
2020-04-09

1

Interprocedural Analysis

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

1

Interprocedural Analysis

• Analyzing the body of a single function
- intraprocedural analysis

• Analyzing the whole program with function calls
- interprocedural analysis

• For now, we consider TIP without function pointers
and indirect calls

• A naive approach:
- analyze each function in isolation
- be maximally pessimistic about results of function calls
- rarely sufficient precision…

2

CFG for Whole Programs

The idea:
• Construct a CFG for each function
• Then glue them together to reflect function calls and

returns

We need to take care of:
• parameter passing
• return values
• values of local variables across calls (including recursive

functions, so not enough to assume unique variable names)

3

A Simplifying Assumption

• Assume that all function calls are of the form

X= f(E1, ...,En);

• This can always be obtained by normalization

4

Interprocedural CFGs (1/3)

Split each original call node

into two nodes:

5

Interprocedural CFGs (2/3)

Change each return node

into an assignment:

(where result is a fresh variable)

6

2020-04-09

2

Interprocedural CFGs (3/3)

Add call edges and return edges:

7

Constraints

• For call/entry nodes:
- be careful to model evaluation of all the actual parameters

before binding them to the formal parameter names
(otherwise, it may fail for recursive functions)

• For after-call/exit nodes:
- like an assignment: X = result
- but also restore local variables from before the call using

the call↷after-call edge

• The details depend on the specific analysis…
8

Example: Interprocedural Sign Analysis

• Recall the intraprocedural sign analysis…
• Lattice for abstract values:

• Lattice for abstract states:
Vars→Sign

9

Example: Interprocedural Sign Analysis

10

V’

Vw

w

V

Alternative Formulations

11

The Worklist Algorithm (original version)

12

如果CFG结点vi 的
语义值发生变化，
则将计算vi语义值
所依赖的结点vj加

入到worklist

2020-04-09

3

The Worklist Algorithm (alternative version)

13 14

Interprocedurally Invalid Paths

15

Example

What is the sign of the return value of g?

Our current analysis says “⊤”

16

Function Cloning
(alternatively, function inlining)

• Clone functions such that each function has only one
callee

• Can avoid interprocedurally invalid paths
• For high nesting depths, gives exponential blow-up
• Doesn’t work on (mutually) recursive functions

• Use heuristics to determine when to apply
(trade-off between CFG size and precision)

17

Example, with cloning

• What is the sign of the return value of g?

18

2020-04-09

4

Context Sensitive Analysis

• Function cloning provides a kind of context sensitivity
(also called poly-variant analysis)

• Instead of physically copying the function CFGs, do it
logically

• Replace the lattice for abstract states, States, by
Contexts → lift(States)

where Contexts is a set of call contexts
- the contexts are abstractions of the state at function entry
- Contexts must be finite to ensure finite height of the lattice
- the bottom element of lift(States) represents “unreachable”

contexts
• Different strategies for choosing the set Contexts…

19

One-level Cloning

• Let c1,…,cn be the call nodes in the program
• Define Contexts={c1,…,cn}∪{ε}

- each call node now defines its own “call context”(using ε to
represent the call context at the main function)

- the context is then like the return address of the top-most
stack frame in the call stack

• Same effect as one-level cloning, but without actually
copying the function CFGs

• Usually straightforward to generalize the constraints
for a context insensitive analysis to this lattice

• (Example: context-sensitive sign analysis –later…)
20

The Call String Approach

• Let c1,…,cn be the call nodes in the program
• Define Contexts as the set of strings over

{c1,…,cn } of length ≤k
- such a string represents the top-most k call locations

on the call stack
- the empty string ε again represents the call context at

the main function

• For k=1 this amounts to one-level cloning

21

Example:
interprocedural sign analysis with call strings (k=1)

22

Context Sensitivity with Call Strings
function entry nodes, for k=1

23

Context Sensitivity with Call Strings
after-call nodes, for k=1

24

2020-04-09

5

The Functional Approach

• The call string approach considers control flow
- but why distinguish between two different call sites if their

abstract states are the same?
• The functional approach instead considers data
• In the most general form, choose

Contexts = States
(requires States to be finite)

• Each element of the lattice States → lift(States) is
now a map m that provides an element m(x) from
States (or “unreachable”) for each possible x where x
describes the state at function entry

25

Example:
interprocedural sign analysis with the functionalapproach

26

The Functional Approach

• The lattice element for a function exit node is thus a
function summary that maps abstract function input to
abstract function output

• This can be exploited at call nodes!
• When entering a function with abstract state x:

- consider the function summary s for that function
- if s(x) already has been computed, use that to model the entire

function body, then proceed directly to the after-call node

• Avoids the problem with interprocedurally invalid paths!
• …but may be expensive if States is large

27

Context sensitivity with the functional approach
function entry nodes

28

Context sensitivity with the functional approach
after-call nodes

29

