEPTR according to the selected CSs stored in

sts. The function returns a modified burm state structure as result.

burm pre cover

void burm pre cover( NODEPTR p, int goalnt, SET TABLES sts )

Performs the pre-covering check for IR-nodes pointed by NODEPTR and an according nonterminal

goalnt. This evaluation is applied for all selected CSs stored in sts.

burm complex all covered

int burm complex all covered( SET TABLES sts )

Recovers Simple Rules in case of uncovered Split Rules for a CS in sts. The function returns

either 1 or 0 in case of success or not.

burm exec

void burm exec( struct burm state *state, int nterm, ... )

Performs covering on IR-nodes based on the information stored in the burm state structure.

B.2 Code-Selector Specification within CBurg

The code-generator generator CBurg is programmed through the help of a configuration file.

This file satisfies a fixed structure consisting of four separate sections denoted as: definitions,
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declarations, rules and programs. As presented in Figure B.2(a), the sections are separated by

special separators like %{, %} and %%.

%{

definitions

%}

declarations

%%

rules

%%

programs

(a) Structure of specification-file

1 %start stmt

2 %term mirPlus = 57

3 %term mirMult = 49

4 %term mirDiff

5

6 %declare<void> stmt

7 %declare<void> reg

8 %declare<static lirPscNode>

imm32
(b) Example for declarations

Figure B.2 – Code-selector specification within CBurg

B.2.1 Definitions

Relevant macros that are applied to access the compiler’s IR are defined within this section. The

following macros have to be implemented to ensure a proper cooperation of CBurg’s exported

functions and the compiler it is applied for.

NODEPTR

Defines a pointer to an IR-node.

NULL

Defines a non-existing IR-node, i.e. an empty NODEPTR.

GET KIDS(p, kids)

Assigns the children of p to kids which is a vector of type NODEPTR.

OP LABEL(p, op)

Assigns the label of IR-node p to operator op which is typically a string.

SET STATE(p, s)

Assigns the state structure s to IR-node p.
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STATE LABEL(p, s)

Assigns the state of IR-node p to state s.

GET MEMBER NODE(r, n)

Assigns the NODEPTR of the nth-node of Complex Rule r to n.

DEP CHECK(p1, p2)

Evaluates dependencies between nodes p1 and p2. The macro either returns 1 or 0.

IS CSE(p)

Returns 1, if p is a CSE in the current DFG.

FAN OUT(p)

Returns the number of emanating edges for NODEPTR p.

B.2.2 Declarations

The purpose of this section is to declare all used terminal and nonterminal symbols of the

ISA grammar. Terminal declarations (as shown in lines 2 – 4 of Figure B.2(b)) start with

the keyword %term followed by the name of the symbol and optionally a numeric identifier:

%term name [= id]. Since terminals are typically identified via such numeric identifiers in-

side a compiler, the identifier adopts the role of a major interface between the grammar of CBurg

and the IR of a compiler. In case of omitted identifier assignment for the terminal symbols (as

shown in line 4 of Figure B.2(b)), CBurg assigns automatically identifiers to the terminal symbols

in ascending order starting with 1.

Nonterminal declarations start with the keyword %declare. Such declarations involve

also a C-type which is presented in between angle brackets right after the keyword:

%declare<type> name. Such types are applied as return values for dedicated functions to

cover IR-nodes. It is possible to specify arbitrary C-types inside the angle brackets. In line 8

of Figure B.2(b), a special CoSy type is specified as the type for a nonterminal. Furthermore, a

start nonterminal is specified in line 1 of Figure B.2(b). The start symbol is designated as %start

name. It denotes the top level of the IR. In Figure B.2(b) it is stmt which denotes a statement.
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B.2.3 Rules

The basic form of a Rule specification inside a tree grammar is

nonterm : opcode(op1, . . . , opk)
︸ ︷︷ ︸

tree

{cost} = {action}; ,

where nonterm represents the resulting nonterminal and tree is an instruction pattern comprising

an opcode as well as operands in parenthesis. Subsequently, two sections of C-code follow. Here,

developers can specify the cost computation and the Rule specific actions, respectively. However,

Complex Rules consist of several Simple Rules and therefore have the form:

NTs : Trees Costs = Actions; ,

where NTs represents an n-ary sequence of result nonterminal names

nonterm1 . . . nontermn and Trees represent an n-ary sequence of arbitrary tree pat-

terns tree1 . . . treen. Costs and Actions are n + 1-ary sequences of C-code sections

({costs0}{costs1} . . . {costsn}/{action0}{action1} . . . {actionn}) for the cost evaluation and

for the action of its Rule, respectively. Each of these sequences consists of one common section

({cost0}/{action0}) and one section for every tree in the Rule specification.

The cost codes are used in burm label() to calculate the cost of each matched Rule at a node, and

the action codes are executed inside burm exec when the Rules are covered. The colon after the

result nonterminals and the semicolon after the last curly brace at the end are Cburg punctuation.

