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INTRODUCTION

The interest in the studies of systems with strong electron-electron correlations consider-

ably increased after the discovery of two classes of such systems, namely heavy fermions

(see for review [1]) and high- temperature superconductors (see excellent recent review

[2]). Both the heavy fermions and the cuprate high-Tc superconductors demonstrate many

unusual properties which can not be explained in terms of the theory of weakly coupled

electrons. For example, the cuprate high- Tc superconductors are highly correlated “bad

metals” with normal state properties that are not at all those of a Fermi liquid. There

is compelling evidence that they are better thought of as doped Mott insulators, rather

than as strongly interacting versions of conventional metals. Practically all experiments,

e.g., angle-resolved photoemission [3]-[7], NMR [8] -[10], infra-red conductivity [11], [12],

transport properties [13], thermopower [14], Raman spectroscopy [15] etc provide an ev-

idence for an anomalous metallic state above superconduction transition temperature Tc

in the underdoped high-Tc cuprates. The anomalies take place below some characteris-

tic temperature T ∗(δ) depending on carrier concentration δ. The cuprates also exhibit

numerous types of low temperature order which interact strongly with the superconduc-

tivity, the most prominent being antiferromagnetism and the charge and the spin density

wave order. These orders can compete and coexists with superconductivity.

On the other hand, most of the heavy fermion compounds are famous for their un-

usual electronic and magnetic properties, including giant effective masses observed in

thermodynamic and the de Haas-van Alphen measurements [16], unconventional super-

conductivity [17] and a fascinating variety of magnetic properties [18]. The great majority

of the metallic Kondo lattice (KL) systems demonstrate antiferromagnetic (AFM) cor-

relations and all types of the AFM order may be found in these compounds. There are

localized spins in U2Zn17, UCd11, CeIn3 [18], quadrupole ordering in CeB6 [19], interplay

between localized and itinerant excitations in several U- and Ce-based compounds [20],

puzzling magnetic order of tiny moments in UPt3, URu2Si2, UNi2Al3 [21], quantum phase

transition in CeCu6−xAux [22], fluctuation-type dynamical ordering in U(Pt1−xPdx)3 [23],

short-range magnetic correlations in an astonishingly wide temperature interval of critical

behavior in CeCu6 and CeRu2Si2 [24]. This list is by no means exhaustive. The super-

conducting state in most cases coexists with antiferromagnetism, and, apparently, Cooper

pairing itself is mediated by magnetic fluctuations [17, 25].

Heavy fermions

The most remarkable feature of Heavy Fermion (HF) compounds is a dramatically sharper

scattering resonance near the Fermi level [26]. This narrow resonance appears due to the

many-body effects which lead, within the framework of Landau’s Fermi-liquid theory, to

strongly renormalized electronic quasiparticles with, e.g., very heavy masses [1]. The for-

mation of the heavy quasiparticles takes place at a low temperature. In the dilute alloys

the characteristic energy scale ε ∼ TK related to the resonance at εF is commonly con-
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nected with the Kondo effect [27] - the resonance scattering of an electron on a magnetic

impurity with a simultaneous change of the spin projection. This ”Kondo temperature”

TK typically lies in the range of a few degrees Kelvin. In many respects, concentrated

heavy-fermion systems show striking similarities with the dilute Kondo systems. Most of

the properties may be understood via one characteristic energy scale T ∗, which could be

surprisingly close to the value of TK of the corresponding dilute system. As in the dilute

case the electrical resistivity of the heavy fermion compounds has a negative temperature

coefficient above T ∗. Hence, the concentrated Kondo systems can be considered as a pe-

riodic structure of Kondo impurities which scatter conduction electrons coherently. The

behavior of such a systems is described by the periodic Anderson model (PAM) [28] which

contains a localized f band of strongly correlated electrons interacting with a d band of

free conduction electrons. In some HF systems, e.g. most of the U-based HF compounds,

the f states contribute to the crystal binding via hybridization with delocalized band

states whereas, e.g., in most of Ce - based compounds, the contribution of the f states to

the energy is negligible due to large valence-excitation energy. These materials have been

labeled as ”Kondo lattices”. In these compounds, the direct exchange and the crystal field

effects determine the low-temperature state, which mostly involves a magnetic order.

In a lattice - periodic system the ground state, even if not magnetic or superconducting,

should be coherent, and the low lying excitations should obey the well known laws of

Landau’s Fermi liquid (FL) theory. In many systems a FL behavior is observed at low

temperatures T < Tcoh with a specific heat Cv ∼ T , a magnetic susceptibility χ ≈ const

and a resistivity ρ ≈ ρ0+AT 2, where Tcoh < T ∗ is a ”coherence temperature”. However, in

several heavy fermion systems, a pronounced deviation from FL behavior had been found

in a number of physical properties. Most such non-Fermi-liquid (NFL) materials share

two characteristics: a proximity to the magnetic region of the appropriate phase diagram

(usually temperature vs. pressure or chemical composition), and disorder due to chemical

substitution. Recent experiments show that disorder is very important to produce the

NFL behavior. Therefore, the NFL properties of these compounds are the consequence

of the competition between the one-site Kondo interaction and the inter-site Ruderman -

Kittel - Kasuya - Yosida (RKKY) [29] interaction in a disordered environment [30, 31].

In addition, the surprisingly high effective masses of the quasiparticles and the NFL

behavior, in particular the exotic properties of the cooperative states of the heavy fermion

systems stimulate the new theoretical concepts for highly correlated electron systems.

A variety of interesting magnetic phenomena, e.g., modulated structures, Spin Density

Waves (SDW), reduced moments, strong deviation from Bardin-Cooper-Schrieffer (BCS)

theory in the superconducting state and even the coexistence of magnetic order with

unconventional superconductivity have been observed in the heavy fermion compounds.

Thus, the HF behavior demonstrates, in a particularly pronounced fashion, the impact of

strong correlations on classical condensed matter physics.

In the phase diagram of the disordered KL more exotic possibilities such as non Fermi

liquid regimes arise, which were observed, for example, near the T = 0 quantum critical

point in Y1−xUxPd3 (see, e.g., Ref. [32]). In this family of ternary alloys, the spin glass

(SG) behavior was discovered in a U concentration range given by 0.3 < x < 0.5 with
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a freezing temperature Tf growing monotonically with x (see Ref.[33]). Among other U-

based heavy fermion compounds with SG behavior, URh2Ge2 [34], U2Rh3Si5 [35], U2PdSi3

[36] should be mentioned. The effects of ”Kondo disorder” were reported for UCu5−xPdx in

Ref. [37]. Later on the competition between RKKY and Kondo exchange for disordered Ce

alloys was discovered experimentally (see Refs. [38] - [40]). The magnetic phase diagram

of CeNi1−xCux exhibits a change of magnetic ordering from AFM to FM at x = 0.8,

whereas for 0.2 < x < 0.8 the SG state appears only at high temperatures above the FM

order. Apparently, the Kondo interaction could be considered as the mechanism leading to

the reduction of magnetic moments because increasing the Ni contents effectively reduces

the strength of the indirect exchange interaction, and then, a larger temperature stability

range of the SG phase appears (see Refs. [38] - [39]).

Cuprate high-Tc superconductors

In cuprates, the ground state of the undoped perovskite oxide is an antiferromagnetic Mott

insulator, with nearest-neighbor Cu2+ − Cu3+ antiferromagnetic exchange interaction in

the CuO2 plane [41], [42]. Depending on doping with either electrons or holes into CuO2

planes, the Néel temperature for the antiferromagnetic-paramagnetic transition decreases

with increasing doping level. Upon further doping of carriers, long range antiferromag-

netism vanishes and is replaced by superconductivity. As shown in the phase diagram for

the hole-doped (p-type) and electron doped (n-type) cuprates in Fig.1, the superconduct-

ing transition temperature (Tc) first increases with increasing the doping level δ reaching

a maximum Tc at an optimal doping level, then decreases and finally vanishes with fur-

ther increase of doping. Although the phase diagram appear similar for both p-type and

n-type cuprates, they are not truly symmetric. For p-type cuprates in the underdoped

and optimally doped regime, the normal state properties below a crossover temperature

T ∗ are significantly different from those of Fermi liquid. These unconventional normal

state properties are referred as the pseudogap phenomenon [44].

Concerning the competing orders in the ground state of the cuprates, besides the

obvious SU(2) broken symmetry associated with the occurrence of antiferromagnetism

and U(1) broken symmetry associated with the superconducting phase transition, other

competing orders include the crystalline symmetry (C) and time-reversal symmetry (T)

[45]-[46]. A concept of d-density wave (DDW) state as ground state of optimally doped

cuprates has been proposed in [47]. This state is also known as orbital antiferromag-

netism, which involves alternating orbital currents from one plaque to the adjacent plague

[47]. The DDW state is a broken T- symmetry state, which in principle, can be verified

experimentally [47], although to date no conclusive empirical evidence has been found.

Other possible ground states based on the simplified mean-field and two-dimensional

square-lattice approximations include spin-Peierls state, Wigner crystal state, spin den-

sity waves, charge density waves and complex pairing symmetries of (dx2−y2 + idxy) or

(dx2−y2 + is), depending on the doping level and the Coulomb and exchange interaction

strengths [45]-[46].

There has been no consensus to date for the mechanism of cuprate superconductivity

3



T (  )δ
N T (  )δ

N

Temperature

Hole ConcentrationElectron Concentration

marginal Fermi liquid

Fermi liquid
Pseudogap

regime

P−TypeN−Type

QCP1QCP2

d−wave SC δδ δcunderdoped overdoped

SC

T (  )

T (  )
T (  )

δ

δ
δ

AFMAFM

c

c

*

(MFL)

SG

0

Figure 1: Generic temperature (T) vs. doping level (δ) phase diagrams of p-type and n-type cuprates in
zero magnetic field. (AFM: antiferromegnetic phase; SC: superconducting phase; SG: spin glass phase;
TN and Tc are the Néel and superconducting transition temperatures, respectively; T ∗ is a pseudogap
crossover temperature.)

[45]-[58], and the theoretical status of the field has been largely phenomenological and

controversial. In general, the ground state of cuprates depends sensitively on the doping

level, the type of carriers, the electronic coupling between adjacent CuO2 layers, and

the degree of disorder. The large varieties of ground states are indicative of the complex

nature of competing orders in the cuprates. It is therefore imperative to identify universal

characteristics among all cuprates and to develop understanding for the differences.

Lifshitz transition in 2D electron gas

In the first part of this volume we show that many of the unusual properties of the un-

derdoped cuprates, observed experimentally in Refs.[8]-[15], can be naturally understood

within the concept of the proximity of the underdoped regime to an Electronic topological

transition (ETT). This concept was firstly introduced by Lifshitz [59] as “electron transi-

tion” and was subsequently called ETT [60] (see also [61] for review) due to change of the

topology of the Fermi Surface (FS). It is known that the corrections to the energy of an

electron gas in three dimensions at T = 0, associated with ETT, as a function of a change

of the chemical potential µ, is proportional to |µ − µc|5/2. Therefore, in accordance with

a standard classification of the phase transitions, the ETT was attributed to so-called

2.5 - order phase transition. We emphasize, however, the difference between the Lifshitz

transition and the standard second-order phase transition. The latter is related to the

change of the symmetry and occurs along the curve in a plane temperature vs. pressure.

The Lifshitz transition, in turn, takes place (even without any electron-electron interac-

tion!) only at T = 0 and is smoothed out at finite temperatures. In papers [P5, P6, P8,
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P9] the general approach to ETT as a Quantum Phase Transition (QPT) associated with

an existence of a Quantum Critical Point (QCP) is developed. Since the ETT quantum

critical point becomes “more singular” in low dimensions, the application of ETT concept

to two-dimensional (2D) electron gas has a particular interest.

As it has been shown in [P6] and [62] - [64] that a 2D electron system on a square

lattice with hopping beyond nearest neighbors undergoes an ETT at a positive hole con-

centrations δ (δ = 1−n where n is an electron concentration). It is true for noninteracting

electrons. It is also true for a strongly correlated system with quasiparticles with a dis-

persion law determined by the symmetry of the square lattice. For high-Tc cuprates

such quasiparticles appear in t − t′ − J model after taking into account the kinematic

interactions.

In publications [P8, P9], various ordered states appearing in the vicinity of ETT point

in the presence of interactions have been considered. It has been shown that the ordered

”excitonic” phase formed in a proximity of quantum critical point (QCP) corresponding

to ETT, 1 is characterized by an electron spectrum strikingly similar to that observed in

the underdoped cuprates. The mentioned ETT corresponds to the electron concentration

nc = 1− δc at which the Fermi level (FL) crosses the saddle point (SP) energy in the bare

spectrum. As shown in [63], in the case of hopping between more than nearest neighbors

(or, in other words, of electron - hole asymmetry) the existence of the ETT QCP leads

to a very asymmetric behavior of the noninteracting and interacting system on two sides

of ETT, being quite anomalous on the side δ < δc. On the other hand, for realistic

high-Tc cuprates with the ratio of hopping parameters between nearest and next nearest

neighbors t′/t, δc is given by: δc = 0.27 for t′/t = −0.3 and δc = 0.17 for t′/t = −0.2,

i.e., the anomalous regime δ < δc occurs in the doping range where the experimentally

observed normal metal anomalies take place. Moreover, δ = δc corresponds to a maximum

of Tsc(δ) (as discussed in [63]) and therefore the latter regime can be considered as an

underdoped regime.

In the presence of a dynamic interaction between the quasiparticles with an appropri-

ate sign, the spin density wave (SDW), the charge density wave (CDW) with different

types of the order parameter symmetries (s-wave, d-wave) and the superconducting (SC)

instabilities develop around the ETT point. Despite the different symmetries, the proper-

ties of such DW-ordered states resembling an ”excitonic” states [65]-[71] are quite similar.

For example it has been shown in [P6, P8] that the electron spectrum in the ordered

phase is characterized by a gap on Fermi level for wavevectors belonging to some part

of Brillouin zone which always covers the SP wavevectors (0, π), (π, 0) irrespective of the

doping concentration. This remarkable feature is related to a quite nontrivial aspect of

ETT: it is the end point of two critical lines for the ”polarization operator” characterizing

a behavior of the free electron system. The other aspect of the same effect is an increase

of the amplitude of the order parameter (and of the gap) with increasing the deviation

from the QCP on the underdoped side. Thus, the existence of a quantum critical point

associated with the electronic topological transition is shown to be responsible for normal

1It has been shown in [63] that the ETT point is an isolated QCP. The properties of this QCP have been studied in

detail in [63]
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state anomalies observed in high-Tc cuprates.

Magnetic instabilities in perfect and disordered Kondo lattices

The second class of problems considered in this volume is related to the behavior of peri-

odic Kondo systems (Kondo lattices) in the vicinity of a magnetic (spin glass) transition.

In this case there are two possibilities: the compound will have a long range magnetic

order when the RKKY interaction is sufficiently large compared to the Kondo interaction,

or the compound will be paramagnetic due to the quenching of magnetic moments of the

rare earth atoms [72] and the ground state has the features of a Kondo-singlet state. The

simple Doniach dichotomy [72] predicts that either Kondo screening or the trend of mag-

netic order should win depending on the value of parameter α, the ratio of the single ion

Kondo temperature TK to the RKKY interaction scale TRKKY . When this ratio exceeds

a critical value α > αc, the magnetism would vanish, but magnetic correlations modify

the properties of the Kondo singlet state. Thus, there are several manifestations of the

influence the antiferromagnetic (AF) fluctuations on the electron and spin subsystems.

i) The first one is associated with the NFL behavior of conduction electrons due to

the scattering with the antiferromagnetic fluctuations [73]-[75], especially in the quantum

critical regime [76]-[79].

Antiferromagnetic quantum critical behavior occurs in many heavy fermion metals, includ-

ing CePd2Si2 [25], CeIn3 [25], CeNi2Ge2 [80], CeCu6−xRx (R = Au, Ag) [81], CeRu2Si2
and U2Pt2In2. Either by pressure [82], doping or a magnetic field [83], these components

can be reproducibly brought to a quantum critical point (QCP) where Néel temperature

vanishes. At this point various non-Fermi liquid properties develop, such as

• Anomalous power-law temperature dependence of the resistivity (see, e.g [78]). In

CePd2Si2, e.g., a power law is ρ ∼ T 1.2 is seen in both the antiferromagnetic and

the paramagnetic side of the transition.

• Non Curie temperature dependence of the susceptibility [84].

• Anomalous logarithmic temperature dependence of the specific heat Cv/T ∼ ln(T ∗/T ).

Moreover, in the case of CePd2Si2 and CeGe2Ni2, superconductivity is found to develop

at low temperatures in the vicinity of the QCP.

The hypothesis based on the assumption of the quasi two-dimensional magnetic fluctu-

ations coupled with the conduction electrons was proposed in [73]-[75] for the explanation

of NFL behavior in CeCu6−xAux. Nevertheless, the influence of critical AFM fluctuations

on the Kondo effect were not considered in this theory.

Besides, the question whether the Kondo effect happens to fail to influence the anti-

ferromagnetic transition point (and QCP) as it is the case for an almost ferromagnetic

metal, where the impurity spins magnetize the conduction electrons in the regions which

are much larger than the interatomic distances [85], still remains. At present, there is

no theory for the Kondo effect at the antiferromagnetic QCP. However, the break-down

of the Kondo effect at a quantum critical point has been considered in other context,
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particularly in quantum spin-glasses (QSG) [86]. Beyond this QCP and deep inside the

quantum spin glass phase even more interesting phenomena may occur due to the presence

of low–lying excitations present in the full Parisi solution.

Unconventional (p- or d- wave) superconductivity is assumed to exist in HF systems

and its special symmetry offers particular conditions for its coexistence with a magnetic

order. The existing disorder-averaged theory of local pairing superconductivity, in prin-

ciple, well-suited to describe HF systems, requires a nonlocal extension to incorporate

this symmetry. Its equivalence with the d = ∞-method, whose field of application is not

limited to clean systems, should be employed to achieve this goal.

ii) The second manifestation of AF fluctuations in Kondo lattices is related to the

behavior of interacting localized spin subsystems. In the mean-field approach, proposed

by Coleman and Andrei [87], the Doniach dichotomy was supplemented by the possibility

of forming the spin liquid of resonating valence bond (RVB) [88] type with Fermi statistics

for the elementary excitations (spinons). This nonmagnetic spin liquid state was shown to

be stabilized by the Kondo scattering, but the s−f exchange interaction between spinons

and electrons was treated in a mean field approximation which implies the charging RVB

due to the momentary escape of a valence bond into the conduction sea. In this naive

mean-field approach, the local constraint for the ”pseudofermions”, introduced to describe

the spins, is replaced by a global one and, besides, the additional efforts are necessary to

include the magnetic fluctuations into this picture.

Another interesting aspect of HF physics is related to the behavior of disordered mag-

nets and especially the spin glasses (SG) [89, 90]. Recent experiments in HF compound

like Y1−xUxPd3 [32, 91] show a paramagnet to spin-glass transition within the metallic

regime as the doping (x) exceeds a critical value. In this case, the ground state can either

be a spin glass, in which each spin has an infinite-time memory of its spatially random

moment, or a quantum paramagnet, in which the spin correlations decay to zero in the

long-time limit. It is interesting to analyze the highly nontrivial relationship between

Kondo effect, RKKY interaction, and Quantum Parisi Phase.

Previously, Sengupta and Georges [92] (see also [93]) found NFL behavior in an ef-

fective field theory, derived by integrating out conduction electrons, whose spins were

coupled to localized ones by a Kondo interaction. In the original paper [92] the simpli-

fying assumptions (d = ∞, separate electron bath for each localized spin) were made.

Thus, the form of the spin-spin correlator was predetermined, and all these assumptions

allowed the authors to obtain an exact solution in the framework of dynamical mean-field

theory. NFL behavior was observed in this quantum critical regime spreading out from

the QCP.

In publications [P10, P13] an alternative approach based on a mapping of Kondo lattice

model with quenched disorder onto a single impurity Kondo model in replica-dependent

magnetic field. This approach allowed to take into account the Kondo screening effects

and demonstrate that the competition between Kondo and spin-glass correlations results

in suppression of the spin-glass transition. Thus, the concept of competing orders applied

to imperfect Kondo lattice model allowed to formulate a new class of Doniach diagrams

describing a competition between Kondo scattering and effects of disorder.
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Summarizing, both high temperature superconductors and heavy fermion compounds

demonstrate variety of anomalous properties which can not be explained in the framework

of standard BCS superconductivity theory and standard theory of localized and itinerant

magnetism. Both classes of these strongly correlated systems are characterized by at least

two common features:

• existence of several competing local and non-local orders

• quantum critical fluctuations associated with the existence of the quantum critical

points.

In this manuscript, we demonstrate several possibilities of a microscopic description of

competing orders in the high temperature cuprate superconductors and the heavy fermion

compounds and discuss the origin of quantum criticality determining the anomalous prop-

erties of these materials.
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In this volume, we discuss 15 publications dealing with the different aspects of strongly

correlated physics. The primary goal is to give a summary and connections between these

publications. Details of the calculations are, in general, not reported here and deferred

to the enclosed reprints. These publications can be separated into three groups.

• The first group of publications [P5, P6, P8, P9] aims at studying the competition be-

tween d - wave superconductivity and Spin (Charge) density waves in 2-dimensional

electron gas on a lattice in the vicinity of an Electron Topological Transition (ETT).

The concept of two quantum critical points associated with change of geometry of

Fermi surface has been introduced in [P5]. The influence of ETT on the properties

of the normal state of high-Tc cuprate superconductors in the underdoped regime

have been investigated in [P6]. The mean-field theory of hidden “excitonic” state

associated with the ETT has been developed in [P8]. It was shown that the spectrum

of excitations and angle dependence of “excitonic” order parameter have a striking

similarity with the features observed in the normal state of the underdoped high-Tc

cuprates. An interplay between various ordered states in the vicinity of the ETT is

considered in [P9]. The summary of results is given in Section I.

• In another group of publications [P1-P4, P7, P10, P13] we study the competition be-

tween the local (magnetic, spin-glass) and the non-local (Resonance Valence Bonds)

correlation in the presence of Kondo scattering. The scenario of interplay between

local and non-local correlations in Kondo lattices (KL) and its application to heavy

fermion compounds has been formulated in [P1]. The theory of critical antiferro-

magnetic fluctuations in the presence of Kondo screening has been constructed in

[P2]. The diagrammatic approach to mode-mode coupling theory of the critical

phenomena in Heisenberg antiferromagnet was introduced in [P3]. A self-consistent

microscopic theory of the relaxation of Crystalline Electric Field levels of an impu-

rity ion, implanted in a normal metal, is devised in [P4]. The theory successfully

explained experiments in Pr - doped CeAl3 and LaAl3. A new approach for Kondo

lattices based on semi-fermionic (SF) representation of spin has been proposed in

[P7]. The Ginzburg- Landau theory of nearly antiferromagnetic Kondo lattices has

been developed in [P13] with the help of SF formalism. The problem of the influence

of Kondo screening on the spin glass transitions in disordered Kondo lattices has

been formulated in [P10]. The effective action and replica symmetric saddle point

solution has been found for KL model with infinite range Ising-like spin-spin interac-

tion (fully connected lattice) in [P10] and for Edwards-Anderson model of disorder

in [P13]. These works are summarized in Section II.

• In the third group of publications [P7, P10-P12, P14, P15] a new concept of semi-

fermions is introduced. A mathematical theory of semi-fermionic representation for

the generators of SU(N) group has been constructed in [P12]. Based on this the-

ory, the minimal semi-fermionic representation for SU(2) group has been obtained

in [P12] in imaginary-time formalism. A new Schwinger-Keldysh approach for quan-

tum spin systems based on SF concept has been developed in [P11, P12, P15]. The
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generalization of SF approach for the group with dynamic symmetries has been dis-

cussed in [P15]. As an example, the SO(4) group was considered. An application of

SF formalism to mesoscopic system such as double quantum dot allowed to make a

prediction for the Kondo effect induced by an external electric field [P14]. In this

paper the competition between finite-bias and Kondo effect similar to the interplay

between Kondo effect and magnetism in heavy fermion compounds is discussed in

great details. The summary of mathematical aspects of the semi-fermionic represen-

tation and its application to various problems of strongly correlated physics is given

in the Section III.

A summary of new results obtained in [P1-P15] is given in the Epilogue.
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1. Electronic Topological Transition

Many experiments performed for high Tc cuprates provide an evidence for the existence

of a pseudogap in the underdoped regime above Tc and below some temperature T ∗(δ)
which increases with increasing the departure from the optimal doping, δopt − δ [8]-[15].

The pseudogap is observed directly by the angle-resolved photoemission spectroscopy

(ARPES) measurements [3]-[7]. The striking feature about this gap is its increase with

increasing δopt − δ [6] while the critical temperature of superconducting (SC) transition,

Tsc, decreases. Another prominent feature is the so-called (π, 0) feature discovered by

ARPES: the electron spectrum around the saddle-point (SP) is flat and disappears above

some threshold value of wavevector [3]. Several hypotheses exist about possible origin of

the pseudogap [94]-[97]. In papers [P5-P6, P8-P9] we present another explanation of this

phenomenon in the framework of the model developed in [62], [P6]. In these works, the

concept of the Electronic Topological Transitions in 2D system is introduced and applied

to the understanding of various effects experimentally observed in high - Tc cuprates.

In papers [P5, P6, P8, P9], we focus on 2D electron systems in direct application to the

high-Tc cupretes. We show that in the case of a 2D electron system on a square lattice

with isotropic hopping beyond nearest neighbors, ETT is very rich, the corresponding

QCP is a multi-critical point combining the different aspects of the criticality.

A starting point is a 2D system of free fermions on a square lattice with hopping

between nearest (t) and next nearest (t′) neighbors

εk = −2t(cos kx + cos ky) − 4t′ cos kx cos ky (1)

The dispersion law (1) is characterized by two different saddle points (SP’s) located at

(± π, 0) and (0,±π) (in the first Brillouin zone (−π, 0) is equivalent to (π, 0) and (0,−π)

is equivalent to (0, π)) with the energy εs = 4t′. When we vary the chemical potential µ

or the energy distance from the SP, Z, determined as

Z = µ − εs = εF − 4t′, (2)

the topology of the Fermi surface changes when Z goes from Z < 0 to Z > 0 through

the critical value Z = 0, see Fig.2. For t′/t �= 0 which is the case of our interest, the

FS does not satisfy the perfect nesting condition [98], [99] and has a different shape for

different signs of t′/t. In our paper, we discuss t′/t < 0 that corresponds to the proper fit

of ARPES experimental data. The FS’s corresponding to Z > 0 and Z < 0 are shown on

Fig.2.

According to Fig.2, the FS can be classified as follows. For arbitrary filling factor

(depending on doping), the FS can have either 8 points which can be connected by vector

Q = (±π,±π) (see Fig.2), or 4 points, or do not have any such a points. These points are

called ”hot spots” (HS) (see [17]). The 8 hot spots are the intersection points between the

Fermi Surface (FS) and the umklapp surface (US) kx±ky = ±π. The two quantum critical

points QCP1 and QCP2 correspond to critical hole doping δc1 and δc2. For δc2 < δ < δc1

there are 8 hot spots. When δ → δc1, they become 4 hot spots located at the 4 saddle

points (kx = ±π, ky = 0 and ky = ±π, kx = 0), then for δ > δc1 they disappear. When
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Figure 2: Fermi surface of the electron system with the dispersion law (1) for different doping. The thick
line correspond to ETT.

A B
(π,0) (0,π)

QAFεF (π,0) (0,π)

A BQAFεF

Figure 3: Schematic presentation of the electron spectrum in a vicinity of two saddle points a) at the
ETT point Z = 0, b) in the vicinity of the ETT point Z < 0.

δ → δc2 they coincide with the 4 points located at the FS along the diagonals kx = ±ky;

for δ < δc2 they disappear. The schematic presentation of the electron spectrum for

δc2 < δ < δc1 is shown in Fig.3. The calculated susceptibility χ0(QAF , 0) is shown in Fig.4

as a function of hole doping δ. It reveals two singularities: a logarithmic singularity at

QCP1, δ = δc1 (µ = 4t′), and a square-root singularity at QCP2, δ = δc2 (µ = 0), for each

negative value of t′/t (|t′/t| < 1/2). In turn, the Cooper polarization loop is practically

symmetric in the vicinity of log-singularity associated with QCP1 and is not sensible to

QCP2.

It has been shown in [63], that such a system undergoes a fundamental ETT at the

electron concentration corresponding to Z = 0. The corresponding quantum critical point

is quite rich. It combines several aspects of criticality. The first standard one is related

to the singularities in thermodynamic properties, in density of states at ω = 0 (Van Hove

singularity), to additional singularity in the superconducting (SC) response function, all

reflect a local change in the topology of FS. This aspect is not important for the properties

we are interested in the present paper. Important aspects which reflect a mutual change

in the topology of FS in the vicinities of two SP’s are the following. First of all, it is a
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Figure 4: Electron-hole susceptibility and superconducting polarization operator (Cooper loop) around
two quantum critical points QCP1 and QCP2.

logarithmic divergence of the polarizability of noninteracting electrons

χ0(k, ω) =
1

N

∑

q

nF (ε̃q) − nF (ε̃q+k)

ε̃q+k − ε̃q − ω − i0+
, (3)

as k = Q = (π, π), ω = 0 and Z → 0 :

χ0(Q, 0) ∝ ln
ωmax

|Z| . (4)

which has an ”excitonic” origin (ωmax ∼ t is a cutoff energy). By ”excitonic” origin we

mean that two branches of the spectrum in the vicinities of two SP’s (a = t − 2t′, b =

t + 2t′)
ε̃1(k) = ε1(k) − µ = −Z + ak2

x − bk2
y ,

ε̃2(k) = ε2(k) − µ = −Z + ak2
y − bk2

x (5)

have such a form (see Fig.3) that at Z = 0 the chemical potential lies on the bottom

of one ”band” and on the top of the another for the given directions (0, π) − (π, π) and

(π, 0) − (0, 0), (see Fig.3). Therefore, no energy is needed to excite the electron-hole

pair. It is this divergence that is at the origin of density wave (DW) instability. The

DW instability can be of Spin Density Wave (SDW), Charge Density Wave (CDW), Spin

Current Density Wave (SCDW) or Orbital Current Density Wave (OCDW) instability

[71]) of the interacting electron system depending on the nature of interaction.

The non-triviality stems from the aspect of criticality related to the effect of Kohn

singularity [100] in 2D system: the point Z = 0, T = 0 is the end of the critical line Z < 0

each point of which is a point of static Kohn singularities in polarizability of noninteracting

electrons. As shown in [63], the latter aspect is a motor for the anomalous behavior of the

system on the other side of ETT Z > 0. One among the anomalies found in [63] concerns

the ordered DW phases. We have obtained that the line of DW ”excitonic” instability

TDW (Z) has the anomalous form on the side Z > 0: it grows from QCP instead of having

the form of a bell around QCP as it usually happens in the case of ordinary QCP. Below

we show that this latter aspect is also at the origin of anomalous behavior of the order

parameter and of some other anomalies in the ordered state in the same regime Z > 0. As
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Figure 5: One-particle spectra along (π, pi)− (π, 0) and (π, 0)− (0, 0) lines. (a) calculated from t− t′ −J

model t′/t = −0.3, t/J = 1.8, Z/t = 0.03. Long dashed line is the bare spectrum, dot-dashed line
corresponds to the spectrum when the residue of the Green’s function is less than 0.1. (b) Experimental
one-particle spectra measured in the underdoped regime of BSCO.

shown in [63], on the Z > 0 side of the electronic topological transition point, a maximum

of the static electron - hole susceptibility occurs at the wavevector q = Q. Therefore

in the presence of q independent interaction or a q dependent interaction negative for

q = Q, the DW instability occurs at q = Q and this is the wavevector of ordering in the

DW phase.

Let’s analyze now the form of the spectrum in the DW phase (Fig.5). The spectrum

in close to the SP has the following prominent features: The first is a characteristic ”flat”

shape which is a consequence of the hybridization of the two branches of the bare spectrum

in the vicinity of two different SP’s with the opposite curvatures, (see Fig.5). The second:

the spectrum in the direction (π, π) − (0, π) ”disappears” above some threshold value of

wavevector since the residue of Green’s function tends to zero (that is also an ordinary

consequence of the hybridization). The third: the chemical potential always lies in the

gap for the part of Brillouin zone (BZ) around SP wavevectors since

ε1(kSP ) = −Z + ∆,

ε2(kSP ) = −Z − ∆

and the gap ∆ always satisfies the condition ∆ > Z.

This is a consequence of the existence of the critical line ∆ = ∆c related to the

aspect of criticality of the QCP, as discussed above. The obtained theoretical spectrum

has a striking similarity with the anomalous experimental electron spectrum observed by

ARPES [3] in the underdoped cuprates below the characteristic line T ∗(δ), we reproduce

it in Fig.5b. (Let us remind that ARPES measures a spectral function only below FL.)

For the direction (0, 0)− (π, π), Fermi level crosses the lower branch of the spectrum, (see

Fig.5), i.e. the system remains metallic. In fact, the chemical potential gets out of the

gap for directions extending from the diagonal (0, 0) – (π, π) to some limit direction. This

corresponds to an arc of FS shown in the insert of Fig.6 which is the lower part of a pocket

(the upper part corresponding to a low residue is not shown). The limit points of the arc

are located on the umklapp surface away from the hot spots of the unperturbed Fermi

surface. As the gap value ∆ is large than Z, the FS is destroyed starting from the hot
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leading edge midpoint measured by ARPES in the underdoped BSCO (b).

spots in both directions up to the saddle points on the side and up to limit points on the

other side (the position depends on the position of the hot spots and on the strength of

the interaction V ). For large Z and large J , the Fermi surface pockets may fully disappear

and the system becomes an insulator. The angle dependence of the value of εk − µ, i.e.

of the gap calculated from FL, in the same way as it is done in ARPES experiments [4]

is presented in the Fig.6. Namely we plot the minimal value of |εk − µ| for each given

direction from the diagonal (0, 0) – (π, π) to the direction (0, 0) – (0, π) . The dependence

is of a ”d-wave type” in a sense that the gap increases with increasing the argument

(cos kx − cos ky) almost linearly in the proximity of SP. However, the dependence is flat

(not linear as it happens in the d-wave case) when approaching the direction (1, 1). Such

a behavior is also close to the experimentally found behavior above Tc [4] reproduced in

Fig.6(b). [Although the authors of [4] claim that the behavior observed above and below

Tc is the same, what one sees in the experimental plot is not exactly this : the behavior

above and below Tc is similar in the vicinity of SP and different when approaching the

(1, 1) direction and this occurs quite systematically, see also the plots in [4] for other

samples.]

We considered the particular case of SDW as an example of ordered ”excitonic” state.

Nevertheless, all aforesaid is true for any other type of ordered state since the existence

of such states is determined only by topology of FS.

Let us discuss the phase diagram Fig.7. In our calculations [P8, P9] we assumed

t−t′−J model. For such interactions, both the instabilities d-wave SC (see details in [63],

[P8, P9]) and SDW take place around QCP1. Due to the symmetry of the SC response

function in Z, Tsc(δ) is symmetrical on either sides of δc with a maximum at δ = δc, see

Fig.7a. Therefore the regimes δ < δc and δ > δc can be considered as underdoped and

overdoped, respectively. On the contrary, the line of SDW instability, TSDW (δ), given by

χ0(q, 0) = −1/Jq (q = Q for δ < δc and q = qm for δ > δc) has an anomalous form in the
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regime δ < δc: it develops rather around the lines T ∗
Re(δ) and T ∗

Im(δ) than around QCP

(see Fig.7) reproducing the form of lines, χ0(Q, 0) = const, discussed above.

The first possibility (Fig.7a) is that the ordered SDW phase is a “hidden” phase being

always below the line of the superconducting transition. When at certain doping, δ=δSDW ,

the ordered SDW solution disappears, it is the disordered metallic state which keeps this

type of behavior: the regime T ∗
Re(δ) < T < T ∗

Im(δ) (II) turns out to be a regime of a

minimum disorder and the regime T < T ∗
Re(δ) (I) a regime of a reentrant in temperature

quantum SDW liquid. Indeed, two most important parameters characterizing SDW liquid:

κ2 = 1−|JQ|χ0(Q, 0) describing a ”proximity” to the SDW instability and ΓQ = κ2/C(0)

describing a relaxation energy behave in a reentrant way in increasing T : κ2 decreases

(slightly) with T until T ∗
Re(δ) and ΓQ decreases (strongly) until T ∗

Re(δ) < T ∗
Γ < T ∗

Im(δ) as

if the system would move towards an ordered phase. However, it does not reach it, the

reentrancy stops and the system passes to the regime II of a minimum disorder above

which a standard disordered state behavior is restored (regime III). On the other hand,

the quantum SDW liquid state in the regime I is practically frozen in doping due to

the very weak dependence of κ2 on doping. As a result the disordered metal state in

the regime δ < δc keeps a strong memory about the ordered SDW phase (and therefore

develops strong critical SDW fluctuations) very far in doping and in temperature. On the

contrary, in the regime δ > δc the memory about SDW instability and the corresponding

fluctuations disappear rapidly due to the sharp decrease of χ0(q, 0) with increasing δ− δc

and T . The same is valid in both regimes δ > δc and δ < δc for SC fluctuations due to

the discussed in the first part behavior of SC RF as a function of T and |Z|. Therefore,

although the SDW phase itself is energetically unfavorable with respect to the SC phase

(except of the case of very high J/t), the metal state above Tsc in the underdoped regime

is a precursor of the SDW phase rather than of the SC phase.

The second possibility of SDW state surviving above superconducting state is shown on

Fig.7b. This phase diagram demonstrates the results of solution of a self-consistent system

of four coupled equations [P9] for DW and SC order parameters. The ordered SDW phase

starting from the QCP1 at δ = δc develops toward the underdoped region. Its increases

with increasing the interaction J and eventually leans out the superconducting phase as
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in this figure. SDW and dSC results in a mixed phase where π-triplet order predicted by

SO(5) theory [53]-[54] is also present.

Summarizing, we have studied the DW phase which is formed around QCP1 (associated

with ETT) and we have shown that this phase is characterized by the following prominent

features:

• the specific ”flat” shape of the spectrum in the vicinity of SP,

• ”disappearance” of the spectrum above some threshold value of wavevector in the

direction (π, 0) - (π, π),

• pseudogap in DOS with FL lying inside it,

• increasing of the gap in the spectrum around SP wavevectors and of the pseudogap

in DOS with decreasing doping for δ < δc

• angle dependence of the gap calculating from the FL, which is of a d-wave type close

to SP and flat close to the direction (1, 1).

We analyzed the possibility of coexistence of various Density Wave phases with d-wave

superconductivity in the framework of t− t′−J model. It is shown that competing orders

are possible in the vicinity of the quantum critical point associated with the Electronic

Topological Transition.

All these features have a striking similarity with the experimental features revealed by

ARPES in the normal state of the underdoped hole-doped cuprates.
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2. Magnetic correlations in nearly AFM Kondo lattices

The problem of competition between the Ruderman-Kittel-Kasuya-Yosida (RKKY) mag-

netic exchange and the Kondo correlations is one of the most interesting problem of

the heavy fermion physics. The recent experiments [16]-[25] unambiguously show, that

such a competition is responsible for many unusual properties of the integer valent heavy

fermion compounds e.g., the quantum critical behavior, the unusual antiferromagnetism

and superconductivity (see review [1]).

The competition between the one-site Kondo type correlations and the indirect inter-

site exchange is visualized in Doniach’s diagram. where the possible phase transition

and crossover energies are plotted as functions of a ”bare” coupling parameter α = J/εF

characterizing the exchange interaction between the spin and electron subsystems in KL

[72]. Only the Kondo screening and the RKKY coupling were competing in the original

Doniach diagram. Later on it was noticed that the trend to spin liquid (SL) ordering is

the third type of correlation which modifies essentially the magnetic phase diagram of KL

in a critical region TK ∼ I of the Doniach diagram [101]-[109].

The Hamiltonian of the Kondo lattice (KL) model is given by

H =
∑

kσ

εkc
†
kσckσ + J

∑

j

(
Sjsj +

1

4
Njnj

)
. (6)

Here the local electron and spin density operators for conduction electrons at site j are

defined as

nj =
∑

jσ

c†jσcjσ, sj =
1

2

∑

σ

c†jστ̂σσ′cjσ′ , (7)

where τ̂ are the Pauli matrices and cjσ =
∑

k ckσ exp(ikj). The spin glass (SG) freezing is

possible if an additional quenched randomness of the inter-site exchange Ijl between the

localized spins arises. This disorder is described by

H ′ =
∑

jl

Ijl(SjSl). (8)

We start with a perfect Kondo lattice. The spin correlations in KL are characterized

by two energy scales, i.e., I ∼ J2/εF , and ∆K ∼ εF exp(−εF/J) (the inter-site indirect

exchange of the RKKY type and the Kondo binding energy, respectively). At high enough

temperature, the localized spins are weakly coupled with the electron Fermi sea having

the Fermi energy εF , so that the magnetic response of a rare-earth sublattice of KL

is of paramagnetic Curie-Weiss type. With decreasing temperature either a crossover

to a strong-coupling Kondo singlet regime occurs at T ∼ ∆K or the phase transition

to an AFM state occurs at T = TN ∼ zI where z is a coordination number in KL. If

TN ≈ ∆K , the interference between two trends results in the decrease of both characteristic

temperatures or in suppressing one of them. The mechanism of suppression is based on the

screening effect due to the Kondo interaction. The Kondo correlations screen the local

order parameter, but leave nonlocal correlations intact. The mechanism of the Kondo

screening for a single-impurity Kondo problem is illustrated on Fig.8.

As a result, the magnetization of local impurity in the presence of Kondo effect is

determined in terms of Green’s functions G(ω) of semi-fermions given by the following
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Figure 8: Kondo screening of the local moment in single-impurity Kondo problem. Dashed line denotes
semi-fermions, solid line stands for conduction electrons.

expression [110]:

M(H) = S(gµB)T
∑

ω

(G↑(ω) − G↓(ω)) =

= S(gµB) tanh

(
Hβ

2

) [

1 − 1

ln(T/TK)
− ln(ln(T/TK))

2 ln2(T/TK)
+ ...

]

.

As we have already mentioned, the competition between the AFM and the spin liquid

states takes place when the magnetic (RKKY) and the Kondo interactions are of the

same order of magnitude. Thus, the critical AFM fluctuations are shown to be important

in the interplay between local and non-local correlations. A scenario of RVB spin liquid

crossover driven by critical AFM fluctuations was firstly proposed in [P1]. It has been

shown that the relaxation regime in the vicinity of the Néel phase transition is extended

in temperature in comparison to the standard critical regime for the localized moments

and can even persist as T → 0. The theory predicted the presence of inelastic neutron

scattering corresponding to the AFM wavevector at the energies E ∼ h̄Ω0 where Ω0

characterizes the gap in two-spinon continuum.

A complete theory of critical AFM fluctuations in Kondo lattices has been constructed

in [P2]. For this sake a new version of the Feynman diagram technique has been devel-

oped to describe interaction between spin fluctuations and resonance valence bonds in

self-consistent manner. It has been shown that the spin fluctuations stabilize the spin

liquid against the AFM only in strongly anisotropic situation, whereas the inclusion of

antiferromagnetic fluctuations in the mean-field approach in isotropic 3D case leads to the

suppression of the spin liquid state. On the other hand, as it is shown in [P2], the spin

liquid correlations modify spin diffusion and relaxation in antiferromagnets. The theory

of AFM fluctuations in spin liquid in the presence of Kondo scattering has been applied

fro explanation of anomalous properties of CeCu6 and CeRu2Si2.

A simple diagrammatic version of a mode-mode coupling theory was proposed in [P3] to

describe the critical dynamics of the Heisenberg antiferromagnets. In this paper the spin-

current correlators has been evaluated for “diffuson”-”diffuson” and “diffuson”-”relaxon”
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two-quasiparticle intermediate states. The analysis of the Ward identities for a many-

particle spin-current vertices allowed to find a simple route for the calculation of the

dynamical critical exponents and the scaling dimensions of the kinetic coefficients.

Yet another possibility of inelastic processes associated with the relaxation of the Crys-

talline Electric Field (CEF) level of an impurity ion implanted into a heavy fermion

compound has been analyzed in [P4]. In this paper, a microscopic approach based on

the Coqblin-Schrieffer-Copper formalism has been developed. This approach, being more

general than those based on sf -exchange interaction, makes it possible to take into ac-

count the specific details of both the crystal-field states of the impurity ion and the

electronic band spectrum of the metal. It is shown that the proposed approach should

be useful for analyzing systems in which the crystal-field states transform into the more

complicated objects as a result of strong electron correlations. Such systems include the

concentrated Kondo systems, in which the rare-earth ions form a coherent lattice. Thus,

the competition between the local CEF excitations and non-local spin-liquid correlations

are shown to be responsible for the anomalous relaxation of the magnetic states. The the-

ory of paramagnetic labeling was applied for the quantitative analysis of the relaxation

of crystal-field levels of the paramagnetic ion Pr3+ implanted in CeAl3 and LaAl3. The

results of calculations are in quantitative agreement with the experimental data.

A Ginzburg-Landau theory for nearly antiferromagnetic perfect and disordered lattices

has been constructed in [P13]. In this theory, the microscopic Ginzburg-Landau equations

are derived from the microscopic effective action written in three-mode representation

(Kondo scattering, antiferromagnetic correlations, and spin liquid correlations). The new

modified Doniach diagram has been constructed.

• Kondo screening of the Néel order

The new mean-field equation determining the Néel order parameter N in the presence of

Kondo scattering reads as follows

N = tanh
(

IQN
2T

) [

1 − aN

ln (T/TK)

cosh2(βIQN /2)

cosh2(βIQN )

]

. (9)

As a result, the Kondo corrections to the molecular field equation reduce the Néel temper-

ature. Such a reduction is associated with the Kondo screening effect similarly to those

in single-impurity Kondo model (see Fig.8)

• Kondo enhancement of RVB correlations

A new self-consistent equation to determine the non-local semi-fermion correlator respon-

sible for a crossover to the spin liquid state is found as

∆ = −∑
q

Iq

I0

[

tanh
(

Iq∆

T

)
+ asl

Iq∆

T ln(T/TK)

]

. (10)

It is seen that unlike the case of local magnetic order, the Kondo scattering favors tran-

sition into the spin-liquid state, because the scattering means the involvement of the

itinerant electron degrees of freedom into the spinon dynamics.
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Figure 9: Doniach’s diagram with modifications due to Kondo screening

The results of numerical solution of Eqs. (9) and (10) are summarized in a revised Do-

niach diagram shown in Fig.9. Here the renormalized transition temperatures are plotted

as functions of dimensionless coupling constant α = J/εF The reduced TN and enhanced

Tsl are presented by circles and full line, respectively. The filled circles correspond to the

region where the AFM order overcomes the SL phase, and the light circles show unphysi-

cal ”suppressed” AFM solutions obtained beyond the region of validity of the mean-field

equation (9 - 10). The upper inset shows the renormalized TN in comparison to the bare

mean field Neel temperature T 0
N = zεF α2/2, and the renormalized Kondo temperature

TK in comparison to the single-impurity Kondo temperature T
(0)
K = εF exp(−α−1). The

lower inset illustrates the renormalization of Tsl in comparison to its mean field value T
(0)
sl .

As is seen from the modified Doniach’s diagram, the interplay between three modes

becomes significant in a critical region where the exchange coupling constant is close to

the point αc = 0.13 where I = ∆K in the conventional Doniach’s diagram. If the Kondo

screening is not taken into account, then T
(0)
sl (α) < T

(0)
N (α) (thin solid and dotted lines

in the lower inset). The Kondo screening changes this picture radically, and as a result

a sufficiently wide interval of the values of parameter α just to the right of the critical

value αc arises, where the enhanced transition temperature Tsl exceeds both the reduced

Neel temperature TN and the Kondo temperature TK . The calculations of Tsl presented

in Fig.8 are performed for d = 2. The similar picture exists for d = 3, although the

domain of stable SL state is more narrow (for a given value of zI). This means that in

this region the stable magnetic phase is, in fact, the spin liquid phase. If one descends

from high temperatures in a hatched region of Doniach’s diagram where TK ∼ TN , the

Kondo scattering suppresses the AFM correlations, but the SL correlations quench Kondo

processes at some temperature Tsl > TK . As a result the Kondo-type saddle point is not

realized in the free energy functional in agreement with the assumption used above in our

derivation of Ginzburg-Landau expansion.

• Kondo effect and quenched disorder

Let’s assume that the RKKY interactions are random (e.g. due to the presence of non-
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Figure 10: Doniach’s diagram for spin glass transition in disordered KL.

magnetic impurities resulting in appearance of random phase in the RKKY indirect ex-

change). In this case, the spin glass phase should be considered. As it has been shown

in [P10] and [P13], the influence of static disorder on Kondo effect in models with Ising

exchange on fully connected lattices (Sherrington-Kirkpatrick model) can be taken into

account by the mapping KL model with quenched disorder onto the single impurity Kondo

model in random (depending on replicas) magnetic field. It allows for the self-consistent

determination of the Edwards-Anderson qEAorder parameter given by the following set of

self-consistent equations

q̃ = 1 − 2c

ln(T/TK)
− O

(
1

ln2(T/TK)

)

,

q =
∫ G

x
tanh2

(
βIx

√
q

1 + 2c(βI)2(q̃ − q)/ ln(T/TK)

)

+ O

(
q

ln2(T/TK)

)

. (11)

Here q = qEA and q̃ are non-diagonal and diagonal elements of Parisi matrix respectively.

Therefore, the Kondo-scattering results in the depression of the freezing temperature

due to the screening effects in the same way as the magnetic moments and the one-site

susceptibility are screened in the single-impurity Kondo problem (c.f. Fig.8) when Ising

and Kondo interactions are of the same order of magnitude (see Fig.10).

