$http://www.ictp.trieste.it/~pub_off$

IC/97/99

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

NERON–SEVERI GROUP FOR NONALGEBRAIC ELLIPTIC SURFACES III

Vasile Brînzănescu¹ Institute of Mathematics of Romanian Academy, P.O. Box 1-764, Bucharest, Romania² and International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

We give an Appell–Humbert type theorem for the Neron–Severi group NS(X)/Tors NS(X)in the case of an elliptic bundle surface $X \to B$, extending a result from [4] in the case of primary Kodaira surfaces.

MIRAMARE-TRIESTE

August 1997

¹Regular Associate of the ICTP.

²Permanent address. E-mail: brinzane@stoilow.imar.ro

1. INTRODUCTION

This paper is a natural continuation of our previous papers [2], [3]. Let $X \to B$ be a non-kählerian elliptic surface with the general fibre an elliptic curve E. It is known that every non-kählerian elliptic surface is a quasi-bundle (see, for example [3]). In this paper, by using the results from [4], [6], we precise the torsion of the Neron-Severi group of X, Tors NS(X), and the description of the group NS(X)/Tors NS(X) given in [3]. By using similar arguments as in [4] we give an Appell-Humbert theorem for the group NS(X)/Tors NS(X) in the case of an elliptic bundle surface $X \to B$, extending a result from [4] in the case of primary Kodaira surfaces.

2. NERON-SEVERI GROUP FOR NON-KÄHLERIAN SURFACES

All varieties will be defined over the field \mathbb{C} of complex numbers. An *elliptic surface* $\varphi: X \to B$ is a proper, connected, holomorphic map from a (compact, connected, smooth) surface X to a (compact, connected, smooth) curve B, such that the general fibre X_b $(b \in B)$ is a non-singular elliptic curve (the holomorphic structure may depend on b). We shall always assume that φ is *relatively minimal*, i.e. all the fibres are free from (-1)-curves.

Let $F = \sum n_i D_i$ be a singular fibre of φ , where D_i 's are the irreducible reduced components and the n_i 's are their multiplicities. Let m denote the greatest common divisor of n_i 's. If $m \ge 2$, then the fibre F is called *multiple fibre of multiplicity* m and we will write F = mD, where $D = \sum (n_i/m)D_i$.

An elliptic surface $\varphi : X \to B$ is called a *quasi-bundle* if all smooth fibres are pairwise isomorphic, and the only singular fibres are multiples of smooth (elliptic) curves. If moreover φ has no singular fibres then $\varphi : X \to B$ is said to be a *fibre bundle*.

Let E be an elliptic curve and let us consider its universal covering sequence:

$$0 \to \Gamma \to \mathbb{C} \to E \to 0, \ \Gamma \cong \mathbb{Z}^2.$$
⁽¹⁾

An *elliptic bundle* $\varphi : X \to B$ is a principal fibre bundle whose typical fibre and structure group are the elliptic curve E. These holomorphic fibre bundles are classified by the cohomology set $H^1(B, \mathcal{E}_B)$, where \mathcal{E}_B is the sheaf of germs of local holomorphic maps from B to E. To describe $H^1(B, \mathcal{E}_B)$, one uses the exact cohomology sequence

$$H^1(B,\Gamma) \to H^1(B,\mathcal{O}_B) \to H^1(B,\mathcal{E}_B) \xrightarrow{c} H^2(B,\Gamma) \to 0$$
, (2)

induced by (1); see, for example, [1], Chapter V. 5.

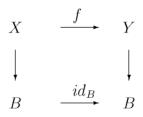
It is known that every non-kählerian elliptic surface $\varphi : X \to B$ is a quasi-bundle; see, for example [3], Lemma 1. Let $m_1D_1, ..., m_lD_l$ be all the multiple fibres of φ , where D_i is an elliptic curve and $m_i \geq 2$ for all i = 1, ..., l. By [3] Theorem 5, we know that the group $NS(X) \otimes \mathbb{Q}$ is isomorphic to the group $Hom(J_B, E) \otimes \mathbb{Q}$, where J_B is the Jacobian variety of the curve B and $Hom(J_B, E)$ is the group of the homomorphisms of abelian varieties. A more precise statement can be given:

THEOREM 1. Let $\varphi : X \to B$ be a non-kählerian elliptic surface. Then the torsion group of the Neron-Severi group is generated by $c_1(D_i)$, i = 1, ..., l, and we have an isomorphism

$$NS(X)/Tors \ NS(X) \cong Hom(J_B, E^{\vee}),$$

where J_B is the Jacobian variety of the curve B, E^{\vee} is the dual curve of E (isomorphic to E) and $Hom(J_B, E^{\vee})$ is the group of homomorphisms of abelian varieties.