Figure B.3 presents an example specification of a Complex Rule based on the MIPS instruction

set. The Rule combines a leftshift with a logical AND.

Costs The cost part computes the cost of the Rule when the tree pattern of the Rule matches.

The cost part can be used as a predicate: it can return a zero cost to accept a match or it can

return an infinite cost to force a mismatch. The cost part of a Rule is either a C expression or C

code which is evaluated or executed.

B.2.4 Programs

Arbitrary C-functionality can be defined inside this section. Typically, C-functions are defined

here that are applied inside the action-sections of some Rules.
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1. reg reg: LSHU4(reg,rc5) BANDI(reg,rc)

2. {$cost[0].complex = 1; /* common cost code */}

3. {$cost[0].own_cost =1;

4. $cost[0].cost= $cost[2].cost + $cost[3].cost + $cost[0].own_cost;}

5. {$cost[0].own_cost =1;

6. $cost[0].cost= $cost[2].cost + $cost[3].cost + $cost[0].own_cost;}

7. ={ /* common action code */

8. if(check_all_emitted(_s->node->x.members))

9. {

10. $inmember[1];

11. print("\tslland $%s, $%d, ",

12. _t->node->syms[2]->x.name,getregnum(_t->node->kids[0]));

13. $member_action[1,3]();

14. print(", ");

15. $inmember[2];

16. print("$%s, $%d, ",

17. _t->node->syms[2]->x.name,getregnum(_t->node->kids[0]));

18. $member_action[2,3]();

19. print(" ;; complex instruction\n");

20. }

21. }

22. { /*action code for LSHU4*/ }

23. { /*action code BANDI* };

Figure B.3 – Example specification of a Complex Rule



Appendix C

Partitioned Boolean Quadratic Programming

The PBQP originally stems from quadratic assignment problems as they appear in the field of

operations research. The PBQP can be described as a cost function over boolean decision vectors

~x, i.e. the domain Di of a decision vector ~xi is the set of all vectors featuring a single one-element:

Di{~x|~x ·~1T = 1}. The main purpose of PBQP is to select decision vectors in such a way that the

costs function is minimized. This cost function represents the sum over all vector-matrix-vector

dot products between the decision vectors and vector-vector dot product. Hereby, cost matrices

Cij specifying costs between decision vectors ~xi and ~xj and cost vectors ~ci specifying costs for a

decision vector ~xi are applied.

C.1. Definition (Partitioned Boolean Quadratic Problem). A PBQP is defined over

an n-tuple of boolean decision vectors X = 〈~x1, . . . ~xn〉 as follows:

min f(X) =
∑

1≤i<j≤n ~xi · Cij · ~x
T
j +

∑

1≤i≤n ~ci · ~x
T
i (C.1)

subject to:∀i ∈ 1 . . . n : ~1T · ~xi = 1 (C.2)

The domain of the parameter X of the objective function f(X) presented in Equation C.1, is the

cross product of the decision vector domains: DX = D1× . . .×Dn. Note that the decision vectors

may have different lengths. In addition, the sizes of vectors ci and matrices Cij have to match with

the length of the decision vectors, such that the products in Equation C.1 are defined. Since the

PBQP can bear multiple solutions, the minimum — min f(X) — is just one representative of the

solution space. Furthermore, the final solution of Equation C.1 can be described via the indices

of the only one-element of each decision vector, i.e. S = 〈s1, . . . , sn〉, where si equals the index of

the one-element of decision vector ~xi and the range of each solution element is 1 ≤ si ≤ |~xi|.

In Equation C.1, the term ~xi · Cij · ~xT
j selects exactly one element of the matrix Cij due to

Constraint C.2. Let si, sj designate the indices of the one-elements of according decision vectors

~xi and ~xj, respectively, then the term ~xi ·Cij ·~x
T
j yields Cij(si, sj), i.e. the matrix element Cij(si, sj)

147
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Figure C.1 – The cost matrix shown as transition costs. Each matrix element is connecting two

elements of adjacent decision vectors. In this example, the matrix elements Cij(2, 3) contributes to

the objective function since it is selected by the vectors ~xi = (0, 1, 0) and ~xj = (0, 0, 1).

contributes to the objective function, if elements si and sj are selected within the vectors ~xi and

~xj, such that the matrix Cij specifies the costs for combinations of decision vectors.

Figure C.1 visualizes the cost matrix in the way that adjacent decision vectors are connected by

an edge and furthermore the costs Cij are the weights of the edges.

Similar to the cost matrices, cost vectors ~ci contribute to the cost functions, but are selected

only by a single decision vector. The term ~ci · ~x
T
i selects exactly one element of the cost vector

~ci, because only a single element of ~xi equals one. Furthermore, let si be the index of ~xi’s the

one-element, the term ~xi · ~ci yields ~ci(si).

The difficulty of the overall minimization problem stems from the fact that contributing products

cannot be treated locally, rather the decision vectors shift it to a global problem which is NP-hard

to solve. Nevertheless, for sparse problems an optimal solution can be found.
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