The suppression of spin glass correlations with T approaching TK is illustrated in the

insert of Fig.10 where the temperature dependence of the diagonal element of Parisi matrix

is plotted. Like in the case of perfect KL, the screening effect becomes noticeable in the

critical region of the phase diagram where T 0
f ∼ T 0

K , but the real freezing temperature

exceeds the Kondo temperature. The latter is also reduced in comparison to T 0
K near the

spin glass transition [111]. In this paper the interplay between TK and Tf was considered

in a mean field approximation where Kondo screening is treated as a true phase transition.

Our theory shows that the reduction of TK due to spin polarization exist even in the

absence of Kondo ”condensation” (see eq.), and the mutual depression of Kondo and

magnetic correlations in a critical region of the Doniach phase diagram is a common

feature of the ordered and the disordered Kondo lattices.
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3. Semi-fermions in quantum spin systems

Since a long time [112] physicists are aware of the fact that spin operators satisfy neither

Fermi nor Bose commutation relations. For example, the Pauli matrices for S = 1/2 op-

erator commute on different sites and anticommute on the same site. The commutation

relations for spins are determined by SU(2) algebra, leading to the absence of a Wick

theorem for the generators. Less convergent opinions exist on whether fermionizations

or bosonizations or none of those should be used to take care of spin statistics in many

body quantum theory. At least the answers appear to be linked to the kind of physical

problem considered. Widely accepted is the view that path integral representations and

diagrammatic expansions for the spin systems are thus substantially more complicated

than those of the purely fermion/boson systems. Many variants of diagram technique

[121] that are based on different representation of spins have been proposed. The first

class of approaches is based on representation of spins as bilinear combination of Fermi

or Bose operators [112]-[122], whereas the representations belonging to the second class

deal with more complex objects like, e.g. the Hubbard operators, the nonlinear sigma

model etc. However, in all cases the fundamental problem which is at the heart of the

difficulty is the local constraint problem. To illustrate it, let’s consider e.g., first class of

representations. Introducing the auxiliary Fermi or Bose fields makes the dimensionality

of the Hilbert space, where these operators act, greater than the dimensionality of the

Hilbert space for the spin operators. As a result, the spurious unphysical states should be

excluded from the consideration which leads in turn to some restrictions (constraints) on

bilinear combinations of Fermi/Bose operators, resulting in a substantial complication of

the corresponding rules of the diagrammatic technique. The representations from the sec-

ond class suffer from the same kind of problem, transformed either into a high nonlinearity

of the resulting model (non-linear sigma model, see, e.g., [122]) or a hierarchical structure

of the perturbation series in the absence of a Wick theorem [123] (Hubbard operators).

The exclusion of double occupied and empty states for a S = 1/2 impurity interacting

with conduction electron bath (single impurity Kondo model [110]), is controlled by ficti-

tious chemical potential (Lagrange multiplier) of Abrikosov pseudofermions [115]. At the

end of calculations this “chemical potential” λ should be put λ → −∞ to “freeze out”

all unphysical states. In other words, there exists an additional U(1) gauge field which

freezes the charge fluctuations associated with this representation. The method works

for dilute systems where all the spins can be considered independently. Unfortunately,

attempts to generalize this technique to the lattice of spins results in the replacement of

the local constraint (the number of particles on each site is fixed) by the so-called global

constraint where the number of particles is fixed only on an average for the whole crystal.

There is no reason to believe that such an approximation is a good starting point for

the description of the strongly correlated systems. Another possibility to treat the local

constraint rigorously is based on Majorana fermion representation (see, e.g. [122], [124]).

In this case fermions are “real” and corresponding gauge symmetry is Z2. The difficulty

with this representation is mostly related to the physical regularization of the fluctuations

associated with the discrete symmetry group.
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An alternative approach for spin Hamiltonians, free from local constraint problem,

has been proposed in the pioneering paper of Popov and Fedotov [125]. Based on the

exact fermionic representation for S = 1/2 and S = 1 operators, where the constraint

is controlled by purely imaginary Lagrange multipliers, these authors demonstrated the

power and simplification of the corresponding Matsubara diagram technique [126]-[127].

For these two special cases the Matsubara frequencies are ωn=2πT (n + 1/4) for S=1/2

and ωn=2πT (n + 1/3) for S=1 providing a rigorous description of (and restricted to) the

equilibrium situation. The semi-fermionic representation used by PF is neither fermionic,

nor bosonic, but reflects the fundamental Pauli nature of spins (see also [128]-[132]). An

attempt to generalize the Popov-Fedotov imaginary time formalism for higher spins has

been done in [128]. A theorem, saying that for arbitrary S > 1 the partition function

of spin problem corresponds to the partition function of semi-fermion problem integrated

with some distribution function of “imaginary chemical potentials” of semi-fermions, has

been proven. Nevertheless, several questions remained open, for example

• whether the semi-fermionic representation of SU(2) group found in [128] corresponds

to a minimal set of imaginary Lagrange multipliers

• how to construct the “minimal” representation and find the distribution function of

imaginary Lagrange multipliers

• how to derive the semi-fermionic representation for higher SU(N) groups

• whether the semi-fermionic representation exists for the groups with dynamic sym-

metries

• what is the “bridge” between semi-fermionic and standard fermion/boson represen-

tations of spins

• how to work with semi-fermions in real time

The answer to these and many other related questions is given in papers [P11, P12, P15].

As it has been shown in [P12], the partition function of SU(N) [133] model is related to

the partition function of corresponding fermion model through the following equation:

ZS =
∫ ∏

j

dµ(j)P (µ(j))Tr exp (−β(HF − µ(j)nF )) =
∫ ∏

j

dµ(j)P (µ(j))ZF(µ(j)),

(12)

here P (µj) is the distribution function of imaginary Lagrange multipliers. To derive

the distribution function, the following identity for the constraint expressed in terms of

Grassmann variables has been used

δnj ,m =
1

N
sin (π(nj − m)) / sin

(
π(nj − m)

N

)

. (13)

As a result, the distribution function for fully antisymmetric representation of SU(N)

group described by the single column Young Tableau with a filling factor m is found as

PN,m(µ(j)) =
2i

N

�N/2�∑

k=1

sin

(

πm
2k − 1

N

)

δ(µ(j) − µk), (14)
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Figure 11: Graphical representation of exclusion principle for SU(N) semi-fermionic representation with
even N , nc = 1 (we use µ = iπT/2 for SU(2) and µ1 = iπT/4, µ2 = 3iπT/4 for SU(4)).

where µk = −i iπT
N

(2k − 1). This partition function is proved to contain the minimal set

of imaginary Lagrange multipliers and satisfy the exact particle-hole symmetry of SU(N)

problem.

The exclusion principle for this case is illustrated in Fig.11, where the S = 1/2 repre-

sentation for the first two groups SU(2) and SU(4) are shown. The first point to observe

is that the spin Hamiltonian does not distinguish the n particle and the n hole (or N − n

particle) subspace. For this reason two phase factors exp(βµn) and exp(βµ(N − n))

accompanying these subspaces in Eq. (14) add up to a purely imaginary value within

the same Lagrange multiplier, and the empty and the fully occupied states are always

canceled. In the case of N ≥ 4, where we have multiple Lagrange multipliers, the dis-

tribution function P (µ) linearly combines these imaginary prefactors to select out the

desired physical subspace with particle number n = m.

In Fig.11, we note that on each picture, the empty and fully occupied states are

canceled in their own unit circle. For SU(2), there is a unique chemical potential µ =

±iπT/2 which results in the survival of single occupied states. For SU(4), there are two

chemical potentials (see also Fig.12). The cancellation of single and triple occupied states

is achieved with the help of proper weights for these states in the distribution function

whereas the states with the occupation number 2 are doubled according to the expression

(15). In general, for SU(N) group with nc = 1 there exists N/2 circles providing the

realization of the exclusion principle.

Particularly interesting for even N is the case when the SU(N) orbital is half–filled,

m = N/2. Then all Lagrange multipliers carry equal weight

PN,N/2(µ(j)) =
2i

N

N/2∑

k=1

(−1)k+1δ (µ(j) − µk) . (15)

Taking the limit N → ∞, the following limiting distribution function is obtained:

PN,N/2(µ(j))
N→∞−→ β

2πi
exp

(
−βµ(j)

N

2

)
(16)

resulting in the usual continuous representation of the local constraint for the simplest

case nc = 1

ZS = Tr(exp (−βHF ) δ
(
nj − N

2
)
)

(17)
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representation for half-integer value of the spin. b) SU(2) representation for integer values of the spin
and l = 1.

Applying the gauge transformation to auxiliary Grassmann fields representing SU(N)

generators, we arrive at generalized Grassmann boundary conditions for semi-fermions

ak(j, β) = ak(j, 0) exp

(

iπ
2k − 1

N

)

, āk(j, β) = āk(j, 0) exp

(

−iπ
2k − 1

N

)

. (18)

This leads to a temperature diagram technique for the Green’s functions

Gαβ(j, τ) = −〈Tτaα(j, τ)āβ(j, 0)〉 (19)

of semi-fermions with Matsubara frequencies different from both Fermi and Bose repre-

sentations (see Fig.12).

Following the same routine as for SU(N) generators and using the occupancy condition

to have l = 1 (or 2S) states of the (2S+1) states filled, one gets the following distribution

function, after using the particle–hole symmetry of the Hamiltonian HS:

P2S+1,1(µ(j)) =
2i

2S + 1

�S+1/2�∑

k=1

sin

(

π
2k − 1

2S + 1

)

δ(µ(j) − µk) (20)

where the Lagrange multipliers are µk = −iπT (2k− 1)/(2S + 1) and k = 1, ..., �S + 1/2�.
In the particular case of the SU(2) model for some chosen values of spin S the distri-

bution functions are given by the following expressions

P2,1(µ(j)) = i δ
(
µ(j) +

iπT

2

)
, (21)

for S = 1/2

P3,1(µ(j)) = P3,2(µ(j)) =
i√
3

δ
(
µ(j) +

iπT

3

)
, (22)

for S = 1.

This result corresponds to the original Popov-Fedotov description restricted to the

S = 1/2 and S = 1 cases.

The exclusion principle for SU(2) in the large spin limit can be also understood with

the help of Fig.11 and Fig.13. One can see that the empty and the fully occupied states

are canceled in each given circle similarly to even-N SU(N) algebra. The particle-hole
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Figure 13: Graphical representation of exclusion principle for SU(2) semi-fermionic representation for
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Figure 14: The Keldysh contour going from −∞ → ∞ → −∞ in real time. The boundary conditions on
the imaginary time segment determine the generalized distribution functions for quasiparticles.

(PH) symmetry of the representation results in an equivalence of single occupied and 2S

occupied states whereas all the other states are canceled due to proper weights in the

distribution function (20). In accordance with PH symmetry being preserved for each

value of the chemical potential, all circle diagrams (see Fig.11, Fig.13) are invariant with

respect to simultaneous change µ ↔ −µ and nparticle ↔ nholes.

A long time ago Keldysh [134], [135] proposed a novel approach for the description of

kinetic phenomena in metals (see also [136]-[139]). This approach was found especially

fruitful for normal metals [137], and, in many recent applications, for superconductors

[138], for disordered interacting (normal or superconducting) electron liquids [139] for

example. The previous application of the real-time formalism to the quantum theory

of Bose-Einstein condensation (BEC) [140] allowed the derivation of a Fokker-Planck

equation, which describes both kinetic and coherent stages of BEC. Moreover a recent

work [141] developed the closed-time path integral formalism for aging effects in quan-

tum disordered systems being in contact with the environment. The Keldysh formalism

in application to the disordered systems (see [142] -[143]) also attracted interest some

time ago as an alternative approach to the replica technique. The main advantage of

closed-time contour calculations (see [134]-[144]) is an automatic normalization (disorder

independent) of the partition function.

In the papers [P11, P12, P15] the real time (Schwinger-Keldysh) formalism based on

SF approach is constructed. The key result of [P11, P12] is that the Keldysh Green’s
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functions of free semi-fermions assumes the form

Gα
0 (ε) = GR,α

0

⎛

⎝ 1 − fε −fε

1 − fε −fε

⎞

⎠− GA,α
0

⎛

⎝ −fε −fε

1 − fε 1 − fε

⎞

⎠ ,

where the retarded and advanced GF’s are

G
(R,A)α
0 (ε) = (ε ± iδ)−1, fε = f (N,k)(ε), (23)

with equilibrium distribution functions

f (N,k)(ε) = T
∑

n

eiωnk
τ |+0

iωnk
− ε

=
1

eiπ(2k−1)/N exp(βε) + 1
. (24)

Particularly simple are the cases of S = 1/2 and S = 1,

f (2,1)(ε) = nF (2ε) − i
1

2 cosh(βε)

f (3,1)(ε) =
1

2
nB(ε) − 3

2
nB(3ε) − i

√
3

sinh(βε/2)

sinh(3βε/2)
(25)

Here, the standard notations for Fermi/Bose equilibrium distribution functions (EDF)

nF/B(ε) = [exp(βε) ± 1]−1 are used. For S = 1/2 the semi-fermionic EDF satisfies the

obvious identity |f (2,1)(ε)|2 = nF (2ε). Both, for S = 1/2 and S = 1 the off-diagonal ele-

ment (Keldysh component) is expressed in equilibrium in terms of the Brillouin function,

containing correct information about occupied states.

In general the EDF for half-integer and integer spins can be expressed in terms of

Fermi and Bose EDF respectively. We note that since auxiliary Fermi fields introduced

for the representation of SU(N) generators do not represent the true quasiparticles of

the problem, helping only to treat properly the constraint condition, the distribution

functions for these objects in general do not have to be real functions. Nevertheless, one

can prove that the imaginary part of the EDF does not affect the physical correlators

and can be eliminated by introducing an infinitesimally small real part for the chemical

potential. In spin problems, a uniform/staggered magnetic field usually plays the role of

such real chemical potential for semi-fermions.

The generalization of SF formalism for the groups with dynamic symmetries has been

given in [P15]. As an example, the SF representation of SO(4) group has been constructed.
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The meaning of the off-diagonal constraints and correspondence between Casimir opera-

tors of SO(4) group and diagonal constraints is discussed. The non-equilibrium solution of

the spin-rotator model [145]-[146] describing the double quantum dot in parallel geometry

[147] with the help of SF representation of SO(4) group is given in [P14]. A competition

between finite-bias effects and Kondo effect is described in a framework of SF approach.

The internal singlet/triplet structure of two-electron excitations in a dot and its inter-

play with Kondo scattering of the electrons from the leads makes it possible to predict a

Kondo effect induced by external electric field. This effect might be observed as a finite

bias anomaly in double quantum dot with parallel orientation with respect to leads (see

Fig.15).

In paper [P14] we demonstrated yet another application of semi-fermionic approach

to the mesoscopic system with strong electron-electron correlations. The competition

between local (Kondo) and nonlocal (two-electron states in a dot) exchanges has many

similarities with interplay between magnetic and Kondo correlations in heavy fermion

compounds. The semi-fermionic approach being a promising alternative to existing field-

theoretical methods in a description of competition of various orders in heavy fermion

compounds is shown to be also an useful tool for an adequate description of a nonequi-

librium phenomena [148] in mesoscopic systems.
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Epilogue

In this section we summarize the new results reported in the publications [P1-P15].

• A theory of the quantum phase transition related to the change of topology of Fermi

surface of 2D electron gas on a square lattice is constructed. It is shown that the

Electronic Topological Transition is responsible for the anomalous properties of the

Fermi-liquid. A mean-field theory of competing instabilities in the vicinity of the

quantum critical point associated with electron topological transition is proposed.

• A theory of stabilization of spin liquid in almost antiferromagnetic perfect Kondo

lattices has been constructed. The Kondo screening effects are found to be responsi-

ble for the suppression of magnetic (Néel) transition. The influence of Kondo effect

and critical antiferromagnetic fluctuations on the properties of RVB spin liquids are

investigated.

• A self-consistent theory of the relaxation of the crystal-field levels of a paramagnetic

ion implanted into heavy fermion metals has been developed.

• A mean-field theory of disordered Kondo lattices with a long-range magnetic inter-

action has been constructed. A mapping of the KL problem with quenched disorder

on a fully connected lattice onto a set of independent Kondo scatters in external

replica-dependent magnetic field is established. It is shown that the Kondo screen-

ing affects the Edwards-Anderson order parameter and suppresses the temperature

of spin-glass transition when the spin-spin and the Kondo interactions are of the

same order of magnitude.

• A mathematical background for the semi-fermionic representation of the generators

of SU(N) groups is developed. It includes the circle diagram representation of the

exclusion principle in the imaginary time (Matsubara) formalism and also real-time

(Schwinger-Keldysh) diagrammatic approach based on semi-fermionic concepts and

semi-fermionic representations of the groups with hidden symmetries.

• A finite-bias anomaly corresponding to the resonance Kondo tunneling induced by

external electric field in a double quantum dot in a parallel geometry is predicted.

The theory of this anomaly, based on the solution of the self-consistent renormaliza-

tion group equations for SO(4) - invariant spin-rotator model, is constructed.
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A. Erb and E. Walker, Phys. Rev. Lett. 78, 4837 (1997)

[16] G.G. Lonzarich, J. Magn. Magn. Mat. 76-77, 1 (1988); M. Springford, Physica B

171, 151 (1990); Y. Onuki and A. Hasegawa, J. Magn. Magn. Mat. 108, 19 (1992).

[17] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991); R.H. Heffner and M.R.

Norman, Comments Cond. Mat. Phys. 17, 361 (1996).

39



[18] Rauchschwalbe U (87) Physica B 147. 1 (1987); H.R. Ott, in Progress in Low Tem-

perature Physics, Vol. XI, ed. D.F. Brewer (Elsevier, Amsterdam, 1987).

[19] J.M. Effantin, J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Kunii, and T. Kasuya,

J. Magn. Magn. Mater. 47-48, 145 (1985).

[20] A. Loidl, A. Krimmel, K. Knorr, G. Sparn, M. Lang, C. Geibel, S. Horn, A. Grauel,

F. Steglich, B. Welslau, N. Grewe, H. Nakotte, F. de Boer, and A.P. Murani, Ann.

Physik, 1, 78 (1992); A. Bernasconi, M. Mombelli, Z. Fisk,and H.R.Ott, Z. Phys. B

94, 423 (1994).

[21] A. de Visser, J.J.M. France, J. Magn. Magn. Mat. 100, 204 (1991).
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ELECTRONIC TOPOLOGICAL TRANSITION IN 2D ELECTRON SYSTEM ON
A SQUARE LATTICE AS A MOTOR FOR THE ‘STRANGE-METAL’

BEHAVIOUR IN HIGH-Tc CUPRATES

F. ONUFRIEVAa, P. PFEUTYa and M. KISSELEVa,b

aLaboratoire Leon Brillouin, CE-Saclay 91191 Gif-sur-Yvette, France
bRussian Research Center ‘Kurchatov Institute’ 123 182 Moscow, Russia

Abstract—We show that a 2D system of free electrons on a square lattice with hoping between more than nearest
neighbours is characterised by two quantum critical points associated with a change in topology of Fermi surface as
a function of electron concentration. This simple model (when taking into account a positive interaction in a triplet
channel) allows us to consistently explain some crucial experiments in the underdoped regime of hole-doped high-
Tc cuprates (ARPES, neutron scattering).q 1998 Elsevier Science Ltd. All rights reserved

Keywords:quantum critical proof, Fermi surface topology

1. TWO QUANTUM CRITICAL POINTS IN A 2D FREE
ELECTRON SYSTEM ON A SQUARE LATTICE

We study a 2D system of noninteracting electrons on a
square lattice with hoping between nearest neighbours (t)
and next nearest neighbours (t9). We show that it is
characterised by two quantum critical points, QCP1 and
QCP2, associated with a change in topology of Fermi
surface (FS) as a function of electron concentration, 1¹ d.
Their criticality shows up in the electron polarisability,
x0(k,q), at T ¼ 0. The calculatedx0(QAF ¼ (p,p),0) is
shown in Fig. 1 as a function of hole dopingd. It reveals
two singularities: a logarithmic one at QCP1,d ¼ dc1 (m ¼

4t9), and a square-root one at QCP2,d ¼ dc2 (m ¼ 0), for
each negative value oft9/t (lt9/tl , 1/2).

The character of these two quantum critical points
appears whenx0(k,0) is analysed as a function ofk for
differentd, see Fig. 2. Around QCP2: for bothd , dc2 and
d . dc2 there is a closed (in the extended BZ) line of static
Kohn (square-root) singularities (KS’s),k ¼ Qs2 which
reduces into the pointk ¼ QAF at d ¼ dc2. An absolute
value of Qs2 along a fixed direction is given by
Qs2 ~ ld ¹ dc2l. Around QCP1: atd . dc1 and d , dc1

the line of KS’sk ¼ Qs2 related to QCP2 is preserved; in
addition there is a new closed linek ¼ Qs1 at d . dc1

which is ended atd ¼ dc1 being reduced into the pointk ¼

QAF. An absolute value ofQs1 along a fixed direction is
given byQs1 ~

��������������
d ¹ dc1

p
. Exactly at QCP2 and QCP1 one

has respectively: x0(k, 0) < A¹ B
�������������������
lk ¹ QAFl

p
and

x0(k, 0) ~ lnlk ¹ QAFl.
The criticality of QCP1 from another point of view is

seen as a Lifshitz’s electronic topological transition [1] in
a 2D system with a saddle point (SP) in the electron
spectrum resulting in singularities in thermodynamic
properties, and an additional singularity in superconducting

response function. The critical exponents associated with
QCP1 and QCP2 are respectively:n1 ¼ 1/2,z1 ¼ 2, s1 ¼

n1z1 ¼ 1, a1 ¼ 2¹ [(D ¼ 2) þ z1]n1 ¼ 0 (logarithmic sin-
gularity in the density of states) andn2 ¼ 1, z2 ¼ 1,
s2 ¼ n2z2 ¼ 1,a2 ¼ 2¹ [(D ¼ 2) þ z2]n2 ¼ ¹ 1 (no singu-
larity in the density of states).

The distance between QCP1 and QCP2 diminishes
with decreasinglt9/tl and the two points coincide whent9/
t ¼ 0. In the latter case (nesting) we arrive at a quantum
multicritical point with a (ln)2 singularity.

Asdc1 . 0 anddc2 , 0 (for anyt9/t), it is a doping range
around QCP1 which is actual for the hole doped cuprates
and around QCP2 for the electron doped. As we are
interested here in the former we consider below only
properties around QCP1 which are also influenced by
QCP2. We assumelt9/tl to be not small in order to
correspond to the experimental FS observed by ARPES.

One can check thatRex0 andImx0 behave in a strongly
anomalous way in the regimedc2 , d , dc1. First of all
taken at the characteristic for this regime wavevectorq ¼

QAF, Rex0(q,0) changes very weakly with doping starting
from some threshold value ofd (see Fig. 1) as a conse-
quence of the interplay between QCP1 and QCP2.
Secondly, energy dependences ofRex0 and Imx0/q for
T ¼ 0 and their temperature dependences forq → 0 are
characterised by a characteristic energyq ¼ qc ~ dc1 ¹ d

and a characteristic temperatureT ¼ T* ~ dc1 ¹ d both
being scaled with the doping distance from QCP1. The
behaviour is anomalous in the regimesq , qc, T , T*.
For example,Rex0(QAF,0) taken at fixedd increases with
increasingT for T , T*. Thirdly, Rex0(q,0) exhibits a
plateau as a function oflql (see Fig. 1c) until very high
temperature,T , Tp

q ~ d ¹ dc2, which scales with the
distance from QCP2. These and other anomalies are
discussed in more detail in [2].
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2. 2D INTERACTING SYSTEM: PROPERTIES OF CUO 2

PLANE

The anomalous behaviour of the free electron system in
the presence of the two QCP is at the origin of an
anomalous behaviour of interacting system. We concen-
trate below on properties related to long-range and short-
range density wave (DW) order. (Obviously, in the
presence of interactions of a certain sign, QCP1 gives
rise to DW and superconducting (SC) instabilities around
it due to logarithmic divergences of the corresponding
response functions. What is important is that a positive

interaction in a triplet channel (exchange interaction) is
enough to createboth instabilities. Such an interaction
exists in thet–J model.)

A phase diagram is shown in Fig. 3. AsTsc is maximum
atd ¼ dc1 (see [3]), the regimed , dc1 is underdoped andd
. dc1 is overdoped. Although the DW phase for realistic
values of t/J is hidden under the SC phase, it is DW
critical fluctuations which determine a fundamentally
anomalous metal behaviour belowT* and aboveTsc

(regime I) (the temperatureT ¼ T*(d) discussed above
for the non-interacting system appears as a characteristic

1854 F. ONUFRIEVAet al.

Fig. 1. Electron-hole susceptibilityx0(QAF,0) around two quantum critical points, QCP1 and QCP2.

Fig. 2. Wavevector dependences ofx0(q,0) for increasing doping (a)d , dc2, (b)d ¼ dc2, (c)d c2 , d , d c1 and (d)d . dc1 ðQx ¼ qx=p,
Qy ¼ qy/p, t9/t ¼ ¹ 0.3).



temperature for the interacting system). The state in
regime I is reentrant in temperature and frozen in
doping rigid DW liquid [2]: the correlation length slightly
increaseswith T (being maximal atT¼ T*(d)) andalmost
does not change with doping. Moreover, the parameter
determining a proximity to the ordered DW phase does
not practically change along the lineT ¼ T*(d), therefore
remaining quite low in regime I. (All this stems from the
properties ofx0 discussed at the end of the previous
section and is valid when the interactionJ/t is not too
small.) The ordered DW phase is also ‘reentrant’:TDW

increases with increasingdc1 ¹ d.
All properties in the metal DW phase and in the metal

regime I are anomalous. Below we show several
examples.

First in Fig. 4 we show the electron spectrum in the
long-range ordered DW phase. Prominent features of the
spectrum are:

1. flat shape around SP;
2. ‘disappearance’ of the spectrumin the direction (k,p)

¹ (p,p) above some threshold value of wavevectork
(the residue tends to zero), both features being con-
sequences of the hybridisation of the two parts of the
bare spectrum around two SP’s with a different
curvature;

3. existence of the gap in a vicinity of SPD ~ dc1 ¹ d (the
increase of the gap with decreasing dopingis the other
side of the reentrant behaviour of DW phase). Details
are given in [4].

The density of states (DOS) is shown in Fig. 5. It
deviates from the bare DOS in two parts, A and B, related
to QCP1 (A) and QCP2 (B). For the doping range around
d ¼ dc1 it is the A-feature which determines properties of
the system. It is characterised by a logarithmic singularity
at e0 and by two jumps ateþ and e¹ instead of the

1855Electronic topological transition in 2D electon system

Fig. 3. Phase diagram with the lines of DW and SC instabilities and the lineT*(d) (t9/t ¼ ¹ 0.3, t/J ¼ 1.9).

Fig. 4. Electron spectrum in DW phase around SP. The thin dot–dash line corresponds to the spectrum with residue, 0.1, and the
dashed line to the bare spectrum (t9/t ¼ ¹ 0.3, t/J ¼ 1.85,d ¼ 0.19).



logarithmic singularity in the bare spectrum. There is a
pseudogap on Fermi level.

The electron spectral functionA(k,e) in regime I
calculated in a standard way based on the loop containing
the electron Green function and the boson Green function
corresponding to the susceptibility is shown in Fig. 6. The
‘spectrum’ deduced from it has the same shape as in Fig. 4
for q , 0. The pseudogapD is also proportional todc1 ¹

d. The difference is that for regime I the spectral function
has a characteristic damped form forq , 0. The form of
the ‘spectrum’, of the spectral function and the trend of
increasingD with decreasing doping are in very good
agreement with ARPES data aboveTc [5].

The dynamic spin properties are also unusual. In Fig. 7a

we show howImx(QAF,q) changes with decreasingT
when one crosses the lineT¼ T*. One can clearly see the
existence in the regimeT , T* of the characteristic
energyq ¼ q0 ~ dDW(0) ¹ d (unchanging withT) at
which Imx is strongly peaked. ForTq T* the curves lose
a maximum and resembleImx0. In Fig. 7b we see that for
low q,q p qc, Imx peaks atk ¼ QAF. For largerq, Imx0

becomes flat and then even ‘incommensurate’ with a
maximum determined by the wavevectorQs2(q) related
to QCP2 (a dispersion like effect). These results are in
good agreement with recent INS data [6].

Summarising, a simple model taking into account the
existence of two QCP’s in a 2D electron system on a
square lattice consistently explains certain experimental

1856 F. ONUFRIEVAet al.

Fig. 5. Density of states with renormalised spectrum. The dashed line corresponds to the bare spectrum (t9/t ¼ ¹ 0.3,
t=J ¼ 1:8; d ¼ 0:25Þ.

Fig. 6. Spectral functionA(k,e) in regime I calculated for the directionðq;pÞ¹ ðp;pÞ. ðk¼ q=p; t9=t ¼ ¹ 0:3, t=J ¼ 1:8, T/t ¼ 0.12,
d ¼ 0:1Þ.



facts considered today as crucial for understanding high-
Tc cuprates.
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as a Motor for Anomalies in the Underdoped Regime
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We have discovered a new nontrivial aspect of electronic topological transition (ETT) in
2D free fermion system on a square lattice. The corresponding exotic quantum critical po
d  dc, T  0 (n  1 2 d is the electron concentration), is at the origin of anomalous behavio
in the interacting system on one side of ETT,d , dc. Most important is the appearance of the
line of characteristic temperatures,T psdd ~ dc 2 d. Application of the theory to high-Tc cuprates
reveals a striking similarity to the behavior observed experimentally in the underdoped regi
[S0031-9007(99)08666-4]
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This is a particularly exciting time for high-Tc. The
experimental knowledge converges. Almost all e
periments, nuclear magnetic resonance (NMR) [1,
angle-resolved photoemission spectroscopy (ARPES)
infrared conductivity [4], etc., provide evidence for th
existence of a characteristic energy scaleTpsdd in the
underdoped regime (d is hole doping). Below and around
the line Tpsdd, the “normal” state (i.e., aboveTc) has
properties fundamentally incompatible with the prese
understanding of metal physics. The field has reached
point where a consistent theory is necessary to underst
this exotic from theoretical point of view (but quite wel
defined from an experimental point) metallic behavio
The issue has a significance beyond the field of high-Tc

superconductivity—the fundamental question arise
What kind of metallic behavior is there, in addition to th
well-understood Fermi liquid?

In this paper we propose our variant of the answer. W
reexamine a free electron 2D system on a square lat
with hopping beyond nearest neighbors. We show th
when varying the electron concentration defined as1 2 d,
the system undergoes an electronic topological transit
(ETT) [5] at a critical valued  dc. The correspond-
ing T  0 quantum critical point (QCP) combines two
aspects of criticality. The first standard one is related
singularities in thermodynamic properties, in density
states atv  0 (Van Hove singularity), to additional
singularity in the superconducting (SC) response functi
(RF) [6]. The second nontrivial aspect is that the sam
QCP is the end of the critical lineT  0, d . dc, each
point d of which is characterized by static Kohn singula
ity (KS) in polarizability of 2D free fermions. [What we
mean as a static KS is a singularity at the wave vector c
necting two points of Fermi surface (FS) with parallel ta
gents [7] ]. The two aspects of criticality are not relate
It is the latter aspect (never considered before) which,
we will show, is a motor for anomalous behavior in th
regime0 , d , dc of the system of noninteracting and
interacting electrons (or of any fermionlike quasiparticle
e.g., of those [8] appearing in thet 2 t0 2 J model de-
0031-9007y99y82(11)y2370(4)$15.00
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scribing the strongly correlated CuO2 plane responsible
for the main physics in the cuprates). The found anom
alies have a striking similarity to anomalies in the un
derdoped high-Tc cuprates. The effect exists in all cases
t0 fi 0 or/and t00 fi 0, . . . , except for special sets of the
parameters corresponding to the perfect nesting in FS (
cluding t0  t00  . . . ! 0) studied in many papers (see,
e.g., Ref. [9]). For such sets, the QCP loses the latter a
pect of criticality and the anomalies disappear.

A starting point is a 2D electron system on a squar
lattice with hopping beyond nearest neighbors,

ek  22tscoskx 1 coskyd 2 4t0 coskx cosky 2 · · · .
(1)

For any set of the parameterst, t0, t00, . . . , the dispersion
law is characterized by two different saddle points (SP’s
located ats6p , 0d ands0, 6pd with the energyes. When
we vary the chemical potentialm or the energy distance
from the SP,Z  m 2 es, the topology of the FS changes
when Z goes fromZ . 0 to Z , 0 through the critical
valueZ  0. In vicinity of SP’s the dispersion law is

ẽskd  ek 2 m  2Z 1 ak2
a 2 bk2

b , (2)

where k is measured froms0, pd (a  x, b  y) or
from sp, 0d (a  y, b  x). Explicit expressions fora
and b depend ont, t0, . . . . We consider the following
general case:a fi 0, b fi 0, a fi b. We choosea . b
corresponding tot0yt , 0.

The T  0 ETT has two characteristic aspects. The
first (trivial) one is related to thelocal change of FS
topologyin the vicinity of SP. This leads to divergences
in thermodynamic properties, in density of states atv 
0, etc. From this point of view the corresponding QCP i
of a Gaussian-type with the dynamic exponentz  2.

The nontrivial aspect is related tomutual changein
the topology of FS in vicinities of two different SP’s and
reveals itself when considering the electron polarizability

x0sq, vd 
1
N

X
k

nFsẽkd 2 nFsẽq1kd
ẽq1k 2 ẽk 2 v 2 i01

. (3)

We show that the latter has a square-root singularity
© 1999 The American Physical Society
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v  0 and wave vectorq  qm in a vicinity of Q 
sp , pd for any Z on the semiaxisZ , 0: x0sq, 0d 2

x0sqm, 0d ~
p

jqm 2 qj for jqj . jqmj. It is a static KS
in the 2D electron system. The locus of the wave vecto
qm in the Brillouin zone (BZ) is a closed curve aroundQ
with jQ 2 qmj ~

p
jZj. With decreasingjZj the closed

curve shrinks and is reduced to the pointq 5 Q at Z  0,
where x0sq, 0d diverges logarithmically. The curve of
the static KS’s withq close to Q does not reappear
for Z . 0: x0sq, 0d is peaked atq  Q in an intimate
vicinity of ETT and it exhibits a wide plateau around
q 5 Q for largerZ. To illustrate this we show in Fig. 1
the q dependence ofx0sq, 0d calculated based on (3) and
(1). [We use the model with onlyt0 fi 0 being a generic
model for the family:a fi 0, b fi 0, a fi b.] The curve
discussed above is the curve of singularities in Fig.
closest toq 5 Q. In the plot, one sees only a quarter o
the picture aroundq 5 Q; to see theclosedcurve around
sp , pd, one has to consider the extended BZ. (Few oth
curves of KS’s seen in Fig. 1 are not sensitive to ETT; w
discuss them elsewhere.)

As a result, the pointZ  0, T  0 turns out to be the
end point of the critical lineZ , 0, T  0.

Paradoxically, theabsenceof the discussed curve of
static KS’s forZ . 0 leads to an anomalous behavior o
the system on this side of QCP. To see this, let us calcul
v dependencies of Rex0sq, vd, Im x0sq, vd andCsvd 
Im x0sq, vdyv for the characteristic for this regime
wavevectorq  Q. The results are shown in Fig. 2a
One can see that all functions are singular at some ene
vc. Analytical calculations with the hyperbolic spec
trum (2) give the following expression: Imx0sQ, vd 
Fsvyvc, byady2pt, Rex0sQ, vd  Rex0sQ, vcd 2

Fsvyvc, byadyt with

Fsx, yd 

8>><>>:
ln

p
11xy1

p
11x

p
12xy1

p
12x

, 0 # x # 1

ln
p

11xy1
p

11x
p

xs12yd
, x $ 1

,

Fsx, yd 

Ω
g1s yds1 2 x2d, x 2 1 , 0
g2s yd

p
x 2 1 , 0 # x 2 1 ø 1

(4)

[g1s yd ø 1]. The new energy scalewhich appears and
corresponds to the singularities in Fig. 2a is given by

vc  Zs1 1 byad .

The singularities atv  vc are dynamic 2D KS’s.
The dynamic KS’s atT  0 transform into static Kohn

anomalies at finite temperatures (see Fig. 2b). Wh
comparing with Fig. 2a, one can see that the behav
is similar to being smoothed by the effect of finite
T . The important difference is that the characterist
temperatures of the Kohn anomalies for Rex0sQ, 0d and
for limv!0 Im x0sQ, vdyv being both scaled withZ,

Tp
Re  AZ, Tp

Im  BZ, A , B ,

are different; that is a usual effect of finiteT .
Another remarkable signature ofasymmetry inZ is the

following. Taken for the characteristic for each regim
rs

1a
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.
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FIG. 1. q dependence ofx0sq, 0d through the BZ for (a)
Z , 0, (b) Z . 0, (c) Z  0. Qx  qxyp, Qy  qyyp. The
point q 5 Q corresponds to the left corner. (t0yt  20.3.)

wave vector,q  qm for Z , 0 and q 5 Q for Z . 0,
x0sq, 0d decreases rapidly withjZj for Z , 0 while for
Z . 0 it remains practically constant(and quite high)
for not too smallZ. Moreover, for finiteT , x0sQ, 0d
has a maximum atZ  ZpsT d . 0. As a result of the
describedT andZ dependencies ofx0sQ, 0d in the regime
Z . 0, the linesx0sQ, 0d  const have an unusual form
in the T 2 Z plane: They develop rather around th
“critical” lines Tp

ResZd andTp
ImsZd than around the QCP

T  0, Z  0.
On the contrary, the behavior of SC RF (in both cas

isotropics-wave ord-wave symmetry) is symmetrical in
Z being related to the first aspect of ETT. For the sam
reason, the SC RF decreases quite rapidly with increas
a distance from QCP, i.e., with increasingT andjZj.

Above we considered a system of noninteracting el
trons. In fact, the same picture takes place for a
system of fermion or fermionlike quasiparticles when t
dispersion law is determined by the topology of 2D squa

FIG. 2. Rex0sQ, vd (solid line), Imx0sQ, vd (dot-dashed
line), andCsvd  Im x0sQ, vdyv (dashed line) in the regime
Z . 0 (a) as a function ofv for T  0 and (b) as a function
of T for v ! 0. Heret0yt  20.3 andZyt  0.21.
2371
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lattice and has a form (1). In [8], where we discus
some problems of strongly correlated systems, we sh
that such quasiparticles (with spin and charge) do exist
the t 2 t0 2 J model describing the strongly correlate
CuO2 plane. On the other hand, the shape of FS o
served by ARPES does imply the existence ofnnn hop-
ping t0 fi 0, so that the condition of the asymmetrya fi b
necessary for the existence of the discussed ETT is f
filled. Moreover, this shape impliest0yt , 0, the case
for which the critical dopingdc is positive. Below we
will pass from the energy distance from ETTZ to the
doping distancedc 2 d, using a large FS condition:
1 2 d  2

P
k nFsẽkd [8].

Let us now consider the system in the presence
interaction. A quite trivial consequence of the ETT i
a developing of density wave (DW) and SC instabilitie
around the pointd  dc, T  0. [The effects are related
to the logarithmic divergence ofx0sQ, 0d and lnZ ln T
divergence of the SC RF asT ! 0, Z ! 0.] Nontrivial
consequences concerning the DW degrees of freedom
related to the Kohn singularity aspect of ETT are (i)
strong asymmetry between regimesd , dc andd . dc,
and (ii) very long (in doping and temperature) memor
about DW instability in the disordered state on one sid
of ETT, d , dc. To see this, let us consider the electron
hole RF which in the random-phase approximation
given byxsq, vd  x0sq, vdyf1 1 Vqx0sq, vdg. In the
case of interactionVq in a triplet (singlet) channel the
instability and normal state fluctuations are of spin
density wave (SDW) [charge-density wave (CDW)] type
We will consider the former interaction:Vq  Jq 
2Jscosqx 1 cosqyd (J . 0) as strongly supported by
neutron scattering and NMR experiments for the cupra
and on the other hand, as an interaction between the ab
discussed quasiparticles in thet 2 t0 2 J model [8]. For
such interaction both instabilitiesd-wave SC (see details
in [8]) and SDW take place around QCP. Because
the symmetry of SC RF inZ, TSCsdd is symmetrical
on two sides ofdc with a maximum atd  dc (see
Fig. 3). Therefore the regimesd , dc and d . dc can
be considered as underdoped and overdoped, respectiv
On the contrary, the line of SDW instability,TSDW sdd,
given by x0sq, 0d  21yJq (q 5 Q for d , dc and
q 5 qm for d . dc) has an anomalous form in the regim
d , dc: It develops rather around the linesTp

Resdd and
Tp

Imsdd than around QCP (see Fig. 3), reproducing th
form of linesx0sQ, 0d  const discussed above.

When, at certain doping,d  dSDW , the ordered SDW
solution disappears, it is the disordered metallic sta
which retains this type of behavior: the regimeTp

Resdd ,

T , Tp
Imsdd ( II) turns out to be a regime of aminimum

disorderand the regimeT , Tp
Resdd ( I) is a regime ofa

reentrant in temperature quantum SDW liquid.Indeed,
the two most important parameters characterizing SD
liquid, k2  1 2 jJQjx0sQ, 0d describing a “proximity”
to the SDW instability andGQ  k2yCs0d describing a
relaxation energy, behave in a reentrant way in increas
2372
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FIG. 3. Phase diagram with the lines of SDW andd-wave SC
instabilities and the linesTp

Resdd, Tp
Imsdd (t0yt  20.3, tyJ 

1.9). We consider only the metallic part of the phase diagra
(for a discussion about a passage from the AF localized-sp
state at low doping to the metallic state with large FS fo
intermediate doping, see Ref. [8]).

T : k2 decreases (slightly) withT until Tp
Resdd and GQ

decreases (strongly) untilTp
Resdd , Tp

G , Tp
Imsdd as if the

system would move towards an ordered phase. Howev
it does not reach it; the reentrancy stops and the syst
passes to the regime II of a minimum disorder above whic
a standard disordered state behavior is restored (regi
III). On the other hand, the quantum SDW liquid stat
in the regime I is practicallyfrozen in dopingdue to the
very weak dependence ofk2 on doping. As a result the
disordered metal state in the regimed , dc keeps a strong
memory of the ordered SDW phase (and therefore develo
strong critical SDW fluctuations) very far in doping and
in temperature. On the contrary, in the regimed . dc

the memory of SDW instability and the correspondin
fluctuations disappear rapidly due to the sharp decrease
x0sq, 0d with increasingd 2 dc andT . The same is valid
in both regimesd . dc andd , dc, for SC fluctuations
due to the above discussed behavior of SC RF as a funct
of T and jZj. Therefore, although the SDW phase itse
is energetically unfavorable with respect to the SC pha
(except in the case of very highJyt), the metal state above
TSC in the underdoped regime is a precursor of the SDW
phase rather than of the SC phase.

The linesTp
Resdd andTp

Imsdd are basic lines for anoma-
lies in the disordered metallic state. To demonstrate ho
the anomalies appear for different properties we consid
some examples. In Fig. 4a we show calculated quasista
magnetic characteristics corresponding to these measu
by NMR 1yT1T and1yT2G on copper as functions ofT .
The physical reason for a slight increase of1yT2G , extend-
ing until øTp

Re, and a much stronger increase of1yT1T ,
extending untilT ø Tp

G, is the reentrant behavior ofk2

and GQ with T discussed above. The theoretical behav
ior is very close to that observed experimentally (Fig. 4b
and explains it in fact for the first time.

In Fig. 5 we show an electron spectrum calculated fo
the ordered SDW phase (a) and for the disordered me
state (namely, for the regime II) (b). For the ordere
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FIG. 4. 1yT1T and1yT2G (a) calculated ford  0.15 (t0yt 
20.3, tyJ  1.9) (should be considered only aboveTSC) and
(b) taken from NMR for YBCO6.6 [2].

phase the spectrum is given bý1,2  seA 1 eBdy2 6p
fseA 2 eBdy2g2 1 D2 [eAskd ; eskd, eBskd ; esk 1

Qd] with the gapD determined self-consistently in the
usual way. For the disordered state the “spectrum”
obtained from the maxima of electron spectral function
strongly renormalized due to the interaction with th
above described SDW fluctuations. The characteris
form of the spectrum in both cases is a result of
hybridization of two parts of the bare spectrum in th
vicinity of two different SP’s s0, pd and sp, 0d. The
hybridization is static for the ordered SDW phase an
is dynamic for the disordered state. (Details about th
pseudogap opening in the disordered state and its beha
with T andd will be the subject of a separate paper.) Th
spectrum is in excellent agreement with ARPES data (s
Fig. 5c) (ARPES measures only the part corresponding
e , 0). The effect of splitting into two branches, and
of the pseudogap, disappears quite rapidly in the regim
d . dc due to the rapid weakening of SDW fluctuations
It disappears roughly aboveTp

Imsdd for the same reason.
Both facts agree with experiments for the cuprates.

We will now discuss the behavior of Imxsq, vd, the
characteristics measured by inelastic neutron scatter
( INS). As follows from the previous analysis, belowTp

Im
it has a maximum atv  v0 ~ k2 (being peaked at
q  Q). Sincek2 almost does not change withd, the
position of the peak does not as well. This agrees with IN
data and explains (for the first time) the existence of th
characteristic energy (,30 MeV) aboveTSC for all d; see,
e.g., the summarizing picture in Fig. 25 in [11]. As wa
emphasized before, strong SDW fluctuations disappear
the overdoped regimed . dc. In the underdoped regime
they disappear (or strongly diminish) aboveTp

Imsdd. Both
facts are in good agreement with INS.

Summarizing, the simple picture arising from the effec
of ETT in a 2D electron system on a square lattice gives
unified vision of normal state anomalies in the underdop
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FIG. 5. Electron spectruḿskdyt alongG-X symmetry lines,
(a) in SDW phase [Zyt  0.03 (d  0.25), T  0], (b) in the
metallic state aboveTSC [Zyt  0.3 (d  0.1), Tyt  0.15],
(c) ARPES data [10] for underdoped Bi2Sr2CaCu2O815 above
TSC. The dashed lines correspond to the bare spectrum, and
thin line in (a) corresponds to the spectrum with the spectr
weight less than0.1. t0yt  20.3, tyJ  1.8; wave vectors
are taken in units ofp.

high-Tc cuprates for both magnetic and electronic prope
ties. We succeed in explaining the temperature anomal
in 1yT1T and 1yT2G NMR characteristics, some crucial
features of INS in the normal state, the disappearance
magnetic fluctuations in the overdoped regime, an openi
of a pseudogap in the electron spectrum, the shape of
latter in a vicinity ofs0, pd, and the disappearance of the
pseudogap in the overdoped regime. All of these are mo
nontrivial experimental results. Regarding that the theo
does not use any external phenomenological hypothe
and only two microscopical parameterst0yt and tyJ, the
similarity between the theoretical results and experimen
seems quite remarkable. We emphasize that the eff
exists for anyt0yt, t00yt, . . . , except for two limit cases:
(i) isotropic a  b in Eq. (2) (t0  t00  . . .  0) and
(ii) extreme anisotropic onea  0 or b  0. Although
ETT exists in both cases, the corresponding QCP’s belo
to different classes of universality. Fora  b (nesting)
the behavior is symmetrical inZ, the anomalous regime
discussed in this paper disappears.
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Various ordered states in a 2D interacting electron system
close to an electronic topological transition
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Abstract

We consider a 2D electron system on a square lattice with hopping beyond nearest neighbors. The existence of the
quantum critical point associated with an electronic topological transition in the noninteracting system results in density
wave (DW) and high-temperature d-wave superconducting (dSC) instabilities in the presence of an exchange interaction
J. We analyse di!erent DW ordering such as isotropic Spin DW (SDW), d-wave SDW, isotropic Charge DW (CDW) and
d-wave CDW. The coexistence of dSC and SDW orders leads necessarily to the existence of a third order which is
a p triplet superconducting (PTS) order. A new phase diagram with a mixed phase of SDW, dSC and PTS order is found.
The theory is applied to high-¹

#
cuprates. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 74.20.!z; 74.72.!h; 75.30.Mb

Keywords: CDW; d-wave superconductivity; SDW

A strong opinion exists in the physical community that
the anomalous properties of high-¹

#
cuprates can re#ect

the existence of some hidden quantum critical point
(QCP). It has been suggested recently [1,2] that such
a QCP could be due to an electronic topological
transition (ETT) in a 2D system. As was shown, the
existence of this QCP results in DW and dSC instabilities
of the normal state. In the present paper we study DW
states of di!erent natures and the mixed state with both
DW and dSC ordering.

The starting point is a 2D model of interacting fermions
on a square lattice with hopping between nearest (t) and
next nearest (t@) neighbors (while t@/t(0 which corres-
ponds to the situation experimentally observed [3])
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the charge and spin densities. The Fermi surface (FS) of
noninteracting quasiparticles with the dispersion law
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cosk
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changes from

closed to open at the critical doping x
#

resulting in the
2D ETT which is at the origin of two types of instabilities:
dSC and DW. Calculations show that the superconduct-
ing temperature is highest at x

#
, thus the regimes x(x

#
and x'x

#
could be seen, respectively, as underdoped

and overdoped. The shape of the FS in the underdoped
regime favors the DW instabilities with the antiferromag-
netic wave vector Q"(p,p). The DW order parameter is
tk"Sck̀`Qt

ckt
$ck̀`Qs

cks
T. On the one hand, it could

be of the spin (!) or charge (#) type and on the other,
it could be isotropic or have a certain dependence on k.
The k-dependent case corresponds to the so-called un-
conventional DW order which was considered for
example in Ref. [4] (see also Ref. [5]). Below, we consider
four di!erent types of DW order: isotropic spin or charge
density wave (SDW or CDW), d-wave spin or charge
density wave (dSDW or dCDW). For all of them the
spectrum is given by
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Fig. 1. Phase diagram for t/J"1.5 and t@/t"!0.3. T is the
temperature. The ordered SDW phase starting from the QCP at
x"x

#
develops toward the underdoped region. Its size in-

creases with increasing J and eventually leans out the supercon-
ducting phase as in this "gure. SDW and dSC result in a mixed
phase where PTS order is also present.

with Dk"D
0

for SDW and CDW orders, and
Dk"D

0
[cos k

x
!cos k

y
] for dSDW and dCDW orders.