Proof. Let a_i be an element of $\frac{1}{m_i}\Gamma$ such that the order of the point $[a_i]$ of the torus E corresponding to a_i is precisely $m_i \geq 2$, the multiplicity of the singular fibre $m_i D_i$, i = 1, ..., l. Let Γ_0 be a lattice in \mathbb{C} generated by Γ and a_i , i = 1, ..., l and put $E_0 = \mathbb{C}/\Gamma_0$. Then, the elliptic curve E_0 is isomorphic to E/H, where H is a subgoup of E generated by $[a_1], ..., [a_l]$. Let $h : E \to E_0$ be the canonical surjection. Then, by [6], Lemma 12 there exists an elliptic bundle $Y \to B$ with the fibre the elliptic curve E_0 and a holomorphic mapping $f : X \to Y$ such that the following diagram:



is commutative and f is unramified outside the multiple fibres. By [6], Theorem 17, we have an exact sequence:

$$0 \to Hom(J_B, E^{\vee}) \to NS(X)/\tilde{F}_2 \to \tilde{N}(X) \to 0, \tag{3}$$

where \tilde{F}_2 is a finite subgroup (X is non-kähler) of $H^2(X,\mathbb{Z})$ generated by $c_1(D_i)$, i = 1, ..., l and $\tilde{N}(X)$ is a subgroup of NS(E). Moreover, $\tilde{N}(X) \cong h^*\tilde{N}(Y)$, where $\tilde{N}(Y)$ is the corresponding subgroup of $NS(E_0)$. By Theorem 3.1 in [2] and Theorem 5 in [6], we get $\tilde{N}(Y) = 0$ and, therefore, $\tilde{N}(X) = 0$. It follows that the subgroup Tors NS(X) of the Neron–Severi group NS(X) is generated by $c_1(D_i)$, i = 1, ..., l and we have an isomorphism $NS(X)/Tors NS(X) \cong Hom(J_B, E^{\vee})$, where J_B is the Jacobian variety of the curve B, E^{\vee} is the dual torus of E (isomorphic to E) and $Hom(J_B, E^{\vee})$ is the group of homomorphisms of abelian varieties.

3. APPELL-HUMBERT THEOREM FOR ELLIPTIC BUNDLES

Let $\varphi : X \to B$ be an elliptic bundle over the curve B with the fibre an elliptic curve E defined by $\xi \in H^1(B, \mathcal{E}_B)$ with $c(\xi) \neq 0$ (see the exact sequence (2)). By [1], Chapter V, Proposition 5.3, we know that X is non-kählerian. If B is an elliptic curve, X is a primary Kodaira surface. In [4], Lemma 5, we gave a description of the group NS(X)/Tors NS(X) for $X \to B$ a primary Kodaira surface, similar to the Appell-Humbert Theorem for complex tori (see for example [10] or [5]). Here, we shall extend this result for any elliptic bundle over a curve B. So, let us suppose that the genus of B, g is greater than 2.

The fundamental group of the fibre E is isomorphic to the lattice $\Gamma \subset \mathbb{C}$ generated by $\{\beta_1, \beta_2\}$, the fundamental group Λ of the base B is generated by $\{\mu_1, ..., \mu_g, \lambda_1, ..., \lambda_g\}$ with one relation $\prod_{i=1}^{g} [\mu_i, \lambda_i] = 1$, and we have the following central extension:

$$0 \to \Gamma \xrightarrow{j} G \xrightarrow{\pi} \Lambda \to 0, \tag{4}$$

where G is the fundamental group $\pi_1(X)$ of the elliptic bundle $X \to B$ (see, for example [7], Chapter II, Lemma 7.3). In fact, the group G has a presentation of the following form:

$$G = \langle \tilde{\mu}_1, ..., \tilde{\mu}_g, \tilde{\lambda}_1, ..., \tilde{\lambda}_g, \tilde{\beta}_1, \tilde{\beta}_2 | \prod_{i=1}^g [\mu_i, \lambda_i] = \tilde{\beta}_1^m, \tilde{\beta}_1, \tilde{\beta}_2 \text{ central} > .$$
(5)