The e!ective coupling constants are given respectively,
by

g
SDW

"2;#2Jz, g
$SDW

"b#Jz!2JM,

g
CDW

"!2;#2b, g
$CDW

"b#Jz#2JM.

In the case of the t}J model (Jz"JM"!b and ;"0)
which we use below to describe the high-¹

#
cuprates,

only two instabilities, dCDW and SDW, are possible, being
determined by equal e!ective constants, g

SDW
"g

$CDW
.

On the second stage we write a set of coupled equa-
tions for di!erent order parameters. We show that the
mixed state with both SC and DW order parameters is
favorable in the underdoped regime at low temperature
(see Fig. 1). Moreover, the coexistence of DW and dSC
order parameters results in the appearance of a third

ordering. In the case when DW order is of the isotropic
SDW type2 this third order parameter (p triplet super-
conducting [6,7] (PTS) one) is related to the p operator
introduced in the framework of the SO(5) theory which
creates triplet Cooper pairs with total momentum Q. The
resulting phase diagram is shown in Fig. 1 for the t}J
model with realistic parameters for high-¹

#
cuprates.

Notice that the pure DW order develops in the region
where the pseudogap behavior in the normal state is
experimentally observed, see e.g. Ref. [3]. The admixture
of SDW order in the dSC state could be responsible for
the anomalous spin dynamics observed by neutron scat-
tering inside the superconducting phase. If the dSC order
is suppressed, the underdoped regime could be insulating
due to the DW order while the overdoped one will
remain metallic in good agreement with experiment [8]
where superconductivity is suppressed by a pulsed mag-
netic "eld.
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Abstract. We study in a mean-field approximation the ordered “excitonic” states which develop around
the quantum critical point (QCP) associated with the electronic topological transition (ETT) in a 2D
electron system on a square lattice. We consider the case of hopping beyond nearest neighbors when ETT
has an unusual character. We show that the amplitude of the order parameter (OP) and of the gap in the
electron spectrum increase with increasing the distance from the QCP, δc− δ, where δ = 1−n and n is an
electron concentration. Such a behavior is different from the ordinary case when OP and the gap decrease
when going away from the point which is a motor for instability. We show that the chemical potential lies
always inside the gap for wavevectors k in a proximity of (0, π) whatever is the doping concentration. The
spectrum gets a characteristic flat shape as a result of hybridization effect in the vicinity of two different
SP’s. The shape of the spectrum as a function of k and the angle dependence of the gap have a striking
similarity with the features observed in the normal state of the underdoped high-Tc cuprates. We discuss
also details about the phase diagram and the behaviour of the density of states.

PACS. 74.25.-q General properties; correlations between physical properties in normal
and superconducting states – 74.72.-h High-Tc compounds – 74.25.Dw Superconductivity phase
diagrams – 74.25.Ha Magnetic properties

Many experiments performed for high Tc cuprates pro-
vide an evidence for the existence of a pseudogap in the
underdoped regime above Tc and below some temperature
T ∗(δ) which value increases with increasing the doping dis-
tance from the optimal doping, δopt−δ [1–8]. The pseudo-
gap is observed directly by angle-resolved photoemission
spectroscopy (ARPES) measurements [9–13]. The striking
about this gap is its increase with increasing δopt − δ [12]
while the critical temperature of superconducting (SC)
transition, Tsc, decreases. Another prominent feature is
the so-called (π, 0) feature discovered by ARPES: the elec-
tron spectrum around the saddle-point (SP) is flat and
disappears above some threshold value of wavevector [9].
Several hypotheses exist about possible origin of the pseu-
dogap [14–17]. In this paper we present another explana-
tion of this phenomenon in the framework of the model
developed in [18–20]. In these works the concept of the
Electronic Topological Transition in 2D system is devel-
oped and applied for the explanation of various effects
experimentally observed in high-Tc cuprates.

In the present paper we consider various ordered states
appearing in the vicinity of ETT point in the presence of

a Present address: Institüt für Theoretische Physik, Univer-
sität Würzburg, 97074 Würzburg, Germany
e-mail: kiselev@physik.uni-wuerzburg.de

interaction. We show that the ordered “excitonic” phase
formed in a proximity of quantum critical point QCP cor-
responding to ETT1 is characterized by the electron spec-
trum strikingly similar to that observed in the underdoped
cuprates. The mentioned ETT corresponds to the electron
concentration nc = 1−δc at which Fermi level (FL) crosses
saddle point (SP) energy in the bare spectrum. As shown
in [19], in the case of hopping between more than nearest
neighbors (or, by other words of electron-hole asymmetry)
the existence of the ETT QCP leads to a very asymmet-
ric behaviour of the noninteracting and interacting sys-
tem on two sides of ETT being quite anomalous on the
side δ < δc. On the other hand, for realistic for the high-
Tc cuprates ratios of hopping parameters between nearest
and next nearest neighbors t′/t, δc is given by: δc = 0.27
for t′/t = −0.3 and δc = 0.17 for t′/t = −0.2, i.e. the
anomalous regime δ < δc occurs in the doping range where
the experimentally observed normal metal anomalies take
place. Moreover, δ = δc corresponds to a maximum of
Tsc(δ) (as discussed in [19]) and therefore the latter regime
can be considered as an underdoped regime.

1 It has been shown in [19] that the ETT point is an isolated
QCP. The properties of this QCP have been studied in detail
in [19].
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Some anomalies concerning the ordered “excitonic”
phase have been discussed in [18]. Namely, it was shown
that the line of the “excitonic” instability grows from the
ETT QCP to the side δ < δc instead of having the form
of a bell around the QCP as it usually happens for an or-
dinary QCP. Other anomalies which exist in the ordered
phase are considered in the present paper. (We call this
phase “excitonic” ordered phase because the discussed in-
stability has the same origin as the classical “excitonic” in-
stability intensively discussed in the 60-70 [21–26]. Namely
it is related to the opposite curvature of two parts of elec-
tron spectrum in a proximity of FL. In the case considered
they correspond to spectra in vicinities of two SP’s.)

We consider various possibilities for the ordered state,
namely, Spin and Charge Density Wave orderings with dif-
ferent types of the order parameter symmetries (s-wave,
d-wave) depending on the effective interaction between
the quasiparticles. Despite of the different symmetries,
the properties of such ordered states resembling an “ex-
citonic” states [21–26] are quite similar. For example we
show that the electron spectrum in the ordered phase is
characterized by a gap on FL for wavevectors belonging
to some part of Brillouin zone which always covers the SP
wavevectors (0, π), (π, 0) whatever is the doping concen-
tration. This remarkable feature is related, as we show in
the paper, to a quite nontrivial aspect of ETT: it is the end
point of two critical lines for the “polarization operator”
characterizing a behaviour of the free electron system. The
other side of the same effect is an increase of the amplitude
of the order parameter (and of the gap) with increasing
the doping distance from QCP on the underdoped side.
We show also that the electron spectrum in a vicinity of
SP wavevectors gets a specific “flat” form as a function
of k that on one hand is typical for an “excitonic” phase
(see for example [24]) being a result of a hybridization of
two parts of the bare spectrum with the opposite curva-
ture and on the other hand has a striking similarity with
the form of the spectrum observed by ARPES [9–13]. We
show that the spectrum “disappears” above some thresh-
old value of wavevector in the direction (π, 0)−(π, π) that
is also an effect of the same hybridization. We briefly dis-
cuss also features related to strong-coupling limit of the
model and effects of strong electron correlations.

A starting point is a 2D system of free fermions on a
square lattice with hopping between nearest (t) and next
nearest (t′) neighbors

εk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky . (1)

The dispersion law (1) is characterized by two different
saddle points (SP’s) located at (± π, 0) and (0,±π) (in
the first Brillouin zone (−π, 0) is equivalent to (π, 0) and
(0,−π) is equivalent to (0, π)) with the energy εs = 4t′.
When we vary the chemical potential µ or the energy dis-
tance from the SP, Z, determined as

Z = µ− εs = εF − 4t′, (2)

the topology of the Fermi surface changes when Z goes
from Z < 0 to Z > 0 through the critical value Z = 0,
see Figure 1. For t′/t 6= 0 which is the case of our interest,

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 1. Fermi surface of the electron system with the dispersion
law (1) for different Z and t′/t = −0.3. The thick line stands
for Z = 0. Open and close FS correspond to Z > 0 and Z < 0
respectively.

the FS does not satisfy the perfect nesting condition [27]
and has a different shape for different signs of t′/t. In our
paper we discuss t′/t < 0 that corresponds to proper fit
of ARPES experimental data. The FS’s corresponding to
Z > 0 and Z < 0 are shown in Figure 1.

According to Figure 1, the FS can be classified as fol-
lows. For arbitrary filling factor (depending on dopings),
the FS can have either 8 points which can be connected
by vector Q = (±π,±π) (see Fig. 1), or 4 points, or do not
have any such a point. These points are called “hot spots”
(HS) (see [17]). The 8 hot spots are the intersection points
between the Fermi Surface (FS) and the umklapp surface
(US) kx ± ky = ±π. The two quantum critical points
QCP1 and QCP2 correspond to critical hole dopings δc1

and δc2. For δc2 < δ < δc1 there are 8 hot spots. When
δ → δc1 they become 4 hot spots located at the 4 sad-
dle points (kx = ±π, ky = 0 and ky = ±π, kx = 0), then
for δ > δc1 they disappear. When δ → δc2 they coincide
with the 4 points located at the FS along the diagonals
kx = ±ky; for δ < δc2 they disappear.

It has been shown in [19] that such a system undergoes
a fundamental ETT at the electron concentration corre-
sponding to Z = 0. The corresponding quantum critical
point is quite rich. It combines several aspects of criti-
cality. The first standard one is related to singularities in
thermodynamic properties, in density of states at ω = 0
(Van Hove singularity), to additional singularity in the
superconducting (SC) response function, all reflect a local
change in the topology of FS. This aspect is not impor-
tant for the properties we are interested in the present
paper. Important aspects which reflect a mutual change
in the topology of FS in the vicinities of two SP’s are the
following. First of all, it is a logarithmic divergence of the
polarizability of noninteracting electrons

χ0(k, ω) =
1
N

∑
q

nF(ε̃q)− nF(ε̃q+k)
ε̃q+k − ε̃q − ω − i0+

, (3)
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Fig. 2. Schematic presentation of the electron spectrum in a
vicinity of two SP’s for Z = 0

as k = Q = (π, π), ω = 0 and Z → 0:

χ0(Q, 0) ∝ ln
ωmax

|Z| , (4)

which has an “excitonic” origin (ωmax ∼ t is a cutoff en-
ergy). By “excitonic” origin we mean that two branches
of the spectrum corresponding to vicinities of two SP’s
(a = t− 2t′, b = t+ 2t′)

ε̃1(k) = ε1(k)− µ = −Z + ak2
x − bk2

y,

ε̃2(k) = ε2(k) − µ = −Z + ak2
y − bk2

x (5)

have such a form (see Fig. 2) that at Z = 0 the chemical
potential lies on the bottom of one “band” and on the
top of the another for the given directions (0, π) − (π, π)
and (π, 0) − (0, 0), (see Fig. 2). Therefore, no energy is
needed to excite the electron-hole pair. It is this divergence
that is at the origin of density wave (DW) instability.
The DW instability can be of Spin Density Wave (SDW),
Charge Density Wave (CDW), Spin Current Density Wave
(SCDW) or Orbital Current Density Wave (OCDW) in-
stability [28]) of interacting electron system depending on
a nature of interaction.

The nontriviality stems from the aspect of criticality
related to the effect of Kohn singularity in 2D system:
the point Z = 0, T = 0 is the end of the critical line
Z < 0 each point of which is a point of static Kohn sin-
gularities in polarizability of noninteracting electrons. As
shown in [19], the latter aspect is a motor for the anoma-
lous behaviour of the system on the other side of ETT
Z > 0. One among the anomalies found in [19] concerns
the ordered DW phases. We have obtained that the line
of DW “excitonic” instability TDW(Z) has the anomalous
form on the side Z > 0: it grows from QCP instead of
having the form of a bell around QCP as it usually hap-
pens in the case of ordinary QCP. Below we show that this
latter aspect is also at the origin of anomalous behaviour
of the order parameter and of some other anomalies in the
ordered state in the same regime Z > 0.

As shown in [19], on the side Z > 0 of the elec-
tronic topological transition point, a maximum of the
static electron-hole susceptibility occurs at the wavevector
q = Q. Therefore in a presence of q independent interac-
tion or q dependent interaction negative for q = Q, the

DW instability happens at q = Q and this is the wavevec-
tor of ordering in the DW phase. As usual for such phases,
one should consider a matrix electron Green function con-
taining as components the normal and anomalous Green
functions in terms of operators a+

k,σ and akσ which are
the creation and annihilation electron’s operators respec-
tively:

K11(k, iωn) = −
∫ β

0

dτ eiωnτ 〈Tτakσ(τ)|a+
kσ(0)〉

K22(k, iωn) = −
∫ β

0

dτ eiωnτ 〈Tτak+Qσ(τ)|a+
k+Qσ(0)〉

Kσσ′

12 (k, iωn) = −
∫ β

0

dτ eiωnτ 〈Tτak+Qσ(τ)|a+
kσ′(0)〉. (6)

(Below we will omit spin indices in the Green functions
keeping in mind that K12 = Kσ−σ

12 for CDW and OCDW
states and K12 = Kσσ

12 for SDW and SCDW states.)
If the anomalous Green function K12 is nonzero (that

should be found selfconsistently) the explicit expressions
for the two Green functions are as follows

K11(k, iωn) =
[
u2(k)

iωn − ε1
+

v2(k)
iωn − ε2

]
,

K22(k, iωn) =
[
u2(k)

iωn − ε2
+

v2(k)
iωn − ε1

]
,

K12(k, iωn) = K21(k, iωn)

= u(k)v(k)
[

1
iωn − ε1

− 1
iωn − ε2

]
, (7)

where u, v-coefficients have a standard form:

u2(k) =
1
2

[
1 +

εA(k)− εB(k)
2E(k)

]
,

v2(k) =
1
2

[
1− εA(k)− εB(k)

2E(k)

]
,

E(k) =

√(
εA − εB

2

)2

+ |∆(k)|2. (8)

The spectrum in the ordered state is given by

ε1,2 =
εA + εB

2
±

√(
εA − εB

2

)2

+ |∆(k)|2,

εA(k) ≡ ε(k) εB(k) = ε(k + Q), (9)

where ε(k) is defined by (1). The equation for the gap is

∆(k) = −T
∑
ωn

1
N

∑
p

Γ12(k,k + Q,p)K12(p, iωn) (10)



604 The European Physical Journal B

where Γ12 is a vertex which in mean field approximation
coincides with the bare interaction:

Γ12(k,k + Q,p) = VQ, for SDW (CDW)
Γ12(k,k + Q,p) = Vk−p, for OCDW (SCDW) (11)

where Vk = 2V (cos(kx) + cos(ky)). The type of the inter-
action and therefore, type of the excitonic phase depend
on the model. The SDW and OCDW instabilities occur
in the case of a positive interaction in the triplet channel
(exchange interaction), the CDW and SCDW instabilities
take place for positive interaction in the singlet channel
(density-density interaction). We will not fix for the mo-
ment a type of interaction and therefore a nature of the
ordered phase assuming that there exists either the first
or the second interaction.

The equation (10) is reduced to the following equation

1 = 4|V |ΠDW
k=0(Q, Z,∆) (12)

where the “polarization operators” ΠDW(Q, Z,∆) are
given by one of the following equations [30]:

ΠSDW,CDW(Q, Z,∆) =
1

4N

∑
p

1
E(p)

[
tanh

( ε1

2T

)
− tanh

( ε2

2T

)]
. (13)

ΠOCDW,SCDW(Q, Z,∆) =

1
4N

∑
p

(cos px − cos py)2

4E(p)

[
tanh

( ε1

2T

)
− tanh

( ε2

2T

)]
.

(14)

The expressions (12) are the equation for the SDW, CDW,
OCDW or SCDW gap which should be solved selfconsis-
tently. We emphasis that for V > 0 only SDW (OCDW)
solution is possible whereas CDW (SCDW) solution takes
place for V < 0.

The solution of (12–14) is given by one of the following
expressions

∆ = ∆SDW(k) = ∆SDW
0 ,

∆ = ∆CDW(k) = ∆CDW
0 ,

∆ = ∆OCDW(k) = ∆OCDW
0 (cos kx − cos ky)/2,

∆ = ∆SCDW(k) = ∆SCDW
0 (cos kx − cos ky)/2. (15)

The equations (10–15) are quite standard. A nontriv-
iality, as we show below, is related to the behaviour of
the “polarization operator” in a proximity of ETT. As
we have shown in [19], the effect that the point of ETT
is the end point of the critical line Z < 0 leads to the
anomalous behaviour of the electron-hole susceptibility
χ0(Q, Z, ω) on the side Z > 0. Below we show that
a similar effect takes place for the “polarization opera-
tor” (14). The two functions coincides in the limit cases:
χ0(Q, Z, ω = 0) = ΠDW(Q, Z,∆ = 0). (It is important to
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,ω
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Z/t=0.2
Z/t=0.3

∆

Fig. 3. Calculated “polarization operator” Π(Q, Z,∆(Q)) as
a function of ∆0 for fixed Z and T = 0.

emphasize that the behaviour of the “polarization opera-
tor” depends only on properties of the system of nonin-
teracting electrons, namely on the topology of FS.)

Calculated for T = 0 “polarization operators”
ΠDW(Q, Z,∆0) as a function of ∆0 for fixed Z (in the
regime Z > 0) are shown in Figure 3. Since the properties
of the “polarization operators” are similar in many aspects
we shall omit later the indices (SDW, CDW, OCDW or
SCDW) except for the cases when it will be necessary to
emphasize the difference.

One can see that there is a singularity at some point
∆0 = ∆c(Z). The value of∆c(Z) increases with increasing
Z. The situation is quite similar to that analyzed in [19]
for χ0 as a function of ω for fixed Z and T = 0. In the
latter case we have found a square-root singularity at

ω = ωc =
2Z

1− 2t′/t
,

which is the dynamic Kohn singularity. As we see in Fig-
ure 3, for the polarization operator Π(Q, Z,∆) the singu-
larity is weaker, while ∆c(Z) also scales with Z.

Analytical estimations show that ∆c(Z) is given by

∆c(Z) = Z (16)

while the asymptotic form of Π(Q, Z,∆) near the singu-
larity is given by:

tΠ(Q, Z,∆) =
{
A1|1−∆/∆c|+ B, ∆ < ∆c

A2|1−∆/∆c|+ B, ∆ > ∆c.
(17)

The jump in the derivative, A1 − A2, depends only on
t′/t [31] and is proportional to

A1 −A2 ∝
1
|t′/t|

(
ln
∣∣∣∣ 4
t′/t

∣∣∣∣−A0

)
, (18)

where A0 is a constant (for the spectrum (5) A0 = π/8).
The critical line (16) is clearly seen in Figure 4 where
we present the calculated Π(Q, Z,∆0) as a function of
Z and ∆0. From the point of view of the behaviour
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Fig. 4. Π(Q, Z,∆0) as a function of ∆0 and Z at T = 0 and
lines Πzz(Q) = const in Z −∆0 coordinates.

of the “polarization operator”, the ETT point is the
end point of two critical lines. The first is the semi-axis
Z < 0 each point of which corresponds to the square-
root singularity in Π(q, Z,∆) occurring as ∆0 → 0 and
q → qm, where the latter is the characteristic for this
regime wavevector of incommensurability (see [19] where
the q dependence of Π(q, Z, 0) = χ0(q, Z) is analyzed
in details.) The second is the line Z = ∆0 each point of
which corresponds to the kink in Π(q, Z,∆(q)) occurring
at T = 0 as q → Q where the latter is the character-
istic wavevector for the regime Z > 0. At the point of
intersection of these lines, Z = 0, the two types of singu-
larities are transforming into the logarithmic singularity;
Π(q, 0,∆) ∝ ln |max(q−Q,∆)|.

The existence of the critical line growing with in-
creasing Z determines a quite unusual form of the lines
Π(Q, Z,∆) = const which develop around the critical line
∆c(Z) and grow with increasing Z (see the contour plot
Fig. 4).

In preceding discussion we presented some general
analysis which does not depend on details of interaction
considered but only on the topology of the FS. To pro-
vide the calculations, let us consider a particular case of
interaction resulting in spin density wave (11, 13). The
solution of corresponding equation (12) for t/V = 1.8 is
shown in Figure 5. Two branches of the solution have an
anomalous dependence of the gap on Z reproducing the
form of the lines Π(Q, Z,∆0) = const in the contour plot
in Figure 4. The anomaly is that for both solutions gap
increases with increasing the distance from the quantum
critical point, i.e. from the point which is at the origin
of the ordered phase. (For an ordinary QCP the gap is
maximum at the electron concentration corresponding to
QCP and decreases monotonously with increasing the dis-
tance from QCP. For example such a picture takes place
for DW phase on both sides from QCP in the case of
t′ = t′′ = ... = 0; as we discussed in [19] in the latter case
all anomalies in the regime δ < δc disappear. In the case
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Fig. 5. Gap ∆ obtained by solving equations (12), (14) as func-
tion of Z (t/V=1.8, t′/t = −0.3). The solid line corresponds
to ∆1(Z), the dot-dashed line to ∆2(Z), the dashed line to
∆c(Z).

considered in the paper it happens on the overdoped side
of the QCP.)

The difference between two solutions for the gap pre-
sented in Figure 5 is that

∆1(Z) > Z (19)

while

∆2(Z) < Z (20)

for any Z, any t/V , any t′/t since the two lines, ∆1(Z) and
∆2(Z) are attached to the critical line ∆ = ∆c(Z) = Z
from above and from below. For the most range of the
existence of the ordered phase Z < Z

(1)
cr , see Figure 5,

only one solution exists, the one corresponding to equa-
tion (12). In the hyperbolic approximation and under the
condition |t′/t| not too small Z(1)

cr is given by:

Z(1)
cr ∝ ωmax exp(−π2t/(V ln |t/t′|)).

For this solution one has

∆1(Z) ≡ ∆0(Z) = f(Z) +∆(0) (21)

where ∆(0) is given by

∆(0) ∝ |t′| exp

(
− 2π2|t′/V |√

1− (2t′/t)2

)
, (22)

and f(Z) is an increasing function of Z, linear under the
condition ∆(Z) � ∆(0). The expression (22) is valid
under condition π2|t′/V |/

√
1− (2t′/t)2 � 1. For the

narrow Z range of the coexistence of the two solutions
Z

(1)
cr < Z < Z

(2)
cr it is the solution ∆1 which is favorable

(see Appendix). Therefore, the value of the gap increases
with increasing Z being always larger than Z. As we have
shown, this is a consequence of the effect that the point
of ETT is the end point of two critical lines.
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Fig. 7. Schematic representation of the bare spectrum in the
vicinity of the two saddle points for Z 6= 0.

Let’s analyze now the form of the spectrum in the DW
phase. The spectrum given by (9) is plotted in Figure 6.
for three important directions: (π, π)− (π, 0)− (0, 0) and
(0, 0)− (π, π). The spectrum in the vicinity of SP has the
following prominent features: The first is a characteris-
tic “flat” shape being a consequence of the hybridization
of the two branches of the bare spectrum in the vicin-
ity of two different SP’s with the opposite curvatures,
(see Fig. 7). The second: the spectrum in the direction
(π, π)− (0, π) “disappears” above some threshold value of
wavevector since the residue v2

k tends to zero (that is also
an ordinary consequence of the hybridization). The third:
the chemical potential always lies in the gap for the part
of Brillouin zone (BZ) around SP wavevectors since

ε1(kSP) = −Z +∆,

ε2(kSP) = −Z −∆
(see, e.g. Eq. (9)) and ∆ > Z.

This is a consequence of the existence of the critical
line ∆ = ∆c related to the discussed above aspect of
criticality of the QCP. The obtained theoretical spectrum
has a striking similarity with the anomalous experimen-
tal electron spectrum observed by ARPES [9] in the un-
derdoped cuprates below the characteristic line T ∗(δ), we

reproduce it in Figure 8. (We remind that ARPES mea-
sures a spectral function only below FL.) For the direction
(0, 0)− (π, π), Fermi level crosses the lower branch of the
spectrum, (see Fig. 6b), i.e. the system remains metal-
lic. In fact, the chemical potential gets out of the gap for
directions extending from the diagonal (0, 0) – (π, π) to
some limit direction. This corresponds to an arc of FS
shown in the insert of Figure 9 which is the lower part of
a pocket (the upper part corresponding to a low residue is
not shown). The limit points of the arc are located on the
umklapp surface away from the hot spots of the unper-
turbed Fermi surface. As the gap value ∆ is larger than
Z, the FS is destroyed starting from the hot spots in both
directions up to the saddle points on the side and up to
limit points on the other side (the position depends on
the position of the hot spots and on the strength of the
interaction V ). For large Z and large V the Fermi surface
pockets may fully disappear and the system becomes an
insulator.

The angle dependence of the value of εk − µ, i.e. of
the gap calculated from FL, in the same way as it is
done in ARPES experiments [10] is presented in Figure 9.
Namely we plot the minimal value of |εk − µ| for each
given direction from the diagonal (0, 0) – (π, π) to the
direction (0, 0) – (0, π). The dependence is of a “d-wave
type” in a sense that the gap increases with increasing the
argument (cos kx−cos ky) almost linearly in the proximity
of SP. However the dependence is flat (not linear as it hap-
pens in the d-wave case) when approaching the direction
(1, 1). Such a behaviour is also close to the experimentally
found behaviour above Tc [10] reproduced in Figure 9b.
(Although the authors of [10] claim that the behaviour
observed above and below Tc is the same, what one sees
in the experimental plot is not exactly this: the behaviour
above and below Tc is similar in the vicinity of SP and
different when approaching the (1, 1) direction and this
occurs quite systematically, see also the plots in [10] for
other samples.)
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We considered the particular case of SDW as an exam-
ple of ordered “excitonic” state. Nevertheless, all aforesaid
is true for any other types of ordered states since the exis-
tence of such states is determined only by topology of FS.

Let us study now a one particle density of states (DOS)
given by the expression

N(ε) = − 1
π

1
N

∑
p

[ImKR
11(p, ε) + ImKR

22(p, ε)]

=
1
N

∑
p

[δ(ε− ε1(p)) + δ(ε− ε2(p))]. (23)

Numerical calculations with the spectrum (1) give the pic-
ture shown in Figure 10. The density of states of SDW
(CDW) states deviates from the DOS in the initial metal-
lic state in two ε ranges notated as A and B. For OCDW
(SCDW) states only feature A survives. Analytical calcu-

lations show that the A-feature is related to the existence
of the discussed above QCP (which we call below QCP1).
Calculations of the integral in (23) performing with the hy-
perbolic spectrum (5) valid in the vicinities of SP’s show
that in the A range DOS is characterized by three singu-
larities (instead of one logarithmic singularity in the bare
density of states N0(ε) as ε→ −Z). Those are a logarith-
mic singularity at ε1 = −Z −∆0

√
1− 4(t′/t)2 [32]

N (ε→ ε1) ∼ 1
t
√

1− 4(t′/t)2
ln
(

ωmax

|ε− ε1|

)
(24)

and jumps at two energies

ε2,3 = −Z ±∆0.

The distance between two jumps is equal to 2∆.
The B feature is related to the existence of the second

quantum critical point in the system (QCP2) discussed
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line corresponds to the DOS in the initial metallic state.

in [29]. This point corresponds to the electron concentra-
tion when the chemical potential is equal: µ = µc2 = 0 or
by other words when the wavevector connecting two parts
of FS in the direction (1, 1) is equal to QAF = (π, π).
In this case two “hot spots” on FS come together at the
singular position (±π/2,±π/2) before disappearing. The
calculations of the integral in (23) with the spectrum taken
around (π/2, π/2) give a logarithmic divergence at the
point ε4 = −Z − 4t′ +∆(π/2, π/2):

N (ε→ ε4)−N0(ε4) ∼ 1
t

√
∆(π/2, π/2)

|t′| ln
(

ωmax

|ε− ε4|

)
(25)

and a jump at the point ε = −Z−4t′−∆(π/2, π/2). This
feature does not exist for OCDW (SCDW) states since
∆(k) = 0 along the diagonal of BZ.

The B feature is important in the case when the chem-
ical potential lies close to the pseudogap in the B part that
should take place in the electron-doped cuprates. For the
hole-doped cuprates we are interested in the present pa-
per, it is QCP1 which determines properties of the system.
In this case the chemical potential lies in the “pseudo-gap”
A according to the properties of the electron spectrum in
the vicinity of SP discussed above.

Let’s analyze now the range of the existence of the
ordered phase in the T−Z plane. For this sake let’s analyze
the behaviour of Π(Q, Z,∆0) as a function of Z at finite
temperature. (We again consider SDW state for certainty.)
Results of calculations are presented in Figure 11. The
first observation is that the gap changes only little with
T at low T . The second is that the behaviour at finite
temperature as a function of Z is qualitatively the same
as for T = 0 and it is anomalous: the value of the gap
increases with increasing Z.

0.2 0
Z/t

0

0.2

Gap

Fig. 11. The DW gap in t units as a function of Z for increas-
ing temperature: T/t = 0.005, 0.1, 0.2 (t′/t = −0.3, t/V = 1.8).
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Fig. 12. Phase diagram around QCP1 in T-Z coordinates
(t/V = 1.8, t′/t = −0.3). We show only the regime Z > 0
corresponding to the anomalous behavior. The solid line is a
line of second-order phase transition, the dot-dashed is a line
of first-order phase transition and the dashed line is a line of
instability of the disordered metal state (spinodal). The point
O is a tricritical point.

The phase diagram in T − Z plane obtained for
SDW (CDW) instability based on the analysis of the
gap behaviour at finite T is presented in Figure 12.
It is worthwhile to note that the polarization oper-
ator Π(Q, Z,∆) (14) calculated for OCDW (SCDW)
ordered states has essentially more abrupt behavior
as a function of Z in comparison with those for
ΠSDW,CDW(Q, Z,∆) (13). Such behavior appears due to
additional factor (cos(px)− cos(py))2 in the integral (12).
As a result, the domain of existence of OCDW (SCDW)
solutions for equation (12) at various doping concentra-
tions is substantially narrower than for SDW (CDW) case.
Nevertheless, it does not affect the qualitative shape of
phase diagram of Figure 12.
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Fig. 13. Lines of Π(Q, Z,∆) = const for fixed t/V = 1.8 and different Z. The plot (b) is a zoom of the plot (a) corresponding
to the coexistence of the two solutions for the gap.

The solid line on the phase diagram is the line where
∆1(T ) = 0. The dashed line is the line where ∆2(T ) = 0.
These two lines are at the same time the lines of instabili-
ties of the undistorted metallic state. The line ∆2(T ) = 0
is not however a line of a phase transition since the nonzero
solutions for the gap exist on the left of this line until the
dot-dashed line. Along the latter line corresponding to the
disappearance of the “ordered” solution, the gap is finite
and the two solutions coincide: ∆0(T ) = ∆1(T ) = ∆2(T ).
The situation is clearly seen from Figure 13 where we
present the lines Π(Q, Z,∆) = const for different Z and
fixed t/J which in fact give the full picture of the be-
haviour of the DW gap as a function of Z and T .

As we discuss in the Appendix, in the region between
the dot-dashed and dashed line, where three solutions
∆0 = ∆1, ∆0 = ∆2 and ∆ = 0 coexist, it is the solu-
tion ∆0 = ∆1 which is energetically favorable.

Thus, the dot-dashed line in the phase diagram in Fig-
ure 12 is the line of the first-order phase transition. The
gap along this line changes only little at low temperature
and tends to zero rapidly in the vicinity of the point O.
The latter is a tricritical point. The range in T −Z plane
in the vicinity of this point corresponds to a strongly fluc-
tuating regime which we will consider elsewhere. It is im-
portant to add also that at the point Z = Z

(2)
cr of the

appearance of the ordered phase at T = 0, the gap is ex-
actly equal to Z that means that the upper branch of the
spectrum in Figure 6a touches FL. Then when moving in-
side the ordered phase the gap ∆ becomes larger than Z
and this branch goes up leaving the FL.

Above we have considered the critical temperatures
and the gap behaviour as functions of the energy distance
from the QCP, Z. It is worth for applications to cuprates
to change the description and to consider physical prop-
erties as functions of electron concentration ne or of hole
doping δ = 1−ne. To do this we use the relation between
Z (or the chemical potential µ) and the hole doping which

for T = 0 is given by:

1− δ =
∫
ω

N(ω)dω. (26)

So far as

Z ∝ δc − δ, (27)

all dependencies considered above can be rewritten as
functions of doping distance from QCP. For example, the
phase diagram in the plane T−δ calculated for t′/t = −0.3
for which δc = 0.27 gets the form shown in Figure 14.

One can easily obtain values of doping for all plots
presented in Figures 4–11 when comparing the phase dia-
gram in T − Z plane in Figure 12, and in T − δ plane in
Figure 14.

Obviously, the gap ∆0(δ) increases with δc − δ in the
same way as it increases with Z, see Figures 5 and 11 for
∆0 = ∆1.

All features discussed above do not depend on the na-
ture of the ordered phase, SDW, CDW, OCDW or SCDW
since they reflect the topological aspects of ETT. The type
of the excitonic phases developing around ETT point de-
pend on the type of interaction. It is the SDW or OCDW
state in the case of a positive interaction in the triplet
channel (exchange interaction) and the CDW or SCDW
state in the case of a positive interaction in a singlet
channel (density-density interaction). The ordered SDW
phase is characterized by spin ordering with momentum
〈SzQ〉 = 1/2(〈nσσ(Q)〉 − 〈nσ̄σ̄(Q)〉) = ∆0 and the CDW
phase by the charge ordering. In the SCDW (OCDW) the
staggered magnetization (density) is equal to zero. Never-
theless, the spin-current (charge-current) correlation func-
tions survive.

In our opinion for the case of high-Tc cuprates it is the
interaction in the triplet channel which determines the
behaviour of the system and the nature of DW phase.
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From the theoretical point of view it is this situation
which corresponds to the strong-coupling limit models:
the Hubbard model and the t − J model. For exam-
ple for the latter with the J term written as HJ =∑
ij Jij{aSiSj − (b/4)ninj} one has V SDW

q = aJq while
V CDW

q = − b
4Jq, i.e. the interaction in the triplet channel

is positive while in the singlet channel is negative. This
version is supported also by experiments in the high-Tc

cuprates: observed experimentally (by neutron scattering,
see for example [33] and NMR) strong magnetic response
around q = Q is a phenomenological argument in a favor
of a strong momentum dependent interaction in a triplet
channel, i.e. of Vq = Jq (J > 0). However, we can not ex-
clude an importance of an interaction leading to the CDW
(SCDW) order.

Another point concerning the interaction is its
strength. Depending on the ratio |V |/W (where W is an
energy bandwidth), maximal Tmax

DW can be high or low.
Respectively, the DW phase can lean out of SC state or
can be hidden under it. (In the presence of the interaction
in the triplet channel, Jq, both SDW and SC instabilities
occur around QCP1 under the same condition: J > 0,
for the SC instability see [34].) It is tempting to identify
the properties obtained for the DW state with the proper-
ties observed experimentally in the underdoped cuprates
above Tsc(δ) and below T ∗(δ). Indeed they have a strik-
ing resemblance, as one can see when comparing Figure 6
and Figure 8, Figure 9a and Figure 9b and when com-
paring the behaviour of the gap as a function of Z (or
doping, δc− δ) with the experimental behaviour [12]. Our
calculations (when considering both d-wave SC and DW
instabilities in the presence of interaction J in the triplet
channel) show that the answer is quite subtle [36]. When
t′/t = −0.2 the ordered DW phase leans out of the SC
phase for t/J < 1.90, for t′/t = −0.3 this happens when
t/J < 1.55. So far as realistic value of t/J for cuprates is
estimated to be in the interval t/J = 1− 3, both variants
when the DW phase takes place above SC phase and when
it is hidden under the SC phase are possible [36,37].

Even in the latter case the study of properties of the
ordered DW state performed here is important since the
normal metallic state above Tsc(δ) keeps a strong memory
about the ordered phase. Therefore, electron properties in
this state should be close to those in the DW ordered state
being however characterized by strong damping. (By the
way it is exactly what is observed by ARPES. The exper-
imental electron spectrum has a form shown in Figure 8,
being however characterized by a spectral function of a
very damped form.) It should be emphasized that the cal-
culations performed for ordered state are very important.
The form of the spectrum is a solid basis to understand
the physics of the precursor state. Calculations for the or-
dered state are in general more neat than for the precursor
state.

Summarizing, we have studied the DW phase which is
formed around QCP1 (associated with ETT) and we have
shown that this phase is characterized by the following
prominent features:

(i) the specific “flat” shape of the spectrum in the vicin-
ity of SP,

(ii) “disappearance” of the spectrum above some thresh-
old value of wavevector in the direction (π, 0)−(π, π),

(iii) pseudogap in DOS with FL lying inside it,
(iv) increasing of the gap in the spectrum around SP

wavevectors and of the pseudogap in DOS with de-
creasing doping for δ < δc,

(v) angle dependence of the gap calculating from FL
which is of a d-wave type close to SP and flat close
to the direction (1, 1).

All these features have a striking similarity with the exper-
imental features revealed by ARPES in the normal state
of the underdoped hole-doped cuprates.

Appendix A

The free energy density in the approximation correspond-
ing to considered in the paper is given by:

F = −T 1
N

∑
k

∑
α=1,2

[
ln
(

2 cosh
(
εα(k,∆k)

2T

))
+
∆2

k

4V

]
+µn. (A.1)

(Note that the equation (10) corresponds to ∂F/∂∆ = 0.)
Therefore, the difference between free energies correspond-
ing to ∆ = ∆1 and ∆ = ∆2 is given by

F1 − F2 =
∆2

1 −∆2
2

4V

− T 1
N

∑
k

∑
α=1,2

ln

cosh
(
εα(k,∆1)

2T

)
cosh

(
εα(k,∆2)

2T

)
 . (A.2)

One can check by numerical calculations that
F1 − F2 < 0 for the whole range of the coexistence of
the two solutions.
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Some analytical estimations can be also done for low T
based on the well-known expression [35] for the difference
between thermodynamic potentials of the ordered and dis-
ordered states:

δΩ = Ω(∆1)−Ω(0) =
∫ ∆1

0

d(1/V )
d∆

∆2d∆. (A.3)

When substituting the expressions for ∆1 (21),
(22) one gets

δF/t = δΩ/t ∼ −
√

1− 4|t′/t|2
|t′/t|

∆3
1

t2∆(Z = 0)

∼ − (Z(1)
cr )3

t2∆(Z = 0)
· (A.4)

One can see that this correction is negative. Therefore, the
solution ∆ = ∆1 is favorable with respect to the solution
∆ = 0 for any Z(1)

cr < Z < Z
(2)
cr .

References

1. H. Alloul, T. Ohno, P. Mendels, Bull. Am. Phys. Soc. 34,
633 (1989); H. Alloul, T. Ohno, P. Mendels, Phys. Rev.
Lett. 63, 1700 (1989).

2. G.V.M. Williams, J.L. Tallon, E.M. Haines, R. Michalak,
R. Dupree, Phys. Rev. Lett. 78, 721 (1997).

3. M. Takigawa, Phys. Rev. B 49, 4158 (1994).
4. S.L. Cooper, G.A. Thomas, J. Orenstein, D.H. Rapkine,

M. Capizzi, T. Timusk, A.J. Millis, L.F. Schneemeyer, J.V.
Waszczak, Phys. Rev. B 40, 11358 (1989).

5. A.V. Puchkov, P. Fournier, D.N. Basov, T. Timusk, A.
Kapitulnik, N.N. Kolesnikov, Phys. Rev. Lett. 77, 3212
(1996).

6. J.L. Talon, J.R. Cooper, P.S.I.P.N. de Silva, G.V.M.
Williams, J.W. Loram, Phys. Rev. Lett. 75, 4114 (1995).

7. J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Phys.
Rev. Lett. 71, 1740 (1993).

8. R. Nemetschek, M. Opel, C. Hoffmann, P.F. Müller, R.
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A theory of stabilization of a spin liquid in a Kondo lattice at temperatures close to the
temperature of antiferromagnetic instability has been developed. Kondo exchange scattering of
conduction electrons leads to emergence of a state of the spin liquid of the resonating
valence bonds~RVB! type atT . TK . Owing to this stabilization, low-energy processes of
Kondo scattering with energies belowTK are frozen so that the ‘‘singlet’’ state of the Kondo lattice
is not realized; instead a strongly correlated spin liquid with developed antiferromagnetic
fluctuations occurs. A new version of the Feynman diagram technique has been developed to
describe interaction between spin fluctuations and resonant valence bonds in a self-
consistent manner. Emergence of a strongly anisotropic RVB spin liquid is discussed. ©1997
American Institute of Physics.@S1063-7761~97!02508-0#
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One of the most extraordinary properties of heav
fermion compounds is the transition of a system of wea
interacting spins, which manifests paramagnetic propertie
high temperatures, to a strongly correlated quantum liq
with thermodynamic and magnetic properties typical
Fermi systems atT , Tcoh ! T* . This ‘‘dissolution’’ of
localized spins is usually interpreted in terms of the Kon
lattice model, and the basic mechanism which determi
thermal transformation of the spin subsystem is assume
be Kondo screening of spins by conduction electrons. T
screening can be modeled in essentially the same way
one-impurity lattice, so that the Kondo lattice can be trea
as a periodic structure of Kondo impurities coherently sc
tering conduction electrons.1,2 The characteristic temperatur
T* at which the system switches to another regime is
Kondo temperatureTK , and the ground state in the mea
field approximation is the so-called Kondo singlet.

This simple model, however, ignores spin correlatio
whose close relation to heavy fermions is beyond doubt.
well known that formation of a heavy fermion is in all cas
without exception due either to long-range antiferromagn
order or short-range magnetic correlations. In its interpre
tion of this relation, the Kondo lattice theory invokes indire
exchange between localized spins via conduction elect
~RKKY exchange!, which occurs in the Kondo lattice mode
in the second order of perturbation theory. Thus, nonlo
spin correlations compete with local effects of sp
screening.3 This naive dichotomy of Doniach’s, which take
place in the mean-field approximation, predicts a tendenc
antiferromagnetic ordering at small values of the effect
coupling constant

a5Js f N ~«F!V0 ,

whereJs f is thes f-exchange integral,N («F) is the electron
density of states at the Fermi surface,V0 is the elementary
cell volume. At largea, Kondo screening suppresses t
magnetic moment, and the ground state is the Kondo sin
Then, fora slightly higher thanac determined by the equa
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lated by perturbation theory, and magnetic correlatio
modify properties of the singlet phase.4,5

An alternative approach to the problem of competiti
between the one-site screening and magnetic intersite co
lations was suggested by Coleman and Andrei.6 The two
options described by Doniach’s simple model were supp
mented with a third one, namely, formation of a nonmagne
spin liquid of the resonant valence bonds~RVB! type with
the Fermi statistics of elementary excitation in the spin s
tem ~spinons!. They demonstrated that the spin liquid state
stabilized by Kondo scattering, but calculated both spin
tersite correlations and the single-sites f-exchange between
spinons and electrons in the mean-field approximation. In
duction of anomalous one-site averages of the Kondo typ
in reality, equivalent to the assumption that full dynamic sp
screening takes place, and the assumption that Kondo
glets are formed at each site owing to multiple ‘‘switching
of RVB bonds between localized spins and conduction e
tron spins is equivalent to a translation of electron charge
spin degrees of freedom. Thus, in this scenario, as well a
the mean-field theory of the Kondo lattice,7 spin degrees of
freedom, which manifest themselves at high temperature
weak paramagnetic, noncharged correlations, have a ch
at T , TK and transform to charged heavy fermions~a
critical discussion of this scenario was given in Ref.!.
Naturally, interpretation of the existence of magnetic cor
lations in the Kondo lattice requires more theoretical effo9

This paper suggests an alternative scenario of forma
of a spin liquid in the Kondo lattice described by the Ham
tonian

Heff5(
ks

«kcks
1 cks1Js f(

i
S si–Si1

1

4D . ~1!

Here«k is the dispersion relation for conduction electrons,Si
and si 5 (1/2)cis

1 ŝcis , are operators of a spin localized i
the f -shell and of a delocalized conduction electron sp
respectively, andŝ are Pauli matrices. Our approach is bas
on an understanding that in the critical region, where

39916$10.00 © 1997 American Institute of Physics
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TK ; «F exp( 2 1/2a), Neel temperatureTN ; «Fa , and
the temperatureT* of the transition to the spin-liquid state!
are of the same order, and the Kondo scattering is favor
to the transition to the spin-liquid state so thatT* . TN

. TK , the very existence of spin-liquid correlations imped
the formation of a singlet ground state, since screening
localized spins by the Kondo scattering is, in fact, frozen
temperaturesT ; T* . TK , and at lower temperatures th
system properties are controlled by nonlocal spin-liquid c
relations, rather than one-site Kondo scattering. In ot
words, spin correlations suppress the Kondo effect in b
the ordered~magnetic! and disordered~spin-liquid! phases,
so Doniach’s simple phase diagram should be revised.

Since the spin-liquid state emerges in the critical reg
a ; ac at temperatures close toTN , the coexistence o
heavy fermions and magnetic correlations has a natura
terpretation in the proposed model. Moreover, it is obvio
that critical spin fluctuations should play an important role
the mechanism of spin-liquid formation. In this study, w
have limited our calculations to the range of high tempe
turesT . TK , where the perturbation theory in the param
etera ln(«F /TK) applies. We use the diagram technique
spin operators in the pseudofermion representation10 in the
approximation of noncrossing graphs~or noncrossing ap-
proximation, NCA! for the description of the Kondo scatte
ing. The results of high-temperature expansions, which t
one-site and intersite correlations into account concurren
will be extrapolated to the range of temperatures where p
magnetic fluctuations are important. However, when
pseudofermion technique is applied to nonlocal spin-liq
correlations, the problem of nonphysical states arises,
hence the breaking of local spin symmetry.11–15 With this
circumstance in view, we have constructed a Feynman
gram technique for spin Hamiltonians, which allows us,
principle, not only to get rid of nonphysical states, but also
take into account fluctuations of calibration fields.

In Sec. 2 this technique is applied to a spin liquid of t
homogeneous RVB phase type16,17 described in terms of the
Heisenberg model; in Sec. 3 the technique is applied to
Kondo lattice, and the mechanism of RVB phase stabili
tion by Kondo scattering in the mean-field approximation
described.1! The mean-field theory for the RVB phase, takin
into account critical fluctuations, is generalized in Sec. 4, a
Sec. 5 shows how this diagram technique can be use
describing local critical and hydrodynamic fluctuatio
around the antiferromagnetic instability point.

2. PROJECTION DIAGRAM TECHNIQUE FOR THE
HEISENBERG LATTICE

Along with standard perturbation theory techniques
veloped for Fermi and Bose operators, one can find in
literature a number of diagram techniques for noncommu
operators in terms of which one can write the Hamiltonia
of the spin or strongly correlated electrons systems~see, for
example, Refs. 19–21 and references therein!. Most of these
techniques are based on Hubbard’s projection opera
Xj

lm 5u jl&^ jmu, whereu jl& is a ket vector corresponding t
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perturbation theory is diagonalized in this approximation.
Diagram techniques for noncommuting operators

harder to handle than the standard Feynman technique. O
in some cases do they allow a self-consistent form of clo
equation systems for skeleton diagrams. Goden’s proce
factorizing the average ofn operators, unlike Wick’s proce
dure, which plays a similar role in the usual diagram tec
nique, is ambiguous, and a successful choice of the hiera
of couplings largely depends on the theorist’s intuition~see,
for example, Ref. 22!.

For this reason, it is natural to attempt to express H
bard’s operators~and spin operators, which are a special ca
of these operators! as products of Fermi and Bose operato
and thus restore conditions for using the machinery of
Feynman and Matsubara techniques. Such attempts
been undertaken many times since the 1960s,10,23–25 up
through recent times.22,26–28 It is clear, however, that thes
procedures are by no means universal or unambigu
Moreover, each factorization leads to multiplication a
complication of vertices and emergence of local constrai
whose introduction is necessary for the preservation of lo
gauge invariance, which is a trait of the Hamiltonian in que
tion.

Additional problems arise due to attempts to descr
nonlocal spin-liquid RVB excitation. In this case, problem
arise on the level of the mean-field approximation for t
self-energy part of the one-particle propagator. The us
techniques of self-consistent perturbation theory break
local gauge invariance,11 and its restoration is quite a diffi
cult physical and mathematical problem.13,14

In this section we formulate a version of the diagra
technique integrating the two approaches mentioned ab
and apply it to Hamiltonians with local SU~2! symmetry.
With a view toward using this technique in the description
spin liquid in terms of Hamiltonian~1!, we start with the
simpler case of the Heisenberg Hamiltonian for spin 1/2 w
antiferromagnetic interaction:

H5h(
i

Si
z1J(

i
(

j

^nn& S Si–Sj2
1

4D ; ~2!

we then pass to a description of the Kondo lattice at h
temperaturesT . TK , for which the noncrossing approxi
mation ~NCA! applies, and the system can be treated a
periodic lattice of independent Kondo scatterers interact
via the RKKY mechanism.3

Let us introduce a pseudofermion representation10 for
spin operators:

S15 f ↑
1 f ↓ , S25 f ↓

1 f ↑ , Sz5
1

2
~ f ↑

1 f ↑2 f ↓
1 f ↓!. ~3!

These operators satisfy the local constraint condition

n5 f ↑
1 f ↑1 f ↓

1 f ↓51 ~4!

at each site. The first term in Eq.~2! describes Zeeman split
ting in an infinitesimal magnetic fieldh 5 gmBH, and the
antiferromagnetic sign of the exchange constantJ is taken
into account explicitly.
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The SU~2! invariance means that the spin operators
1 2 z na
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nis5nis~12ni2s!1nisni2s , ~9!

do-
ron

ole

per-

the

m

g to
r the
ng-
$S ,S ,S % can be expressed as arbitrary linear combi
tions of spin-fermions$ f ↑ , f ↓ , f ↑

1 , f ↓
1%:

Si
15~cosu f i↑

11sin u f i↓ !~cosu f i↓2sin u f i↑
1 !,

Si
25~cosu f i↓

12sin u f i↑!~cosu f i↑1sin u f i↓
1!, ~5!

Sz5
1

2
~ f i↑

1 f i↑2 f i↓
1 f i↓!.

In particular, for pseudofermion filling factors, we have co
plete particle–hole symmetry,

f is
1 f is5 f i2s f i2s

1 , ~6!

which directly follows from condition~4! or from Eqs.~5!
for u 5 0,p/2. Thus, Hamiltonian~2! can be expressed i
the pseudofermion representation as

H5H01H int52
h

2 (
ij s

s f is
1 f is1

J

2 (
ij s

f is1

1 f js1
f js2

1 f is2
.

~7!

The local constraint places significant limits on the fe
sibility of using standard diagrammatic techniques, or in a
case, makes more difficult practical description of the s
dynamics in the fermion representation, since the functio
space in which the spin and fermion operators act has fi
dimensionality. One of the most convenient techniques
including the spin kinetamics in the fermion representat
was suggested by Abrikosov.10 2S 1 1 spins~projections!
correspond to a localized spinSi , whereas in its description
in terms of pseudofermion operators 2(2S11) orthogonal
states emerge, in accordance with the filling numbers~0,1!
for all 2S 1 1 spin projections. In a specific case of sp
S 5 1/2, there are four fermion states:

u0&5u0,0&; u1&5u1,0&; u2&5u0,1&; u2&5u1,1& ~8!

and only two of them, namely statesu6&, correspond to
physical states of the spin operator. Abrikosov suggested
cribing energyl @ T to each state occupied by a pseud
fermion. Then the nonphysical stateu2& from set~8! is frozen
out after averaging owing to the additional fact
exp( 2 l/T) in the partition functionZ(T). In order to get
rid of the other nonphysical stateu0&, one must introduce an
additional factor (1/2) exp(l/T) to Z(T) and take the limit
l/T→` in averaging over spin states. As a result, physi
statesu6& become states with the lowest ‘‘energy’’, and th
final result is independent ofl. Abrikosov’s prescription ap-
plies to local spin states in the case of a one-impurity Ham
tonian ofs f-exchange. In a Kondo lattice it can be used on
in the limit of large spin with degeneracyN→`, for which
NCA becomes an asymptotically exact approximation,29 but
this technique cannot be used in describing spin-liquid c
relations.

The starting point of the proposed method is the w
known similarity between the Heisenberg and Hubb
Hamiltonians in the limit of strong interactionU in the case
of half-filled states. Let us express pseudofermion opera
in the form of sums,

f is
15 f is

1~12ni2s!1 f is
1ni2s ,
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and introduce Hubbard’s projection operators for pseu
fermions, as was done by Hubbard for the real elect
operators30:

Xi
s05 f is

1~12ni2s!, Xi
2s52s f i2s

1 nis ,

Xi
ss5nis~12ni2s!5nisni2s , Xi

225ni↑ni↓ ,

Xi
005~12ni↑!~12ni↓!, ~10!

Xi
s2s5 f is

1 f i2s5Xi
s2Xi

22s5Xi
s0Xi

02s .

These operators form a normalized basis for the group SU~4!
with the obvious completeness condition

(
m

Xi
mm51. ~11!

The second line of Eq.~9! can be rewritten in the form

nis5Xi
s0Xi

0s1Xi
s2Xi

2s . ~12!

As a result, Hamiltonian~2!, ~7! takes the form

H5H01H int ,

H052
h

2 (
is

sXi
ss1

U

2 (
i

~Xi
001Xi

22!, ~13!

H int5
J

2 (
ij s

~Xi
s2sXj

2ss2Xi
ssXj

2s2s!

5
J

2 (
ij ss8

f ij
sf ji

s8 .

Here

f ij
s5~sXi

22s1Xi
s0!~sXj

2s21Xj
0s!, ~14!

and the fictitious Hubbard repulsion parameterU for pseudo-
fermions is introduced so as to preserve the particle–h
symmetry of the Heisenberg Hamiltonian.

Instead of using diagram techniques for theX-operators
~see, for example, Refs. 19, 22, 31, and 32!, we try to remain
within the standard Feynman approach, but use the pro
ties of the projection operatorsXi

lm in explicit form. We take
for a basis of the diagram expansion the eigenstates of
HamiltonianH0 under the conditionU/T [ bU→`. As a
result, we have the reduced Hamiltonian

H̃5H̃01H int , H̃052
h

2 (
is

s f is
1 f is ~15!

with the partition functionẐ 5 Tr@exp( 2 bH̃)#, which
includes only physical statesus& 5u 6& from set ~8!. The
HamiltonianH0 reduces toH̃0 since the operatorsXi

ss and
f is

1 f is have identical matrix elements in the reduced~physi-
cal! space. Now we can useH̃ in the form ~15! as a zero-
approximation Hamiltonian for the Matsubara diagra
technique.2!

Selection of one of the two forms of Hamiltonian~13!
depends on which of the spin system states we are goin
describe. Whereas the most convenient representation fo
high-temperature paramagnetic phase or a state with lo
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it is natural to describe the RVB spin-liquid state in terms
operatorsf ij

s .
Let us first consider the temperature Green’s function

K ij
'~t!5^TtSi

1~t!Sj
2~0!&H̃ , ~16!

which describes elementary excitations in the stand
theory of magnetism~i t is the imaginary ‘‘time’’!. To
zeroth-order in the interaction, the function has the form

K ij
0~t!5

d ij

4
^Tt f i↑

1~t! f i↓~t! f i↓
1~0! f i↑~0!&H̃0

. ~17!

Averaging is performed with the partition functionZ
5 2 cosh(bh), b51/kT. In accordance with Wick’s theorem
this average can be presented in the form of a two-ferm
loop and reduces to the simple expression

K ij
0~t!5

d ij

4
e2htH ^ni↑~12ni↓!&H̃0

~t.0!

^ni↓~12ni↑!&H̃0
~t,0!

. ~18!

One can see that by virtue of Eq.~4!, fermion states are
generated in pairs, and the emergence of filling factors in
form of averages of projection operators^Xss&H̃0

@see Eq.
~10!# shows that spin operators do not drive the system fr
the space of ‘‘physical’’ statesu6&.

Thus, the limitU→` for effective Hamiltonian~13! is
equivalent to the limitl→` in Abrikosov’s procedure de
scribed above, which ‘‘freezes out’’ nonphysical pseudof
mion statesu0& and u2& without breaking the particle–hol
symmetry.

The perturbation theory series for the functionK' can
be constructed in accordance with the usual rules for ca
lating two-time Green’s functions. This procedure leads
Larkin’s equation34

K 5S1JSK . ~19!

HereS is the irreducible polarization operator, which is n
separable with respect to the interaction. In Sec. 5 we
use this version of the diagram technique to calculate
spin diffusion coefficient near the Ne´el point.
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consider as an example an RVB homogeneous spin liq
described by the correlator

L ij 5(
s

^f ij
sf ji

s&, ~20!

i.e., we use the second version ofH int in Eq. ~13!. Thus, the
nonphysical statesu0& and u2& are eliminated by the Hubbar
procedure, since each fermion creation event at each
involves a projection operation in accordance with Eq.~14!.
This makes exchange vertex~13! more complicated; it can
be described in the projection techniques by diagrams w
twelve tails, as is shown by Fig. 1.

The role of projectors is to automatically eliminate
state with an opposite projection in creating a fermion with
given spin projection, and this guarantees that the crea
operator acts on a state from the physical subspaceu6&. But,
although correlator~20! is diagonal in subspaceu6&, the non-
physical statesu0& and u2& manifest themselves as intermed
ate states in any attempt to describe the spin liquid in te
of fermion operators.

In Refs. 11 and 13 it was noted that introduction of
homogeneous RVB state in the mean-field approximatio16

violates the local gauge invariance due to constraint~4!, ~6!,
and long-wave fluctuations of gauge fields significan
change the character of RVB excitations in a tw
dimensional Heisenberg lattice~see also Refs. 14, 35, an
36!. In this paper, we do not consider the problem of lon
wave fluctuations in gauge fields. We are interested prima
in nonlocal high-temperature magnetic fluctuations, wh
are also related, however, to the violation of the constrai

As was shown in the fundamental study by Baskar
Zou and Anderson,16 the description of a uniform RVB stat
requires ‘‘anomalous’’ coupling between pseudofermions
different sites. It is clear that such a procedure drives
system beyond the physical spaceu6&. The gauge theory of
a spin liquid demonstrates that free propagation of a spi
is impossible. The complex shape of vertices in the proj
tion technique~Fig. 1! indicates the same thing. Nonetheles

402Kikoin et al.



we start construction of our scheme with a demonstration of
a
o

rv

where

how far this technique applies in the mean-field approxim
tion; we then consider the possible effect of fluctuations
the mean-field solution.

Let us introduce an anomalous one-particle~one-
fermion! temperature Green’s function. In order to prese
particle–hole symmetry, let us express it in matrix form:

Ĝ ij s~t!52^TtX̂is~t!X̂js
1 ~0!&H̃, ~21!
th

s

h
nc

te
e

-
n

e

X̂is5S Xi
0s Xi

s0

sXi
2s2 sXi

22sD , X̂is
15S Xi

s0 sXi
22s

Xi
0s sXi

2s2D .

~22!

This Green’s function has the structure
Ĝ ij s~t!52S ^Tt(Xi
0s(t)Xj

s0(0)

1Xi
s0(t)Xj

0s(0))&

s^Tt(Xi
0s(t)Xj

22s(0)

1Xi
s0(t)Xj

2s2(0)&

s^Tt(Xi
2s2(t)Xj

s0(0)

1Xi
22s(t)Xj

20s(0)&
^Tt(Xi

2s2(t)Xj
22s(0)

1Xi
22s(t)Xj

2s2(0)&

D . ~23!

The zero~one-site! matrix Green’s function
g~aa!~v !5

1 1
. ~26!
n

-

e
ndi-
s,
ting

d

ĝis~t!52^TtX̂is~t!X̂is
1~0!&H̃0

~24!

is diagonal, and its elements are

gis
~11!~t !52^Tt~Xi

0s~t!Xi
s0~0!1Xi

s0~t!Xi
0s~0!!&0 ,

gis
~22!~t !52^Tt~Xi

2s2~t!Xi
22s~0!

1Xi
22s~t!Xi

2s2~0!!&0 .

As in the previous case, the averaging^...&0[^...&H̃0
leaves

the one-site Green’s function in the physical sector of
Fock space. In particular,

gis
~11!~t12t2!52^Xi

s0~t1!Xi
0s~t2!&0

52^Xi
ss&0 exp@2 ish~t12t2!/2#

3~t1.t2!,

gis
~11!~t12t2!5^Xi

s0~t2!Xi
0s~t1!&0

5^Xi
ss&0 exp@2 ish~t12t2!/2#~t2.t1!.

~25!

Unlike spin Green’s functions~17!, matrix elements of the
function ĝis(t) formally represent the three-fermion loop
containing one particle~spin up! and two hole~spin down!
propagators, or one hole and two particle propagators. T
function, however, can be simplified using the idempote
property of operatorb†b, conditions~4! and~6!, and Wick’s
theorem. By substituting the Hubbard operators in the in
action picture into Eq.~25!, we obtain expressions for th
elements of the one-site propagator,

gi↑
~11!5

1

2
e2htH 2^~12ni↓!&0 ~t.0!

^ni↓&0 ~t,0!
,

and a similar expression for the spin-down state.
One can easily check that the Green’s functionG is

(aa) is
periodic,G iis(t,0)52G iis(t11/T), so that by introduc-
ing the Matsubara frequenciesvn5(2n11)pT in the usual
manner, we obtain
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is 2 ivn1~21!ash/2

The mean-field approximation16 is based on the intro-
duction of anomalous averages^ f is

1 f js&. For the anomalous
matrix Green’s function~21!, we must introduce four com
ponents:

D i j s
11 5^Xi

s0~t!Xj
0s~t8→t!&,

D i j s
22 5^Xi

2s2~t!Xj
22s~t8→t!&,

D i j s
12 5^Xi

s0~t!Xj
2s2~t8→t!&,

D i j s
21 5^Xi

22s~t!Xj
0s~t8→t!&, ~27!

where D i j s
11 5D i j s

22 . Then one can easily check that th
anomalous Green’s function also satisfies a periodic co
tion like that in Eq.~21! on the inverse temperature. Thu
we can use the projection diagram technique in calcula
the anomalous averageD5(s^f ij

s&, which characterizes a
uniform RVB state. This ‘‘order parameter’’ can be derive
from the relation

D5Tr~ 1̂1 t̂1!Ĝ ij ~t→20!, ~28!

where lˆ and t̂1 are the Pauli matrices.
Let us rewrite Hubbard operators~10! in the particle–

hole representation,f i↑[ai , f i↓[bi
1 :

Xi
↑05ai

1bi
1bi , Xi

2↓5ai
1bibi

1 , Xi
↑↓5ai

1bi
1 ...

The mean-field approximation~28! corresponds to the fol-
lowing splitting of the interaction HamiltonianH int :

HMF5JD(
i

(
j

^nn&

~Yij
~h!1Yij

~p!!, ~29!

where

Yij
~p!5ai

1bi
1bibj

1bjaj1ai
1bibi

1bjbj
1aj1ai

1bibi
1bj

1bjaj

1ai
1bi

1bibjbj
1aj ,

Yij
~h!5biaiai

1ajaj
1bj

11biai
1aiaj

1ajbj
11biaiai

1aj
1ajbj

1
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1biai
1aiajaj

1bj
1 .

In terms of perturbation theory, this approximation c
be described by the diagrams for the self-energy compo
Ŝij of Green’s function~23! shown in Fig. 2. The four dia-
grams correspond to the four elements ofŜ. The Dyson ma-
trix equation in this approximation is expressed by the d
grams in Fig. 3, in which double lines denote the one-s
matricesgis , the dashed line denotes the Heisenberg
change constant, and thick lines with two arrows denote
anomalous Green’s functionĜ ij s . The Dyson equation

Ĝ ij s~vn!5ĝis~vn!S d ij 1(
l

ŜilĜ lj s~vn! D ~30!

is Fourier transformed to~ash→0!

2ivnG ks
~ab!~ ivn!5dab1JDw~k!(

g
G ks

~gb!~ ivn!. ~31!

A solution of this equation system is

G ks
~11!~ ivn!5

1

2

ivn2ek/2

ivn~ ivn2ek!
,

G ks
~12!~ ivn!5

1

2

sek/2

ivn~ ivn2ek!
. ~32!

Here ek is the spinon dispersion relation in the mean-fie
approximation in the form

ek5JDw~k! ~33!

in the case of antiferromagnetic exchange only between n
est neighbors;w~k! is the corresponding form factor:

w~k!5(
l

~nn!

eik–l. ~34!

FIG. 2. Components ofŜ matrix for the one-particle Green’s functionG ij .

FIG. 3. ~a! Dyson equation and~b! self-energy part of the Green’s functio
G ij in the mean-field approximation.
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tain a self-consistent equation forD:

D5~ZN!21(
k

w~k!tanh
b@JDw~k!2m#

2
, ~35!

whereZ is the coordination number. The chemical potent
m is treated as a Lagrange multiplier when constraint~4! is
substituted into the Hamiltonian. This operation correspo
to substitution ofivn1m for ivn . As usual, the local con-
straint can be replaced with a global one in the mean-fi
approximation:

N21T(
k

(
vn

Tr~ 1̂1 t̂1!Ĝ k~ ivn!50. ~36!

By substituting Green’s function~32! into Eq. ~36!, we ob-
tain another self-consistency condition, which fixesm at the
mid-position of the spinon ‘‘band,’’ in accordance wit
particle–hole symmetry.

The ‘‘phase transition’’ temperatureT* at which a non-
trivial solution for D emerges is given by

T* 5
J

2
~ZN!21(

k
w2~k!, ~37!

which is usually derived in the mean-field approximati
using the functional integration technique~see, for example,
Refs. 6, 37, and 38!.

Thus, we have found that kinematic constraints on
pseudofermion representation of spin operators taken
account through Hubbard projection operators do not af
the mean-field solution for the RVB state as long as partic
hole symmetry is preserved at each step of the calculation
this respect, the situation is different from that in which t
same problem is solved by the Hubbard operator techni
for the t2J model with a finite density of holes,39 where this
symmetry is violated from the outset, since only doub
filled statesu2& are excluded. In Ref. 22 another symmetr
based approach to elimination of nonphysical states is s
gested, in which the ‘‘fermion’’ setu0&, u2& is replaced with a
unified ‘‘boson’’ vacuumuV&.

Although the projection technique does not contribu
any new features to the mean-field solution for the unifo
RVB liquid, it offers, in principle, new opportunities for tak
ing gauge fluctuations into account, which inevitably occ
in spinon propagation. Moreover, as will be shown in t
next section, in a three-dimensional Kondo lattice, spin l
uid is formed in the neighborhood of the antiferromagne
instability, because magnetic fluctuations are a decisive
tor for both the transition temperature to the RVB state a
the mechanism of this transition.

3. STABILIZATION OF SPIN LIQUID IN THE KONDO
LATTICE AT HIGH TEMPERATURES. MEAN-FIELD
APPROXIMATION

It is well known40 that in the three-dimensional Heisen
berg lattice the ground state energy of the RVB phase,ESL ,
is higher than the antiferromagnetic state energyEAFM . It
has also been shown, however, that in the Kondo lattice
scribed by the Hamiltonian~1!, spin-flip scattering processe
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can lead to stabilization of the RVB phase with respect to the
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magnetically ordered phase. Since antiferromagnetic an
spin-liquid correlations in thes f-exchange model are gov
erned by the same coupling constantJRKKY , the temperature
at which the spin liquid is formed is close to the point
magnetic instability,T* 2TN,TN , so that antiferromagnetic
correlations can significantly alter the character of a tran
tion to the RVB phase, as compared to the results obtaine
the mean-field approximation.

In order to describe formation of spin liquid in th
Kondo lattice, we take Hamiltonian~1! in the original form

Heff5(
ks

«kcks
1 cks1

1

4
Js f(

i
cis

1cis8 f is8
1 f is . ~38!

As mentioned in the Introduction, we operate in t
range of parametersa'ac of Doniach’s diagram,3 in which
all characteristic temperatures (TK;«Fexp(21/2a),
TN0;«Fa2, and T* , which is to be calculated! are of the
same order of magnitude, so that in constructing the
phase diagram one must take into account the mutual eff
of all three types of correlation—in particular, the change
the Néel temperature with respect toTN0 as given by simple
perturbation theory in the parametera.

As noted above, in this study we limit discussion to t
range of high temperaturesT.TK ,TN0 , in which the mag-
netic subsystem is a lattice of paramagnetic spins imme
in the Fermi sea of conductance electrons, and NCA app
to the one-site paramagnetics f-scattering, i.e., each spin lo
calized at a lattice site scatters conduction electrons inde
dently of other spins. As the temperature is reduced, b
Kondo scattering and correlations among lattice sites du
the indirect RKKY interaction are intensified.

The problem of competition between the indirect e
change among lattice sites and one-sites f-scattering has
been discussed in literature many times, largely in terms
the Kondo problem with two impurities. In particula
Varma41 analyzed the mutual influence of Kondo scatteri
and RKKY interaction at high temperatures by perturbat
theory and concluded that the mutual influence of these
processes is small, at least in the leading logarithmic
proximation ina ln(«F /T). In this section, we will show tha
in the Kondo lattice, the effect of spin-flip scattering on ma
netic correlations is a decisive factor for stabilization of t
RVB phase in the critical region of Doniach’s diagram
a;ac .

In describing the intersite magnetic interaction und
conditions of Kondo scattering in the noncrossing appro
mation ~NCA!, the effective vertex of the RKKY exchang
J̃ij (T,e) is determined by the diagram in Fig. 4a. In th
diagram, dashed lines denote electron Green’s functions,
the ingoing and outgoing lines correspond to pseudoferm
operators. The one-sites f-exchange verticesG include loops
corresponding to the leading logarithmic approximation
a ln(«F /T) for the Kondo problem3! ~Fig. 5!. As a result, the
effective interaction is given by

J̃ij ~T,«m!5P~R,«m!G2, ~39!

where«m52mpT, R5uRi2Rju.
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In the spirit of the logarithmic perturbation theory,10 the
argument of vertexG should contain only the highest inpu
frequency, which is determined in our case by energies
electronic Green’s functions included in the polarization lo
P(R,«m) in the integralĴij (T,«m) ~Eq. ~39!!. The polariza-
tion operator in the coordinate representation has the for

P~R,«m!5T(
n

D~2R,vn1«m!D~R,vn!. ~40!

Since all heavy-fermion systems are characterized by la
lattice constants, we use for electronic Green’s functio
D(R,vn) an expression asymptotic inpFR:

D~R,vn!52
pF

2pvFR
expS 2

uvnu
2«F

pFR

1 ipFR sign vnD , ~41!

so that the polarization operator takes the form

P~R,«m!5S pF

2pvFRD 2

T (
n52`

n5`

expS 2
uvnu
vF

R2
uvn1«mu

vF
R

1 ipFR@signvn1sign~vn1«m!# D . ~42!

In the static limit,

J̃R~T,0!5T(
n

D2~R,vn!G2~vn ,T!. ~43!

The temperature dependence in Eq.~43! is largely deter-
mined by one-site vertices, and in the polarization loop o
can use the condition 2pTR/v f!1 and change summation
over discrete frequencies to integration~see Appendix I!.
Then the exchange integral takes the form

FIG. 4. ~a! Effective vertex of renormalized RKKY interaction; self-energ
part of the one-particle Green’s function in the mean-field approximation~b!
for the Néel and~c! RVB phase.

FIG. 5. Parquet diagrams for effective vertexG.
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FIG. 6. Single-site diagrams describing Kondo screening
a localized spin.
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JR~T,0!52S 2pvFRD cos~2pFR!

3E
T→0

` d«

2p
expS 2

«

«F
pFRDG2~«,T!. ~44!

This equation transforms to the standard RKKY exchan
integral when modified vertices are replaced with the ‘‘bar
integrals,G→Js fV0 , whereV0 is the elementary cell vol-
ume:

JR
05~Js fV0!2P~R,0!5~Js fV0!2

mpF
4

p3

3Fcos~2pFR!

~2pFR!3 1OS 1

~2pFR!4G
[S Js f

2

«F
D ~pFa0!6

2p3 F~2pFR!. ~45!

Let us substitute intoJ̃R(T,0) the vertexG(«,T) calcu-
lated in the leading logarithmic approximation, in acco
dance with diagrams given in Fig. 5 with the input frequen
« satisfying the condition ln(«F /«̄)@1. For the characteristic
energy«̄@1, which determines integral~44! ~see Appendix
II !, we find that the exchange parameter can be approxim
by the function

J̃R~T,0!'eF

~pFa0!6

2p3 S Js f

«F
D 2

F~2pFR!

3S 112a ln
T

«F
D 2n

. ~46!

The exponentn in this function depends ona and the argu-
ment of the oscillating functionF(pFR) ~see the insert in
Fig. 11!. Thus, one can see that Kondo scattering has l
influence on the form and spatial periodicity of the indire
exchange integral forT.TK .41 But this integral can be
larger, and the larger the separationR between magnetic
f -ions, the greater the increase.

In calculating the polarization operator and RKKY int
gral ~46!, we assumed that the electron Fermi surface w
spherical. Note, however, that the exponentn in Eq. ~46! is
sensitive to the asymptotic behavior of the functi
F(2pFR), so that the role of Kondo processes in intens
cation of the exchange turns out to be important in the c
of a highly anisotropic Fermi surface. In the limiting case
a cylindrical Fermi surface,

F~2pFR!52Fsin~2pFR!

~2pFR!2 1OS 1

~2pFR!3D G ~47!
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integral J̃R(T,0) is larger in the case of a cylindrical Ferm
surface than in the case of a spherical surface.

Thus, the spin system can be described atT.TK by the
effective RKKY Hamiltonian with the vertex shown in Fig
4a in the nearest-neighbor approximation and under the
sumption that the RKKY nearest-neighbor coupling has
antiferromagnetic sign. In the mean-field approximation,
treat the problem of stabilization of the spin liquid as a co
parison between temperatures of transitions to the RVB s
@T* (a)# and to the antiferromagnetic state@TN(a)# under
conditions of sufficiently strong Kondo scatterin
a→ac020, and the stabilization criterion is the inequali
T* (a).TN(a). The functionTN(a) deviates from the qua
dratic function prescribed by the bare RKKY vertex. Alon
with the intensification of one-site vertices described by E
~46! and discussed above, there is a dynamic Kondo scre
ing of localized spins, which is the reason for the suppress
of antiferromagnetic order asa→ac0 .

In the mean-field approximation, the transition tempe
turesTN(a) and T* (a) can be derived from the exchang
vertex in Fig. 4a by closing spin-fermion lines, as shown
Figs. 4b and 4c, respectively. The first of these diagra
determines the molecular field for commensurate magn
ordering characterized by the antiferromagnetic vectorQ
such thatQ–Ri j 5p. The suppression of magnetic correl
tion by Kondo scattering is described by the vertexF(T) in
the diagram of Fig. 4b.42,43Summation of the set of logarith
mic diagrams, the first of which are shown in Fig. 6, yield

F~T!5122a ln
«F

T Y ln
T

TK
. ~48!

Although the functionF(T) deviates from this formula as
T→TK ,44 and complete screening occurs only atT50, the
suppression of magnetic correlations compensates for the
change intensification and thus reducesTN asa→ac0 .

The self-energy part of the one-site Green’s functionG ii
~Eq. ~21!!, corresponding to the diagram of Fig. 4b, is

SN~T!5l J̃~R,T!^Sz&T ~49!

~the factor l is determined by the lattice configuration!.
Hence we derive for the mean spin

^Sz&T5
1

2
~^ai

1ai&1^bi
1bi&21!

a self-consistent equation

^Sz&T5
1

2
F~T!tanh

SN~T!

2T
, ~50!
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which is, naturally, the standard Brillouin equation f
Weiss’ molecular field taking Kondo screening into accou

The mean-field equation forD ~Eq. ~28!! is determined
by the self-energy part of the anomalous Green’s funct
Ĝij (t) ~Eq. ~23!! shown in Fig. 4c. This diagram can b
substituted into the Dyson equation~Fig. 3!, which in this
case takes the form

Ĝ~p,vn!5g0~vn!F122T(
m

(
q

J̃~p2q,vn2vm!

3Ĝ~q,vm!Ĝ~p,vn!G . ~51!

Hereg0(vn) is the zero one-site Green’s function with com
ponents~26!, and J̃(p2q,vn) is a Fourier transform of the
indirect exchange integral~39!, which in the nearest-
neighbor approximation takes the form

J̃~q,«m!5 (
l50,̂ l&nn

J̃R~«m!e2 iqr5 J̃0~«m!1 J̃R~«m!w~q!.

~52!

The one-site integralJ̃0(T,0) is estimated asa2T ln(«F /T).
Since this integral contains an additional small factora at
T;T* , as compared to the intersite integral~46!, it can be
omitted.

By neglecting, as usual, the frequency dependence o
RKKY interaction, we obtain the mean-field equation~35!
for D with the coupling constantJ5 J̃R(T,0). As follows
from the configuration of the anomalous self-energy p
~Fig. 4c!, the screening effect responsible for suppression
local magnetic moments does not affect the mean-field
rameterD, which can be naturally attributed to the singl
nature of the RVB-coupling. The Kondo ‘‘screening’’ radiu
can be estimated by high-temperature perturbation theor
be \vF/2TK , which is much larger than the correlation r
dius of the singlet RVB pair, since electron scattering
these pairs is inefficient.

Calculations of the temperaturesT* and TN by Eqs.
~35!, ~46!, ~49!, and ~50! are given in Fig. 7~see also Ref.
18!. This graph shows that asa→ac0 , these temperature
become closer, a new critical pointac emerges in Doniach’s
diagram, on the right of which the RVB phase is stable w

FIG. 7. Generalized Doniach diagram taking the RVB phase into acco
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takes place in the logarithmic neighborhood of the Kon
temperature. A calculation ofTN for a.ac makes no sense
because magnetic ordering in this region should follow
other scenario.

Thus, we conclude that stabilization of a homogeneo
RVB spin liquid in a three-dimensional Kondo lattice ca
occur only near the magnetic instability point under con
tions of sufficiently strong Kondo screening of localize
spins by conduction electrons. This result, obtained in
mean-field approximation, indicates that stabilization of t
spin-liquid phase is incompatible with formation of Kond
singlet states characterized by anomalous avera
^ci

1 f i&,
6,45 since anomalous Kondo scattering is frozen

T'T* .TK . This resolves Nozie`res’ well-known paradox46

about the impossibility of screening all spins in the Kon
lattice by electrons from a thin layer of widthTK near the
Fermi surface. In the scheme proposed above, the scree
vanishes at sufficiently high temperatures aboveTK , the
Kondo temperature itself is not a singular point of the theo
renormalization of thes f-exchange integral is frozen a
about J̃(T* ), and atT,TK , T* electrons interact not with
localized spins, but with spin-liquid excitations of the spin
type ~see also Ref. 47!.

In addition to the disadvantages related to violation
local gauge invariance, however, the mean-field approxim
tion in the case of RVB coupling has another flaw, namely
does not take into account the proximity of the spin syst
to the antifferomagnetic instability. In the following section
we discuss possible consequences of this proximity for
RVB state, first in the self-consistent field approximatio
then beyond this model.

4. EFFECT OF SPIN FLUCTUATIONS AND MAGNETIC
ANISOTROPY ON RVB PHASE STABILIZATION

In the previous section, we determined that antifer
magnetic fluctuations inevitably turn out to be strong in
RVB spin liquid in the three-dimensional Kondo lattice
high temperaturesT;T* , and can lead, in principle, to mag
netic ordering atT!T* . Leaving this issue for subseque
studies, let us consider now the effect of spin fluctuations
features of the transition to the spin-liquid state in the me
field approximation, but using its modification obtaine
through the projection technique, in which the order para
eter is defined by Eq.~28!. The diagram technique usin
Hubbard operators and developed in Sec. 2 allows us to
into consideration long-wave fluctuations of gauge fields d
to the U~1! noninvariance of the RVB order paramete
Terms that take the phase of functionD into account can be
introduced into the effective Hamiltonian in standa
fashion.13,14 It is known that long-wave fluctuations in cal
bration fields do not lead to divergences destabilizing R
averages in three-dimensional systems. Therefore, the in
duction of such fluctuations reduces to the usual Fermi-liq
renormalizations with due account of the particle–hole sy
metry condition. In two-dimensional Heisenberg lattice
however, fluctuations are important and must be taken
consideration.13,14 In what follows, we do not discuss th

t.
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FIG. 8. Self-energy part for the anoma
lous propagatorG ij , including the con-
tribution of critical fluctuations in the
mean-field approximation.
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analysis is limited to the mean-field approximation in a fix
calibration.

Having expressed the mean-field Hamiltonian in t
form of Eq. ~29!, we considered in the subsequent calcu
tions additional operators inYij

(p,h) as purely static projection
operators, eliminating nonphysical states in thermodyna
averages. We now consider the fluctuation component of
‘‘kinematic’’ interaction by transforming the effective mean
field spinon Hamiltonian for the Kondo lattice as follows:

HMF
~RKKY !5 J̃D(

ij s
f ij

s[ J̃D(
ij

~ai
1K ijaj2ajK ji

1ai
1

1biK ij
1bj

12bj
1K jibi!. ~53!

HereJ̃ is the renormalized constant of the RKKY interactio
given by Eq.~46!,

K ij 5Si
2Sj

12Si
zSj

z1
1

4
,

and K ij
15K ij . In the vicinity of the magnetic instability

point, it is natural to consider operatorK ij as an operator
describing critical excitations due to spinon propagation
temperatures close toTN .

In order to obtain an expression for the spinon Gree
function corresponding to this approximation, we reconsi
the definition of its self-energy part. In the standard me
field theory ~Fig. 3!, projection operators were included
the static approximation. The diagrams in Fig. 8 show h
the diagonal and off-diagonal components of the self-ene
part of the Green’s functionG ij , including transverse and
longitudinal spin correlators, can be constructed from
vertices shown in Fig. 1. The lines with two arrows in Fig.
denote anomalous propagators

gij
↑52^Tt ai~t!aj

1~t8!&,

gij
↓52^Ttbi~t!bj

1~t8!&, ~54!

and wavy lines denote transverse and longitudinal correla
functions
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5^TtSj
1~t10!Si

2~0!&,

K ij
zz~t→0!5^Tt bj

1~t10!bj~t10!bi
1~0!bi~0!&

5
1

4
2^TtSj

z~t10!Si
z~0!&. ~55!

Unlike the fully anomalous Green’s function~23!, the
anomalous functions~54! are one-particle propagators, whi
intersite spin correlators~55! are formed from projection op
erators. Now the sum of diagonal elements

S ij ↑
~d!5S ij ↑

~11!1S ij ↑
~22!

in Eq. ~28! is determined by the diagrams in Fig. 8a, wh
the contribution of off-diagonal elements

S ij ↑
~nd!5S ij ↑

~12!1S ij ↑
~21!

corresponds to the diagrams in Fig. 8b. In deriving the
expressions, we have used definition~3! and condition~6!.
Similar diagrams can be obtained forS ij ↓ . Summation of all
these contributions in the mean-field approximation yie
the effective Hamiltonian~53!.

In the critical regionTN,T,T* , the main contribution
to spin correlators~53! is due to long-wave excitations with
k→0 and short-wave excitations withk→Q ~see, for ex-
ample, Ref. 48 and Sec. 5!. The behavior of the respons
function K(k) in the long-wave~hydrodynamic! limit k→0
is determined by fluctuations of the total magnetization
sublattices~which is zero in antiferromagnetic systems! and
is diffusive in nature:

KR~k,v!5K0~k!
iDk2

v1 iDk2
, ~56!

where

K0~k!5K ~k,v50!5
x0

t1@12J~k!/J~Q!#

'
1

2
x0~TN!,
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J~k!5J eikg, x ~T!5
S~S11!

, t5
T2TN
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y

D 5
1

f p,
T

,g tanh
ẽ p

u~T/TN ,g!
~63!

ctor
st

e
ree

on

en
by

ng
m-

ce
,

he

y
n
ag-

-

f
n-

on
(̂
g&

0 3T TN
~57!

~in Eq. ~56! we have passed to the retarded Green’s func
for real frequencyv!.

Near the antiferromagnetic vectorQ, the response func
tion behavior is relaxation-like:

KR~q,v!5
1

2 iv/Gx01K0
21~q!

, q5k2Q, ~58!

where

K0~q!5K ~q,v50!5
x0

t1~ql0!2 ~59!

is the Ornstein–Zernike static correlation function, andl 0 is
the elementary excitation mean free path, which is com
rable to the lattice constant.

In the mean-field approximation, we ignore the retard
tion of the RKKY interaction, and the diagrams in Fig.
yield for the self-energy

ẽk5S~k!52J̃T2 (
n,mq

(
s

w~k2q!gk~ ivn!K q
s~ i«m!

' J̃DS w~k!

2
12T(

q
w~k2q!K0~q! D . ~60!

Here s is the polarization index, while the anomalou
Green’s functiongk is expressed asgk( ivn)5( ivn2 ẽk)

21.
At high temperatures, we retain only the term with«m50 in
the sum over even Matsubara frequencies; then the
Green’s functionK s(q,0) in Fig. 8 has the same form i
both the hydrodynamic and critical regions,48 so that the
main contribution to the spinon spectrum renormalization
due to the static susceptibilityK0(q) ~Eq. ~59!!.

The order parameterD defined by Eq.~28! and corre-
sponding to the approximation of Eq.~53! and diagrams of
Fig. 8 is given by

D5
1

z (
pq

w~p2q!F1

2
dq,012TK0~q!G tanh

ẽp

2T
. ~61!

Self-consistent equations~35! and ~61! have been de-
rived for the simplest case of isotropic exchange, which
generally speaking, never realized in Kondo lattices. The
fore, before analyzing the effect of spin fluctuations onT* ,
we generalize the mean-field theory to the case of anisotr
exchange. Let us introduce an exchange integ
Jij 5$Ji ,J'%, whereJi andJ' are the coupling constants fo
nearest neighbors in the basal plane and in the perpendi
direction, respectively. The degree of exchange anisotrop
measured by the parameterg5J' /Ji . Now, instead of
Hamiltonian ~29! or ~53!, we must write the anisotropic
mean-field Hamiltonian

HMF5(
i,r'

J'D'Yi,i1r'
1(

i,r i

JiD iYi,i1r i
. ~62!

Here the anomalous averages^Yi,i1ru
&, whereu5',i , are

derived from the equation system
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with the dispersion relation

ẽ p
u~T/TN ,g!5JuDufu~p,T/TN ,g!. ~64!

The structure factorfu(p,T/TN ,g) renormalized by spin
fluctuations can be expressed in terms of a structure fa
wu(p) like that in Eq.~33!, where summation over neare
neighborsl is performed only in the basal plane (g,1) or in
the perpendicular direction (g̃5g21,1):

fuS p,
T

TN
,g D5

1

2
wu~p!12T(

q
wu~p2q!K0~q!. ~65!

Indexg on the left-hand side of Eq.~65! is due to the aniso-
tropic nature of correlatorK0(q). Thus, the character of th
transition to the spin-liquid state is determined by the deg
of anisotropy: in the case ofg,1 spin-liquid correlations
emerge first in the basal plane, and ifg.1 in thez-direction.
At lower temperatures, the spin liquid naturally takes
three-dimensional properties, given thatg Þ (0,̀ ).

The transition temperature to the spin-liquid state, wh
spin fluctuations are taken into account, is determined
solving the equation

Tu* 5
1

2
max$Ji ,J'%uuS Tu*

TN
,g D , ~66!

where

uuS Tu*

TN
,g D 5~zuN!21(

p
fu

2S p,
T

TN
,g D , ~67!

zi is the coordination number in the basal plane, andz'52.
In estimating the role of spin fluctuations for establishi

the spin-liquid regime, it is convenient to introduce the te
perature

Tu*
~0!5

1

2
max$Ji ,J'%uu

~0! ~68!

of the transition to the RVB state in the anisotropic latti
without taking spin fluctuations into account. In this case

uu
~0!5~zuN!21(

p
wu

2~p!. ~69!

Then the condition that the transition occurs by virtue of t
spin-fluctuation mechanism is

Yu~g,Tu*
~0!/TN!5uu~Tu*

~0!/TN ,g!/uu
~0!.1. ~70!

The parameterYu(g) (Yu(g̃)) for a simple cubic lattice is
calculated in Appendix III. Critical values of the anisotrop
parametersg1,2 at which the spin-liquid state stabilizes i
almost one-dimensional and almost two-dimensional m
netic lattices are given for the caseTu*

(0)/TN51 in Fig. 9 for
different values oft. It is clear that only in a strongly aniso
tropic situation, almost one- or two-dimensional~see Eqs.
~A.III.7 ! and ~A.III.8 !! spin correlations help formation o
the spin liquid, and in the anisotropic case, inclusion of a
tiferromagnetic fluctuations in the mean-field approximati
leads to suppression of the spin-liquid phase.
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The analysis in this section once again indicates that
mean-field approximation is insufficient for the descripti
of the spin liquid. In particular, even the diagrams of Fig
indicate that the static approximation, generally speak
does not apply to the critical region, since antiferromagne
fluctuations define their own time and energy scales, wh
determine the real character of transition from the param
netic state to the spin-liquid state.

5. CRITICAL ANTIFERROMAGNETIC FLUCTUATIONS AND
SPIN DIFFUSION

As mentioned in Sec. 4, in antiferromagnets critical flu
tuations have differing properties in the long-wave (k→0)
and short-wave (k→Q) regions, and the spin response fun
tion in these regions takes the form of Eqs.~56! and ~58!,
respectively. The critical dynamics of antiferromagnets
usually analyzed using renormalization-group techniques
plied to phenomenological models.49,50 Chubukov48 calcu-
lated the dynamic susceptibility of a two-dimensional an
ferromagnet in the diffusion and relaxation regions usin
diagram technique in the Schwinger boson representa
We investigate the dynamic susceptibility as a function
frequency and momentum in the thee-dimensional confi
ration using the pseudofermion technique.

In order to calculate the spin diffusion factorD and the
relaxation constantG, we need to know, in addition to th
spin correlators defined by the Larkin equation~19!, the low-
frequency behavior of the current correlator:

K
ṠṠ

ab
~k,t!5dab (

k1k2

V~k,p1!V~2k,2p2!

3^Tt~Sp11k/2
m S2p11k/2

r !t~S2p22k/2
m Sp22k/2

r !0&,

~71!

where

V~k,p!5J~k1p/2!2J~2k1p/2!.

FIG. 9. ParameterY describing the effect of critical spin fluctuations on th
transition temperature to the RVB phase for the quasi-one-dimensi
(1D) and quasi-two-dimensional (2D) Kondo lattices. Parametert charac-
terizes the proximity to the antiferromagnetic instability. The RVB st
emerges atg,g1 and g̃,g̃2 in the cases of axial and plane magne
anisotropy, respectively.
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There is an exact solution for the Fourier transform of co
elator KṠṠ continued to the upper half-plane expressed
terms of irreducible~noncuttable along the interaction line!
self-energy parts of the spin and current correlation fu
tions:

K
ṠṠ

R
~v!5S

ṠṠ

R
1v2

SSS
R

V SSS
R

12SSS
R

V
. ~72!

HereV 5(SR)212(K0)21 is the vertex part determined b
the static response in the critical region.19,51

Using the Kramers–Kronig dispersion relations for r
tarded and advanced correlation functions, and the ana
properties of irreducible self-energy parts, one can der
from Eqs.~19! and ~72! the expression

KSS
R ~v!5K0

Gk,v

2 iv1Gk,v
, ~73!

which holds as bothk→0 andk→Q.
The spin correlation functions can be expressed in te

of the pseudofermion Green’s functions. For example,
expression for the one-site susceptibility has the form

K i
'~«m!5T(

m
G ii~vn1«m!G ii~vn!, ~74!

~see Eq.~16!!. HereG ii(vn) is a Fourier component of the
pseudofermion Green’s functionG ii(t)5^Tt f i(t) f i

†(0)&.
Since nonphysical states do not appear when calcula
single-site averages forS51/2, there is no need to introduc
projection operators. AsT→TN , scattering by the relaxation
mode contributes a component described by the diagram
Fig. 10 to the self-energy part of the Green’s functi
S(vn). Unlike the diagram of Fig. 8, here solid lines corr
spond to one-site propagatorsG ii , and points to exchange
verticesJ̃(q). The wavy line in this diagram corresponds
the spin Green’s function~16! determined by the Larkin
equation~19!. In the absence of spin-liquid correlations, l
us substitute into the self-energy partS(vn) of the pseudo-
fermion Green’s function the ‘‘bare’’ functiongis from Eq.
~26! and a spin functionK («m ,q) in the form of a relaxator:

S~vn!5 J̃2T(
m

N21(
q

w~q!2
1

i ~«m2vn!

Gx0~T!

u«mu1b~q!
,

~75!
whereb(q)5G@t1(ql0)2#, andG should be calculated in
dependently using the Dyson and Larkin equations. By c
culating the sum over frequencies in Eq.~75! and continuing
it analytically to the complexz plane, we obtain the follow-
ing equation for poles of the pseudofermion Green’s fu
tion:

z2S~z!50,

al

FIG. 10. Self-energy part of the Green’s functionG ii including the contri-
bution of critical fluctuations in the Born approximation.
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The projection diagram technique suggested in the paper
il-
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v,

up-
rch

rch

a

mi
(
q p z21bq

2 F S 2pTD S 2pTD
2

pT

bq
1

ipT

z G , ~76!

where A5Gx0(T), and c(y) is the digamma function
Hence, it is clear that the pseudofermion Green’s function
this approximation isG ii

R(v);@v1 iG(T)#21. By substitut-
ing this into Eq.~74!, we find the one-site susceptibility

K i
R5

x̄0

12 iv/G
, ~77!

which is, in turn, can be substituted into the Larkin equat
~which also includes, generally speaking, vert
corrections48!, and thus the equation system forG and l 0 is
closed.

The spin-liquid effects on the behavior of the spin co
relation functions in the critical region can be accounted
by introducing anomalous intersite contributions intoS~v!
~Fig. 10!. Nonlocal fermion correlations lead to emergen
of a new characteristic length characterizing short-range
der, and change the temperature dependence of the static
susceptibility and dynamic response functions. As a res
we have changes in the scaling behavior and in the freque
and momentum dependence of the spin susceptibility.

The spin diffusion factor is also determined by the se
energy part of the current correlator:51

D5 lim
k→0,v→0

1

k2

ImS
ṠṠ

R
~k,v!

v
K0

21~k!. ~78!

Since the behavior of the current correlator is fully det
mined by relaxation processes, effects of nonlocal spin c
relations should also change scaling characteristics of
spin susceptibility in the hydrodynamic region.

The calculations described in this section are not con
ered a complete description of critical phenomena in anti
romagnets. These are instead illustrations given with the
lowing aims: first, to demonstrate applicability of th
suggested diagram technique to traditional problems of
theory of magnetic phase transition and, second, to out
feasible methods for taking into account the effect of sp
liquid correlations on antiferromagnetic fluctuations in t
critical region.

6. CONCLUSIONS

In this paper, we have demonstrated that the spin-liq
state in the Kondo lattice can be more stable than the Ko
singlet state, owing to the same processes as those res
sible for Kondo screening in the case of sufficiently stro
antiferromagnetics f-exchange. This rather paradoxical r
sult can be explained by the fact that strong competit
between Kondo scattering and spin-liquid correlations occ
at temperatures near the Ne´el point. Since all correlation ef
fects at such temperatures have the same order of magni
the simple mean-field approximation cannot be used in
scribing the spin subsystem in a three-dimensional Ko
lattice.
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and based on the similarity between the Hubbard Ham
tonian for electrons and Heisenberg Hamiltonian for pseu
fermions allows one, in principle, to go beyond the stand
mean-field model of the homogeneous RVB phase.6,16 At-
tempts to include antiferromagnetic fluctuations in the me
field approximation~Sec. 4! do not produce any trustworth
results. Preliminary analysis, however, indicates52 that the
diagram technique suggested in the paper may allow on
manage without the mean-field approximation in describ
effects which occur in the region of critical antiferromagne
fluctuations and devise a more realistic scenario of em
gence of the spin liquid in the Kondo lattice.

The investigation of spin diffusion near the Ne´el point
reported in Section 5 indicates that the diagram techniq
used in describing critical antiferromagnetic correlations
high temperatures may yield new physical results in the
drodynamic region.

The authors are indebted to Yu. Kagan, N. V. Prokof’e
G. G. Khaliullin, D. E. Khmel’nitski�, and D. I. Khomski� for
helpful discussions and critical remarks. This work was s
ported by the Russian Fund for Fundamental Resea
~Project 95-02-04250a!, INTAS ~Project 93-2834!, and
Netherlands Organization for Support of Scientific Resea
~NWO, Project 07-30-002!.

APPENDIX I

In calculating the polarization operatorP(R) ~Eq. ~40!!,
we use the asymptotic form of the Green’s function~41!.
Substituting it into Eq.~42!, we obtain the expression for
spherical Fermi surface:

P~R,«m!5TS m

2pRD 2

expS 2
2u«mu

v
RD

3
cos~2pFR1 i«mR/v !

sinh~2pTR/v !
1TS m

2pRD 2

3expS 2
u«mu

v
RD F u«mu

2pT
1

sinh~ u«muR/v !

sinh~2pTR/v !

3expS 2
u«mu

v
R12ipFR sign «mD G . ~AI.1!

In the static limit, it reduces to

P~R,0!5TS m

2pRD 2 cos~2pFR!

sinh~2pTR/v !

5
mpF

4

8p3

cos~2pFR!

~pFR!3 F12
p2

6 S T

«F
pFRD 2

1 . . . G ,
~AI.2!

hence we have Eq.~45! at T50.
In the case of a quasi-two-dimensional cylindrical Fer

surface

g~R,z,vn!5E d3p

~2p!3

1

ivn2j~p!
exp~ ip–R1 ipzz!
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pz0 dpz pdpdw 1
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ex-

e

5E
2pz0

2p
eipzzE

~2p!2 ivn2j~p!
eip–R,

g~R,z,vn!5
sin~pz0z!

pz
G~R,vn!. ~AI.3!

For pz0@pF the effective RKKY interaction is independen
of pz0 ,

JRKKY~R!5S J

ñ0
D 2

P~R,0!5S J

ñ0
D 2E dv

2p
g2~R,v!

5S J

n0
D 2E dv

2p
G2~R,v!.

~AI.4!

Hereñ054ppF
2pz0 /(2p)35pz0pF

2/2p25pz0n0 /p, n05pF
2/

2p is the two-dimensional density of electronic states, a
G(R,vn) is the two-dimensional Green’s function

G~R,vn!5E pdpdw

~2p!2

1

ivn2j~p!
exp~ ipR cosw!.

~AI.5!