Of course, $j(\beta_i) = \tilde{\beta}_i$, i = 1, 2 and $\Gamma \cong j(\Gamma)$ is in the center of G. We shall identify Γ with its image $j(\Gamma)$ in G and let $s : \Lambda \to G$ be a cross-section, i.e. $\pi \circ s = 1_\Lambda$ and the group Λ is identified with G/Γ (we can choose the cross-section such that $s(\mu_i) = \tilde{\mu}_i$ and $s(\lambda_i) = \tilde{\lambda}_i$, i = 1, ..., g). Then the elements of G can be uniquely written in the form $\gamma s(\lambda)$ where $\gamma \in \Gamma$ and $\lambda \in \Lambda$. The sum $s(\lambda)s(\lambda')$ must lie in the same coset as $s(\lambda\lambda')$, so there are unique elements $h_0(\lambda, \lambda') \in \Gamma$ such that always

$$s(\lambda)s(\lambda') = h_0(\lambda, \lambda')s(\lambda\lambda').$$

Now, consider \mathbb{Z} as a trivial *G*-module and let

$$res: H^2(G, \mathbb{Z}) \longrightarrow H^2(\Gamma, \mathbb{Z}) \tag{6}$$

be the restriction homomorphism. Because \mathbb{Z} is a trivial *G*-module, the inflation homomorphism has the form:

$$inf: H^2(\Lambda, \mathbb{Z}) \longrightarrow H^2(G, \mathbb{Z}).$$
 (7)

Let $\Pi_{J_B} = (\Pi, I_g) \in \mathcal{M}_{g,2g}(\mathbb{C})$ be a normalised period matrix for the Jacobian variety of the curve *B*. We know from [2], Theorem 3.1 that the group NS(X)/Tors NS(X) is isomorphic to the group $Hom(J_B, E)$ of homomorphisms of abelian varieties. Now, by using some results in cohomology of groups (see [4]), we obtain the following Appell– Humbert type result:

THEOREM 2. Let $X \to B$ be an elliptic bundle over the curve B with the fibre an elliptic curve E, defined by $\xi \in H^1(B, \mathcal{E}_B)$ with $c(\xi) \neq 0$. Then the group NS(X)/TorsNS(X)is isomorphic to the subgroup of $\mathcal{M}_{2,2g}(\mathbb{C})$

$$\mathcal{NS} := \left\{ \mathcal{A} = \left(\begin{array}{ccc} A_1 & \dots & A_g & C_1 & \dots & C_g \\ B_1 & \dots & B_g & D_1 & \dots & D_g \end{array} \right) = (\alpha \mid \theta) \in \mathcal{M}_{2,2g}(\mathbb{Z}) :$$
$$(\Pi \ {}^t\theta - \ {}^t\alpha) \left(\begin{array}{c} -\beta_2 \\ \beta_1 \end{array} \right) = 0 \right\}.$$

Proof. By using the Lyndon spectral sequence

$$E_2^{pq} = H^p(\Lambda, H^q(\Gamma, \mathbb{Z})) \Rightarrow H^{p+q}(G, \mathbb{Z}),$$

defined by the exact sequence (4) one obtains as in Lemma 3 in [4] that the restriction map (6) is zero. From Lemma 2 in [4], we get a homomorphism v such that the sequence

$$H^{2}(\Lambda, \mathbb{Z}) \xrightarrow{inf} H^{2}(G, \mathbb{Z}) \xrightarrow{v} H^{1}(\Lambda, H^{1}(\Gamma, \mathbb{Z}))$$
(8)

is exact. As in Lemma 4 in [4] one obtains that

$$NS(X)/Tors \ NS(X) \hookrightarrow H^1(\Lambda, H^1(\Gamma, \mathbb{Z}))$$

and the canonical surjection $NS(X) \to NS(X)/Tors NS(X)$ can be identified with the restriction of the homomorphism v to NS(X). Thus we get the isomorphism

$$NS(X)/Tors \ NS(X) \cong Hom(J_B, E^{\vee}),$$
(9)

where E^{\vee} is the dual of E, $E^{\vee} = Pic^0(E) = \mathbb{C}'/\Gamma'$ and $\Gamma' = Hom_{\mathbb{Z}}(\Gamma, \mathbb{Z}) \cong H^1(\Gamma, \mathbb{Z})$ is the dual lattice in the "complex space" $\mathbb{C}' = Hom_{\mathbb{Z}}(\Gamma, \mathbb{R})$ (see, for example [8], 1.4). Because Γ is a lattice in \mathbb{C} , we can extend uniquely any $f \in Hom_{\mathbb{Z}}(\Gamma, \mathbb{R})$ to a real linear map $\tilde{f} : \mathbb{C} \to \mathbb{R}$. Thus

$$Hom_{\mathbb{Z}}(\Gamma,\mathbb{R})\cong Hom_{\mathbb{R}}(\mathbb{C},\mathbb{R})\cong\mathbb{C}$$

and we put a complex structure on this real vector space defining $if(\gamma) := -\tilde{f}(i\gamma), \ \gamma \in \Gamma$. Let Λ_1 be the lattice in \mathbb{C}^g defined by Λ ($\Lambda_1 = H_1(B, \mathbb{Z})$). Then, $J_B \cong \mathbb{C}^g/\Lambda_1$. By [10], p. 175, we have the isomorphism

$$NS(X)/Tors \ NS(X) \cong \{h : \mathbb{C}^g \to \mathbb{C}' : h \text{ is } \mathbb{C} - \text{linear}, h(\Lambda_1) \subset \Gamma' \}.$$