Let us use the integral representation of the Bessel func

J0~z!5
1

2p E
0

2p

dw exp~ iz cosw! ~AI.6!

in the asymptotic limit for largeuzu:

J0~z!'A 2

zp
cosS z2

p

4 D . ~AI.7!

Then we have

G~R,vn!52 i sign vn

m

A2ppFR
expS 2

uvnu
2«F

pFR

1 i S pFR2
p

4 D sign vnD . ~AI.8!

Substituting this expression into Eq.~AI.4!, we obtain

P~R,«m!52T
m2

2ppFR
expS 2

2u«mu
v

RD
3

sin~2pFR1 i«mR/v !

sinh~2pTR/v !
2T

m2

2ppFR

3expS 2
u«mu

v
RD H u«mu

2pT

2
sinh~ u«muR/v !

sinh~2pTR/v !
expF2

u«mu
v

R12i

3S pFR2
p

4 D sign «mG J . ~AI.9!

In the low-temperature limit this expression becomes

P~R,0!52T
m2

2ppFR

sin~2pFR!

sinh~2pTR/v !
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n

52
mpF

2

4p2

sin~2pFR!

~pFR!2 F12
p2

6 S T

«F
pFRD 2

1 . . . G ,
~AI.10!

and atT50 to Eq.~47!.

APPENDIX II

Intensification of the RKKY interaction due to Kond
renormalization of the single-sites f-exchange vertex, which
is taken into account in the logarithmic approximation,

G~«,a!5
1

~112a ln~«/«F!!2 , ~AII.1!

is described by the expression

f S pFR,a,
T

«F
D5E

T/«F

` exp~2pFRx!dx

~112a ln~x!!2 . ~AII.2!

The temperature dependence of this integral is determine
both Doniach’s parametera and the separation betwee
neighboring Kondo centers~parameterpFR!.

If we neglect logarithmic renormalization~AII.1!, the
integral in ~A.II.2! equals 1/pFR for T!«F/kB , and the in-
tegral in ~44! reduces to the usual RKKY formula~45!.
When Kondo processes are taken into account, the functif
defined by Eq.~A.II.2! can be approximated in the temper
ture range of interest,@TK,3TK#, by the expression

f S pFR,a,
T

«F
D'

1

pFR

1

~122a ln~T/«F!!n~pFR,a! ,

~AII.3!

where the exponentn5n(pFR,a) is independent of tem-
perature. As a result, the high-temperature behavior of
RKKY interaction is determined by the functio
f̃ (pFR,a,T/«F)5 f (pFR,a,T/«F)pFR, which can be ap-
proximated as

f̃ S pFR,a,
T

«F
D'

1

~112a ln~T/«F!!n~pFR,a! . ~AII.4!

Figure 11 shows the temperature dependence of the
act function f̃ (pFR55.0,a50.09) calculated numerically
~solid line! and the approximate function
f̃ (pFR50.5,a50.09) ~dotted line! in the temperature rang

FIG. 11. Numerical values of integralf̃ (pFR) ~solid line! and of the ap-
proximating functionf (pFR) ~see text!.

412Kikoin et al.



TK,T,3TK . The exponentn5n(pFR,a) of approximate

th

la
r
e,
tro
o

of

-

e

Using asymptotic expressions for the integrals:

pin

3 in
the

le
tions

is
a-

99
function ~AII.4! is shown in the insert as a function ofpFR
in the range 2,pFR,8 for several values ofa in the inter-
val 0.04,a,0.165. The exponent was determined using
least-square fit in the temperature range 1.2TK,T,3TK .

APPENDIX III

In this Appendix, we calculate the parameterY defined
by Eq. ~70!, which characterizes the effect of spin corre
tions on the transition temperature to the RVB phase fo
simple cubic lattice with anisotropic RKKY interaction du
for example, to a nonspherical Fermi surface. Let us in
duceJi[Jx5Jy and J'[Jz . Then we must substitute int
Eq. ~57! for the spin correlatorK0(q,g) the parameter

j q[Jq /uJQu52 j i~w i1gw'!, ~AIII.1 !

where w i(q)52(cosqx1cosqy), w'(q)52 cosqz, and
j i5Ji /JQ (a51). To calculate sums in Eq.~65! like

T(
q

wu~p2q!K0~q,g!5
S~S11!T

6TNj 0
(

q

wu~p2q!

T/TNj 02 j q / j 0
,

~AIII.2 !

we use the integral representation for the spin correlator

K0~q,g!5
S~S11! j q

6TNj 0
E

0

`

dt expH 2S T

TNj 0
2

j q

j 0
D tJ .

~AIII.3 !

When the interaction in the basal plane is dominant (g,1),
the spectrum of spin-liquid excitations has the form

ẽ p
i ~T/TN,g!5

1

2
JiD iF12~21g!

T

TN
A~g,T/TN!Gw i~q!,

~AIII.4 !

where the functionA(g,T/TN) can be expressed in terms
integrals of Bessel functions:

A~g,t!5E
0

`

dt exp$2~21g!~11t!t%I 1~ t !I 0~ t !I 0~gt !.

~AIII.5 !

Given thatu i
(0)5u'

(0)51 for the simple cubic lattice, we ob
tain

Y i~g,Tu*
~0!/TN!5@12~21g!~11t!A~g,t!#2/4. ~AIII.6 !

When the interaction perpendicular to the basal plan
dominant (g̃,1), we have instead of Eqs.~A.III.4 !–
~A.III.6 !

ẽ p
'S T

TN
,g D5J'D'F12~112g̃ !

T

TN
ÃS g,

T

TN
D Gcospz ,

~AIII.4 8!

Ã~ g̃,t!5E
0

`

dt exp$2~112g̃ !~11t!t%I 1~ t !I 0
2~ g̃t !,

~AIII.5 8!

Y'~ g̃,Tu*
~0!/TN!5@12~112g̃ !~11t!Ã~ g̃,t!#2/4.

~AIII.6 8!
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A~g,t! ug,t→0
}2 ln max~g,t!,

Ã~ g̃,t! u g̃ ,t→0
}@max~ g̃,t!#21/2,

we obtain for the neighborhood ofTN in the case of strong
anisotropy

Y i~g,Tu*
~0!/TN!}2 ln max~g,t!, ~AIII.7 !

Y'~ g̃,Tu*
~0!/TN!}@max~ g̃,t!#21/2, ~AIII.8 !

and as a result, strong spin fluctuations stabilize the s
liquid.

1!Preliminary results of this study were given in the short note.
2!A procedure similar to that suggested below was described in Ref. 3

the cases of the Anderson impurity and Anderson lattice. But since
Anderson Hamiltonian, unlike spin Hamiltonians~1! and ~2!, does not
have local SU~2! symmetry, and the requirement of exact particle-ho
symmetry is not imposed, there are many differences between formula
of rules of the diagram techniques.

3!Since in the caseS51/2 for one-site processes the constraint condition
satisfied automatically,10 it is unnecessary to introduce projection oper
tors.
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Spin diffusion and relaxation in three-dimensional isotropic Heisenberg antiferromagnets
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A theory is proposed for kinetic effects in isotropic Heisenberg antiferromagnets at temperatures
above the Ne´el point. The scaling behavior of the generalized coefficient of spin diffusion
and relaxation constant in the paramagnetic phase is studied in terms of the approximation of
interacting modes. It is shown that the kinetic coefficients in an antiferromagnetic system
are singular in the fluctuation region. The corresponding critical indices for diffusion and relaxation
processes are calculated. The scaling dimensionality of the kinetic coefficients agrees with
the predictions of dynamic similarity theory and a renormalization group analysis. The proposed
theory can be used to study the momentum and frequency dependence of the kinetic
parameters, and to determine the form of the scaling functions. The role of nonlocal correlations
and spin-fluid effects in magnetic systems is discussed. ©1997 American Institute of
Physics.@S1063-7761~97!02111-2#

1. INTRODUCTION diffusion coefficient. The analogous problem for antiferr
o
e
wo
su
s

rm
m

-
rg
wi
ic
rib
vy
s
pi
a
ar

fo
n
n

ffi
n
ri-
tic
tio
in

th
tu
sp

si-
m-
by

ter
t-

he

stic
,
ec-
s.
uc-

ion
rela-
on

c-
i.e.,
he

f
etic
the

e
the

94
Recent heightened interest in the critical dynamics
antiferromagnetic materials1–6 has been stimulated by activ
experimental and theoretical research on quasi-t
dimensional magnetic correlations in high-temperature
perconductors, and on the anomalous magnetic propertie
heavy-fermion compounds.6–8 In particular, critical spin
fluctuations have been invoked to explain the non-Fe
fluid behavior of the specific heat and resistance at low te
peratures in the compounds7,8 CeCu62xAux and
Ce12xLaxRu2Si2 near the concentration critical point. In ad
dition, a proposed9,10 spin-fluid approach to the Heisenbe
model, based on introducing resonating valence bonds
Fermi statistics for excitations in the magnetic sublatt
~spinons!, may, in turn, also serve as a scenario for desc
ing the behavior of cerium compounds with hea
fermions.11,12 Here it turns out that critical spin fluctuation
play an important role in the formation mechanism of a s
fluid. The behavior of the kinetic coefficients in this case c
deviate substantially from that predicted by dynamic simil
ity theory.13

In this paper we develop a microscopic approach
studying the scaling behavior of the spin diffusion coefficie
and the relaxation constant of an isotropic Heisenberg a
ferromagnet in the fluctuation region above the Ne´el tem-
perature. The scaling dimensionality of the kinetic coe
cients in magnets was predicted by Halperin a
Hohenberg,14,15 who developed a hypothesis of scale inva
ance based on the idea that the values of the dynamic cri
indices are conserved on both sides of the phase transi
Maleev then made a microscopic study of spin diffusion
the paramagnetic phase of ferromagnets.16,17 He, in particu-
lar, established the approximations required to satisfy
requirements of the hypothesis of scale invariance, and s
ied the momentum and frequency dependence of the
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magnets will be examined in the present paper.
It is known14 that in the neighborhood of a phase tran

tion, two regions can be distinguished in the momentu
temperature plane: a hydrodynamic region determined
long-wavelength fluctuations in the ordering parame
N5N12N2 , the difference in the moments of the subla
tices, with characteristic wave vectorsqj!1, where
q5uk2Qu describes the deviation of the moment from t
antiferromagnetic vectorQ and j is the correlation length,
and a critical region, with wave vectorsqj@1. Here the
concept of a correlation length is related to the characteri
behavior of the ordering parameterN. In an antiferromagnet
however, there is an additional conserved quantity, the v
tor M5M11M2 , the sum of the moments of the sublattice
Nevertheless, we shall also refer to the long-wavelength fl
tuation region for the vectorM , kj!1, as hydrodynamic. In
this paper we examine the behavior of the spin correlat
functions in the paramagnetic phase and establish the
tionship between the kinetic coefficients in the fluctuati
region of the phase diagram.

In the hydrodynamic regime, the dynamics of the flu
tuations in the magnetization have a diffusive character,
the variation in the magnetic moment with time obeys t
macroscopic van Hove diffusion equation:

]M

]t
5D0¹2M , ~1!

whereD0 is the spin diffusion coefficient. This behavior o
the fluctuations is related to the conservation of the magn
moment; the operator corresponding to it commutes with
Hamiltonian.

A different pattern is observed in the critical region. Th
nonconservation of the ordering parameter determines

994-07$10.00 © 1997 American Institute of Physics
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the dynamics of this vector obey the relaxation equation

]N

]t
52

G0

x
N, ~2!

where x is the susceptibility and the kinetic coefficie
G0.0. We note also that, in contrast to the diffusion equ
tion ~1!, relaxation~2! can be uniform; the gradient correc
tions omitted from Eq.~2! are proportional toq2 in this case.
Although the average value of the magnetization vectorM is
zero on both sides of the phase transition point, fluctuati
occur in the magnetization vector near the zero value. Un
in a ferromagnet, however, the diffusion mode is not critic

In the following we shall be interested in the dynam
susceptibility of a cubic Heisenberg antiferromagnet loca
in zero magnetic field above the Ne´el temperature:

H52(
^ i , j &

Vi j Si•Sj . ~3!

We also neglect dipole forces.17

The susceptibility is known to be related to the retard
spin Green function by the equation

l~k,v!5~gm0!2KSS
R ~k,v!, ~4!

whereg is the Lande´ g factor,m0 is the Bohr magneton, an

KSS
R ~k,v!5 i E

0

`

dt eivt^@Sk
z~ t !,S2k

z ~0!#&,

Sk5
1

AN
(

i
e2 ik–RiSi ,

M5^S0&, N5^SQAFM
‹. ~5!

Proceeding from Eqs.~1! and~2!, we can obtain the form o
the correlation functionsKR in the diffusion

KSS
R ~k→0,v!5K ~k,v!5G0~k!

iDk2

v1 iDk2 ~6!

and relaxation regions

KSS
R ~q5~k2Q!→0,v!5L~q,v!5

1

2 iv/G1G0
21~q!

.

~7!

HereG0 is the static susceptibility.
In the fluctuation regiont5uT2Tcu/Tc!Gi ~Gi is the

Ginzburg number, which characterizes the limits of appli
bility of the Landau theory!, when the fluctuations becom
large, the fluctuation dynamics obey the Halperi
Hohenberg similarity law, according to which the dynam
susceptibilityx and, therefore, the functionKSS

R can be ex-
pressed in terms of the scaling functionF:

KSS
R ~k,v!5G0~k!FS kj,

v

Tct
nzD , ~8!

i.e., the dynamic indexz which characterizes the energ
scale of the critical fluctuations,v}kz, can be related to a
static indexn'2/3 which determines the variation in th
correlation length,j}t2n. For small deviations from the an
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G0(q)}j . In the following discussion the Fisher inde
h, which characterizes the so-called anomalo
dimensionality,18 will be set equal to zero. This approxima
tion is valid for three-dimensional systems.18 It is necessary
to introduce two scaling functionsF 1 andF 2 to describe the
fluctuation regions in an antiferromagnet:

K ~k,v!5G0~k!F 1S kj,
v

Tct
nzD ,

L~q,v!5G0~q!F 2S qj,
v

Tct
nzD . ~9!

Here, however, the kinetic coefficientsD0 and G0 can, in
turn, themselves be correlation lengths. Furthermore, a
renormalization group analysis shows,14,19 the kinetic coeffi-
cients are singular in the fluctuation region of an antifer
magnet.

The theory developed in this paper is a variant of t
interacting mode theory of Kawasaki.20 We have tried to
generalize the theory proposed by Maleev16 for spin diffu-
sion in ferromagnets to antiferromagnetic systems. In m
regards, we follow the style and spirit of that paper. As no
before, our problem involves a study of the form of the sc
ing functionF ~see Eqs.~8! and~9!! and a determination o
the frequency and momentum dependences of the kin
coefficients in the fluctuation region, as well as establish
those approximations which must be made in a microsco
approach in order to satisfy the requirements of scaling
variance.

2. GENERALIZED KINETIC COEFFICIENTS

We therefore study the dynamic susceptibility of a cub
Heisenberg antiferromagnet located in zero magnetic fi
above the Ne´el temperature in the fluctuation region. Equ
tions ~6! and ~7! can be rewritten in the more general form

KSS
R ~k,v!5

ig~k,v!

v1 iG0
21~k!g~k,v!

, ~10!

while in the diffusion region

D05 lim
k→0

lim
v→0

k22g~k,v!G0
21~k!, ~11!

and in the relaxation region the generalized kinetic coe
cient g(k,v)5G(k,v). The limit of Eqs. ~6! and ~7! for
k→0 and v→0 depends strongly on the relationship b
tweenk andv, similarly to the way it does in the theory o
Fermi fluids.21 In the following we shall be interested in th
quasistatic limit, i.e.k→0 anduvu/k2→0.

As Maleev shows,16 it is possible to go beyond the linea
response theory and express the kinetic coefficients in te
of the Kubo function22 of the operatorsS and Ṡ ~the dot
denotes differentiation with respect to time!:

g~k,v!5
F ṠṠ~k,v!

11G0
21~k!F ṠS~k,v!

, ~12!

where

995K. A. Kikoin and M. N. Kiselev
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AB iv AB AB

KAB
R ~k,v!5 i E

0

`

dt eivt^@Ak~ t !,B2k~0!#&.

Equation ~12! is exact and accounts for the nonline
nature of the relaxation forces. In the case of a purely
change interaction in the long wavelength limitṠk;k, i.e.,
g5FSS(k,v), the denominator equals unity and Eq.~11! is
the same as the result from the linear response theory. G
erally speaking, however, the functions in the denomina
cannot be neglected in a study of the frequency and mom
tum dependence of the kinetic coefficients.

It is easy to show that the retarded Green functio
KSS

R (k,v), KṠS
R (k,v), andKṠṠ

R (k,v) are related in the para
magnetic phase by simple formulas which follow from t
dispersion relations:23

KSS
R ~k,v!52 ivKSS

R ~k,v!,

KSṠ
R

~k,v!52KSS
R ~k,v!5 ivKSS

R ~k,v!,

v2KSS
R ~k,v!5@KṠṠ

R
~k,v!2KṠṠ

R
~k,0!#. ~13!

It is clear from these relations, in particular, thatKṠS
R (k,v) is

analogous toKṠṠ
R (k,v) in its properties and symmetry.16

Combining Eqs.~11! and ~13! with the equation of mo-
tion for the spin operators,

Ṡk
a52

1

AN
(

p
@V~p1k!2V~p!#eabgSp1k

b S2p
g ~14!

~hereV(p) is the Fourier transform of the exchange integr!
and transforming to ‘‘imaginary’’ time, we can obtain th
relation between the Kubo functions and the correlators
the spin currents at the Matsubara frequencies:

KṠṠ~k,vn!5
~a2Tca!2

6N E
0

1/T

dteivnt (
p1,p2

~¹V~p1!k!

3~¹V~p2!k!

3^Tt~Sp11k
m S2p1

r !t~S2p22k
m Sp2

r !0&. ~15!

In retaining only the first gradients of the potentia
¹V(p)'pTca

2a, we limit ourselves to the lowest orde
terms in an expansion inka, wherea is the lattice constant
the constanta'1. It will be clear from the following analy-
sis that the corrections to the kinetic coefficients will be e
pressed in the form of series in powers ofkj and, since
j@a, it is valid to neglect the higher derivatives of the e
change integral. Therefore, the problem of finding the kine
coefficients has been reduced to calculating four-spin c
elators with a current vertex. This problem can be solved
analytic continuation of the temperature diagrams with
upper semiaxis into the complexv plane. A graphical ex-
pression for the current correlator is shown in Fig. 1.

The ‘‘seed’’ poles for the spin Green functions~6! and
~7! lie on the imaginary axis, i.e., if we set up some fictitio
quasiparticles to correspond to these poles, their ener
will be purely imaginary. Introducing quasiparticles of th
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sort, e.g., ‘‘diffusons’’ and ‘‘relaxons’’, allows us to obtain
closed expressions for the kinetic coefficients and to de
mine their scaling dimensionality.

For the static susceptibility in the critical region we u
the Ornstein–Zernike law:

G0~q!5KSS
R ~q,0!5

A

Tct
2n

1

~qj!211
, ~16!

where A is a constant (A;1) and t!1. In the diffusion
region the static susceptibility has no singularities a
G0'A/2Tc .

The following sections are devoted to analyzing the d
gram series for the spin current correlator in the fluctuat
regions, finding the dynamic critical indices for the kinet
coefficients, and determining the momentum and freque
dependence of the spin diffusion coefficient and relaxat
constant.

3. RELATIONSHIPS AMONG THE KINETIC COEFFICIENTS

To analyze the diagram series we introduce the conc
of an irreducible self-energy part as a diagram which is c
tinuous along one interaction line. Using the definition ofg
and the properties of the functionsK, we rewrite the expres-
sion for the generalized kinetic coefficient in terms of irr
ducible self-energy parts:

g~k,v!5
1

iv FS ṠS
R

~k,v!2S ṠṠ
R

~k,0!

1
RṠS

R
~k,v!g~k,v!RSṠ

R
~k,v!

2 iv1G0
21~k!g~k,v!

G
3F11G0

21
RṠS

R
~k,v!g~k,v!

iv~2 iv1G0
21~k!g~k,v!!

G21

.

~17!

Equation~17! can also be obtained by analyzing the diagra
series for the spin current correlator,16 as well as directly
from the Larkin equation.12,23 In the following we use the
following notation:

KṠS
R

~k,v!5RR~k,v!KSS
R ~k,v!;

andSAB
R for the irreducible self-energy parts. The graphic

expression for the irreducible partS ṠṠ
R corresponds to replac

ing a complete vertex in Fig. 1 by an irreducible verte
EstimatingR in self-consistent field theory16,24 yields

R;~kj!~ka!!~kj!2. ~18!

In addition, its analytic properties imply thatRR;v. We
assume that the expression forR in the critical region also
contains a term of ordera/j in smallness, and for smallv we
neglect this contribution. Thus, the generalized kinetic co

FIG. 1. Diagram series for the current correlator.

996K. A. Kikoin and M. N. Kiselev



ts

he
.
th

ur
te

te

is
th
s
th
r

’–

n
i.e
am
t

re-

n

of
the

two
th
ia-
am
.
ex.
-

ere
e
or-

, as
the
that
ling
tic

,

-
. For
the

iat
sh
tat
ficient g is defined only by the irreducible self-energy par

g~k,v!5
1

iv
~S ṠṠ

R
~k,v!2S ṠṠ

R
~k,0!!. ~19!

We now consider diagrams of a general form for t
irreducible self-energy partSSS at imaginary frequencies
These diagrams, in turn, can be classified in terms of
number of intermediate states. To begin with, we limit o
selves to diagrams with two-frequency intermediate sta
~Fig. 2a and b!:

S ṠṠ
~2!

~k,iv!5
~Tca

2a!2

AN

3T(
e

(
p

~kL~2!~p,k,iv,i e,i ~v2e!!!

3~kL~2!†
~p,k,i e,i ~v2e!,iv!!

3KSS~p,i e!KSS~k2p,iv2 i e!. ~20!

In replacing the sum over the vectorsp by an integral, we
usep;j21 as an upper bound. Here the functions are in
grated near the singularities~small p and p;q1Q in the
neighborhood of the antiferromagnetic vectorQ!.

The vertex partsL are analytic functions of all three
frequencies, each of which has cuts along the real ax25

Vertex parts of this type have no other singularities in
complex v planes.25 Because of this property, the vertice
can be resolved into a static part, which transforms into
vector vertex of static similarity theory, and a dynamic co
rection, which vanishes in the limitv→0. We now study the
static part in more detail.

The static vertices in the diagrams~Fig. 2a! describe the
long-wavelength processes of creating ‘‘diffuson’
‘‘diffuson’’ and ‘‘relaxon’’–‘‘relaxon’’ pairs, i.e., identical
modes interact. As we know, however, the static Green fu
tions are independent of the direction of the momentum,
diffuson and relaxon scattering processes contain the s
vertex parts as do pair creation processes. This means
for these vertices, the Ward identity18,21 holds ~Fig. 3!:

L~2!~p,k,0!;]G0
21/]p. ~21!

FIG. 2. Diagrams for the kinetic coefficients when two-particle intermed
states are included. A wavy line corresponds to the diffusion mode, a da
line, to the relaxation mode. A dot denotes the vertex part of the s
similarity theory.
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Here, in the second term the region of integration with
spect to the momenta is concentrated near the pointsp'Q.
The contribution of critical fluctuations to spin diffusion ca
be calculated by making the substitutionp5q1Q and using
the property]G0

21/]p5]G0
21/]q.

We now consider the diagram of Fig. 2b. Without loss
generality we can set the external momentum equal to
antiferromagnetic vector. In this case, we must consider
interacting modes of different kinds: a diffusion mode wi
short wave vectors and a relaxation mode with small dev
tions from the antiferromagnetism vector. Thus, the diagr
of Fig. 2b describes ‘‘diffuson’’–‘‘relaxon’’ pair production
Thus, we cannot use the Ward identities for this vert
However, the seed vertex~Fig. 3! has the scaling dimension
ality

L0
~2!~p,Q,0!;]V/]p;p.

It is also known that in the antiferromagnetic phase th
is a doubling of the lattice, and the Brillouin zone of th
ordered phase equals half the Brillouin zone of the dis
dered phase. This means that the points 0 andQ become
equivalent in the antiferromagnetic phase. Given this fact
well as the lack of a dependence on the direction of
momentum for the interacting modes, we may assume
rescattering by the static field does not change the sca
dimensionality of the static vertex at the antiferromagne
vector, which can also be written in the form~21!.1!

Continuing the diagrams shown in Fig. 2 analytically21

we obtain expressions for the kinetic coefficients:

D0
~2!5ÃTcE

2`

` d«

2p
cothS «

2TD(
p

~¹G0
21~p!!2

3F Im H~p,«!
]

]«
Im H~p2k,«!

1Im L~p,«!
]

]«
Im L~p2k,«!G , ~22!

and

G0
~2!5B̃E

2`

` d«

2p
cothS «

2TD(
p

~¹G0
21~p!Q!2

3F Im K ~p,«!
]

]«
Im L~p2q,«!

1Im L~p,«!
]

]«
Im H~p2q,«!G . ~23!

Here the index~2! indicates that only processes with two
particle intermediate states have been taken into account
a ferromagnet it is necessary to restrict ourselves to just

e
ed
ic

FIG. 3. The equations for a two-particle vertex part.

997K. A. Kikoin and M. N. Kiselev



first term in Eq.~22!, since a single-mode regime is involved.
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Equations~22! and~23! can be rewritten in a somewhat di
ferent form. Settingk50 and q50 in the integrands and
integrating by parts, we obtain

D0
~2!5

Ã

4 E
2`

` d«

2p
sinh22S «

2TD(
p

~¹G0
21~p!!2

3@~ Im K ~p,«!!21~ Im L~p,«!!2# ~24!

and

G0
~2!5

B̃

2Tc
E

2`

` d«

2p
sinh22S «

2TD(
p

~¹G0
21~p!Q!2

3Im K ~p,«!Im L~p,«!. ~25!

These expressions can be regarded as a generalizati
the equations obtained by Maleev16 from the unitarity condi-
tion for the self-energy parts to the case of two interact
modes.

The region for integrating by parts is concentrated n
the singular points of the scaling functions~9!. Here because
of the ‘‘critical retardation’’ in the neighborhood of th
phase transition points, the characteristic energies of the
tuations satisfy the conditionv* !Tc , which makes it pos-
sible to retain only the first term of the expansion of t
hyperbolic tangent~Eqs. ~22! and ~23!! or hyperbolic sine
~Eqs.~24! and~25!!. Evaluating the integrals with respect
the frequencies and momenta in Eqs.~22! and~24! and sepa-
rating out the scaling dimensionality, we obtain a relatio
ship between the spin diffusion coefficient and the relaxat
constant:

D05b1Tc
2a4S j

aD 23 1

D0
1b2Tca

2S j

aD 1

G0
. ~26!

Note that in order to obtain Eq.~26!, it suffices to substitute
the retarded Green spin functions in the form of Eqs.~6! and
~7! into Eqs.~22! and ~24!. After integrating with respect to
the frequency, the remaining integrals over the mome
contain only the static correlatorG0 . The first term is deter-
mined by a two-diffuson intermediate state, and the sec
by a two-relaxon intermediate state.

The integrals in Eqs.~23! and ~25! can be calculated in
similar fashion. The relaxation constantG0 and the spin dif-
fusion coefficient are related by the equation

G05c1S j

aD 1

G0
1c2S j

aD D0 /Tca
2

G0
2 . ~27!

The coefficientsb1,2, c1,2;1 in Eqs.~26! and ~27! de-
pend on the form of the dynamic and static scaling functio
and in general cannot be calculated using this appro
Solving the closed system of algebraic equations~26! and
~27! yields the following scaling dimensionality for the k
netic coefficients:2!

D0 /Tca
2}G0}~j/a!21/2. ~28!

This sort of behavior is entirely consistent with that predic
by the dynamic scaling invariance hypothesis14,15 and a
renormalization group analysis.15,19 Therefore, first, the ki-
netic coefficients for an antiferromagnet are singular in
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termined by intermediate relaxation processes. The cor
tion to the coefficientD0 owing to self-diffusion is of small-
nessdD0 /D0}(j/a)24}t8/3!1. That is, diffusion is not
intrinsically a critical mode in an antiferromagnet. The d
namic critical index~see Eq.~8!! is z53/2.

The simple physical considerations which will allow u
to describe diffusion and relaxation in the fluctuation regi
are based on the idea that regions of sizej with near ordering
will develop asT→Tc . In these regions the excitations a
antiferromagnetic magnons with an acoustic dispersion c
acter. Estimating the spin diffusion coefficient a
D0;j2/tdiff , where tdiff;j/c is the characteristic diffusion
time and c;j21/2 is the ‘‘sound’’ speed,14 we obtain
D0;j1/2. Given the dynamic similarity hypothesis, accor
ing to which the dynamic critical indexz, which determines
the scale of the characteristic fluctuation energies, is inv
ant, we obtainG0;j1/2.

Despite the singularity of the kinetic coefficients, th
relaxation time for the ordering parameter approaches in
ity, which ensures the existence of macroscopic states co
sponding to incomplete equilibrium.27 The same applies to
the characteristic spin diffusion times.

It should be noted that in introducing Eq.~26! we do not
formally assume knowledge of the character of the exc
tions in the ordered phase. However, the conservation of
total moment and nonconservation of the ordering param
actually determine the magnetic ordering properties in fu

4. FREQUENCY AND MOMENTUM DEPENDENCE OF THE
KINETIC COEFFICIENTS

We shall now consider the generalized kinetic coe
cients as functions of frequency and momentum. To do
we use the relationship between the retarded spin Gr
functions and the Kubo functions~see Eqs.~12! and ~17!!.
Based on these equations, it is clear that the corrections
sociated with the frequency and momentum dependenc
the kinetic coefficients are determined, first of all, by t
frequency and momentum dependence of the irreduc
self-energy parts, and second, by the nonlinear characte
the relaxation forces. According to the estimate of Eq.~18!,
the momentum and frequency dependence of the kinetic
efficients can be studied in terms of the linear respo
theory, i.e., the nonlinearity of the relaxation forces can
neglected.

Let us first investigate the static renormalization of t
kinetic coefficients. Equations~22! and~23! transform to the
usual series expansion of the functions in the powers (kj)2n

and (qj)2n from the static theory:

D ~2!~k,0!5D0~0,0!@11a8~kj!21...#,

G~2!~q,0!5G0~0,0!@11b8~qj!21...#.

This expansion is related to the existence of singularities
the correlators of the static theory at the pointski52n2j22

~Ref. 26!, wheren is an integer. The coefficientsa8 andb8
depend only on the form of the static correlation function
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We now proceed to analyze the energy dependence of
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the kinetic coefficients. Using Eq.~19!, we obtain the follow-
ing expressions for the real and imaginary parts ofg(k,v):

Re g~k,v!5
Im S ṠṠ

R
~k,v!

v
,

Im g~k,v!52
Re S ṠṠ

R
~k,v!2Re S ṠṠ

R
~k,0!

v
. ~29!

Since Img is an odd function ofv and Reg is an even
function of v, the regular expansion of the kinetic coef
cients in powers of the frequency begins withv2.

We introduce an effective generalized kinetic coefficie
g* according to the definition

g* 5

]

]v
Im S ṠṠ

R
~k,v!uv50

11G0
21~k!

]

]v
Re S ṠṠ

R
~k,v!uv50

. ~30!

This expression for the effective generalized kinetic coe
cient is analogous to the definition of effective mass in
theory of quantum liquids. The role of theZ factor is played
by the renormalization constant on the mass shell:

Z5
1

11G0
21~k!

]

]v
Re S ṠṠ

R
~k,v!uv50

.

Calculations ofZ in the hydrodynamic and critical region
yield the following expressions for the renormalization co
stant:

Z~k→0!5
1

11e8~kj!2 ,

Z~q→0!5
1

11d81d9~qj!2 , ~31!

where the constantse8, d8!1 can also be expressed in term
of integrals of the static correlatorG0 .

Extending the definition~30! to small but nonzerov, we
obtain an expansion for the real generalized spin diffus
coefficientD* and the relaxation constantG* :3!

D ~2!* ~k,v!5D0~0,0!@11a8~kj!21akj9 ~v/v* !21...#,

G~2!* ~q,v!5G0~0,0!@b1b8~qj!21bkj9 ~v/v* !21...#.
~32!

Here it must be noted that we do not claim to describe
behavior of the kinetic coefficients in the regionv;v* ,
k,q;j21. This range of frequencies and energies c
scarcely be subject to detailed analysis at the present t
We therefore neglect the irregular corrections to the kine
coefficients resulting from the generation in the higher ord
of perturbation theory of an infinite sequence of poles in
retarded spin Green function, which contract to the real a
and cover the pole that produced them. We shall also
discuss the phenomena associated with the loss of a
through a cut, etc.16,17 All these corrections are small in th
region ofk andv of interest to us and can be discarded.
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particle (m.2) intermediate states. As noted above, we
only interested in the regular contribution:

Im S ṠṠ
R~m!

v
;~ka!2(

p1

...(
pm

L~m!~k,p1 ,...,pm!

3L~m!†~k,p1 ,...,pm!d~p11...pm2k!
1

pm21

3E
2`

`

...E
2`

` d«1 ...d«m Im KSS
R ~p1 ,«1!...Im KSS

R ~pm ,«m!

«1 ...«m

3d~«11...1«m2v!, ~33!

where the functionsK describe both the ‘‘diffusons’’ and the
‘‘relaxons,’’ and the integrals with respect to frequency a
taken near the singular points of the scaling function. F
m52, Eq. ~33! transforms into Eqs.~24! and ~25!.

As k→0, there are generalizations of Ward’s identity16

for the vertex partsL (m) analogous to Eq.~21!, as a result of
which the vertex can be expressed in terms of a sum
derivatives of the ordinarym-particle vertices of the static
similarity theory. Using the ‘‘dimensionality’’ estimate fo
static vertices,26 according to whichGm}p32m/2, in the limit
k→0 we see that replacing the diagrams with two-parti
intermediate states in the creation channel for ‘‘diffuson
and ‘‘relaxons’’ by diagrams withm-particle intermediate
states does not change the scaling dimensionality of the
ducible self-energy parts. As for the behavior of the ver
parts at the antiferromagnetic vector, here the arguments
vanced for diagrams with two-particle intermediate states
also valid. Thus, considering intermediate states with m
than two particles does not change the scaling dimension
of the kinetic coefficients, but only affects the values of t
constants, which in any event cannot be calculated using
approach described here. The same can be said of the
rections associated with the energy dependence of the ve
parts.16

In conclusion, we note that the corrections associa
with the frequency and momentum dependence of the kin
coefficients can be investigated experimentally using neu
scattering, for which the scattering cross section is de
mined by the quantity ImKSS

R (k,v)/v, where the imaginary
part of the retarded spin Green function satisfies Eqs.~6! and
~7! with the coefficients~32!.

5. CONCLUSION

In this paper we have studied the scaling behavior of
generalized kinetic coefficients in a three-dimensio
Heisenberg antiferromagnet. By means of an analysis ba
on a modified version of the interacting mode theory,
have found approximations in a microscopic approach
satisfying the requirements of the scaling invariance hypo
esis. Specifically, it has been shown that in order to de
mine the scaling dimensionality of the kinetic coefficients,
sufficient to limit ourselves to processes with two-partic
intermediate states, with the vertex parts being given
static similarity theory.
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the spin diffusion coefficient and relaxation constant ha
been determined in a pole approximation. We have in
duced the concept of effective kinetic coefficients, analog
to the definition of effective mass in the theory of quantu
liquids. Including the renormalizations associated with m
tiple scattering of ‘‘diffusons’’ and ‘‘relaxons’’ has made
possible to write explicit series expressions for the sca
function in the frequency and momentum rangev!v* and
k,q!j21.

The static and dynamic similarity laws, as well as t
assumed existence of just two modes~two singularities at
low frequencies owing to the existence of the hydrodynam
and critical regimes!, underlie the results obtained in th
paper. The existence of diffusion and relaxation in an a
ferromagnetic system is, in turn, related to the existence
conserved quantity in the Heisenberg model and to the n
conservation of the ordering parameter in this model. Th
all the formulas depend only to a small extent on the spec
features of Heisenberg antiferromagnets and will be valid
any system with a nonconserved ordering parameter whe
additional integral of the motion exists.

In more complicated physical systems, such as he
Fermion compounds with integral filling of thef -shell ~com-
pounds based on Ce are an example of such materials! in the
Kondo lattice model, for which the Heisenberg spin intera
tion is mediated by indirect exchange via conduction el
trons, there may be a substantial deviation from the sca
behavior of Heisenberg magnets owing to the existence
additional modes that interact with paramagnons. Mode
this sort can develop, for example, as a result of spin-liq
correlations, which inhibit growth of the magnetic correl
tion length. In other words, a test for the existence of sp
liquid correlations may be to measure the generalized kin
coefficients by neutron scattering. Other objects to which
methods described in this paper may be applied include
tems with nearly zero or even negative temperatures of a
ferromagnetic ordering,6,28,29anisotropic ferri-, and antiferri-
magnets, and systems with dipole interactions.

The study of the kinetic coefficients near the Ne´el tem-
perature carried out in this paper shows that diagram te
niques for describing kinetic effects in antiferromagnets h
many advantages over existing methods14,15,20 and can be
used to analyze unrenormalizable Hamiltonians, as wel
for problems with nonlocal interacting modes.
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comments, constructive criticism, and interest in this wo
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sions which stimulated the writing of this article. This wo
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002!, and the Russian Fund for Fundamental Resea
~Project 95-02-04250a!.

1!Recall that the anomalous dimensionality index~Fisher index! is assumed
equal to zero.

2!In a ferromagnet, the spin diffusion coefficient is not a singular functi
D0 /Tca

2}(j/a)21/2.
3!v* ;Tct

nz is the characteristic energy of the fluctuations, withz53/2.
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Paramagnetic labeling as a method for the soft spectroscopy of electronic states
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A self-consistent microscopic theory of the relaxation of the crystal-field levels of an impurity
ion in a state with an integer valence implanted in a normal metal is devised. A
microscopic approach based on the Coqblin–Schrieffer–Cooper approach, rather than the formal
model of thes f exchange interaction, makes it possible to take into account the specific
details of both the crystal-field states of the impurity ion and the electronic band spectrum of the
metal. A new method for the soft spectroscopy of electronic states based on measurements
of the temperature dependence of the widthGMM8(T) of transitions between the crystal-field states
uM & of a paramagnetic ion implanted in the compound being studied is proposed. To make
specific use of this method in neutron and optical spectroscopy, a classification of the types of
temperature dependence of the natural relaxation widthgM(T) of the levels is devised,
and procedures for possible experimental methods are proposed. A nonzero value of the natural
relaxation widthgG(T) of the crystal-field ground stateuG& of an impurity ion at zero
temperature is obtained within the proposed self-consistent model, but is beyond the scope of
perturbation theory. It is shown that the widely accepted estimate of the characteristic
temperature of Kondo systemsT* 5GG(T50)/2 from the quasielastic scattering width at zero
temperatureGG(T50)/2 is incorrect in the case of strong relaxation in a system with
soft crystal fields. The proposed model is applied to the quantitative analysis of the relaxation of
the crystal-field levels of paramagnetic Pr31 ions implanted in CeAl3 and LaAl3. The
results of the calculations are in quantitative agreement with the experimental data. ©1998
American Institute of Physics.@S1063-7761~98!02005-8#
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1. INTRODUCTION

The methods that have been developed for studying e
tronic states in metals~angle-resolved photoemissio
spectroscopy;1 quantum oscillations of the magnet
susceptibility,2 conductivity,3 magnetostriction,4 and elastic
moduli5 associated with the de Haas–van Alphen effect;
frared spectroscopy;6 Raman scattering;7 etc.! provide
complementary information regarding the structure of el
tron spectra. A comparison of the experimental data obtai
by different methods with the results of band calculations
the electronic structure provides fairly reliable data on
properties of the compounds studied.

The methods for investigating electronic states can
divided into ‘‘hard’’ and ‘‘soft’’ methods. In the case of har
spectroscopy, the influence of the measurement proces
the system exceeds the scalesW* of the characteristic inter
actions forming the electronic spectrum of the system~in
Kondo systemsW* is of the order of the Kondo temperatu
TK ; in variable-valence systemsW* is of the order of the
valence fluctuations!. Therefore, compounds with stron
electron correlations, which have low-energy modes in
spectrum of elementary excitations, can be investigated m
effectively by soft spectroscopic methods, in which the m
surement process does not destroy the eigenstates of the
tem being investigated. The conditions imposed on spec
scopic measurements by the softness of the elemen
excitations in variable-valence and Kondo systems gre
1001063-7761/98/86(5)/12/$15.00
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restricts the set of methods that are applicable to the inv
tigation of highly correlated systems. For example, the int
pretation of photoemission measurements~because of the
large energy transfers in the measurement process! and data
from methods based on de Haas–van Alphen oscillati
~because of the large magnetic fields, which can destroy
structure of soft excitations! requires a special investigatio
of the influence of the measurement process on the l
energy properties of the compound being studied. Theref
the development of new soft spectroscopic methods
highly correlated electronic systems is an important und
taking.

This paper proposes a method for analyzing the e
tronic structure based on measurements of the tempera
dependence of the relaxation of crystal-field levels of an
purity ion which has special properties~a paramagnetic la-
bel! and is implanted in the compound being investigated
similar idea for investigating semiconductor compounds
an electron paramagnetic resonance technique was prop
back in Ref. 8. The method discussed in this paper relies
the technique of measuring the neutron or optical respons
the system and is intended for studying metallic compoun
A spectroscopic procedure employing a paramagnetic la
can be divided into two stages. In the first stage highly co
plete information on the energies and wave functions of
paramagnetic label P must be obtained. To this end a c
bined study~neutron scattering or Raman scattering me
surements; magnetic susceptibility and specific heat m
8 © 1998 American Institute of Physics
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surements! must be made of a reference single crystal
Pl$B% ~$B% is the chemical formula without the paramagne
label!. In the second stage small quantities of the A ions
the compoundAl$B% under investigation are replaced by th
paramagnetic label P. Scrutiny of the temperature dep
dence of the relaxation of crystal-field levels of the param
netic label P in the compound (A12xPx) l$B% can provide
unique information regarding the electronic structure of
compound under investigation when several conditions
fulfilled. First, the inequalityx!1 is a necessary condition
which allows us to treat the relaxation of the crystal field
the paramagnetic label as a purely single-ion effect. Sec
it must be shown that the structure of the crystal field of
paramagnetic label P in (A12xPx) l$B% does not differ signifi-
cantly from the structure of the crystal field in the pure r
erence crystal of Pl$B%. Fulfillment of the second condition
has already been demonstrated for several compound
which the main contribution to the formation of the crys
field is made by the nearest neighbors from a formula uni
$B%, and hence the structures of the crystal fields of the p
magnetic label P in Pl$B% and (A12xPx) l$B% are practically
identical. Examples of such compounds include RAl3,

9–11

RNi5,
12–14 and RNi14–16 ~R is a rare-earth ion!.

It should be noted that the existing methods for calcu
ing the temperature dependence of the relaxation of crys
field states cannot be applied to the analysis of spec
highly correlated systems. Some of the methods employ
formal Hamiltonian, i.e., one which is not related in any w
to the electronic structure, of thes f model.17–19Another de-
ficiency of the previously developed methods is the use
nonself-consistent second-order perturbation theory,17,18,20,21

which is inapplicable in the case of the large relaxat
widths characteristic of highly correlated systems.

The goal of the present work is to devise a se
consistent theory for the relaxation of crystal-field leve
which can serve as a tool for studying the electronic struc
of particular, highly correlated electronic systems w
strong relaxation broadening. Section 2 presents the de
tion of a microscopic interaction Hamiltonian, an analysis
the differences between it and the formal Hamiltonian of
s f model, and a discussion of the Coqblin–Schrieffer mod
In Sec. 3 self-consistent equations are obtained for the n
ral relaxation widths of the crystal-field levels, and their i
fluence on the cross section for magnetic inelastic neu
scattering is analyzed. In Sec. 4 qualitatively different typ
of temperature dependence of the relaxation width are c
sified. The effects associated with departure from the we
relaxation approximation are analyzed in Sec. 5. In Sec. 6
conditions which must be satisfied by the paramagnetic la
are analyzed in detail, and experimental procedures wh
provide the most easily interpreted information are p
sented. The results of measurements of the relaxation wi
of the crystal-field states of the paramagnetic label Pr31 in
the compounds LaAl3 and CeAl3 are considered in Sec. 7
The conclusions are presented in Sec. 8.
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2. SPECIFIC DETAILS OF THE INTERACTION OF CRYSTAL-
FIELD STATES WITH CONDUCTION ELECTRONS IN
THE COQBLIN–SCHRIEFFER MODEL

The interpretation of the relaxation of a real parama
netic label in a particular compound requires the formulat
of a problem which takes into account both the specific
tails of the state of the impurity and the features of the el
tronic structure of the metal. Therefore, thes f exchange
Hamiltonian, which is often employed to analyze the rela
ation of crystal-field levels,17–19

Hs f5 (
MM8

~ f M
† ĴMM8 f M8!~ca

†sabcb! ~1!

~whereM andM 8 are the indices of the crystal-field states,a

and b are the spin indices of the conduction electrons,Ĵ is
the total momentum operator, ands denotes a Pauli matrix!
is unsuitable for analyzing relaxation in a particular syste
since it is a purely formal object, which is not related in a
way to the features of the electronic structure of the meta
to the real character of the interaction of an impurity w
conduction electrons.

The specific features of the relaxation occurring as
consequence of the interaction of an impurity with condu
tion electrons can be taken into account in t
approaches22–25 based on the Schrieffer–Wolff and Cornut
Coqblin formalisms.26–28 A scheme permitting a first-
principles calculation of the relaxation of a paramagnetic
bel can be devised within the method proposed in Refs. 2
25. The Anderson Hamiltonian describing an impurity ion1!

with one f electron implanted in a metal is represented in
form of the sum

H5H01H1 . ~2!

Here the first term

H05(
uks

eukcuks
† cuks1(

M
EM f M

† f M

1
U

2 (
MM8

MÞM8

f M
† f M f M8

† f M8 ~3!

describes the subsystem of delocalized conduction elect
with consideration of the single-particle potential of thef
subshell~which is treated as a core state! and the subsystem
of the crystal field of thef subshell in the single-particle
potential created by the conduction electrons. The oper
cuks

† (cuks) describes the creation~annihilation! of a conduc-
tion electron with the energyeuk , whose state is characte
ized by the Bloch wave

uuks&5uuk~r !eikr us& ~4!

with the wave vectork, the band indexu, and the spin pro-
jection s. The operatorf M

† ( f M) describes the creation~an-
nihilation! of the crystal-field stateuM & with the energyEM .
The wave functionsuM & of the states of anf electron trans-
form in accordance with the irreducible representationYM of
the point group of the site of the rare-earth impurity io
G imp :
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uM &5 (
m52Jimp

Jimp

Lm,Jimp

M um&. ~5!

Here theum& are spherical harmonics, which describe t
projectionsm of the total angular momentum of the impuri
Jimp , andU is the on-site Coulomb repulsion constant.

For a microscopic calculation procedure we must rep
sent the many-particle interaction of the localized and de
calized subsystems in terms of the nomenclature for the b
states of conduction electrons, rather than in the approxi
tion of symmetrized partial waves.27,28 In this nomenclature
the interaction Hamiltonian

H15 (
uksM

Vuks
M f M

† cuks1H.c. ~6!

describes the mixing of the localized stateuM & with the
Bloch waveuuks&, and the hybridization parameter

Vuks
M 5^uksuVmix~r !uM & ~7!

can be calculated by a band-calculation procedure. In
case of an impurity state with a nearly integer valence~the
hybridization scaleuVuks

M u is considerably smaller than th
distance from theEM andEM1U levels to the Fermi energy
eF!, the Coqblin–Schrieffer transformation,26,27which elimi-
nates the first order with respect to the hybridization from
Hamiltonian, is applicable. As a result, the interaction of t
localized and delocalized subsystems is described by el
and inelastic scattering processes of the conduction elect
on localized crystal-field states of the impurity:

Hex5 (
MM8

(
uks

(
u8k8s8

Juks,u8k8s8
MM8 f M

† f M8cuks
† cu8k8s8 . ~8!

The interaction constants of the effective Hamiltonian
expressed in terms of quantities which can be determine
band-calculation methods:22–25

Juks,u8k8s8
MM8 5

Vuks
M8 ~Vu8k8s8

M
!*

2 F 1

euk2EM
1

1

eu8k82EM8
G .

~9!

Although the nomenclature of the band states of cond
tion electrons is adequate in cases where the problem
first-principles calculation of the parameters, the nomen
ture of symmetrized partial waves, which permits the use
symmetry arguments, is more convenient for qualitat
analysis. As a result of the standard transformation into
representationsuukM& of the partial waves27,28

cuks
† 5 (

kM9
^uksuukM9&cukM9

† ~10!

~herecukM9
† is the annihilation operator of a conduction ele

tron in the state centered on the impurity ion with the wa
numberk, the total angular momentumJimp , and the angular
dependence described by the irreducible representa
YM9!, the Hamiltonian of the exchange interaction can
represented in the form
-
-

nd
a-

e

e
e
tic
ns

e
by

c-
a
-
f

e
e

e

on
e

Hex5 (
MM8

f M
† f M8 (

M9M-
(
kk8

(
uu8

QukM9
u8k8M-~M ,M 8!

3cukM9
† cu8k8M- , ~11!

where

QukM9
u8k8M-~M ,M 8!5(

kk8
(
ss8

^uksuukM9&

3^uk8M-uuk8s8&Juks,u8k
s8

MM8 . ~12!

The only restriction which is imposed on the symmetry
the exchange interaction is the condition that the interac
~11! have the symmetry of the point group of the impuri
site.31 Generally speaking, the seed basis of crystal-fi
states$uM &% obtained with consideration of only the single
particle crystal potential is not diagonal when the pertur
tion ~11! is taken into account. In low-symmetry systems th
perturbation can mix seed states of the crystal-field bas32

Therefore, in the general case the relation

QukM9
u8k8M-~M ,M 8!5 J̃uk,u8k8

MM8 dM-MdM9M8 , ~13!

which reduces the exchange Hamiltonian to the stand
Coqblin–Schrieffer expression in the partial-wave repres
tation

Hex5 (
MM8

f M
† f M8(

kk8
(
uu8

J̃uk,u8k8
MM8 cukM8

† cu8k8M , ~14!

is an artefact of the simplifying assumption that the mixi
potential has spherical symmetry in the vicinity of the imp
rity. Nevertheless, even in the simplest approximation,
which the band indexu and the dependence on the wa
numberk are neglected~i.e., the band system of the condu
tion electrons is replaced by an effective density of state!,
the approximate Hamiltonian

Hex5 (
MM8

Ī MM8 f M
† f M8cM8

† cM , ~15!

which faithfully takes into account the principal features
the symmetry of the states of the delocalized electrons,
fers significantly from the formals f exchange Hamiltonian
~1!. When the relaxation width is calculated, thes f exchange
Hamiltonian~1! induces only transitions with a change in th
projection of the total angular momentum of the impurity
unity or without any change in its projection. The relativ
values of the matrix elements specifying the transitio
uM 8&→uM & do not depend on the features of the electro
structure and are determined only by the properties of
Pauli matrices and the structure of the wave functionsuM & of
the localized states. Conversely, all the quantities appea
in the Hamiltonian~11! can be calculated for a specific im
purity in a specific crystal, and the parameters of the appro
mate Hamiltonian~15! are obtained by averaging~11!. Thus,
in the general case the Hamiltonian~15! has nonzero matrix
elements for the transition between any local statesuM & and
uM 8&, and the relations between the different matrix e
ments Ī MM8 are determined by the localized states of bo
the crystal field of the impurity and the band structure of t
conduction electrons.

The calculation of the averaged parametersĪ MM8 can be
performed by the methods described in Refs. 22–25 an
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beyond the scope of the present work. In this paper we w
to analyze which features of the temperature dependenc
the relaxation widths of the crystal-field levels can be o
served for various relations between the symmetrized
change constantsĪ MM8 of the Hamiltonian~15!.

3. RELAXATION WIDTHS OF CRYSTAL-FIELD LEVELS AND
THEIR INFLUENCE ON THE WIDTHS OF THE PEAKS
FOR NEUTRON TRANSITIONS

The relaxation widthG i f associated with the transitio
u i &→u f & is determined by the natural widthsg i andg f of the
initial u i & and final u f & states. It should be noted that th
natural widths are determined not only by the mutual rel
ation processes of the initial and final statesu i &↔u f &, but
also by the processesu i &↔uM & (u f &↔uM &), which are asso-
ciated with the interaction of the initial~final! states with all
the other crystal-field states$uM &%. In this case the natura
width of the initial ~final! state is determined by the set
parameters$ Ī iM % ($ Ī f M%) of the Hamiltonian~15!.

Let us consider the process responsible for the inela
neutron transitionu i &→u f & from the initial stateu i & with the
energyEi to the final state with the energyEf5Ei1D f i . We
introduce the Matsubara Green’s functions describing
crystal-field states of the impurity centerj and the Green’s
functions of similar nature for Abrikosov pseudofermions33

G l52^Tt f j ,M~t! f j ,M
† ~0!&, ~16!

which have the following forms in the zeroth approximati
~i.e., in the absence of relaxation!:

G i
~0!5~ iv2Ei1m!21, ~17!

G f
~0!5~ iv2Ei2D f i1m!21 ~18!

~in the notation adoptedm is the chemical potential of the
pseudofermions, and in the final formulas it must be assum
that m→2`!.

The retarded Green’s functions, which specify the sp
tral response of the system, can be obtained using the
lytic continuation of the Matsubara Green’s functions fro
the upper semiaxis onto the entire complex plane ofv. Pas-
sage to the retarded Green’s functions in the zeroth-o
Green’s functions requires the replacementiv→v1 id. The
interactions of the crystal-field states with other subsyste
of elementary excitations of the crystal lead to renormali
tion of the crystal-field energy and to the appearance o
frequency-dependent imaginary part in the denominato
the Green’s function. The renormalizations of the cryst
field splittings can be included in the definition of th
Green’s functions~17! and ~18! and will not be considered
further. Let us next concentrate our attention on the temp
ture dependence of the relaxation width and take into
count that the retarded Green’s functions of the crystal-fi
levels can be written in the pole approximation in the for

G i
R~v!5@v2Ei1m1 ig i~v!#21, ~19!

G f
R~v!5@v2Ei2D f i1m1 ig f~v!#21. ~20!
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The on-site susceptibility, which determines the magne
neutron response of an impurity center, is expressed33 in
terms of the retarded Green’s function

x i f
R~t!52^Tt f i

†~t! f f~t! f f
†~0! f i~0!&,

whose analytic continuation onto real frequencies has
following form:

x i f
~0!R~V!52uQ i f u2E

2`

` de

2p
tanhS e

2TD @ Im G i
R~e!

3G f
R~e1V!1Im G f

R~e!G i
A~e2V!# ~21!

~hereQ i f is a matrix element, which depends on the wa
functions of the initial and final crystal-field states and det
mines the intensity of the neutron scattering peak!. Repre-
senting the resonant part of the susceptibilityx i f

R(V) at V
'D f i in the form

x i f
R~V!5

J0

V2D f i1 iG i f
, ~22!

whereJ0 is the residue at the respective pole!, we can obtain
the dependence ofG i f on the corresponding natural dam
ings of the pseudofermion Green’s functions. In the lim
g i , f!D f i or g f ,i!T the relation between the relaxation co
stantG i f extracted from the results of magnetic inelastic ne
tron scattering experiments and the natural damping of
pseudofermion Green’s functions acquires a simple form

G i f 5g i~v5Ei !1g f~v5Ef !. ~23!

Thus, in the cases which are most interesting for a r
able experimental analysis~where the width of the inelastic
transition is smaller than its energy! the problem of deter-
mining the temperature dependence of the widthG i f of a
transition reduces to a calculation of the natural widths of
initial and final states.

Let us consider the influence of conduction electrons
the natural width of crystal-field states in the Cornu
Coqblin model. For this purpose we use the effective Ham
tonian ~15! obtained in the preceding section as the inter
tion Hamiltonian. The natural widths are calculated
standard Feynman-diagram techniques at finite temperatu
This allows us to partially sum diagram series and to obt
a closed system of self-consistent equations. The depa
from perturbation theory is critical in the case of fairly stron
relaxation, since the natural widthgM(v5EM) of each
crystal-field stateuM & depends on the relaxation widths o
the entire system of crystal-field levels and must, therefo
be found self-consistently. To illustrate this point, we co
sider the interaction between the statesuM & and uM 8& with
the energiesEM and EM85EM1DM8M , respectively. The
simplest diagram which leads to relaxation of the cryst
field states is shown in Fig. 1a. The dashed line corresp
to the Green’s function of the conduction electron

G~r ,t!52^TtCj~r ,t!Cj
†~0,0!&, j5M ,M 8 ~24!

~we neglect the difference between the Green’s functions
the conduction electrons for differentM !. The diagrams cor-
responding to the vertex corrections can be classified in
following manner. The first are parquet diagrams, which
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FIG. 1. Feynman diagrams: a—simple diagra
describing the shift and damping of a crysta
field level ~dashed line—conduction electro
Green’s function, solid line–crystal-field excita
tions!; b—conduction electron polarization op
erator, which describes the electromagnetic
teraction between crystal-field excitations; c—
eigenenergy part of the crystal-field excitation
with consideration of the vertex renormaliza
tion; d—skeletal diagrams for vertex correc
tions.
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similar to the Abrikosov diagrams considered in the analy
of the Kondo effect in Ref. 33. Consideration of the cont
bution from the first nonvanishing term leads to the appe
ance of an interaction in the channelGM5M8
;(I MM8

2 /W)ln(W/DMM8) and to the correctionsdGMM8
(3,p)

;(I MM8
3 /W2)ln2(W/DMM8) ~W is the width of the conduction

electron band!. The second are nonparquet diagrams.34 Con-
sideration of the contribution from the first correction~Fig.
1d! leads to the additional contributiondGMM8

(3,np)

;(I MM8
3 /W2)ln(W/DMM8). We shall henceforth assum

I MM8 /W!1 and (I MM8 /W)ln(W/DMM8)!1 and neglect the
vertex corrections in the perturbative approach. Under th
circumstances

sM~ ivn!5@ Ī MM8#2T2(
e1e2

1

N 2 (
p1,p2

G~p1 ,e1!G~p2 ,e2!

3G M8~ÞM !~e11e22v! ~25!

~N is the total number of conduction electrons!. Performing
the analytic continuation of the expression~25! into the up-
per half-plane of the complex variablev according to the
usual rules,35–37 we obtain the following expressions for th
eigenenergy parts at real frequencies~the analogous equa
tions for thes f exchange Hamiltonian were obtained by M
leev in a treatment of the relaxation of the crystal field
cubic metals19!:

gM~v!52Im sM
R ~v!

5
1

p
@ Ī MM8#2E

2`

`

dx
1

N
(

p
@N~x!1n~x

1v!#Im G M8~ÞM !
R

~x1v!Im PMM8
R

~p,x!.

~26!

HereN(x)5(ex/T21)21, n(x)5(ex/T11)21, P(p,x) is the
polarization operator of the conduction electrons~Fig. 1b!,
whose imaginary part describes the two-particle density
states:

Im
1

N
(

p
PR~p,x!52

p

2
N0

2x, ~27!

whereN0 is the single-particle density of states of the co
duction electrons at the Fermi level, in terms of which t
dimensionless coupling constantsgMM8 are expressed:

gMM8
2

5
1

2
@ I MM8N0#2. ~28!
is

r-

se

f

-

In the integrals~26! we perform the replacementv1m

5ṽ corresponding to the displacement of the energy re
ence point. Allowingm to tend to2`, we neglect the Ferm
function on the right-hand side. This replacement has
simple physical meaning: the singularities of the functionsG

are determined by a far larger energy scale, and, theref
the terms corresponding to consideration of the poles of
pseudofermion functions should be omitted.38

According to~23!, the natural dampingg of the crystal-
field states at the frequencies corresponding to the ener
of the crystal-field levels must be calculated to determine
width of a neutron transition. Thus, in the case of the int
action of uM & and uM 8&, the quantitiesgM(v5EM) and
gM8(v5EM8) must be calculated. Determining the dampi
at the poles of the corresponding Green’s functions, we
tain the system of coupled equations

5
gM~v→EM !5pgMM8

2 E
2`

`

dxxN~x!P

3~x2DM8M ,gM8!,

gM8~v→EM1DM8M !5pgMM8
2 E

2`

`

dxxN~x!

3P~x1DM8M ,gM !,

~29!

whereP(x,g) is the spectral function normalized to unity:

P~x,g!5
1

p

g

x21g2 . ~30!

The expressions obtained are easily generalized to
case of an arbitrary set of constants in the Hamiltonian~15!

($ Ī MM8%; M ,M 851,...,2Jimp11! and an arbitrary system o
crystal-field states with the energiesEM . Proceeding pre-
cisely as in the derivation of~25!–~29!, we obtain the expres
sions for the frequency-dependent damping rates

gM
R ~v!52Im sM

R ~v!

5
1

p (
M851

2Jimp11

Ī MM8
2 E

2`

`

dx
1

N
(

p
@N~x!1n~x

1v!#Im G M8
R

~x1v!Im PMM8
R

~p,x!,

M51,...,2Jimp11. ~31!

Neglecting the Fermi function on the right-hand side of~31!,
we obtain the system of self-consistent equations
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gM~v!52 (
M851

2Jimp11

gMM8
2 E

2`

`

dxxN~x!Im G M8
R

~x1v!,

M51,...,2Jimp11. ~32!

Here the dimensionless coupling constants are expresse
terms of the parameters of the Hamiltonian~15!:

gMM8
2

5gM8M
2

5
1

2
@ Ī MM8N0

MM8#2, ~33!

whereN0
MM8 is the partial density of states of the conducti

electrons corresponding to theM→M 8 transition.
The system of equations for finding the natural rela

ation constants at the frequencies which determine
widths of the neutron transitions@see ~23!# can be repre-
sented in the explicit form2!

gM~v→EM !5E
2`

`

dxxN~x!

3 (
M851

2Jimp11

gMM8
2 P~x2DM8M ,gM8!,

M51,...,2Jimp11, ~34!

where

DM8M5EM82EM .

4. CLASSIFICATION OF THE TEMPERATURE DEPENDENCE
OF RELAXATION WIDTHS

The temperature dependence of the natural relaxa
widths ~and the widths of the neutron transitions determin
by them! depends on the relationship between the differ
constants in the Hamiltonian~15! and on the energies of th
crystal-field states. In this section we shall classify the ty
of temperature dependence for cases in which solution
the self-consistent system of equations~34! can be obtained
explicitly.

The simplest condition under which the system of eq
tions ~34! is decoupled is that the relaxation widths be sm
(gM→0). In this case, instead of the system of equatio
~32!, we obtain the following expressions for the non-se
consistent widths of the levelsgM

(0) :

gM
~0!5p (

M851

L E
2`

`

gMM8
2 xN~x!d~x2DMM8!. ~35!

The calculation of~35! permits separation of the contr
butions to the temperature dependence of the natural w
gM(T) into three types:

gM~T!5gM
~eq!~T!1gM

↑ ~T!1gM
↓ ~T!. ~36!

The first type is associated with the relaxation caused by
interaction of the crystal-field stateuM & with the levels
$uM 8&%, whose energiesEM8 equalEM :

gM
~eq!~T!5pT (

M8

EM85EM

gMM8
2 . ~37!
in

-
e

n
d
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s
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The contributions to the natural relaxation width of the lev
uM & from higher-lying (EM8.EM) and lower-lying (EM8
,EM) levels are given by the expressions

gM
↑ ~T!5p (

M8

EM8.EM

gMM8
2 DM8MN~DM8M ! ~38!

and

gM
↓ ~T!5p (

M8

EM8,EM

gMM8
2 DMM8@N~DMM8!11#, ~39!

respectively. In the limit of high temperatures,T
@max(EM), in accordance with the results in Refs. 17–2
the temperatures dependences of all three contribution
the relaxation are indistinguishable. All three contributio
obey a Korringa law, and the expression for the natural
laxation width takes the form

gM~T!5pT (
M851

2Jimp11

gMM8
2 . ~40!

At low temperatures the contributions of the higher-lyin
(EM8.EM) and lower-lying (EM8,EM) crystal-field levels
differ significantly. In the limitT→0, N(D) is exponentially
small,N(D)→exp(2D/T), and~38!–~39! take the form

gM
↑ ~T!5p (

M8

EM8.EM

gMM8
2 DM8M expS 2

DM8M

T D , ~41!

gM
↓ ~T!5p (

M8

EM8,EM

gMM8
2 DMM8 . ~42!

Thus, asT→0, the contributions to the natural relaxatio
width from the higher-lying levels tend exponentially
zero, and the contributions from the lower-lying levels
not depend on the temperature.

Since the shape of the line for the neutron transitionu i &
→u f & is measured directly in an experiment, it would b
interesting to analyze the temperature dependence of
width of the transitionG i→ f(T)5g i(T)1g f(T) ~see Fig. 2!
for different relationships between the constants of
Hamiltonian~1!. The diagonal interactionsI i i (I f f) lead to a
contribution ;pgii

2T (;pgf f
2 T), which is proportional to

the temperature. In the case of the relaxation of only
initial ~final! state as a result of interactions with the upp
~↑! levels, we have@G i→ f

↑ (T)# i ( f );N(D↑ i ( f )), which leads
to exponentially small damping,;exp(2D↑i(f ) /T), at low
temperatures. When only the initial~final! state relaxes as a
result of interactions with lower~↓! levels, we have
@G i→ f
↓ (T)# i ( f );D i ( f )↓@N(D i ( f )↓)11#, which can be de-

scribed by a constant;D i ( f )↓ at low temperatures. The
fourth special case is the one in which relaxation is media
by the interaction between the initial and final statesI i f . In
this caseG i→ f

i f (T);D f i@2N(D f i)11#5D f i cosh(Dfi/2T).
If the special cases just described are realized in

system being studied, they are easily distinguished from
another even by qualitative visual inspection. The situat
in which relaxation of the initial and final levels occurs on
because of the influence of the higher-lying levels is ea
distinguished ~the dotted line in Fig. 3!. In this case
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FIG. 2. General case of the classification of sources for the re
ation of the levels of the initial (i ) and final (f ) states of a tran-
sition ~thick vertical arrow! due to interactions with lower-lying
levels~I ↓ i andI ↓ f! and higher-lying levels~I ↑ i andI ↑ f! and due to
mutual coupling of the initial and final states~I i f , wavy lines!.
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G i→ f
↑ (T→0)→0. The mutual relaxation processes~the solid

line in Fig. 3! are also visually distinguishable from the va
ants in which the broadening is a consequence of the in
actions of the initial or final state with lower-lying levels~the
dashed line in Fig. 3!. The sharpness of the temperature d
pendence can serve as a criterion in these cases. In
former variant ~see Fig. 3! we have G i→ f

i f (T
52DMM8)/G i→ f

i f (T50)'4, and in the latter variant we hav
G i→ f
↓ (T52DMM8)/G i→ f

↓ (T50)'2.5.

5. CONSEQUENCES OF THE SELF-CONSISTENT
PROCEDURE

Beside the obvious quantitative influence of the se
consistent procedure manifested as renormalization of
numerical values of the natural relaxation constants, ther
a qualitative difference, which is expressed by the nonz
value of the relaxation width of the ground stateuG& at zero
temperature.

In the non-self-consistent procedure@see~41!# the width
gG

(0)(T→0)5pgGE
2 DEG exp(2DEG/T)→0 ~E is the higher-

lying level with the smallest value ofDEG!. The solution of
the system of self-consistent equations~29! ~for M5G,
M 85E! gives a nonzero width:gG

(sc)(T50)Þ0. Under the
conditionsT!gEG and T!DEG an explicit expression can
be obtained for the widthgG

(sc)(T50) of the level. Since at
low temperatures the non-self-consistent natural width of
crystal-field excited level isgE

(0)(T→0)5pgGE
2 DEG , the

weak corrections caused by the influence of the lower le
can be neglected. Then the self-consistent width of the lo
level is proportional to the square of the coupling consta

gG
~sc!'pgGE

2 gE
~0! lnS W

DGE
D ~43!

~in the calculation we cut off the integral~29! at the width of
the conduction electron bandW!. Substituting the expressio
for gE

(0) into ~43!, we obtain3!
r-

-
the

-
e
is

ro

e

el
er
:

gG
~sc!'p2gGE

4 DEG lnS W

DGE
D . ~44!

Since the corrections associated with the influence of
width of the lower level on the upper level contain an ad
tional small factor;gGE

2 , ~43! is the explicit solution of the
system of self-consistent equations to within terms;gGE

4

inclusively.
This result, which is unexpected from the standpoint

perturbation theory, can have a physical interpretation in
self-consistent theory. It should, first of all, be taken in
account thatuG& is the ground state of the system only wh
the interactions are disregarded. When the interaction w
the delocalized conduction electrons is included, the nom
clature of the localized states is no longer the true quant
mechanical basis, anduG& is not the true ground state.

A specific mechanism, which causes damping of
crystal-field stateuG& at zero temperature, can be pointe
out. The physical cause of the damping ofuG& is the nonzero
broadening of the excited stateuE& ~which also occurs in
perturbation theory!. Figure 4 presents the spectral functio
of uE& @P(x21,gE

(0)50.4)# and uG& @P(x,gG
(0)50)5d(x)#

in the perturbative approximation. The width ofuG& in the

FIG. 3. Reduced temperature dependences of the total inelastic scatt
width G i f due to relaxation processes with a higher-lying level~dotted line!
and a lower-lying level~dashed line! and mutual processes~I i f , solid line!.
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self-consistent approach is nonzero (gG
(sc)Þ0) because of the

allowed transitionsI GE induced by the width of the uppe
level uE& to the low-energy tail~the darkened area in Fig. 4!
of the Lorentzian contour of the upper level.

The result obtained, which attests to the nonzero con
bution to the natural relaxation width of the ground-sta
level, calls for caution in approaching methods for estimat
the characteristic temperatureT* in Kondo systems from the
full width at half maximum~FWHM! of the quasielastic neu
tron scattering peak at zero temperature. According to
generally accepted approach,39,40 the characteristic tempera
ture is determined from the relationT* 5Gqe

exp(T50)/2,
whereGqe

exp(T50) is the experimentally observed quasielas
scattering width at zero temperature. In this procedure i
assumed that the width of the peakGqe

exp(T50) is determined
only by the anomalous widthGK(T50), which is associated
with Kondo scattering processes on the lowest crystal-fi
state. However, the presence of the nonzero contribu
gG

(sc)(T50) from the normal relaxation processes calls
additional refinement in the case of strong relaxation bro
ening in systems with soft crystal fields. In this situatio
since the experimental widthGqe

exp(T50) is determined not
only by the anomalous widthGK(T50), but also by the
relaxation contributiongG

(sc)(T50), we have

Gqe
exp~T50!5GK~T50!12gG

~sc!~T50!, ~45!

and the standard relation should be rewritten in the form

T* 5
Gqe

exp~T50!22gG
~sc!~T50!

2
. ~46!

Thus, when there is strong relaxation in systems w
soft crystal fields, the determination of the characteristic te
perature is complicated by the nonzero relaxation contri
tion atT50. Nevertheless, the use of~46! and~44! provides
an estimate in this case too. To analyze the contribution fr
the normal relaxation processes of a specific compound
must determine the parameters~the crystal-field splitting
DMM8 and the dimensionless relaxation constantsgMM8!
which describe the relaxation in the particular material. T
set of techniques discussed in the next section can be u
in solving this problem.

FIG. 4. Illustration of the origin of the finite width of the crystal-fiel
ground stateuG& ~vertical arrow atx/DEG50! due to relaxation processe
~wavy lines with arrows! which couple theuG& level to the low-energy tail
~darkened region! of the spectral functionP(x21,gE

(0)Þ0) of the upperuE&
state.
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6. PARAMAGNETIC LABELING

Studying the electronic structure by measuring the rel
ation of a paramagnetic label requires the observance of
eral conditions, which must be satisfied by the compou
being studied Al$B% and the paramagnetic ion P. In this se
tion we describe the most desirable general conditions, un
which performing and interpreting paramagnetic labeling
periments are simplest, and we present some example
compounds which satisfy these necessary conditions.

One necessary condition which must be satisfied by
compound Al$B% being studied is the existence of a refe
ence compound Pl$B% containing the paramagnetic label P
The reference compound must be a structural analog of
compound being studied. In the first stage the propertie
the reference compound Pl$B% must be investigated. The
purpose of studying the reference compound is to obtain
formation on the crystal-field energies and wave functions
the paramagnetic label. This information can be obtained
analyzing experimental data from measurements of magn
neutron scattering~or Raman scattering! and the thermody-
namic properties~the magnetic susceptibility and specifi
heat!. For neutron scattering experiments, which require
fairly large quantity of the material, it should be noted tha
single-crystal sample is not required. This greatly facilita
implementation of the method, since magnetic susceptib
data suitable for reconstructing the crystal-field wave fu
tions can be obtained from measurements on tiny sin
crystal samples.

In the second stage, for which a polycrystalline sam
suffices, inelastic neutron scattering experiments are
formed on the compound (A12xPx) l$B%. The theoretical
analysis requires information on the crystal-field states of
paramagnetic label P in (A12xPx) l$B%. The experimental
neutron scattering data provide information on the energ
of the crystal-field levels of the paramagnetic label in t
compound being studied. Since it is impossible to study
crystal-field states of an ion of P in (A12xPx) l$B% by ther-
modynamic methods, additional information on the cryst
field wave functions is needed. This information can be o
tained by studying the trends in the variation of the cryst
field parameters of a family of compounds Rl$B% ~where
R5A,P,...!. There are presently several families of com
pounds for which such investigations have already been
formed: RAl3,

9–11 RNi5,
12–14, and RNi14–16~R is a rare-earth

ion!. In these families the main contribution to the formatio
of the crystal field is made by the ions in the local enviro
ment and the conduction electrons. Therefore, the struct
of the crystal-field wave functions of the paramagnetic la
P in the reference compound and in the compound be
studied are practically identical. Thus, the systems which
suitable for the proposed procedure are compounds in w
the nearest neighbors of each ion of A that is replaced by
paramagnetic label are ions from an unsubstituted form
unit of $B%. The best systems for application of the meth
are materials in which the crystal-field parameters are de
mined predominantly by the nearest neighbors.

The next necessary condition is a small concentration
the ions of the paramagnetic label,x!1, in (A12xPx) l$B%.
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This condition permits consideration of the crystal fields a
their relaxation as purely single-ion phenomena. A sm
value ofx is also necessary to be sure that doping with
paramagnetic label did not lead to significant alteration of
electronic structure of the compound being studied.

An important desirable restriction imposed on the pa
magnetic label is nondegeneracy of the crystal-field gro
state of the ion. Fulfillment of this condition significant
simplifies the interpretation of the experimental data, sin
the natural width of the crystal-field ground state is specifi
by a simple exchange Hamiltonian of the form~15!. A de-
generate ground stateuG& can lead to a Kondo effect, whic
results in the appearance of a specific temperature de
dence of the quasielastic neutron scattering width:Gqe(T)
52gG(T)5a1bAT.40 The presence of a specific temper
ture dependence of the natural width of the crystal-fi
ground state greatly complicates the interpretation, since
width GGM(T)5gG(T)1gM(T) of any inelastic transition
from the ground state contains this poorly studied com
nent. This circumstance greatly complicates the analy
since the theoretical treatment is simplest, if the tempera
dependence of the natural widthsgM(T) of the levels is de-
termined during the experiment. This dependence can be
tracted from the solution of the system of equations

GMM8~T!'gM~T!1gM8~T!, ~47!

whose features must be analyzed separately for each sp
case.

It is also noteworthy that one of the significant adva
tages of the method can be the possibility of regulating
selection rules by choosing different paramagnetic labels
can easily be seen that different symmetries for the crys
field states of the paramagnetic label will lead to differe
types of temperature dependence of the relaxation proc
Therefore, significant information can be obtained by anal
ing situations with different ions serving as the paramagn
label in relaxation spectroscopy.

7. RELAXATION OF THE PARAMAGNETIC LABEL Pr 31 IN
Pr0.03Ce0.97Al3 AND Pr0.03La0.97Al3

An example of a favorable combination of properties
the paramagnetic label and the compound being studie
the Pr31 ion in the hexagonal compounds RAl3 ~R is a lan-
thanide!. The crystal-field ground state~level 1 in Fig. 5! in
pure PrAl3 is the singletuG1&5u0&, and the only allowed
transition atT→0 is the uG1&→uG6& transition to theuG6&
5u61& state ~level 2 in Fig. 5!. The crystal fields of the
praseodymium ion in PrAl3 were studied in detail in Ref. 9
~see Fig. 5, in which the crystal-field levels are numbe
from 1 to 6 in order of increasing energy!. The singlet char-
acter of the ground state rules out both the Korringa rel
ation channel;uI 11u2 and the relaxation channel associat
with Kondo processes.

The relaxation of the paramagnetic label Pr31 was stud-
ied in Pr0.03Ce0.97Al3 and Pr0.03La0.97Al3. The crystal-field
splitting energy of the praseodymium ionD21 in both
Pr0.03Ce0.97Al3 and Pr0.03La0.97Al3 differs only slightly from
the crystal-field energyD21

R '4.5 meV in the reference com
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pound PrAl3. More specifically, in Pr0.03Ce0.97Al3 D21

'4.2 meV, and in Pr0.03La0.97Al3 D21'3.5 meV. Therefore,
in the simplest approximation the wave functions of t
crystal-field states of the paramagnetic label in the co
pounds studied can be assumed to be only slightly alte
from those in the reference. To describe the relaxation of
paramagnetic label in CeAl3, we selected a system of leve
which coincides with the crystal-field system in pure PrA3,
and to analyze the relaxation in LaAl3, we chose a system in
which all the splitting energies are reduced by a factor
3.2/4.5'0.711 ~see Fig. 5!. The thoroughly studied laws
governing the variation of the crystal field of the parama
netic label in Pr~La!Al3 ~Refs. 9 and 10! can be used for a
more exact calculation.

In the experiments in Ref. 11 measurements of the te
perature dependence of only the transition widthG12(T)
were performed~the FWHM of the Lorentzian, which corre
sponds to 2G in our notation, was measured in Ref. 11!,
while the natural relaxation widthsg1(T) and g2(T) were
not distinguished. Nevertheless, even in this case defi
conclusions regarding the difference between the relaxa
behavior of the paramagnetic label in CeAl3 and LaAl3 can
be drawn.

Since level 1 of the paramagnetic label in CeAl3 corre-
sponds to the ground state, the relaxation of level 1 in in
actions with lower-lying levels is impossible. Moreover,
visual comparison of the experimental data~Fig. 6! with the
calculated dependences shown in Figs. 2 and 3 allows u
state that the mutual relaxation processesI 12 are also absent
This conclusion can be drawn on the basis of a compari
of the widths at low and high temperatures: there is
temperature-dependent contribution atT,20 K. Therefore,
the only possible sources of natural relaxation broadening
levels 1 and 2 are the interactions of levels 1 and 2 w
higher-lying levels 3, 4, 5, and 6.

Although the only quantum numbers in whose nome

FIG. 5. Level scheme of the paramagnetic label Pr31 in CeAl3 ~on the left!
and LaAl3 ~on the right!. Wave functions of the levels:9 uG1&5u0&; uG6&
5u61&; uG4&5221/2u23&2221/2u23&; uG52&5au64&2A12a2u72&;
uG3&5221/2u3&1221/2u23&; uG51&5A12a2u64&1au72&. The neutron
transition studied in Ref. 9 is denoted by a vertical arrow. The postula
relaxation channels affecting the initial and final states are denoted by w
lines with arrows.
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clature correct arguments can be advanced are the indic
the irreducible representationsM5G1 ,G3 ,G4 ,G6 ,G51, and
G52, we shall demonstrate that the nomenclature of the p
jections m of the spherical representation@see ~5!# is also
useful for a qualitative analysis of relaxation.

Using the known wave functions of the crystal-fie
states~see the caption to Fig. 5!, we can rule out the transi
tions with dm561 because of the lack of theuG1&↔uG6&
mutual relaxation channel. The transitions withdm562
should lead to interactions ofuG1& with uG51& and uG52& and
of uG6& with uG4& and uG3&. However, if the occurrence o
transitions withdm562 is assumed, the relaxation ofuG6&
according to a Korringa law (}T) should be observed. The
~if it is assumed within a qualitative analysis that the int
action constants are identical for all the transitions withdm
562! the occurrence of relaxation according to a Korrin
law does not correspond to the weak dependence ofG12 on
the temperature in the range 0,T,20 K ~see the experi-
mental points in Fig. 6!. Therefore, the occurrence of trans
tions with dm562 should also be ruled out.

The next possible change in the spherical projecti
dm563, leads to interactions ofuG1& with uG4& and uG3&
and of uG6& with uG52& and uG51&. These interactions do no
lead to a contribution that is proportional toT to the widths
of the levels of the initial state (g1) and the final state (g2)
and do not contradict the weak temperature dependenc
G12 at T,20 K. The energy splittingsD42 and D62 corre-
sponding to the interactions of theuG6& level are smaller than
the corresponding splittingsD41 andD51 for the uG1& level.
Therefore, the contribution}exp(2D/T) to the transition
width G12 at T,100 K ~under the assumption of approx
mately equal values ofg for all dm563! from the natural
width g2(T) of the uG6& level can be considered the ma
contribution.

In the quantitative calculations presented below we to
into account only the interaction constantsI 24 and I 26. In
such an approximation the natural width of the crystal-fi
ground state isg1(T)50, and, therefore,G125g2(T). For
simplicity, the values ofI 24 and I 26 were set equal to one
another~see Fig. 5!. The conduction electron band was a

FIG. 6. Temperature dependence of the FWHM (2G in) of the inelastic
uG1&→uG6& transition in CeAl3 for the paramagnetic label Pr using the lev
scheme in Fig. 5. Dotted line—best fitting in the non-self-consistent
proximation for g5g(0)50.115. Solid line—best fitting in the self
consistent approximation forg5g(sc)50.111. Dashed line—non-self
consistent width forg5g(sc)50.111.
of

o-

-

,

of

k

proximated by a constant density of states with a width o
eV. The best fit for the experimental data in the non-se
consistent approximation is achieved with the value of
dimensionless coupling constantsg(0)5guG6&uG52&

(0) [guG6&uG51&
(0)

50.115. The self-consistent procedure gives the best res
when g(sc)5guG6&uG52&

(sc) [guG6&uG51&
(sc) 50.111. It is noteworthy

that the self-consistent value of the natural widthgG6
(T

50) obtained in the numerical calculation coincides
within a few percent with the results of the analytical fo
mula ~44!. Figure 6 presents a comparison of the theoreti
temperature dependences of the width of the 1→2 inelastic
neutron transition with experimental data. The theoreti
data are presented in different approximations, viz., the s
consistent and non-self-consistent approximations. To ill
trate the influence of the self-consistent approximation,
figure shows the temperature dependences of the
consistent and non-self-consistent widths~the solid and
dashed lines, respectively! calculated for the same dimen
sionless constantg(sc)50.111. It is seen from Fig. 6 that th
self-consistent width is greater than the non-self-consis
width for the same value of the interaction constant. T
effect of the self-consistent approximation,G12

(sc)/G12
(0)@1, is

most easily observed when the non-self-consistent widt
small. Unfortunately, the instrumental errors of the neutr
scattering method make it difficult to reliably isolate the e
fects of the self-consistent approximation. Therefore, the p
formance of Raman scattering experiments, whose exp
mental errors are considerably smaller, can prov
important additional information.

A qualitative analysis of the experimental temperatu
dependence of the relaxation in LaAl3 like the analysis per-
formed above for CeAl3 shows that the main relaxation cha
nel corresponds to a change in the spherical projectiondm
561. We note that this channel does not lead to Korrin
relaxation for the initial state 1 or the final state 2. In th
approximation relaxation of the initial state is possible on
in the mutualI 12 processes, and relaxation of the final state
possible both in the mutualI 12 processes and in theI 24 and
I 26 interactions with higher-lying levels~see the right-hand
part of Fig. 5!.

Since the non-self-consistent width is greater at all te
peratures, it is difficult to observe the effects of the se
consistent approximation. Therefore, we calculated the tr
sition width only in the non-self-consistent approximatio
~Fig. 7!. It is noteworthy that the results of the fitting wit
consideration of onlyI 12 are in better agreement with th
experimental data than are the results of the calculations
consideration of equal values for all the interaction consta
I 125I 24/A12a25I 26/a. These results are reminiscent of th
qualitative character of the estimates based on the nomen
ture of the spherical projections of the angular moment
m. A more rigorous approach would take into account,
example, that the contributions of them50↔m561 and
m561↔m562 transitions, which are both associate
with a change in the spherical projectiondm
561, can be significantly different in a lattice of fairly low
symmetry.

-
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8. CONCLUSIONS

The proposed self-consistent microscopic theory of
spectroscopy of the crystal-field levels of an impurity ion
a normal metal has several consequences, which can ha
significant influence on our understanding of the relaxat
processes in highly correlated systems.

Most importantly, the proposed approach, which
based on the Coqblin–Schrieffer–Cooper approach, ra
than the formals f exchange model, permits a first-principle
microscopic calculation of the temperature dependence
the relaxation width of crystal-field states. A comparison
such calculations with experimental data, as well as the
of the conventional methods of infrared, Raman, and pho
emission spectroscopy, makes it possible to test the faith
ness of the band calculations. Like the traditional metho
the proposed method permits the performance of a qu
qualitative visual analysis of the experimental results
tained. An additional significant feature of the propos
spectroscopic method is the possibility of regulating the
lection rules by choosing an appropriate paramagnetic la
which is impossible within the traditional methods.

The new soft spectroscopic method considered in
paper permits the investigation of the role of strong elect
correlations in shaping the relaxation processes of crys
field states. Since strong correlations can significantly a
the simple form of the effective Hamiltonian~15!, relaxation
features, whose characteristic temperatures are not relat
the crystal-field splitting energies, can be observed in
highly correlated system. The observation of such featu
provides weighty evidence in support of the important role
strong correlations in the compound being studied. Mo
over, the calculations performed in the self-consistent
proach indicate that in the case of strong relaxation broad
ing the upper crystal-field levels have a significant influen
on the experimentally measured characteristics, which
was previously assumed, are determined only by the pro
ties of the ground state of a highly correlated system.
example of the properties of the ground magnetic state
ions in highly correlated systems, which can be subject t
significant influence from crystal-field excited states, is
residual width of the magnetic quasielastic neutron scatte

FIG. 7. Temperature dependence of the FWHM (2G in) of the inelastic
uG1&→uG6& transition in LaAl3 for the paramagnetic label Pr in the non-se
consistent approximation using the level scheme in Fig. 5. Dashed lin
model with g125g24 /A12a25g26 /a50.094; solid line—model withg24

5g2650, g1250.108. The dotted line1 ~2! corresponds to the natural re
laxation widthgG1

(T) (gG6
(T)) of the levels.
e

e a
n

er

of
f
se
o-
l-

s,
k
-

d
-

el,

is
n
l-
r

to
a
s
f
-
-

n-
e
as
r-

n
of
a

e
g

peak at zero temperatureGG(T50). In the case of soft
crystal-field splittings, employment of the widely accept
phenomenological formulaT* 5GG(T50)/2 to determine
the characteristic temperatureT* of the Kondo system is in
need of additional analysis.

In conclusion, we wish to note that the proposed a
proach should be useful in the case of the analysis of syst
in which the crystal-field states transform into more comp
cated objects as a result of strong electron correlations. S
systems include concentrated Kondo systems, in which
rare-earth ions form a coherent lattice. In this case the lo
ized crystal-field ground-state levels transform into a coh
ent continuum,41 which has been termed a spin fluid. Whe
there are sufficiently soft crystal-field splittings, a spin flu
undergoes strong interactions with localized excited state42

which should produce features in the relaxation of the m
netic states. Since crystal-field states are nothing more
well defined levels, this relaxation cannot be studied in
neutron scattering experiment within the proposed meth
However, the relaxation in the magnetic subsystem sho
have a significant influence on the spectroscopic charact
tics of the system that can be detected using resonance m
ods, such as muon spin rotation~mSR! and nuclear magnetic
resonance. These processes can be studied experime
and calculated theoretically after the proposed formalism
appropriately generalized.
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36G. M. Éliashberg, Zh. E´ ksp. Teor. Fiz.42, 1658~1962! @Sov. Phys. JETP

15, 1151~1962!#.
37S. V. Maleev, Teor. Mat. Fiz.4, 86 ~1970!.
38S. V. Maleev, Zh. E´ ksp. Teor. Fiz.79, 1995~1980! @Sov. Phys. JETP52,
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Effective action for the Kondo lattice model. New approach
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Abstract

In the partition function of the Kondo lattice (KL), spin matrices are exactly replaced by bilinear combinations of
Fermi operators with the purely imaginary chemical potential j"!ip¹/2 (Popov representation). This new repres-
entation of spin operators allows one to introduce new Green’s Functions (GF) with Matsubara frequencies
u

n
"2p¹(n#1

4
) for S"1

2
. A simple temperature diagram technique is constructed with the path integral method. This

technique is standard and does not contain the complicated combinatoric rules characteristic of most of the known
variants of the diagram techniques for spin systems. The effective action for the almost antiferromagnetic KL problem is
derived. ( 1999 Elsevier Science B.V. All rights reserved.

Keywords: Heavy fermions; Kondo lattice; Antiferromagnetism

Many systems in statistical physics are described by
Hamiltonians containing spin matrices. Unfortunately,
the diagrammatic perturbation theory for spin systems
is complicated. Many variants are based on different
representations of the spin matrices by Bose or Fermi
operators. However, unphysical states always arise lead-
ing to constraints and complication of the Feynman
codex. In this paper, we construct a simple diagrammatic
technique (DT) for spin-1

2
that differs from the known

techniques in the form of the GF, but which is standard
in other respects, does not contain the complicated com-
binatoric rules characteristic of spin systems and permits
one to take into account the constraints rigorously.

It is indeed possible to replace exactly spin-1
2

matrices
by bilinear combinations of Fermi operators:

pz
&i
PSz

&i
"1

2
(aì

ai
!aì¬

ai¬
), p`

&i
PS`

&i
"aì

ai¬
,

p~
&i
PS~

&i
"aì¬

ai
, (1)

by the basic formula shown in Ref. [1]

Z"Sp e~bH"iNSp e~b(H&`(*p@2b)N), (2)

where H
&

is obtained from H by replacement (1), and
N"+ipaìpaip. There is no constraint but the purely
imaginary chemical potential of pseudofermions
j"!ip¹/2 leads to the mutual cancellation of the
unphysical states.

We analyze here the KL model which is a periodic
lattice of magnetic atoms modeled by f-orbitals in a me-
tallic background

H
KL

"!+
ij,p

(tij#k)WìpWjp#J
4&
+

i

WìppWip{S&i

#g+
i

(H#he*RiQ)Sz
&i
. (3)

We add a uniform (H) and a staggered (h) magnetic field
(g"k

B
g
L
, where k

B
is the Bohr magneton and g

L
is the

Landé factor). We consider a simple cubic lattice with the
notation Q"Q

AF
"(n,n,n). Using Popov representation

of spins, the ratio of the partition function of the interac-
ting system to the partition function of the corresponding
free system can be represented in the form of functional

0921-4526/99/$ — see front matter ( 1999 Elsevier Science B.V. All rights reserved.
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integrals as follows:

Z/Z
0
"

:Dl exp[S! *p
2b

b
:
0

dq+ia6 i,a(q)ai,a(q)]

:Dl exp[S
0
! *p

2b
b
:
0

dq+ia6 i,a(q)ai,a(q)]
, (4)

where the Euclidean action for the KL model is

S"

b

P
0

dqG+i

[WM i,pLqWi,p#a6 i,aLqai,a]!H
KL

(q)H. (5)

We note by Dl the integration over the anticommuting
Grassmann variables Wp,aa. By making the replacement
ai,a(q)Paai (q) exp((ip/2b)q), etc., which cancels the last
term in both exponents in numerator and denominator
of Eq. (4), we come to the following boundary conditions
for Grassmann fields: Wp(b)"!Wp(0),WM p(b)"!WM p(0),
a6 a(b)"!ia6 a(0),aa(b)"iaa(0). Going over to the mo-
mentum representation for all Grassmann variables and
assuming s

sk
"+

p
WM

p`k
pW

p
we obtain

S"+
k

WM
k,pG~1

0
W

k,p#+
p

a6 a
p
G~1

0
aa
p

#J
4&
+
k

s
4k

S
f~k

#1
2
hg+

k

a6 a
k
pzaa{

k`Q
, (6)

where the inverse GF of W-fields is G~1
0

"

i2p¹(n#1/2)!ek#k with dispersion ek"!+dti,i`de*
dk

and the inverse GF of aa Grassmann fields is
G~1

0a "i2p¹(m#1
4
)!1

2
gHpzaa with unusual Matsubara

frequencies. Note that Popov representation can be used
for spins S"1 also. In this case the frequencies are
shifted to u

m
"2p¹(m#1/3). Moreover the method has

been extended to arbitrary spin in Ref. [8].
We now confine ourselves to the limiting case

¹
N
&¹

K
&¹

0
[2] assuming the same energy scale for

antiferromagnetic (AF) and Kondo correlations. It
allows us to integrate over the fast W fields with energies
e&k<¹

0
using the bare electrons GF. We can also

integrate over the fast fields aa (u<¹
0
) taking into

account one-site Kondo renormalization of vertices
(J

4&
PJ

4&
) and self-energy parts (G

0
PG) [3]. As a result,

a simple DT is constructed. Contrary to other DT (see,
e.g. Refs. [4,5]) the constraint on the spin subsystem is
taken into account exactly. The new action which is
written in terms of slow W and aa variables contains an
additional AF Heisenberg interaction between spins due
to the indirect RKKY exchange [3,4]:

S
%&&
"+

k

WM 4-08
k,p G~1W4-08

k,p #+
k

J
4&

s4-08
sk

S
f~k

#S
H
. (7)

The last term in (7) can be analyzed separately and repre-
sented by auxiliary three-component Bose fields /c(k) [1]

S
H
" +

k1k2p
a6 a
k1
[G~1

0
d
k1,k2

#pzhd
k1`Q,k2

]aa
k2

!+
k

[1
2
/3
k
Sz
~k

#g*
k
S~
k
#g

k
S`
k
]#S

0
[/] (8)

with the following notation: S
0
"!1

4
+

k
(CRKKY

k
)~1/c

k
/c
~k

,
g*
k
"(g

k
)* and g

k
"(/1

k
!i/2

k
)/2. In the case ¹

K
;¹

N
only magnetic terms in the effective action are important.
We note by ¼ the matrix of the quadratic form in
aa variables. Integrating over all aa fields one can find the
nonpolynomial action of the AF Heisenberg model in
terms of Bose fields [6]:

S
H
"S

0
[/3,g]#log det¼[/3,g]. (9)

In the case considered, namely ¹
N
&¹

K
&¹

0
the pro-

cedure of derivation of the effective action is a little bit
complicated. Taking into account the second term in
Eq. (7) one has to replace /cP/c!2J

4&
sc4-08
s,k

in Eq. (9).
As a result, the effective action can be rewritten as
follows:

S
%&&
"+

k

WM 4-08
k,p G~1W4-08

k,p #S
0
[/3,g]

# log det¼[/c
k
!2J

4&
sc4-08
sk

]. (10)

Eqs. (7)—(10) are the key result of the present work. This
effective action describes the low-energy properties of the
KL model. The last term in Eq. (9) takes into account the
mutual influence of conduction electrons and spins. Mag-
netic instabilities of both kind of electrons could then be
easily analyzed.

Let us concentrate on the former problem (8). The
spin subsystem undergoes a phase transition with
¹
#
"¹

0
corresponding to the appearance of a non-

zero staggered magnetization o as hP0. This problem
is related to the Bose-condensation of the field
/3
k
"/I 3

k
#o(bN)1@2dk,Q

du and in one-loop approxima-
tion results in the usual mean-field equation for AF order
parameter [6] in the presence of Kondo-scattering
processes [3]. Note that a magnetic transition in the
localized system may induce a magnetic transition in the
itinerant system.

Taking into account the compensation equation
[3,6] and calculating the log det¼[/3,g] approximately
by the method of stationary phase the following expres-
sion for the spin subsystem effective action can be
obtained:

S%&&
H
"+

k

g*
k
s~1
5

g
k
#+

k

/3*
k

s~1l /3
~k

!1/4 +
k

(CRKKYk )~1/c
k
/c
~k

, (11)

where s
5
and sl are transverse and longitudinal suscep-

tibilities, respectively. As usual, the transverse suscepti-
bility describes the AF magnons excitations. At the
temperature range ¹'¹

0
when the condensate solution

is absent the effective action has the same form except
that the transverse and longitudinal susceptibilities de-
scribe the paramagnon excitations which can result in
some untrivial effects in heavy-fermion compounds [7].
These excitations introduce a new energy scale corre-
sponding to the critical behavior.
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Summarizing, we constructed a simple diagrammatic
technique which allows one to analyze the effective
action of the KL model when the energy scales for AF
and Kondo correlations are the same. This effective ac-
tion describes the slow electron subsystem interacting
with the spin fluctuations of either magnon or paramag-
non type.

The support of the grant RFBR 98-02-16730 (MNK) is
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Ginzburg-Landau functional for nearly antiferromagnetic perfect and disordered Kondo lattices
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Interplay between Kondo effect and antiferromagnetic and spin glass ordering in perfect and disordered
bipartite Kondo lattices is considered. The Ginzburg-Landau equation is derived from the microscopic effective
action written in three mode representation~Kondo screening, antiferromagnetic correlations, and spin liquid
correlations!. The problem of the local constraint is resolved by means of the Popov-Fedotov representation of
the localized spin operators. It is shown that the Kondo screening enhances the tendency to a spin-liquid
crossover and partially suppresses antiferromagnetic ordering in perfect Kondo lattices and spin glass ordering
in doped Kondo lattices. The modified Doniach diagram is constructed, and possibilities of going beyond the
mean-field approximation are discussed.
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I. INTRODUCTION

The Kondo lattice~KL ! systems are famous for their un
usual electronic and magnetic properties, including giant
fective masses observed in thermodynamic and de Haas
Alphen measurements,1 unconventional superconductivity2

and a fascinating variety of magnetic properties.3 The great
majority of the metallic KL systems demonstrates antifer
magnetic~AFM! correlations and all types of the AFM orde
may be found in these compounds. There are localized s
in U2Zn17,UCd11,CeIn3,3 quadrupole ordering in CeB6,4 in-
terplay between localized and itinerant excitations in sev
U-and Ce-based compounds,5 puzzling magnetic order o
tiny moments in UPt3 ,URu2Si2 ,UNi2Al3,6 quantum phase
transition in CeCu62xAux ,7 fluctuation-type dynamical or
dering in U(Pt12xPdx)3,8 short-range magnetic correlation
in the astonishingly wide temperature interval of critical b
havior in CeCu6 and CeRu2Si2.9 This list is by no means
exhaustive. The superconducting state in most cases coe
with antiferromagnetism, and, apparently, Cooper pairing
self is mediated by magnetic fluctuations.2,10 The dominant
contribution to the low-temperature thermodynamics is a
given by spin degrees of freedom.11,12

On the other hand, all low-temperature characteristics
KL’s are determined by a Kondo temperatureTK . These
characteristics are Fermi-like, but the energy scale of
‘‘fermion’’ spectrum is renormalized by a factorTK /«F rela-
tive to a conventional electron Fermi liquid.3 Apparently, the
AFM correlations due to Ruderman-Kittel-Kasuya-Yosi
~RKKY ! interactionI partially suppressed by intrasite Kond
effect should be treated as a background for all unusual p
erties of Kondo lattices. The main theoretical challenge is
find a scenario of crossover from a high-temperature reg
of weak interaction~scattering! between localized spins an
conduction-electron Fermi liquid to a low-temperatu
strong-coupling regime where the spins lose their locali
nature and are confined into an unconventional quantum
uid involving spin degrees of freedom of conduction ele
trons.