Let $\{\beta'_1, \beta'_2\} \subset \Gamma'$ be the dual basis of $\{\beta_1, \beta_2\}$ (i.e. $\beta'_i(\beta_j) = \delta_{ij}$, i, j = 1, 2). We have chosen a normalised period matrix $\Pi_{J_B} = (\Pi \mid I_g)$ for the Jacobian J_B , where $\Pi, I_g \in \mathcal{M}_g(\mathbb{C})$ and the period matrix for E^{\vee} is $\Pi' = (\beta'_1, \beta'_2) \in \mathcal{M}_{1,2}(\mathbb{C}')$. The rational representation $\rho_r(h)$ is given by a matrix

$$\mathcal{A} = (\alpha \mid \theta) = \begin{pmatrix} A_1 & \dots & A_g & C_1 & \dots & C_g \\ B_1 & \dots & B_g & D_1 & \dots & D_g \end{pmatrix} \in \mathcal{M}_{2,2g}(\mathbb{Z})$$

and the analytic representation $\rho_a(h)$ is given by a matrix $A = (a_1 a_2 \dots a_g) \in \mathcal{M}_{1,g}(\mathbb{C}')$. Then we have the equality:

$$A\Pi_{J_B} = \Pi' \mathcal{A} \tag{10}$$

(see, for example, [9], p. 10).

Let $a_j = t_{j1}\beta'_1 + t_{j2}\beta'_2$ with $t_{j1}, t_{j2} \in \mathbb{R}$ and put $T_j = t_{j2}\beta_1 - t_{j1}\beta_2, j = 1, 2, ..., g$. Let $T = {}^t(T_1T_2...T_g) \in \mathcal{M}_{g,1}(\mathbb{C})$. By computation, we get from (10) the equations:

$$\Pi T = {}^{t} \alpha \left(\begin{array}{c} -\beta_{2} \\ \beta_{1} \end{array} \right) , \ I_{g} T = {}^{t} \theta \left(\begin{array}{c} -\beta_{2} \\ \beta_{1} \end{array} \right) .$$
(11)

Finally, one obtains the relation

$$\left(\Pi \,{}^{t}\theta - \,{}^{t}\alpha\right) \, \left(\begin{array}{c} -\beta_{2} \\ \beta_{1} \end{array}\right) = 0, \tag{12}$$

i.e. g relations for the elements of the period matrices. Thus we get the desired isomorphism

$$NS(X)/Tors NS(X) \cong \mathcal{NS}.$$

Acknowledgments

This work was done within the framework of the Associateship Scheme of the International Centre for Theoretical Physics, Trieste, Italy.

REFERENCES

1. W. Barth, C. Peters, A. Van de Ven, *Compact complex surfaces*, Berlin, Heidelberg, New York, Springer 1984.

2. V. Brînzănescu, Neron-Severi group for nonalgebraic elliptic surfaces I: Elliptic bundle case, Manuscripta Math. **79**, (1993) 187–195.

3. V. Brînzănescu, Neron-Severi group for nonalgebraic elliptic surfaces II: non-kählerian case, Manuscripta Math. **84**, (1994) 415–420.

4. V. Brînzănescu, *The Picard group of a primary Kodaira surface*, Math. Ann. **296**, (1993) 725–738.

5. V. Brînzănescu, *Holomorphic vector bundles over compact complex surfaces*, Lecture Notes in Math. **1624**, Berlin, Heidelberg, New York, Springer 1996.

 V. Brînzănescu, K. Ueno, Neron-Severi group for torus quasi-bundles over curves, in: Moduli of vector bundles, Lecture notes in pure and applied mathematics 179, 11–32, Marcel Dekker, Inc., 1996.

7. R. Friedman, J. W. Morgan, *Smooth four-manifolds and complex surfaces*, Berlin, Heidelberg, New York, Springer 1994.

8. G. Kempf, *Complex abelian varieties and theta functions*, Berlin, Heidelberg, New York, Springer 1992.

9. H. Lange, Ch. Birkenhake, *Complex abelian varieties*, Berlin, Heidelberg, New York, Springer 1992.

10. D. Mumford, Abelian varieties, Oxford, Oxford University Press 1974.