In the phase diagram of the disordered KL more exo
possibilities such as non-Fermi-liquid regimes arise, wh
were observed, for example, near theT50 quantum critical
0163-1829/2002/65~18!/184410~14!/$20.00 65 1844
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point in Y1-xUxPd3 ~see, e.g., Ref. 13!. In this family of
ternary alloys the spin-glass~SG! behavior was discovered in
a U concentration range 0.3,x,0.5 with a freezing tem-
peratureTf growing monotonically withx ~see Ref. 14!.
Among other U-based heavy fermion compounds with
behavior, URh2Ge2,15 U2Rh3Si5,16 and U2PdSi3 ~Ref. 17!
should be mentioned. The effects of ‘‘Kondo disorder’’ we
reported for UCu52xPdx in Ref. 18. Later on the competition
between RKKY and Kondo exchange for disordered Ce
loys was discovered experimentally~see Refs. 19–21!. The
magnetic phase diagram of CeNi1-xCux exhibits change of
magnetic ordering from AFM to ferromagnetic~FM! at x
50.8, whereas for 0.2,x,0.8 the SG state appears only
high temperatures above the FM order. Apparently,
Kondo interaction could be considered as the mechan
leading to the reduction of magnetic moments because
creasing Ni contents effectively reduces the strength of
indirect exchange interaction, and then, a larger tempera
stability range of the SG phase appears~see Refs. 19 and 20!.

The competition between the one-site Kondo-type cor
lations and the indirect intersite exchange is visualized
Doniach’s diagram where possible phase transition
crossover energies are plotted as functions of a ‘‘bare’’ c
pling parametera5J/«F characterizing the exchange inte
action between the spin and electron subsystems in KL22

Only Kondo screening and RKKY coupling were competi
in the original Doniach diagram. Later on it was noticed th
the trend to spin liquid~SL! ordering is the third type of
correlation which modifies essentially the magnetic ph
diagram of KL’s in a critical regionTK;I of the Doniach
diagram.23–25

In this paper we present a high-temperature mean-fi
description of transitions from a paramagnetic state to co
lated spin states in KL’s, which does not violate the loc
constraint for the spin-fermion operators. We use the Pop
Fedotov representation of spin operators26 to construct the
effective action for KL’s. In this representation the local co
straint is rigorously fulfilled. We consider the mutual influ
ence of various order parameters~Kondo, AFM, SL, and SG
correlation functions! and derive a Ginzburg-Landau func
tional ~Sec. II!. On the basis of this functional we constru
generalized Doniach’s diagrams that take into account all
©2002 The American Physical Society10-1
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interplays. The Doniach diagram for a perfect KL is pr
sented in Sec. III and the influence of Kondo screening
the SG diagram for a disordered KL is considered in Sec.

All existing theories appeal to mean-field approximatio
that violate the local gauge invariance both in the Kondo a
SL channels.27 As a result, fictitious second-order phase tra
sitions from a free spin~paramagnetic! state to a confined
spin ~Kondo singlet or resonating valence bond SL! state
arise in spite of the fact that neither symmetry is violated
these transformations. A different approach allows us to
rid of the assumption of a Kondo-type ‘‘condensate’’ with
the framework of a mean-field theory. To eliminate the fic
tious phase transition to a SL state one should refrain fro
mean-field approach to the SL mode. We offer a scenari
a continuous crossover from a paramagnetic state of lo
ized spins to the SL state, where the interplay between c
cal AFM fluctuations and Kondo screening clouds in KL
results in ‘‘Fermionization’’ of spin excitations at low tem
peratures~Sec. V!. In Sec. VI the interrelations between th
theory and real heavy fermion systems is briefly discuss

II. DERIVATION OF EFFECTIVE ACTION

The Hamiltonian of the KL model is given by

H5(
ks

«kcks
† cks1J(

j
S Sjsj1

1

4
Njnj D . ~1!

Here the local electron and spin-density operators for c
duction electrons at sitej are defined as

nj5(
j s

cj s
† cj s , sj5(

s

1

2
cj s

† t̂ss8cj s8 , ~2!

wheret̂ are the Pauli matrices andcj s5(kcks exp(ikj). The
SG freezing is possible if an additional quenched rando
ness of the intersite exchangeI j l between the localized spin
arises. This disorder is described by

H85(
j l

I j l ~SjSl !. ~3!

We start with a perfect Kondo lattice. The spin corre
tions in KL’s are characterized by two energy scales, i.eI
; J2/«F , andDK;«F exp(2«F /J) ~the intersite indirect ex-
change of the Ruderman-Kittel-Kasuya-Yosida~RKKY ! type
and the Kondo binding energy, respectively!. At high enough
temperatures the localized spins are weakly coupled with
electron Fermi sea having the Fermi energy«F , so that the
magnetic response of a rare-earth sublattice of a KL is
paramagnetic Curie-Weiss type. With decreasing tempera
either a crossover to a strong-coupling Kondo singlet reg
occurs atT;DK or the phase transition to an AFM sta
occurs atT5TN;zI wherez is a coordination number in th
KL. If TN'DK the interference between two trends results
the decrease of both characteristic temperatures or in
pressing one of them. As was noticed in Refs. 24 and 28
this case the SL correlations with characteristic energiesDs
;I may overcome the AFM correlations, and the spin s
system of the KL can condense in a SL state yet in a reg
of weak Kondo coupling.
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To describe all three modes in a unified way one sho
derive a free-energy functionalF(T) in a region of T
.(TN ,DK ,Ds). First, we integrate out the highest energi
;«F . Here and below we use the dimensionless coupl
constantsJ→J/«F , I→I /«F , etc. Since we are still in a
weak-coupling limit of Kondo-type scattering, we may r
strict ourselves to the standard high-temperature renorm
ization of the one site couplingJ→ J̃(T)51/ln(T/DK) and the
second-order equation of perturbation theory inJ for RKKY
interaction. As a result, one arrives at an effective Ham
tonian

H̃5(
ks

«kcks
† cks1 J̃(

j
sjSi2I(

j l
SjSl

1gh(
i

~21! jSj
z . ~4!

Here all energies are measured in«F51 units, and an
infinitesimal staggered magnetic field is introduced that
spects the symmetry of the magnetic bipartite lattice in
AFM case («F is restored in further calculations wherever
is necessary!.

To calculate the spin part of the free energyFs(T)
52TlnZs we represent the partition functionZ in terms of
a path integral. The spin subsystem is described by mean
the Popov-Fedotov trick26

Zs5Tr e2bH5 i NTr e2b[H1 ipNf /(2b)] . ~5!

Hereb5T21, N is the number of unit cells,Nf5( jNj
f , and

the spinS51/2 operators are represented by bilinear com
nations of fermion operators

Sj
z5~ f j↑

† f j↑2 f j↓
† f j↓!/2, Sj

15 f j↑
† f j↓ , Sj

25 f j↓
† f j↑ . ~6!

These operators obey the constraint

Nj
f5(

s
f j s

† f j s51. ~7!

In accordance with Ref. 26, the Lagrange term with a fix
imaginary chemical potential2 ipT/2 is added to the Hamil-
tonian ~1!. We use the path-integral representation for t
partition function,

Z
Z05

E Dc̄DcD f̄D f expA

E Dc̄DcD f̄D f expA0

. ~8!

Then the Euclidean action for the KL is given by

A5A02E
0

b

dtHint~t!,

A05A0@c, f #5E
0

b

dt(
j s

$c̄ j s~t!@]t2«~2 i¹!1m#cj s~t!

1 f̄ j s~t!~]t2 ipT/2! f j s~t!%. ~9!
0-2



r
en
-

th

e

ec

ble

M

a

-

of

iq-

a.

uc-
nt
-
dle-

the
do

The
ola-
e
er-

g
the

on

e

GINZBURG-LANDAU FUNCTIONAL FOR NEARLY . . . PHYSICAL REVIEW B65 184410
Following the Popov-Fedotov procedure, the imagina
chemical potential is included in discrete Matsubara frequ
cies for semifermion operatorsf j s . As a result the Matsub
ara frequencies are determined asvm52pT(m11/4) for
spin semifermions anden52pT(n11/2) for conduction
electrons. In terms of the temperature Green’s function
Euclidian action has the form

A5A01Aint5(
ks

c̄ksG0
21~k!cks

1(
j s

f̄ j s~vn!D0s
21~vn! f j s~vn!

1
J̃

2 (
j ss8

(
«m ,vn

c̄j s~«1! f j s~v2! f̄ j ,s8~v1!cj ,s8~«2!

3d«12«2 ,v12v2
1I (

j l ,sg
(
vn

f̄ j s~v1!

3 t̂ss8 f j ,s8~v2! f̄ l ,g~v3!t̂gg8 f lg8~v4!dv12v2 ,v32v4
.

~10!

Here the Green’s functions~GF’s! for bare quasiparticles ar

G0~k,i en!5
1

i en2«k1m
,D0s

n ~ ivm!5
1

ivm2sghn/2
~11!

(n is the index of magnetic sublattice that defines the dir
tion of the staggered magnetic field!.

The first interaction term in this equation is responsi
for low-energyKondo correlations, and we will treat it in
conventional manner.29 In the RKKY term two modes should
be considered, namely the local mode of AF
fluctuations30,31and the nonlocal spin liquid correlations.31,32

For these modes we adopt the Ne´el-type antiferromagnetism
and the resonating valence bond~RVB! type spin liquid state,
respectively. In accordance with the general path-integral
proach to KL’s, we first integrate over fast~electron! degrees
of freedom. Then in thes f-exchange contribution to the ac
tion ~10! we are left with the auxiliary fieldf with a statis-
d
rd
de
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tics complementary to that of semifermions.33 The spin cor-
relations in the intersite RKKY term are treated in terms
vector Bose fieldsY ~AFM mode! and a scalar fieldW ~spin
liquid RVB mode!. As a result,Aint is represented by the
following expression:

Aint52
2

J̃
Trufu22Tr

1

I q
YqYÀq2Tr

1

I q12q2

WPq1
WPq2

2Tr f̄ j sf jG0~r !f̄ l f ls . ~12!

When making a Fourier transformation for nonlocal spin l
uid correlations~the third term on the right hand side! we
introduced the coordinatesR5(Rj1Rl)/2 and r5Rj2Rl
for the RVB field, andP,q are the corresponding moment
Below we assumeP50 and omit it in notations for the SL
mode,W0q[Wq .

A consequent mean-field approach demands the introd
tion of three ‘‘condensates,’’ i.e., three time-independe
c-fields for Kondo coupling, AFM coupling, and SL cou
pling, respectively, that arise as a consequence of a sad
point approximation for all three modes. For example,
mean-field description of the interplay between the Kon
and RVB couplings was presented in Refs. 23 and 25.
undesirable consequence of this approximation is the vi
tion of the electromagnetic U~1! gauge invariance, when th
electrical charge is ascribed to an initially neutral spin f
mion field f ~see, e.g., Ref. 12!. According to a scenario
offered in Refs.24 and 32, there is no necessity of introducin
the mean-field saddle point for Kondo coupling because
transition to a correlated spin state occurs atT.TK . In this
case the one site Kondo correlations suppress the Ne´el phase
transition~reduceTN

0 →TN! in favor of the spin liquid state
with a characteristic crossover temperatureT* .TN . There-
fore we refrain from using the saddle-point approximati
for the fieldf but still use it for the fieldsY andW.

To condense the equation for the actionA we introduce a
spinor representation for semifermions

F̄p5~ f̄ p↑ f̄ p↓ f̄ p1Q↑ f̄ p1Q↓!,

and the following definition of the Fourier transform of th
inverse semi-fermionic Green’s function
Dm
21~Wp ,YQ!5S ivm2Wp 0 YQ

z YQ
1

0 ivm2Wp YQ
2 2YQ

z

YQ
z YQ

1 ivm2Wp1Q 0

YQ
2 2YQ

z 0 ivm2Wp1Q

D . ~13!
the
The same function in a lattice representation is presente
Appendix A. This operator arises as a result of the Hubba
Stratonovich transformation decoupling the magnetic mo
Y and the spin-liquid modeW. Then the effective actionAs

acquires the form
in
-
s

As5Tr F̄Dm
21F1Aint . ~14!

Now we integrate over semi-Fermionic fields and obtain
effective action for a KL model,
0-3
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As5Tr ln@Dm
21~Y,W!1f jG0~r !f̄ l #2

2

J̃
Trufu2

2Tr
1

I q
YqY2q2Tr

1

I q12q2

Wq1
Wq2

. ~15!

Here the argumentufu2 appears in the Green’s functionDm
as a result of integration of the last term in Eq.~12! over the
semi-Fermionic fields.

In a mean-field approximation for two independent mod
~neglecting renormalization due to Kondo scattering! Eq.
~15! results in a free energy with two local minima reflectin
two possible instabilities of the high-temperature param
netic state relative to the Ne´el and SL states. To describ
these instabilities one should pick out the classic part of
Néel field,

Y5~bN!1/2
I q

2
Ndq,Qdv,0ez1Ỹq , ~16!

and use the eikonal approximation for the SL field,

WR,r5ID~r !exp~ iu!. ~17!

Here N5^YQ
z & is the staggered magnetization,Ỹq are the

fluctuations around the mean-field magnetization,Q is the
AFM vector for a given bipartite lattice,ez is the unit vector
along the magnetization axis,D(r ) is the modulus of RVB
field, andu5@r•A(R)# is the phase of this field.

It is known for Heisenberg lattices dimensionsd.1 that
TN is higher than the temperatureTsl of the crossover to the
SL state, so that the ordered magnetic phase is the N
phase. Due to Kondo fluctuations that screen dynamic
local magnetic correlations and slightly enhance the inter
semi-Fermionic correlations, the balance between two mo
is shifted towards the spin liquid phase in a critical region
Doniach’s diagram,TK;I . To show this we include in the
free energy the corresponding corrections induced by the
term in Eq.~12!. As was mentioned above we refrain fro
using the mean-field approach to the Kondo field, so that
interplay between the Kondo mode and two other mode
taken into account by including the Ne´el mean-field correc-
tions to the semi-Fermionic Green’s function. Then inste
of Eq. ~13! one has the following equation forD21:

Dm
21~N,D!

5S ivm2DI q 0 NI Q/2 0

0 ivm2DI q 0 2NI Q/2

NI Q/2 0 ivm2DI q 0

0 2NI Q/2 0 ivm2DI q

D .

~18!
The next steps, i.e., calculation of fluctuation corrections
the stationary point mean-field solutions, can be perform
by introducing the auxiliary self-energies,

M ~Ỹ,u!5Dm
21~Y,W!2Dm

21~N,D!

Kf~vn1
,vn2

!52T(
V

fj~vn1
2V!G0~r ,V!f̄ l~vn2

2V!. ~19!
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Then the effective action is approximated by the polynom
expansion

Tr ln@Dm
21~Y,W!1Kf#5Tr ln Dm

21~N,D!

1Tr(
n51

`
~21!n11

n
$Dm~N,D!

3@M ~Ỹ,u!1Kf#%n ~20!

~the Fourier transform of the diagonal part of the Gree
function Kf is calculated in Appendix A!.

Neglecting all fluctuations, i.e., retaining only the fir
term in the right hand side of Eq.~20! together with qua-
dratic terms for the AFM and SL modes~15!, one obtains the
following expression for the free energy per lattice cell:

bF~N,D!5
bzuI uN 2

4
2 ln@2 cosh~bzIN/2!#

1
bzuI uD2

2
2(

q
ln@2 cosh~bI qD!# ~21!

(I Q52I ). The standard self-consistent mean-field equati
for the order parameters are obtained from the condition
minima of the free energy. These are

N5tanhS I QN
2T D ~22!

for the Néel parameter and

D52(
q

n~q!tanhS I qD

T D ~23!

for the real part of the RVB order parameter. Heren(q)
5I q /I 0. The latter equation was first derived in Ref. 34.

Then making the high-temperature expansion of Eq.~21!,
one obtains a Ginzburg-Landau~GL! equation in the ap-
proximation of two independent modes:

bF~N,D!5
buI uzN 2

4
tN1cNN 41

buI uzD2

2
tsl1cslD

4 ~24!

where tN512TN /T and tsl512Tsl /T. The temperatures
of two magnetic instabilities are determined as the tempe
tures of sign inversion in the coefficients in the quadra
terms of the GL expansionTN5zuI u/2 and Tsl5uI u. The
fourth-order GL coefficientscN andcsl are positive and de-
pend only on temperature. Up to this point the theory
formulated for arbitrary dimensiond. In fact, the dimension-
ality enters the RKKY coupling parameter~see below! and
determines the number of nearest neighborsz. We consider
zI as a universal parameter in further calculations.

III. DONIACH’S DIAGRAM REVISITED

To describe the contribution of Kondo scattering to t
magnetic part of the Doniach’s diagram one should integr
A over the auxiliary fieldf and thus find the Kondo correc
tions to both the Ne´el and RVB instability points. One shoul
0-4
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consider two cases:~i! TN.Tsl ~Kondo corrections scree
AFM magnetic moments!, and ~ii ! Tsl.TN ~Kondo correc-
tions enhance nonlocal RVB correlations!.

~i! Kondo screening of AFM order. In this case one take
D50 in the Green’s function~18!. Then adding the last term
of Eq. ~12! to the effective action and integrating over th
semi-Fermionic fields yields the correction to the effect
action in a form of polarization operators given by the fi
diagram in Fig. 1~a!.

Here the external wavy lines stand for the ‘‘sem
Bosonic’’ field f describing Kondo correlations~see Ref.
33!. These semi-Bosonic fields are still bosons from the po
of view of the permutation relations, but unlike true Boson
fields they do not satisfy symmetric boundary conditio
and cannot condense in a state with zero frequency and
mentum. So the Popov-Fedotov formalism gives an adeq
description of the fact that there is no broken symmetry c
responding to the Kondo temperature.35 The polarization
loop is formed by the conduction electron propagatorG0
~solid line! and local semi-Fermionic Green’s functionDm
given by Eq.~18! ~see Appendix A for the explicit form o
these Green’s functions!. As a result the modified effective
action is

Af52(
q,n

F1

J̃
2dP~N!G ufn~q!u2. ~25!

The logarithmic renormalization of the coupling constant
already taken into account inJ̃. Therefore the dimensionles
integral dP includes only contributions due to a nonze
magnetic molecular field,36

dP~N!5Fp2 S 1

cosh~bN!
21D1OS N 2

TeF
D G . ~26!

~see Appendix B for detailed calculations!. This correlation
correction should be incorporated in the equation for the f
energy, so that

bF~N!5bF~N,0!1Tr lnF1

J̃
2dP~N!G . ~27!

FIG. 1. Diagrams for the fluctuation contribution to the effecti
action responsible for Kondo screening corrections to magnetic~a!
and spin liquid~b! correlations.
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Then differentiation of Eq.~27! with respect to the Ne´el
order parameterN gives the following self-consistent equa
tion in the vicinity of the renormalized transition point,

N5tanhS I QN
2T D F12

aN

ln~T/TK!

cosh2~bI QN/2!

cosh2~bI QN!
G ~28!

instead of Eq.~22!. Here the Kondo temperatureTK is de-
fined as the temperature where the coefficient in front
ufn50u2 in Eq. ~25!, i.e., the functionJ̃212dP(N), turns to
zero. It is seen that the screening corrections near the N´el
transition point are negative,dP(N→0)52aN(bN)2,0,
so that Kondo screening effectively increases the magn
free energy, and eventually the logarithmic local-field corre
tions reducethe Néel temperature. The numerical solution
Eq. ~28! is shown by the circles in Fig. 2. The top ins
illustrates the reduction ofTN in comparison with the bare
mean-field Ne´el temperatureTN

0 5z«Fa2/2, wherea5J/«F

is the dimensionless coupling constant for the Doniach’s d
gram.

~ii ! Kondo enhancement of SL transition. Now we assume
N50 in Eq. ~21! and subsequent equations. Following t
same lines as in the preceding subsection, one obtains
modified effective action

Af52(
q,n

F1

J̃
2dP~ I qD!G ufn~q!u2 ~29!

instead of Eq.~25!, and the polarization integral with the us
of the diagram~b! from Fig. 1 is given by

dP~ I qD!5(
k

F 1

coshb~ I kD!
211I kD tanh~bI kD!G

3
1

jk1q
2 1~p/2b!2

, ~30!

FIG. 2. Doniach’s diagram with modifications due to Kond
screening~see text for explanation!.
0-5
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instead of Eq.~26! ~see Appendix B!. Herejp5«p2«F is the
dispersion law for conduction electrons near the Fermi s
face. Inserting the corresponding corrections to the free
ergy,

bF~D!5bF~0,D!1Tr lnF1

J̃
2dP~ I qD!G . ~31!

one obtains the corrected self-consistent equation forD.
When deriving this equation, the spinon dispersion can
neglected sinceD→0 in a critical point. Then one has

D52(
q

n~q!F tanhS I ~q!D

T D1asl

I qD

T ln~T/TK!G . ~32!

Here asl;1 is a numerical coefficient. It is seen from E
~32! that unlike the case of local magnetic order, Kondo sc
tering favors transition to the SL state, because this scatte
means in fact involvement of itinerant electron spin degr
of freedom into spinon dynamics. Mathematically, enhan
ment arises becausedP(I qD→0)5asl(bI qD)2.0, so that
Kondo ‘‘antiscreening’’ effectively decreases the magne
free energy. The results of the numerical solution of E
~31! and ~32! are represented by circles in Fig. 2.

Here filled circles correspond to the region where
AFM order overcomes the SL phase, and the light circ
show unphysical ‘‘suppressed’’ AFM solutions obtained b
yond the region of validity of the mean-field equation~28!.
Two other characteristic temperatures, renormalizedTK and
Tsl , are shown by dashed and solid lines, respectively.
effects of suppression ofTN ~thin and thick solid lines for
bare and renormalized temperatures! andTK ~thin and thick
dotted lines! are illustrated by the upper and lower inse
respectively. As is seen from the modified Doniach’s d
gram, the interplay between three modes becomes signifi
in a critical region where the exchange coupling constan
close to the pointac50.13 whereI 5DK in the conventional
Doniach’s diagram. If the Kondo screening is not taken in
account, thenTsl

(0)(a),TN
(0)(a) ~thin solid and dotted lines

in the lower inset!. The Kondo screening changes this pictu
radically, and as a result, a wide enough interval of the
rametera just to the right of the critical valueac arises,
where the enhanced transition temperatureTsl exceeds both
the reduced Ne´el temperatureTN and the Kondo temperatur
TK . The calculations ofTsl presented in Fig. 2 are performe
for d52. A similar picture exists ford53, although the
domain of the stable SL state is more narrow~for a given
value ofzI). This means that in this region the stable ma
netic phase is, in fact, the spin liquid phase. If one desce
from high temperatures in a hatched region of Doniac
diagram whereTK;TN , the Kondo scattering suppresses t
AFM correlations, but the SL correlations quench the Kon
processes at some temperatureTsl.TK . As a result the
Kondo-type saddle point is not realized in the free-ene
functional in agreement with the assumption made abov
our derivation of Ginzburg-Landau expansion. The prelim
nary version of this scenario was presented in Ref. 24.
more refined mean-field approach described here confi
and enhances this scenario, however, the SL liquid phas
18441
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still described in the mean-field approximation. Although t
local constraint for spin operators is not violated in t
Popov-Fedotov formalism, the gauge phase is still fixed,27 so
the next task is the consideration of fluctuation back flo
described by the higher-order terms of the Ginzburg-Lan
expansion.

IV. ISING SPIN GLASSES IN DONIACH’S DIAGRAM

In this section we consider the interplay between Kon
scattering and magnetic correlations in the case of arandom
RKKY interaction ~3!, where the randomness results in t
formation of a spin-glass phase. We consider disorder
duced by paramagnetic impurities in KL. As was shown
Ref. 37, elastic scattering results in the appearance of a
dom phased(r ) in RKKY indirect exchange parameter,

I i j [I ~r !.2S J2

«F
D cosF2pFr 2

p

2
~d11!1d~r !G

~2pFr !d
, ~33!

where r 5uRi2Rj u and d is the dimensionality of the KL.
This form of random exchange predetermines two poss
scenarios of SG ordering.

~i! Fluctuations take place around a node of the RKK
interaction ~33!. This asymptotic behavior is derived from
the general equation for the RKKY exchange parameter,38,39

I i j 52
J2

«F

p

d21 S pFa0
2

2pr D d

~pFr !2@Jd/221~pFr !Yd/221~pFr !

1Jd/2~pFr !Yd/2~pFr !#.

@a0 is the lattice spacing,Jn(x) and Yn(x) are the Besse
functions of the first and second kind#. In this case FM and
AFM bonds enter the partition function on equal footing, a
quenched independent random variablesI i j can be described
by a Gaussian distributionP(I i j );exp@2Iij

2N/(2I2)#.40 The
magnetic ordering effects also can be included in our
proach by introducing a nonzero standard deviationDIÞ0
into the distributionP(I i j ) that, in turn, results in additiona
competition between SG and AFM~or, in some cases, FM!
states. Recently, the competition between AFM and SG
gimes was considered in Ref. 41.

~ii ! RKKY exchange fluctuates around some negat
value in the AFM domain of exchange parameters. In t
case there is a competition between SG, SL, and A
phases. The third possibility, i.e., fluctuations in the FM d
main is somewhat trivial because in this case Kondo fluct
tions cannot significantly change the freezing scenario.

We start with the case~i!. To understand the situatio
qualitatively we make the following simplifying approxima
tions. First, we consider only a Ising-like exchange in t
Hamiltonian~3!:

H852(̂
i j &

I i j Si
zSj

z . ~34!

This is a usual approximation in the theory of spin glas
that allows one to forget about the quantum dynamics of
0-6
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spin variables.42 In the original paper43 the simplifying as-
sumptions (d5`, separate electron bath for each localiz
spin! were made. Thus the form of the spin-spin correla
was predetermined, and these assumptions allowed the
thors to obtain an exact solution in a framework of dynam
cal mean-field theory. We refrain from using these appro
mations. Second, we confine ourselves with the mean-fi
~replica symmetric! solution of the Edward-Anderson~EA!
model.44 This means that only a pairwise interaction of ne
est neighbors is taken into account. The numberz of nearest
neighbors should be big enough (z21!1) to justify the
mean-field approximation. We consider the interplay b
tween SG and Kondo-type correlations by means of the
lica method. We use the approach developed in Ref. 45
the Sherrington-Kirkpatrick model.46 Both electron and
semifermion variables are replicated (c→ca, f→ f a, where
a51, . . . ,n), and the number of replicas is tended to ze
so that the free energy per cell is given by the limitF
5b21lim

n→0
(12^Z n&av)/(nN). Here the replicated parti

tion function is

^Z n&av5) E dIi j P~ I i j !) D$ci ,s
a f i ,s

a %

3expS A0@ca, f a#2E
0

b

dtHint~t! D ~35!

whereA0 ~10! corresponds to noninteracting fermions.
Averaging over disorder and integrating out high-ene

electronic states by virtue of a replica-dependent Hubba
Stratonovich transformation one arrives at the followi
equation

^Z n&av5) E D$ca, f a,fa%expS A01
zI2

4N
Tr @X2#

1E
0

b

dtTrH fac̄af a1f̄af̄ aca2
2

J̃
ufau2J D

~36!

with

Xab~t,t8!5(
i

(
s,s8

f̄ i ,s
a ~t!s f i ,s

a ~t! f̄ i ,s8
b

~t8!s8 f i ,s8
b

~t8!.

Then following the standard pattern of replica theory for s
glasses45,47one fixes the saddle point in spin space related
the EA order parameterqEA . At this stage the initial problem
is mapped onto a set of independent Kondo scatterers for
energy conduction electrons in external replica dependen
fective magnetic field:

^Zn&av5expS 2
1

4
z~bI !2N@nq̃21n~n21!q2#

1(
i

lnF) E D$ f a,fa%E
x

GE
ya

G

3exp~A$ f a,fa,ya,x%!G D ~37!

where*x
Gf (x) denotes*2`

` dx/A2pexp(2x2/2) f (x),
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A$ f a,ca,ya,x%5(
a,s

f̄ s
a@~Dm

(a)!212sh~ya,x!# f s
a

2
2

J̃
(

n
ufn

au2 ~38!

and h(ya,x)5IAzqx1IAz(q̃2q)ya is an effective local
magnetic field, which depends on the diagonal and o
diagonal elements of the Parisi matrix,q̃5^Si

a(0)Si
a(t

→`)& and q5^Si
a(0)Si

b(t→`)& (aÞb), respectively. The
latter one is the EA order parameterqEA5q. Neglecting all
fluctuations and retaining only the first two terms in the e
ponent in Eq.~37!, one comes to the EA mean-field equatio
for the free energy,

bF5
z~bI !2

4
@~12q̃!22~12q!2#

2E
x

G

ln@2 cosh~bIxAzq!#. ~39!

~see Ref. 47!. Then making the high-temperature expansio
one obtains the Ginzburg-Landau equation in the vicinity
the SG transition,48

bFsg5
z~bI !2

4
q2tsg2csgq

31dsgq
4, ~40!

where tsg512Tf /T and Tf5AzI is a spin-glass freezing
temperature.

Like in the previous case of the ordered KL we incorp
rate the static replica dependent magnetic fieldh in semi-
Fermionic Green’s functions. As a result, the modified effe
tive action for the Kondo fields arises like in Eqs.~25! and
~29!,

A@ya,x#5 ln$2 cosh@bh~ya,x!#%

2(
n

F1

J̃
2dP@h~ya,x!#G ufn

au2. ~41!

Here similarly to Eq.~26!

dP~h!5Fp2 S 1

cosh~bh!
21D1OS h2

TeF
D G . ~42!

Finally, performing the Gaussian average over thef fields
and taking the limitn→0 one obtains the free energy

bF~ q̃,q!5
1

4
z~bI !2~ q̃22q2!

2E
x

G

lnS E
y

G

2 cosh@bh~y,x!#/$1

2JP@0,h~y,x!#% D . ~43!

Corrected equations forq and q̃ are determined from the
conditions]F(q̃,q)/]q̃50, ]F(q̃,q)/]q50. These are
0-7
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1

2
z~bI !2q̃5E

x

G] ln C
]q̃

,
1

2
z~bI !2q52E

x

G] ln C
]q

,

C5E
y

G

2 cosh@bh~y,x!#/$12JP@0,h~y,x!#%. ~44!

Under the conditionh(y,x)<1 a useful approximate
equation forC is obtained:45

ln@CC~x,q̃,q!#52
1

2
ln@11gu2~ q̃2q!#

1
u2

2

@ q̃2q~11gx2!#

11gu2~ q̃2q!

1 lnFcoshS uxAq

11gu2~ q̃2q!
D G . ~45!

Here the following shorthand notations are used:u5bIAz,
C5J/eFln(T/TK) and g52c/ ln(T/TK) with c5(p/412/p2)
;1. We note again that whenJ50, which corresponds to
the absence of Kondo interaction, C(x,q̃,q)

52 exp@ 1
2z(bI)2(q̃2q)#cosh(bIxAzq), and Eq.~44! turns into

the standard EA equation, providing, e.g., an exact iden
q̃51.

In the vicinity of the freezing point Eq.~44! acquires the
form

q̃512
2c

ln~T/TK!
2OS 1

ln2~T/TK!
D ,

q5E
x

G

tanh2S bIxAzq

112cz~bI !2~ q̃2q!/ ln~T/TK!
D

1OS q

ln2~T/TK!
D . ~46!

As a result of the numerical solution of Eqs.~46! we obtain
the analog of Doniach’s diagram for a disordered KL whe
the spin-glass freezing temperatures without and with Ko
screening contributions are shown (Tf

(0) and Tf , respec-
tively!.

HereTf
(0) is obtained from the GL equation~40! neglect-

ing the Kondo screening effect, andTf was defined from
Eqs.~46! under additional condition]2Fsg /]q250. The in-
fluence of Kondo screening on the diagonal element of
Parisi matrixq̃ is illustrated by the inset of Fig. 3~the bare
value ofq̃51 is shown by the dashed line!. Like in the case
of a perfect KL, the screening effect is noticeable wh
Tf

(0);TK
(0) .

The influence of the SG transition on a Kondo tempe
ture for a KL with SG freezing was studied recently in Re
49. Although the Kondo effect in this paper is considered
a mean-field approximation~i.e., Kondo screening is treate
as a true phase transition! and a static ansatz was applied f
18441
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SG, the authors obtained strong reduction of Kondo temp
ture in the same regionTK;Tf

(0) .

V. CORRELATIONS IN THE KONDO LATTICE BEYOND
THE MEAN FIELD

The mean-field Doniach’s diagram even in its improv
form oversimplifies enormously the real picture of the inte
play between three competing modes in the effective ac
~12!. First of all, the proximity of three characteristic tem
peratures,TK , Tsl , and TN means that even when one o
them is dominant, i.e., determines the local minimum of
free energy, two others define the fluctuations around
saddle point. Second, it is clear physically that only the N´el
temperatureTN is a temperature of areal phase transition,
whereasTsl andTK are merely characteristic crossover tem
peratures. The main shortcoming of the mean-field appro
mation is that this approach treats all three modes on e
footing. The method described in the preceding section
lows one to get rid of the artificial phase transition atT
5TK , however, the problems with the description of the S
phase still exist. Meanwhile, it is known that the mean-fie
approximation for the SL state violates the local gau
invariance23,28,27,50and fixes the phaseu of the SL modeW
~17!. The second-order phase transition from paramagnet
the SL state34 is an undesirable corollary of this crude a
proximation, and fluctuation corrections to the mean-field
lution cannot improve this defect of the theory.

In this section we consider several scenarios of mo
mode correlations in a system described by the general e
tions ~9! and ~12! for the effective actionA. First, we offer
the description of acrossoverto a SL state, which allows one
to bypass the mean-field saddle point~23!. It will be demon-
strated that the interplay between fluctuations of the fieldf
and YQ can trigger the transformation of localized critic
relaxation AFM modes into SL-type correlations without lo
of criticality. The main idea of our scenarios is that the hea
fermion state of KL is, in fact, an unconventional AFM sta
with spin excitations changing their character from Bose-l

FIG. 3. Doniach’s diagram for spin-glass transition in a dis
dered KL~see text for explanation!.
0-8
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spin fluctuations or spin waves to Fermi-like spinon mod
Next, we consider the behavior of the Kondo mode bel
Tsl and describe the quenching of Kondo scattering by
fluctuations in a hatched part of Doniach’s diagram~Fig. 2!
where the static molecular field is absent.

We demonstrated above that the Kondo screening
hances SL correlations on a level of the mean-field appr
mation. A similar effect should exist on a more refined lev
of interacting fluctuation modes. To find the correspond
mechanism we refrain from the use of the bilocal repres
tation of the spin mode. Instead of introducing the modeW
associated with the gauge noninvariant U~1! field described
by the phaseu in Eq. ~17!, we consider the effect of inter
ference of Kondo screening modes associated with spins
cated on different sites of the KL. In fact we consider t
high-temperature precursors of the orthogonality catastro
mentioned by Nozieres in his formulation of the ‘‘exhausti
problem.’’51 In a revised scheme we start with the acti
determined by the Hamiltonian~1!. Starting with the integra-
tion over ‘‘fast’’ electronic variables~with energies;«F),
we obtain

Aint52
2

J̃
Trufu22Tr

1

I q
YqYÀq2Tr f̄ j sf jG0~r !f̄ l f ls

2Tr f̄ jf lP4f̄ lf j2Tr Y j f̄ jf lP6f̄ lf jY l . ~47!

Here instead of introducing the scalar modeW we retained
higher-order terms in the Kondo screening fields. Th
terms are illustrated by the diagrams in Fig. 4.

The diagram in Fig. 4~a! describes the interference o
Kondo clouds around the sitesRj andRl . Zigzag lines stand
for the AFM vector mode. Like all screening diagrams
Fermi systems it contains a Friedel-like oscillating factor.
estimate the polarization operator we use the asympt
form of the electron Green’s function ind dimensions at
large distances,32,38

G~r ,V!;
1

~pFr !(d21)/2
expF2

uVu
2«F

pFr

1 i S pFr 2p
d11

4 D sgn V G . ~48!

Inserting this function in a four-tail diagram of Fig. 4~a!, one
comes to

P4;2
1

T«F
2

cosF2pFr 2~d11!
p

2 G
~2pFr !d21

1OS 1

«F
3

lnF T

«F
G D . ~49!

Therefore we expect that this interference correlates w
RKKY-type magnetic order, and the interaction between
corresponding modes represented by the diagram~b! in Fig.
4 influences the magnetic response in a ‘‘critical’’ region
the Doniach’s diagram. This response is determined by
fluctuation corrections to Ne´el effective action,
18441
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dAe f f5
1

4 (
q,a,vn

Ya~q,vn!@ I 21~q!1x0dn,0#Y
a~q,vn!.

~50!

Herea are Cartesian coordinates,x05b/4 is a static Curie
susceptibility of an isolated spinS51/2 @Fig. 5~a!#. The term
in square brackets is, in fact, the inverse Ornstein-Zerni
correlator;a0

2(Q2q)21tN at T*TN and Q2q→0. The
first nonvanishing correction tox0 is given by Fig. 5~b!.
In this diagram the spinsSj and Sl are screened inde
pendently,~the wavy lines represent all parquet vertex ins
tions!. In the mean-field approach the similar effects are

FIG. 5. Diagrams describing local~Curie-type! magnetic sus-
ceptibility x0 ~a! and nonlocal correction taking into account Kond
screening of vertices~b!.

FIG. 4. Diagrams for fourth- and sixth-order polarization ope
torsP4 ~a! andP6 ~b! in the effective action responsible for mode
mode coupling.
0-9
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scribed by Eq. ~28!. Indeed, each vertex correctio
G i 5 j ,l(v,e);^f~e!f̄~e!& gives the contribution;1/ln(e/TK),
and integration over the internal frequencye results in the
1/ln(TN

0/TK) correction in Eq.~28!.24,32

The effects essentially beyond mean field are describe
those diagrams that cannot be cut along a pair of elec
propagators~solid lines! @see Figs. 6 and 7~a!#. The first of
these diagrams@Fig. 6~a!# can be treated as a nonlocal co
rection to the one site spin susceptibility@Fig. 5~a!# induced
by interfering flow and counterflow of two Kondo clouds. A
a result, the spin-fermion propagator becomes nonlocal w
out introducing the mean-field order parameter~17!. The
next diagram@Fig. 6~b!# is a kind of ‘‘exchange’’ by these
clouds in the course of two-spinon propagation. Up to n
we exploited the ‘‘proximity’’ effectsT*TK . A critical AFM
mode given by the Fourier transform of the diagram of F

FIG. 6. Leading diagrams describing interference of Kon
clouds in magnetic susceptibility~see text for details!.

FIG. 7. ~a! Next to parquet approximation for Kondo correctio
to the magnetic susceptibility;~b! magnetic fluctuation correction to
single-site Kondo scattering.
18441
by
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5~a! with the wave vectorq.Q also exists in this tempera
ture interval, and, moreover, this mode is dominant in
spin susceptibility atT*TN . This means that the nonloca
contributions of Fig. 6 should be taken also at theseq. Due
to nonlocality, the temperature dependence of the spin po
ization loop will be weaker than the Curie law 1/T, and the
inverse static susceptibility given by these diagrams is

xQ
21~T!5x0

21~T!1xsl
21~T!1 Ĩ Q . ~51!

This deviation from the Curie law results in a depression
the Néel phase transition or, in other words, in extension
critical regime to temperatures well belowTN

0 in accordance
with the scenario described in Ref. 28. Magnetic instabilit
that can emerge atT!TN

0 will be the instabilities of the spin
liquid phase. These instabilities have much in common w
itinerant fluctuational magnetism considered, e.g., in Re
52 and 53.

Diagram~a! in Fig. 7 with bare spinon propagators give
only a local correction to the susceptibility, however atT
!TN

0 where the spinon lines are dressed by the self-ener
shown in Fig. 6~a!, this diagram also becomes nonlocal an
therefore contributes to the nonlocal term on the right-ha
side of Eq.~51!. The processes taken into account in diagr
~b! of Fig. 7 describe the feedback influence of spin fluctu
tions on the Kondo screening. This diagram together w
higher-order terms of the same type results in the dynam
suppression ofTK as a result of the appearance of spin flu
tuation energyvs f;j2z in the logarithmic Kondo contribu-
tion ln(«F /max$T,vsf%). This mechanism is effective not to
close to the realTN where the magnetic correlation lengthj
determining the short-range magnetic order is still com
rable with the lattice spacing~herez is the dynamical critical
exponent!.

This schematic description is only a scenario of the the
of critical phenomena in KL’s. The discussion of fluctuatio
around the SG transitions are beyond the scope of this pa
Some details of modulated replica symmetry break
schemes, which combine treelike and wavelike structure
AFM SG may be found in Ref. 41. A more detailed calcu
tion of the critical magnetic and spin-glass fluctuations in
spin liquid will be published separately.

VI. CONCLUDING REMARKS

We derived in this paper the phase diagram for the Kon
lattice model, starting with a high-temperature expansion
the effective action. As a first step, we succeeded in get
rid of one of the fictitious saddle points, i.e., we avoided t
introduction of ‘‘Kondo-condensate’’ averages^cks

† f is& used
in previous revisions of the Doniach’s diagram.23,25 In our
modified Doniach’s diagram~Fig. 3! the renormalized TK is
the lowest of all characteristic temperatures for all reasona
values of coupling constanta where one can neglect valenc
fluctuations. In fact, the mean-field calculations of Ref.
give a similar picture. The feedback of this result is that t
strong Kondo regime is unachievable in a critical region
Doniach’s diagram, and the real role of Kondo screening
small a whereTN.Tsl.TK is to reduce localized magneti
0-10
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moments and enhance the electronic density of states ar
«F . Thus the moderately heavy fermion systems with re
tively big magnetic moments ordered antiferromagnetica
arise (CeIn3 ,CeAl2 are possible examples!.54

In a critical region of Doniach’s diagram Kondo screeni
changes radically the behavior of KL. According to o
mean-field results the conventional AFM order is suppres
at T;Tsl*TN . The SL phase that arises instead is, nev
theless, close to magnetic instability, and one can expect
the spin subsystem eventually orders magnetically. If

new transition temperatureT̃N is finite the singlet spinon
coupling is incomplete, so that RVB’s have residual ma

netic moments, and these moments are ordered atT5T̃N ~we
emphasize once more thatTN marked by light circles in a
hatched region of the phase diagram of Fig. 3 is not a
transition temperature. It rather designates the tempera
region where critical AFM fluctuations arise!. Of course, the
magnitude of these moments is extremely small, and one
qualify this type of magnetic order as intermediate betwe

localized and itinerant AFM. In the temperature intervalT̃N

,T,TN the critical AFM relaxation mode characterizes t

magnetic response of the system. WhenT̃N50, one deals
with a quantum phase transition, and the caseT̃N,0, appar-
ently, corresponds to short-range correlations existing i
wide temperature interval 0,T,TN . This picture describes
in gross features the magnetic properties of magnetic K
but any kind of quantitative description will be possible on
after realization of the scenarios for the critical behavior
spin liquid briefly sketched in Sec. V.

Now we turn to the discussion of conclusions that co
be derived from our theory concerning the nature of
heavy fermion state. The most important one is that the se
ration of charge and spin degrees of freedom existing in
at high temperatures takes place also in a strong-coup
regime atT!TK . Indeed, at highT exceeding all character
istic temperatures in the KL the spin excitation spectrum
simple structureless peak of the widthT around zero energy
This peak is manifested as Curie-type magnetic susceptib
and trivial high-temperature corrections;1/Tn to all thermo-
dynamic quantities due to weak paramagnetic spin scatte
of the conduction electrons, whose Fermi-liquid continuu
exists as independent charge branch of the elementary
tations. Since all transformations of the spin subsystem oc
at T.TK ~at least in a region ofa,0.2 where the valence
fluctuations are still negligible!, this central peak still exists
in a strong-coupling regime. BelowTsl;TK this peak is
formed by spin liquid excitations. The character of these
citations resembles relaxation modes in a picture of fluct
tion itinerant magnetism52,53 in a wide temperature interva
down toTcoh where the coherent spin liquid regime of Ferm
type is established. The interaction between the SL mode
the conduction electrons is the same exchange-type sca
ing as at high temperatures. This coupling constantJ̃ is,
however, enhanced by the Kondo effect@see Eq.~25!#. The
electrons in a layer of the widthTK around the Fermi leve
interact nonadiabatically with spin fermions at lowT. As a
result the giant Migdal effect arises55 which results in a
18441
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strong electron mass enhancement. So, the heavy ferm
state in accordance with this picture is a two-compon
Fermi liquid where the characteristic energies of the cha
subsystem~slow electrons withe,TK) and the spin sub-
system~spinons withv;Tsl) are nearly the same.

An exponentially narrow low-energy peak of predom
nantly spin origin appears practically in all theories
strongly correlated electron systems. In the archetypal H
bard model this peak arises on the dielectric side of Mo
Hubbard transition, and still exists on the metallic sid
where the charge and spin degrees of freedom are alre
coupled. This is the point where the links between Hubb
and Anderson models arise at least on a level of dynam
mean-field theory~DMFT! valid at d→`.56 On the other
hand, the mean-field solution that results in merged cha
and spin degrees of freedom in a central peak becomes e
in the large-N theories for theN5` saddle point.57 Recent
achievements in this direction are connected with confirm
tion of Noziere’s prediction of a second scale in the Kon
lattice51 in the limit of the exhaustion regime of small ele
tron concentration. At this temperature the ‘‘bachelor’’ spi
form a coherent Fermi liquid and lose their localized natu
This anticipation was confirmed by recent calculatio
within the mean-field slave boson approximation ofN→`
theory.58 In our approach the regime of bachelor spins do
not arise, because the Kondo coupling remains weak eve
T!TK ~see above!, but the spin degrees of freedom becom
coherent atT;Tcoh , so that the existence of two coheren
scales is an intrinsic property of the model.

Another aspect of largeN theories is the possibility of
supersymmetric description that allows combined descrip
of spin degrees of freedom in a mixed fermion-boson SU(N)
representation.59 This approach allowed the authors to reta
intersite RKKY interaction in the limit ofN→` in spite of
1/N2 effect of suppression of all intersite magnetic corre
tions in a standard largeN approach. The use of the Popo
Fedotov representation allows the treatment of differ
magnetic modes described by these operators as semife
ons or semibosons in different physical situations.33 In this
paper we appealed to SU(2) symmetry. The general recip
generation of modes with intermediate statistics betw
Fermi and Bose limiting cases for the SU(N) algebra is of-
fered in Ref. 60. In fact, the eventual transformation of t
states with intermediate statistics into true fermions~bosons!
occurs only atT→0. Thus this approach may be extreme
useful for an adequate description of quantum ph
transitions.61

In principle, other collective modes can modify the sc
nario of the AFM phase transition in KL’s. In particular, th
low-lying crystal-field excitations may intervene the ma
netic phase transition in the same fashion as Kondo cloud
our theory. Probably the CeNiSn family of semimetal
Kondo lattices is an example of such an intervention.62
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APPENDIX A:

To evaluate the contribution of the Kondo mode in t
expansion~20! for the effective action, one needs the Four
transform of the Green’s functionKf ~19!. This is
S f̄n~k!G0~q!fn~k! 0 f̄n~k!G0~q!fn~k1Q! 0

0 f̄n~k!G0~q!fn~k! 0 f̄n~k!G0~q!fn~k1Q!

f̄n~k1Q!G0~q!fn~k! 0 f̄n~k1Q!G0~q!fn~k1Q! 0

0 f̄n~k1Q!G0~q!fn~k! 0 f̄n~k1Q!G0~q!fn~k1Q!

D
~A1!
s

-

-
ant

he
The componentsDms(q) of the semi-Fermionic Green’
functionD in Eq. ~20! are determined by inverting the matr
~18!. There are normal and anomalous components,

2E
0

b

dteivmt^Tt f s~q,t! f̄ s~q,0!&5
ivm2Wq

~ ivm2Wq!22Y2
~A2!

and

2E
0

b

dteivmt^Tt f s~q,t! f̄ s~q1Q,0!&5
Yt̂ss

z

~ ivm2Wq!22Y2
,

~A3!

respectively. HereY5NI Q/2 andWq5I qD.
To perform calculations in real space, one should kn

the inverse Green’s function~13! in coordinate representa
tion:

Dm
21~W,Y!

5S ivm1Yj
z Yj

1 Wjl 0

Yj
2 ivm2Yj

z 0 Wjl

Wl j 0 ivm2Yl
z Yl

1

0 Wl j Yl
2 ivm1Yl

z

D .

~A4!

It should be noted that the nonlocal termWjl in Eq. ~A4!
responsible for SL correlations transforms into diagonal te
Wq in momentum representation~13!, whereas the local stag
gered fieldY i has nondiagonal matrix elements in mome
tum space corresponding to AFM correlations atq5Q.

APPENDIX B:

The sum of polarization integrals presented in Fig. 1
given by the following equation:
-

s

Pn~Y,Wq!52T (
m,s,p

Dms~p!Gm1n
0 ~p1q! ~B1!

Only the normal component~A2! survives in this equation a
a result of spin summation. The Neel loop@Fig. 1~a!# after
performing frequency summation acquires the form

P~Y,0!5(
p

H tanhS jp

2TD F jp2Y

~jp2Y!21l2
1

jp1Y

~jp1Y!21l2G
1

l

cosh~Y/T! F 1

~jp2Y!21l2
1

1

~jp1Y!21l2G
2tanhS Y

TD F jp2Y

~jp2Y!21l2
2

jp1Y

~jp1Y!21l2G J .

~B2!

Here jp5«p2«F , l5pT/2. This integral is an even func
tion of the order parameter,P(Y)5P(2Y). Using the in-
equalityY!eF , two last terms can be simplified, and intro
ducing the integral over the electron band with const
density of statesr0, one has

P~Y,0!5
1

4
r0E

2eF

eF
djH tanhS jp

2TD
3F jp2Y

~jp2Y!21l2
1

jp1Y

~jp1Y!21l2G J
1

pr0

2cosh~Y/T!
1

r0Y

eF
tanhS Y

TD . ~B3!

Incorporatingr0 in dimensionless variables, one has in t
vicinity of the Néel point whereY!T,
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P~Y,0!5
1

2 F lnS eF
2

4T2D 1pG2aNS Y

TD 2

1OS Y2

TeF
D . ~B4!

The logarithmic term is, in fact, included in the renormaliz
coupling constantJ̃ in Eq. ~25! for the effective action, and
the remaining terms give Eq.~26! for dP. Deeper in the
magnetic phase whereY@T, the Kondo effect is quenche
by the molecular field, so that

P5 lnS eF

Y D1bNS T

YD 2

1OS T2

eF
2 D . ~B5!

The numerical coefficientsaN ,bN arising from approximate
estimates of the integrals in Eq.~A3! are of the order of
unity.

The SL loop@Fig. 1~b!# can be estimated forq50. After
frequency summation it is presented by the following in
gral:
y

re

ii,

.
te

:

n

ja
gn

r-

a-
b

18441
-

P~0,D!

5
1

2 (
p

jptanhS jp

2TD1I pDtanhS I pD

T D1
l

2 cosh~ I pD/T!

jp
21l2

.

~B6!

This function is also even,P(D)5P(2D). Extracting from
Eq. ~B6! the logarithmic term ln(«F/2T), one comes to Eq
~30! for dP. In a critical region of Doniach’s diagram wher
D!T, one has

dP~0,D!5asl

D2

2T2 (
p

np
2

jp
21l2

, asl;1. ~B7!
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We derive a path-integral Schwinger-Keldysh approach for quantum spin systems. This is achieved by
means of a semionic representation of spins as fermions with imaginary chemical potential. The major
simplifying feature in comparison with other representations (Holstein-Primakoff, Dyson-Maleev, slave
bosons/fermions, etc.) is that the local constraint is taken into account exactly. As a result, the standard
diagram technique with the usual Feynman codex is constructed. We illustrate the application of this
technique for the Néel and spin-liquid states of the antiferromagnetic Heisenberg model.

PACS numbers: 75.10.–b, 75.40.Gb, 71.10.Fd
For a long time [1] physicists have been aware of the
fact that spin operators which commute on different sites
and anticommute on the same site are neither Fermi nor
Bose operators. Less convergent opinions exist on whether
fermionizations or bosonizations or none of those should
be used to take care of spin statistics in many body quan-
tum theory. At least the answers appear to be linked to the
type of physical problem considered. The widely accepted
view is that path integral representations and diagrammatic
expansions for spin systems are thus substantially more
complicated than those of pure fermion/boson systems.
Many variants of the diagram technique [2], which are
based on different representation of spins such as Bose
[1–4], Fermi [5–7], Majorana [8], supersymmetric [9],
or Hubbard [10] operators, have been proposed. Another
method to treat spin Hamiltonians is based on direct repre-
sentation of coherent states for spins (nonlinear s model,
see, e.g., [8]). Some of these techniques [1–10], being ap-
plicable only at low temperatures or in large spin �S ¿ 1�
limit, nevertheless describe well the excitations in ordered
magnets (ferromagnetic and antiferromagnetic magnons),
but fail to provide rigorous calculations in strongly cor-
related systems such as Kondo lattices or quantum mag-
nets. Other techniques, based on a successful choice for
the hierarchy of coupling constants, are mainly restricted
to equilibrium situations. The fundamental problem which
is at the heart of the difficulty is the local constraint. On
one hand, any representation of spin operators as a bilinear
combination of Fermi or Bose quasiparticles makes the di-
mensionality of the Hilbert space, where these operators
act, greater than the dimensionality of the Hilbert space
for spin operators. As a result, the spurious unphysical
states should be excluded from the consideration, result-
ing in substantial complication of corresponding rules of
diagrammatical summation. On the other hand, there is no
Wick theorem directly for spin operators but the Gaudin
theorem [11] instead (see also [7,10]). It cannot, how-
ever, avoid complications in diagram techniques based on
Hubbard operators, rendering the resummation of diagram
series in many cases practically uncontrollable. The ex-
clusion of double-occupied and empty states for impurity
spins interacting with a conduction electron bath (single
0031-9007�00�85(26)�5631(4)$15.00
impurity Kondo problem) [6] is cured by an infinite chemi-
cal potential for Abrikosov pseudofermions. It works for
dilute spin subsystems, where all spins can be considered
independently. Unfortunately, attempts to generalize this
technique to the lattice of spins result in the replacement
of the local constraint (the number of particles on each
site is fixed) by a so-called global constraint (in the saddle
point approximation), where the number of particles is
fixed only as an average value for the whole crystal. There
is no reason to believe that such an approximation is a good
starting point for the description of strongly correlated sys-
tems. Besides, it is very difficult to take into account the
fluctuations related to the replacement of a local constraint
by a global one.

An alternative approach for spin Hamiltonians free of
the local constraint problem has been proposed in the pio-
neering paper of Popov and Fedotov (PF) [12]. Based on
the exact fermionic representation for S � 1�2 and S � 1
operators, where fermions are treated as quasiparticles with
imaginary chemical potential, these authors demonstrated
the power and simplification of the corresponding Mat-
subara diagram technique. For these two special cases
the Matsubara frequencies are vn � 2pT �n 1 1�4� for
S � 1�2 and vn � 2pT �n 1 1�3� for S � 1, providing
a rigorous description of (and restricted to) the equilib-
rium situation. The semionic representation used by PF is
neither fermionic nor bosonic, but reflects the fundamen-
tal Pauli nature of spins. Later, the generalization of the
PF technique for arbitrary spin [13] was derived by intro-
ducing proper chemical potentials for spin fermions. The
goal of this paper is to derive a method for nonequilibrium
systems, which allows one to treat quantum spin Hamilto-
nians on the same footing as Fermi or Bose systems.

A long time ago Keldysh [14] proposed a novel ap-
proach for the description of kinetic phenomena in metals.
This approach was found especially fruitful for normal
metals [15], and, in many recent applications, for super-
conductors [16] and for disordered interacting (normal or
superconducting) electron liquids [17], for example. The
previous application of the real-time formalism to the
quantum theory of Bose-Einstein condensation (BEC)
[18] allowed the derivation of a Fokker-Planck equation,
© 2000 The American Physical Society 5631
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which describes both kinetic and coherent stages of
BEC. Moreover, Ref. [19] developed the closed-time
path integral formalism for aging effects in quantum
disordered systems being in contact with an environment.
The Keldysh formalism in application to disordered
systems (see [20,21]) also attracted interest some time
ago as an alternative approach to the replica technique.
The main advantage of closed-time contour calculations
is an automatic normalization (disorder independent) of
the partition function. In this paper we derive the Keldysh
formalism for quantum spin systems (e.g., Heisenberg
clean and disordered magnets, Kondo systems [22,23]),
which is based on PF ideas of semionic representation.

We reformulate the PF concept by adopting it to real-
time formalism. As an example, we consider S � 1�2.
As it was first shown in [12] (see also [24]), the partition
function of a spin system with Hamiltonian HS can be re-
placed by the partition function of an effective “fermionic”
system with Hamiltonian HF as follows

ZS � Tre2bĤS � �6i�N Tre2b�ĤF6ipN̂F�2b�, (1)

where b � 1�T , and the usual fermionic representation
of spin similar to, e.g., Abrikosov pseudofermions [6]
is used: S1 � f

y
" f#, S2 � f

y
# f", Sz � 1

2 � f
y
" f" 2 f

y
# f#�,

and NF � f
y
" f" 1 f

y
# f#.

Representing spins as bilinear combinations of Fermi
operators, we enlarged by a factor of 2 the Hilbert space of
the Hamiltonian. In addition to physical states j1, 0� and
j0, 1� two unphysical states j1, 1� and j0, 0� are introduced.
Nevertheless, in the average over all states, unphysical
states cancel each other, since Trunphys�exp�7ip�2��NF �
�7i�0 1 �7i�2 � 0. This representation being of
semionic origin results in the conventional Matsubara
diagram technique with vn � 2pT �n 1 1�4� or vn �
2pT �n 1 3�4�, depending on the sign in expressions (1).
Besides, one can introduce the auxiliary distribution
function for quasiparticles [25],

f �1�2��e� � T
X
n

eivntj10

ivn 2 e
�

1
e6ip�2 exp�be� 1 1

,

(2)
where (6) signs in the exponent (2) are the same as in
(1). We note that, since auxiliary Fermi fields do not
represent the true quasiparticles of the problem, helping
only to treat properly the spin operators, the distribu-
tion function for these objects in general should not
be a real function, e.g., f �1�2� � n�2e� 7

i
2 sech�e�T �,

where n�x� � �exp�x�T � 1 1�21 is the standard Fermi
distribution function. As we shall see for S � 1�2
and S � 1, 1 2 2 Ref�S��e� � BS�e�T � is expressed
in terms of the Brillouin function BS�x� � �1 1

1
2S � 3

coth��1 1 1
2S �x� 2 1

2S coth� x
2S �, e.g., for S � 1�2,

B1�2�x� � tanh�x�. We also note that in the T ! 0
limit the imaginary part of f�1�2� satisfies the identity
Imf �1�2��x� � 7ipTd�x��2.

The spin correlation functions of any order can be ex-
pressed in terms of the two-component field cT � � f"f#�:
5632
�Sa1
i1

�t1� · · · S
an
in

�tn�� � Tr�r0�cys
a1
i1

c�t1 · · · �cys
an
in

c�tn � ,

where r0 � exp�2bH0��Tr exp�2bH0� is the density
matrix and s denotes Pauli matrices. We included
the term ipNF��2b� into the Hamiltonian H0 �
2h

P
i Sz

i 6 ipT�2
P

i N
�i�
F of noninteracting spins in a

uniform external magnetic field h, since it exists both in
the numerator and denominator of r0.

Following the standard route [26] we can express the
partition function of the problem containing spin operators
as a path integral over Grassmann variables c̄ , c

Z�Z0 �
Z

Dc̄Dc exp�iA�
¡ Z

Dc̄Dc exp�iA0� ,

(3)
where actions A and A0 are taken as an integral along
the closed-time contour Ct 1 Ct which is shown in
Fig. 1. The contour is closed at t � 2` 1 it since
exp�2bH0� � Tt exp�2

Rb
0 H0 dt�. We denote the c

fields on the upper and lower sides of the contour Ct as c1
and c2, respectively. The fields C stand for the contour
Ct . These fields provide matching conditions for c1,2 and
are excluded from final expressions. Taking into account
the semionic boundary conditions for generalized Grass-
mann fields Cm�b� � iCm�0�, C̄m�b� � 2iC̄m�0�, one
gets the matching conditions for c1,2 at t � 6`,

c
m
1 �2`� � ic

m
2 �2`�, c

m
1 �1`� � c

m
2 �1`� . (4)

The correlation functions can be represented as a func-
tional derivation of the generating functional

Z�h� � Z21
0

Z
Dc̄Dc

3 exp

µ
iA 1 i

I
C

dt �h̄szc 1 c̄szh�
∂

,

where h represents sources and the sz matrix stands for
“causal” and “anticausal” orderings along the contour.

The on-site Green’s functions (GF’s) which are matri-
ces 4 3 4 with respect to both Keldysh (lower) and spin
(upper) indices are given by

Gab
mn �t, t0� � 2i

d

idh̄a
m�t�

d

idh
b
n �t0�

Z�h�jh̄,h!0 .

After a standard shift transformation [26] of fields c

the Keldysh GF of free PF fermions assumes the form

88

C
+

t t

Cτ

ψ

ψ

1

2

t-i β

Ψ
-

FIG. 1. Keldysh double side contour going along real-time axis
2` ! 1` ! 2` and “closed” in imaginary time.
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Ga
0 �e� � G

R,a
0

µ
1 2 fe 2fe

1 2 fe 2fe

∂

2 G
A,a
0

µ
2fe 2fe

1 2 fe 1 2 fe

∂
,

where the retarded and advanced GF’s are

G
�R,A�a
0 �e� � �e 1 sz

aah�2 6 id�21,

fe � f �1�2��e� .
(5)

The interdependence of matrix elements of the GF in
Keldysh space is more transparent after rotation

Ĝ )
1 2 isy

p
2

szG
1 1 isy

p
2

�

µ
GR GK

0 GA

∂
, (6)

whereGK
0 � 2i2pd�e 6 h�2� �B1�2�e�T� 6 i sech�e�T ��.

We emphasize that, unlike diagrammatic techniques for
Fermi and Bose operators, the off-diagonal element
(Keldysh component) in semionic representation is ex-
pressed in terms of a Brillouin function, containing correct
information about occupied states. We recall that diagonal
elements of the matrix (6) in “triangular” representation
satisfy the Dyson equation providing the exact description
of the system. The equation of motion for GK generally
constitutes the quantum-kinetic equation.

Let us illustrate the application of the Schwinger-
Keldysh formalism for spin Hamiltonians. We consider
the Heisenberg model with nearest neighbor interaction

Hint � 2
X
�ij�

Jij

µ
�Si

�Sj 2
1
4

∂
�

1
2

X
�ij�

Jijc
y
i cjc

y
j ci .

We firstly discuss the Néel solution for the Heisenberg
model with isotropic antiferromagnetic (AFM) exchange
�J , 0�. By applying the PF transformation to the parti-
tion function, one obtains the action as an integral along
the closed-time Keldysh contour,

A � A0 1 Aint � A0 1
I

C
dt

X
q

J�q� �Sq�t� �S2q�t� ,

(7)
where A0 corresponds to noninteracting PF fermions

A0 �
I

C
dt

X
i

c̄i

µ
�GR,a

0 �21 0
0 �GA,a

0 �21

∂
ci . (8)

We denote Jq � J
P

�l� eiql, nq � Jq�J0 and apply the
eight-component PF representation with cT � �c̃T

k c̃
T
k1Q�,

where Q � �p, . . . , p� for hypercubic lattice. To decouple
the four-fermion term along the Keldysh contour with the
help of the Hubbard-Stratonovich transformation we in-
troduce the two-Keldysh-component vector (Bose) field
�FT � � �F1

�F2�. As a result we obtain

Aint � 2 Tr� �FT
q J21

q sz �Fq� 1 Tr�c̄ �Fm �sgmc� . (9)

Now we integrate out c fields and express the effective
action in terms of �F fields

Aeff � 2 Tr� �FT
q J21

q sz �Fq� 1 Tr ln�G21
0 1 �Fm �sgm� ,

where gm � �sz 6 1��2 acts in Keldysh space. Since
in general �F is a time- and space-dependent fluctuating
field, the partition function (3) cannot be evaluated exactly.
Nevertheless, when a magnetic instability occurs, we can
represent the longitudinal component of this field as a su-
perposition of a staggered time-independent part (“stag-
gered condensate”) and a fluctuating field

Fz
m�q, v� �

1
2N Jqgmdq,Qd�v� 1 fz

m�q, v� , (10)

where N is a staggered magnetization and F6
m �q, v� �

f6
m �q, v� with the matching conditions at t � 6`,

f6
1 �2`� � f6

2 �2`�, f6
1 �1`� � f6

2 �1`� . (11)

We expand Tr ln�G21
0 1 �fm �sgm� in accordance with

Tr ln�· · ·� � Tr lnG21
0 1

X̀
n�1

�21�n11

n
�G0

�fm �sgm�n.

(12)
The spectrum of the excitations (AFM magnons) can be

defined as poles of the transverse GF D12
x,t � D�x, t� �

2i�TCf
1
1 �x, t�f2

1 �0, 0��. The procedure of the calcula-
tion of this GF is similar to that for a fermionic GF. By
introducing the sources and evaluating (12), one gets

D0�v� � DR
0

µ
1 1 Nv Nv

1 1 Nv Nv

∂

2 DA
0

µ
Nv Nv

1 1 Nv 1 1 Nv

∂
,

where the retarded and advanced magnon GF’s are

D
R,A
0 �q, v� � �v 2 v�q� 6 id�21,

Nv � �exp�bv� 2 1�21.

The magnon spectrum vq is determined by the zeros of the
expression J21

q 2 P
12
2 �v� (see Fig. 2a) in equilibrium

vq � jJ0jN
p

1 2 n2
q ) cjqj ,

N � tanh

µ
JQN

2T

∂
.

(13)

The magnon damping is defined by four-magnon processes
P

1212
4 , shown in Fig. 2b. The derivation of the kinetic

equation and calculation of magnon damping is reserved
here for a detailed publication. The results (13) (and
similar for quantum FM) are in full agreement with the
spin-wave theory (see, for example, Refs. [2] and [3,7]).

The second possibility to decouple the four-fermion
term in the Heisenberg model is provided by the bilocal
scalar bosonic field Lij depending on two sites. By intro-
ducing new coordinates �R � � �Ri 1 �Rj��2, �r � �Ri 2 �Rj

FIG. 2. Feynman diagrams contributing to dispersion (a) and
damping (b) of magnons. The solid line denotes PF fermions.
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and applying a Fourier transformation, we obtain the ef-
fective action

Aeff � 2
1
2 Tr�LT

Pq1
J21

q12q2
szLPq2�

1 Tr ln�G21
0 2 Lmgm� .

This effective action describes the nonequilibrium quan-
tum spin liquid (SL). We confine ourselves to consider
the uniform phase [27] of resonant valence bonds (RVB)
in 2D antiferromagnets. It is suitable to rewrite the func-
tional in new variables, namely, the amplitude D and the
phase Q � �r �A� �R�, according to formula

L�ij�
m � �R, �r� � D� �r�Jgm exp�i �r �Am� �R�� . (14)

The exponent in (14) stands for gauge fluctuations to be
taken in eikonal approximation. The spectrum of excita-
tions in the uniform SL is defined by the zeros of p

R,ab
q,v �

Tr�papb�GR
p1qGK

p 1 GK
p1qGA

p � 1 dabf�JpD�� in equi-
librium [28] and is purely diffusive (see, e.g., [27])

vq � iJDjqj3, D � 2
X
q

n�q� tanh

µ
JqD

T

∂
. (15)

The quantum kinetic equation for nonequilibrium spin
RVB liquids can be obtained by taking into account the
higher order diagrams similar to Fig. 2b with currentlike
vertices and will be presented elsewhere.

We discuss finally the Schwinger-Keldysh formalism for
spins S . 1�2. As shown by Popov and Fedotov for S �
1, it is possible to eliminate the unphysical states by in-
troducing three-component fermions cT � � f"f0f#� with
imaginary chemical potential l � 2ipT�3. The bound-
ary conditions for C on the imaginary part of the contour
Ct read as follows: Cm�b� � eip�3Cm�0�, C̄m�b� �
e2ip�3C̄m�0�. As a result, the distribution function in
equilibrium is f �1��e� � 1��e6ip�3 exp�e�T � 1 1�. Thus,
the Schwinger-Keldysh formalism with 6 3 6 matrices for
GF (6) and fe � f �1��e� in equilibrium is obtained. The
off-diagonal Keldysh component is given by

GK
0 � 2i2pd�e 6 h�

3

∑
B1�e�T � 6 i

p
3 sinh

µ
e

2T

∂ ¡
sinh

µ
3e

2T

∂∏
.

For arbitrary spin values S . 1 there is no unique imagi-
nary chemical potential for 2S 1 1 component PF fermi-
ons, but instead they are distributed on each lattice site j
according to

P�lj� �
�S21�2�X

l�0

ald�lj 2 ll� ,

al �
2i

2S 1 1
sin

µ
p

2l 1 1
2S 1 1

∂
,

where ll � ipT �2l 1 1���2S 1 1� [13]. Thus, the
Schwinger-Keldysh approach can be generalized for
arbitrary spin values in the same fashion as for S � 1�2
and S � 1.

In summary, we derived the technique applicable for
nonequilibrium dynamics of quantum spin systems. Un-
5634
like other techniques this approach takes into account the
constraint rigorously and allows one to treat spins on the
same footing as Fermi and Bose systems. The method de-
rived can be applied especially to problems where the local
constraint becomes important, e.g., quantum phase transi-
tion in clean and disordered magnets, spin glasses, Kondo
lattices, nonequilibrium Kondo systems, etc.
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One of the most interesting questions of physics of
heavy-fermion compounds is the competition between
Kondo screening of localized spins by conduction elec-
trons (CE) and ordering of these spins due to Ruder-
man–Kittel–Kasuya–Yosida (RKKY) interaction (see,
e.g., [1]). The screening is attributed to the Kondo
effect, viz., the resonance scattering of an electron on a
magnetic atom with simultaneous change of the spin
projection. In dilute alloys such scattering results in a
sharp resonance at the Fermi level with characteristic
energy width 

 

e

 

 ~ 

 

T

 

K

 

 ~ 

 

e

 

F

 

exp(–

 

α

 

–1

 

), where 

 

T

 

K

 

 is the
Kondo temperature, 

 

J

 

 is the coupling constant, 

 

ρ

 

 is the
density of states of CE at the Fermi level, and 

 

α

 

 = 

 

ρ

 

J

 

.
As was recently discussed (see, e.g., [2, 3]), such com-
petition can be responsible for the non-Fermi-liquid
behavior observed in some heavy-fermion compounds.
Most of such materials share two characteristics: prox-
imity to the magnetic region of an appropriate phase
diagram (usually temperature vs. pressure or chemical
composition) and disorder due to chemical substitution.
In many respects, the concentrated Kondo systems,
e.g., the lattice of magnetic atoms interacting with CE
“bath” [Kondo lattice (KL)], show striking similarities
to dilute Kondo systems. The Kondo temperature in
these systems is a characteristic crossover temperature
at which spins transform their local properties to some
itinerant Fermi-liquid behavior determining the low-
temperature regime of heavy-fermion compounds.
Non-Fermi-liquid behavior in a heavy-fermion system
is then mainly attributed to reducing the Kondo temper-
ature and possibly even suppressing it to zero. In turn,
the magnetic or spin glass (SG) transition can also be
suppressed due to the interplay between Kondo scatter-
ing and spin–spin interaction. Thus, such an interplay

 

1
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can result in a quantum phase transition [2] when both
Kondo and magnetic temperatures are equal to zero at
some finite doping. The role of chemical substitution in
this case is to “tune” the Fermi level of a metallic sys-
tem providing sharp Kondo resonance.

The problem of competition between the RKKY
and Kondo interactions in a clean system was studied
for the first time by Doniach [4] in the “Kondo neck-
lace” model. The transition typically takes place
between a paramagnetic metal and a magnetic (usually
AFM) metal. In this case, there are two possibilities:
the compound will have long-range magnetic order
when the RKKY interaction is sufficiently large com-
pared with the Kondo interaction, or the compound will
be paramagnetic due to the quenching of magnetic
moments of the rare earth atoms and the ground state
has the features of a Kondo-singlet state. Nevertheless,

in the region  ~ 

 

T

 

K

 

 the competition between mag-
netic and Kondo interactions results in a dramatic
change in the “naive” Doniach diagram (see [5]).
Namely, both Kondo and magnetic temperatures are
strongly suppressed and a spin-liquid state (e.g., of res-
onance valence bond type [6]) occurs.

The goal of this letter is to present some results con-
cerning the competition between the Kondo effect and
Ising-like SG transition, which is in many aspects sim-
ilar to the magnetic instability. We study mechanisms
of suppressing the SG transition and effects of screen-
ing in a disordered environment. In this paper, we con-
sider the high-temperature regime of the KL model. We
leave aside the issue of the ground-state properties and
especially the question whether the non-Fermi-liquid
behavior is a generic feature of vicinity to a quantum
phase transition for a future publication.
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The Hamiltonian of the KL model with additional
quenched randomness of exchange interaction between
localized spins is given by

(1)

The system under consideration is a periodic lattice of
magnetic atoms modeled by 

 

f

 

 orbitals interacting with
metallic background spin density operator 

 

s

 

i

 

 =

 

s

 

αα

 

'

 

c

 

i

 

α

 

'

 

. The first term in Hamiltonian (1)

describes the kinetic energy of CE, and the second
stands for the Kondo coupling (

 

J

 

 > 0). We denote 

 

n

 

i

 

 =

 

c

 

i

 

, 

 

σ

 

 as the CE density operator. The identity

 

N

 

i

 

 = 1 describes the half-filled 

 

f

 

-electron shell.
Quenched independent random variables 

 

I

 

ij

 

 with distri-

bution 

 

P

 

(

 

I

 

ij

 

) ~ exp(–

 

N

 

/2

 

I

 

2

 

) stand for direct spin–spin
interaction [7]. We assume that this random interaction
is of RKKY origin,

 

2

 

 namely, for 

 

d

 

-dimensional system

 

I

 

 ~ 

 

α

 

2

 

e

 

F

 

l

 

–

 

d

 

, where 

 

l

 

 

 

is the lattice constant in the mag-
netic sublattice. The magnetic effects can also be
included in our approach by introducing the nonzero
standard deviation 

 

∆

 

I

 

 =  into the distribution

 

P

 

(

 

I

 

ij

 

), which, in turn, can result in additional competi-
tion between SG and AFM (or, rarely, FM) states. For
simplicity, we neglect these effects in this letter and
concentrate on the interplay between the Kondo inter-
action and the effects of bond disorder. Since the indi-
rect RKKY interaction through CE is mostly deter-
mined by “fast” electrons with characteristic energies

 

e

 

 ~ 

 

e

 

F

 

 

 

@

 

 

 

T

 

K

 

, we also neglect the Kondo renormaliza-
tions of RKKY exchange.

As has been well known for a long time, the spin

 

S

 

 = 1/2 matrices can be exactly replaced by bilinear
combination of Fermi operators

Nevertheless, most fermionic representations of spin
are not free of constraint problem. For this reason, the
dimensionality of space in which these operators act is
always greater than the dimensionality of the spin
matrices. Elimination of unphysical states is a serious
problem which makes the diagrammatic techniques
quite complicated. Moreover, in most cases, the ana-

 

2

 

It has been pointed out in [8] that the presence of nonmagnetic
impurities makes the RKKY interaction a random interaction
even in the case of regular arrangement of magnetic moments.

HKL εkckσ
† ckσ

kσ
∑ J siSi

1
4
---niNi+ 

 
i

∑+=

– Iij Si
zS j

z λSi
+S j

–+( ).
ij

∑

1
2
--- ciα

†

ci σ,
†

σ∑

Iij
2

IRKKY

Si
z 1

2
--- f i↑

† f i↑ f i↓
† f i↓–( ),=

Si
+ f i↑

† f i↓= , Si
– f= i↓

†
f i↑ .

lytic continuation of Feynman diagrams becomes
extremely difficult. To avoid the main difficulties
related to constraint, the new representation for spin
operators was proposed in the long-forgotten paper of
Popov and Fedotov [9]. In this representation the parti-
tion function of the problem containing spin operators
(HS) can be easily expressed in terms of new fermions

with imaginary chemical potential ( ):

As a result, there is no constraint, the unphysical states
are eliminated, and the standard Matsubara–Abriko-
sov–Gor’kov diagrammatic technique is obtained [9–
11].

We sketch our derivation of the effective action and
of resulting mean-field equations for the KL model in
order to make explicit the approximations adopted and
the physics underlying these approximations. To con-
struct the path-integral representation for the partition

function, the new Grassmann variables   ,

ciσ  Ψiσ for CE with chemical potential µ and 

 , fiα  aiα for Popov–Fedotov spin operators
(S = 1/2) are introduced. The Euclidean action for the
KL model is given by

(2)

where the generalized Grassmann fields satisfy the fol-
lowing boundary conditions: Ψiα(β) = –Ψiα(0),

(β) = – (0), aiα(β) = iaiα(0), (β) = –i (0).

In this paper, we consider λ = 0, which corresponds
to the Sherrington–Kirkpatrik [12] spin-glass model.
Such an anisotropy of RKKY interaction can be associ-
ated, e.g., with lattice geometry. In the case of the Ising-
like model, the dynamical fluctuations in the spin sub-
system appear only due to the interaction with conduc-
tion electrons and, in the high temperature regime T ~
TSG, can be neglected. To study the influence of Kondo
scattering on the SG transition temperature TSG, we use

standard replica trick Ψi(τ)  (τ), ai(τ) 

(τ), a = 1, …, n. Then the free energy of the model

HS
f

ZS Tre
βHS–

iNTr β HS
f iπN f /2β+( )–{ } ,exp= =

N f f iσ
† f iσ, β

iσ
∑ 1/T .= =

ciα
† Ψiσ

f iα
†

aiσ

! τ Ψiα τ( ) ∂τ µ+( )Ψiα τ( )[
iα
∑


d

0

β

∫=

+ aiα τ( ) ∂τ iπT /2–( )aiα τ( ) ] Hint τ( )–




,

Ψiα Ψiα aiα aiα

v i
a

ϕ i
a
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can be calculated (see, e.g., [13]) by taking the formal
limit n  0 in

(3)

where !0 corresponds to noninteracting fermions.

As we already mentioned, to consider the competi-
tion between the Kondo scattering and the trend of dis-
order, we assume that the magnetic temperature

 ! T*, where T* stands for a characteristic tem-
perature corresponding to the Kondo temperature in the
lattice. This assumption allows one to decouple the

Kondo interaction term  = –  in

each site by the replica-dependent Hubbard–Stratonov-

ich field  [14]. Performing the average over the ran-
dom potential in (3) results in

(4)

with

The next step is to perform the Gaussian integration
over the replica-dependent Grassmann field v a describ-
ing CE and to decouple the eight-fermion term Tr[X2]
with the help of Q matrices (see details in [10]). As a
result, the partition function is given by

(5)

where &–1 is the inverse Green’s function for Popov–
Fedotov fermions depending on Matsubara frequencies

Zn〈 〉 av IijP Iij( ) D ϕ i σ,
a v i σ,

a[ ]∏d∫∏=

× !0 v a ϕa,[ ] τHint τ( )d

0

β

∫–
 
 
 

,exp

TRKKY
M

Hi
K J

2
--- v i σ,

a ϕ i σ,
a ϕ i σ',

a v i σ',
a

ψi
a

Zn〈 〉 av D v a ϕa ψa, ,[ ] !0
I2

4N
-------Tr X2[ ] ∫+





exp∫∏=

+ τ ψi
av iσ

a ϕ iσ
a ψi

a*ϕ iσ
a v iσ

a 2
J
--- ψi

a 2
–+

 
 
 

i a σ, ,
∑d

0

β

∫ 



Xab τ τ',( ) ϕ i σ,
a τ( )σϕ i σ,

a τ( )ϕ i σ',
b τ'( )σ'ϕ i σ',

b τ'( ).
σ σ',
∑

i

∑=

Zn〈 〉 av D Q[ ] 1
4
--- βI( )2NTr Q2[ ]∑–





exp∫=

+ D ϕa ψa,[ ]∑∫∏




ln
i

∑

× ϕ i σ,
a &a

1– ϕ iσ
a 1

2
--- βI( )2Tr QX[ ]+

ω{ }
∑

a

∑exp







,

ωn = 2πT(n + 1/4) (see details in [9]),

(6)

and G0(–i∇ , el) = (iel – ε(–i∇ ) + µ)–1 stands for the CE
Green’s function el = 2πT(l + 1/2).

We are still left with a term of fourth order residing
in Tr[QX] and cannot evaluate the Grassmann integral
directly. Consequently, a second decoupling is needed.
To perform it, we stress that we do not intend to deal
with dynamical behavior here and confine ourselves by
high temperature regime in the vicinity of the SG tran-
sition such that the lowest Matsubara frequency is suf-
ficient. Assuming this and recalling that the spatial fluc-
tuations are suppressed by the choice of infinite-range
interaction [12], one can consider Q as a constant sad-
dle-point matrix under condition Q = QT. The elements
of this matrix will later be determined self-consistently
from the saddle-point condition. Assuming that the ele-

ments of Q are  =  and  = q, one can decou-
ple the Tr[QX] term by introducing replica-independent
z and replica-dependent ya fields and map the KL prob-
lem with disorder onto an effective one-site interacting
spin system coupled to an external local replica-depen-
dent magnetic field:

(7)

where (z) denotes / exp(–z2/2)f(z),

(8)

and H(ya, z) = I z + I ya is the effective local

magnetic field. Note that the variable q = 〈 〉  corre-
sponds to the Edwards–Anderson SG order parameter
when the limit n  0 is taken. Nevertheless, the diag-
onal element  can be set to neither zero nor one, in
contrast to the classical Ising glass theory, because of
dynamical effects due to the interaction with the CE
bath. To take into account this interaction, we include a
replica-dependent magnetic field into the bare Green’s

function  = (iωn – σH(ya, z))–1 and perform the inte-

&a
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iωn1
δωn1

ωn2
, T ψi

a* el ωn1
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gration over Popov–Fedotov Grassmann variables with
the help of the expression

(9)

where Σ(ψa) = –T (e + )G0(–i∇ i, e) (e +

) depends on the variable ψ “responsible” for
Kondo interaction. Calculating the first term in expan-
sion (9), one gets the following expression for the effec-
tive “bosonic” action in the one-loop approximation:

(10)

The polarization operator Π in the limit T, H ! eF is
given by

(11)

When H = 0, the coefficient in front of |ψa|2 in Eq. (10)
changes its sign at T* ~ eFexp(–α–1). This is a manifes-
tation of the single-impurity Kondo effect (see, e.g.,
[14, 15]).

One can now perform the Gaussian integration over
ψa fields in Eq. (7) by the stationary phase method:

After the last step, namely, integration over replica-
dependent field ya, the limit n  0 can be taken. The
free energy per site f = β–1 1 – 〈Zn〉av)/nN is given

by

(12)

Tr &a
1– σH–( )ln 2 βH( )cosh( )ln=

+ Tr
1–( )m 1+

m
------------------- &0σ
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m 1=
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J
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n

∑
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=  β 1– G0 k ien iΩn+,( )&0σ ien H,( )
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ρ 0( )
eF

H2 π2β 2– /4+
-----------------------------------
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=  Tr 1 JΠ iΩn H ya z,( ),( )–[ ]ln–( ).exp

(
n 0→
lim

βf q̃ q,( ) 1
4
--- βI( )2 q̃2 q2–( )=

– 2 βH y z,( )( )cosh
1 JΠ 0 H y z,( ),( )–
---------------------------------------------

y

G

∫ 
 
 

.ln

z

G

∫

New equations for q,  are determined by conditions
∂f( , q)/∂  = 0, ∂f( , q)/∂q = 0:

(13)

Eqs. (12), (13) contain the key result of the paper. They
represent the solution of the KL problem with
quenched disorder on a replica symmetrical level. To
demonstrate some interesting physical effects
described by these equations, let us consider the case
T ~ TSG ≥ T* (Kondo high-temperature limit). Since
H(ya, z) is a dynamical variable, we break the paramet-
rical region of H to several pieces. First, when H @ T,
T*, the logarithm in Eq. (11) is cut by H and there are
no temperature-dependent Kondo corrections to the
mean field equations. This corresponds to the limit
T* ! I providing frozen spins and preventing them
from resonance scattering.3 Nevertheless, when T* ~ I,
the region H ≤ T becomes very important. We calculate
^ expanding the rhs of Eq. (12) up to (H/T)2:

(14)

We use the following shorthand notations: u = βI, γ =
2c/ln(T/T*), r2 =  – q, and C = 2cα/γ with c = π/4 +
2/π2 ~ 1. We note again that when J = 0, which corre-
sponds to the absence of Kondo interaction,

and the standard Sherrington–Kirkpatrik equation [12]
takes place, providing, e.g., an exact identity  = 1.

In the vicinity of the phase-transition point, Eq. (13)
reads

(15)

3 We also note that when T* @ I the SG transition does not happen.
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These equations describe a second-order transition in an
SG Ising-like Sherrington–Kirkpatrik4 system coupled
with a CE bath in the presence of Kondo scattering.
Taking the limit q  0, we estimate the temperature
of SG transition (TSG/I)2 = 1 – 4c/ln(TSG/T*) – … < 1.
Thus, the Kondo-scattering resonance results in depres-
sion of the SG-transition temperature due to the screen-
ing effects in the same way as magnetic moments and
one-site susceptibility are screened in the single-impu-
rity Eq. Kondo problem [15]. This screening shows up
at large time scale t ≥ 1/T* and affects both diagonal
and nondiagonal elements of the Q matrix. Moreover,

 becomes partially screened well above the SG tran-

sition point. Recalling that H ~ Iy , one can see that
our assumption H/T ≤ 1 is consistent with Eq. (15) even
if T ~ TSG. It is necessary to note that a growing SG
order parameter in Eqs. (10)–(11) suppresses the
Kondo effect and also provides a broader validity
domain for Eq. (15). We leave the self-consistent anal-
ysis of Eqs. (12), (15) for a future detailed publication.

In conclusion, we have considered the Kondo high-
temperature limit (in a sense of T > T*) of a KL model
with quenched disorder. We derived new mean field
equations for the SG transition in the presence of strong
Kondo scattering and have shown that the partial
screening of both diagonal and nondiagonal elements
of the Q matrix takes place. As a result, the temperature
of SG transition is strongly suppressed when Ising and
Kondo interactions are of the same order of magnitude.

We thank F. Bouis, B. Coqblin, K. Kikoin, and
P. Pfeuty for useful discussions. This work is supported
by the SFB410 (II-VI semiconductors). One of us

4 When an Ising system described by Eq. (1) with nearest neighbor
interaction is treated with the mean-field theory, equations identi-

cal to Eq. (13) are obtained with I replacing I, where Z is the
average number of neighbors.
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Abstract. We represent the generators of the SU(N) algebra as bilinear combinations of Fermi operators
with imaginary chemical potential. The distribution function, consisting of a minimal set of discrete imag-
inary chemical potentials, is introduced to satisfy the local constraints. This representation leads to the
conventional temperature diagram technique with standard Feynman codex, except that the Matsubara
frequencies are determined by neither integer nor half-integer numbers. The real-time Schwinger-Keldysh
formalism is formulated in the framework of complex equilibrium distribution functions for auxiliary semi-
fermionic fields. We discuss the continuous large N and SU(2) large spin limits. We illustrate the application
of this technique for magnetic and spin-liquid states of the Heisenberg model.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.10.Jm Quantized spin models –
75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.) –
71.10.Fd Lattice fermion models (Hubbard model, etc.)

Several approaches have been proposed for the descrip-
tion of spin systems in statistical physics. Methods of
functional integration based on various representation of
spin operators such as Fermi, Bose, Majorana, supersym-
metric or Hubbard operators [1–11] have been applied
to many problems involving quantum spins and pseu-
dospins [12–23]. The difficulty with the representation of
spin operators is connected with the fact that spins pos-
sess neither Fermi nor Bose statistics. The commutation
relations for spins are determined by the SU(2) algebra,
leading to the absence of a Wick theorem for SU(2) gen-
erators. The Gaudin [24] theorem existing instead makes
it impossible to construct a simple diagram technique
directly for spin operators. To resolve this problem, var-
ious representations [2–11] have been introduced. Never-
theless, the representation of spins as a bilinear combina-
tion of Fermi/Bose operators enlarges the dimensionality
of Hilbert space where these operators act. Thus, the spu-
rious (unphysical) states should be excluded from the con-
sideration resulting in a constraint requirement. Basically,
different representations cure the constraint problem in a
different way. Nevertheless, the usual price for simplicity
is the replacement of the local constraint on each point
containing the spins by a so-called global constraint, so
that the restriction is fulfilled only in the average over all
sites. It is known that such a replacement results in uncon-
trollable approximations for quantum spins (especially in
low dimensions). Although the use of a global constraint
is questionable for SU(2) systems, it becomes more rea-
sonable for higher SU(N) groups, especially in the “large
N limit”. The corresponding approach is known as “1/N

a e-mail: kiselev@physik.uni-wuerzburg.de

expansion”, [17–21] successfully describing the strong cou-
pling limits of the Kondo impurity [12], Anderson lat-
tice [13–15] and Hubbard [16] models and also SU(N)
Heisenberg antiferromagnets on a square lattice [17–22]
shedding light on the mechanism of high Tc supercon-
ductivity in cuprate compounds. Although SU(N = 2)
models are of primary physical interest, the SU(N 6= 2)
models can be considered as “approximate models” where
an “exact solution” can be gained in contrast to “exact
models” where the “approximate solution” is hard to ob-
tain [20,21]. The simplification arises due to expansion in
the inverse number of “flavors” 1/N , making it possible
to start with mean-field solution and systematically find
corrections to it.

The goal of this paper is to consider a semi-fermionic
representation for SU(N) generators for arbitrary (not
necessary large) N , applying a different idea of constraint
realization. This idea is know as Popov-Fedotov [25] rep-
resentation being initially proposed for S = 1/2 and S = 1
spins. Based on an exact representation of spin operators
as fermions with imaginary chemical potential, this repre-
sentation resulted in the conventional Feynman tempera-
ture diagram technique, nevertheless providing a rigorous
treatment of the local constraint [26–31]. In this paper we
give a generalization of this method to SU(N) and we also
construct the real-time formalism for the semi-fermionic
spin representation.

The SU(N) algebra is determined by the generators
obeying the following commutational relations:

[Ŝβα,iŜ
ρ
σj ] = δij(δραŜ

β
σi − δβσ Ŝ

ρ
αi) (1)
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a) b) c)

Fig. 1. (a) Rectangular Young tableau to denote a SU(N) rep-
resentation, (b) single column tableau corresponding to nc = 1
and (c) single row tableau standing for spin S = nc/2 repre-
sentation of SU(2) group.

where α, β = 1, ..., N . We adopt the definition of the
Cartan algebra [32] of the SU(N) group {Hα} = Sαα simi-
lar to the one used in [17], noting that the diagonal gener-
ators Sαα are not traceless. To ensure a vanishing trace, the
diagonal generators should only appear in combinations

N∑
α=1

sαS
α
α with

N∑
α=1

sα = 0 (2)

which effectively reduces the number of independent diag-
onal generators to N − 1 and the total number of SU(N)
generators to N2 − 1.

For SU(2) one recognizes the usual spin operators

S2
1 = S+, S1

2 = S−, S2
2 − S1

1 = 2Sz (3)

with the usual commutation relations [33] and the Pauli
matrices as generators of the SU(2) group. We shall not
confine ourself to some special type of Hamiltonian. Never-
theless, it’s worthwhile to mention that the SU(N) gener-
alization of the Heisenberg model is given by the following
expression [17,20,21]

H =
J

N

∑
〈ij〉

∑
αβ

Ŝβα(i)Ŝαβ (j). (4)

On each site, there may exist many particles, whose sym-
metry properties define a specific representation of SU(N).
The most transparent way to visualize an irreducible
SU(N) representation are Young tableaux [34,35]. Instead
of the general Young tableau, specified by N − 1 integers,
for example the lengths of the rows, we restrict us for
the main part of the paper to rectangular tableaux, with
1 ≤ m ≤ N rows and nc ≥ 1 columns, illustrated in
Figure 1.

The familiar spin is given by N = 2, m = 1, nc = 2S,
so the Young tableau contains one row of 2S length, with
only one box for S = 1/2. Also of special importance are
the tableaux with nc = 1, giving the N − 1 fundamental
representations of SU(N).

The Ŝαβ generator may be written as biquadratic form
in terms of Schwinger boson operators [22,33]:

Ŝαβ = b†αpb
βp (5)

and a constraint as follows

N∑
α=1

b†αpb
αq = δqpnc (6)

where p = 1, ...,m is the number of “colors”.
The equivalent fermionic representation of the gener-

ators of SU(N)[17] is given by

Ŝαβ =
∑
a

c†αac
βa (7)

where the “color” index a, b = 1, ..., nc and the nc(nc+1)/2
constraints

N∑
α=1

c†αac
αb = δbam (8)

restrict the Hilbert space to the states with m ∗ nc parti-
cles and ensure the characteristic symmetry in the color
index a. The antisymmetric behavior with respect to α is
a direct consequence of the fermionic representation.

Let us consider the partition function for the Hamil-
tonian, expressed in terms of SU(N) generators

ZS = Tr exp(−βHS). (9)

For SU(2) S = 1/2 and S = 1 it is possible to map the
spin partition function onto a fermionic partition func-
tion where the chemical potential of fermions is purely
imaginary [25]

ZS = A Tr exp (−β(HF − µNF)) = AZF (10)

with µ = −iπT/2 and A = insite for S = 1/2 and
µ = −iπT/3 and A = (i/

√
3)nsite for S = 1, nsite de-

notes the number of sites in a lattice. This results in usual
Feynman-like diagram technique built up with the help
of auxiliary Fermi (Grassmann) fields. The corresponding
Matsubara frequencies for Popov-Fedotov (PF) fermions
after applying the generalized Grassmann boundary con-
ditions [25] read as ωn = 2πT (n + 1/4) for S = 1/2 and
ωn = 2πT (n+1/3) for S = 1. The imaginary chemical po-
tentials are important for the realization of an exclusion
principle providing the fulfillment of the general identity

ZS = Tr exp(−βHS) = Tr exp(−βHF)δnF,1. (11)

The Popov-Fedotov representation has been generalized
for arbitrary values of spin S for the SU(2) group in [36] by
introducing the distribution of discrete chemical potentials
µ(j), with j being the site index, for PF fermions:

ZS =
∏
j

∫
dµ(j)P (µ(j))ZF(µ(j)). (12)
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For the SU(N) algebra we shall try to find the partition
function in a similar manner

ZS =
∫ ∏

j

dµ(j)P (µ(j))Tr exp (−β(HF − µ(j)nF))

=
∫ ∏

j

dµ(j)P (µ(j))ZF(µ(j)).

(13)

We use the path integral representation of the partition
function

ZS/Z
0
S =∫ ∏
j

dµ(j)P (µ(j)) exp(A)/
∫ ∏

j

dµ(j)P (µ(j)) exp(A0)

(14)

where the action A and A0 are determined by

A = A0 −
∫ β

0

dτHF(τ),

A0 =
∑
j

N∑
k=1

∫ β

0

dτāk(j, τ)(∂τ + µ(j))ak(j, τ) (15)

and the fermionic representation of SU(N) generators (7)
is applied.

To begin with we confine ourselves to two particular
cases of SU(N) with nc = 1 (corresponding to an effective
“spin size” S = 1/2 and in the language of Young tableaux
described by one column) and SU(2) for arbitrary value
of nc = 2S (one row Young tableau).

Let us first consider nc = 1. We denote the corre-
sponding distribution by PN,m(µ(j)), where m is the num-
ber of particles in the SU(N) orbital, or in other words,
1 ≤ m < N labels the different fundamental representa-
tions of SU(N).

nj =
N∑
k=1

āk(j)ak(j) = m. (16)

To satisfy this requirement, the minimal set of chemical
potentials and the corresponding form of PN,m(µ(j)) are
to be derived.

Let us classify the states in Fock and spin spaces. We
note that the dimension of the Fock space is dimHF = 2N
and spurious states should be excluded. Thus, there are
ν(N,m) = CmN = N !/(m!(N −m)!) physical states which
can be obtained from the vacuum state Φ0 = |0, ..., 0〉︸ ︷︷ ︸

N

as

follows

Φ
{ν}
phys = (

m∏
l=1

a†l )Φ0 (17)

or from the| 1, ..., 1︸ ︷︷ ︸
m

, 0, ..., 0︸ ︷︷ ︸
N−m

〉 state by transferring the oc-

cupied states from left to the right side using the group
generators.

To derive the distribution function we use the fol-
lowing identity for constraint (16) expressed in terms of
Grassmann variables

δnj ,m =
1
N

sin (π(nj −m)) / sin
(
π(nj −m)

N

)
· (18)

Substituting this identity into (11) and comparing with
(12) on gets

PN,m(µ(j)) =
1
N

N∑
k=1

exp
(

iπm
N

(2k − 1)
)
δ(µ(j) − µk)

(19)

where

µk = − iπT
N

(2k − 1). (20)

Since the Hamiltonian is symmetric under exchange of
particles and holes if the sign of the chemical potential is
changed simultaneously, we can simplify (19) to

PN,m(µ(j)) =
2i
N

bN/2c∑
k=1

sin
(
πm

2k − 1
N

)
δ(µ(j) − µk)

(21)

where bN/2c denotes the integer part of N/2. As the dis-
cussion below will show, this is the minimal represen-
tation of the distribution function corresponding to the
minimal set of the discrete imaginary chemical potentials.
Another distributions function different from (21) can be
constructed when the sum is taken from k = N/2 + 1 to
N . Nevertheless, this DF is different from (21) only by the
sign of imaginary chemical potentials µ̃k = µ∗k = −µk and
thus is supplementary to (21).

Particularly interesting for evenN is the case when the
SU(N) orbital is half-filled, m = N/2. Then all chemical
potentials are weighted with equal weight

PN,N/2(µ(j)) =
2i
N

N/2∑
k=1

(−1)k+1δ(µ(j)− µk). (22)

Taking the limit N →∞ one may replace the summation
in expression (22) in a suitable way by integration. Note,
that taking N → ∞ and m → ∞ we nevertheless keep
the ratio m/N = 1/2 fixed. Then, the following limiting
distribution function can be obtained:

PN,N/2(µ(j)) N→∞−→ β

2πi
exp

(
−βµ(j)

N

2

)
(23)

resulting in the usual continuous representation of the lo-
cal constraint for the simplest case nc = 1 (compare it
with (11))

ZS = Tr(exp (−βHF) δ(nj −
N

2
)) · (24)

We note the obvious similarity of the limiting DF (23)
with the Gibbs canonical distribution provided that the
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Wick rotation from the imaginary axis of the chemical
potential µ to the real axis of energies E is performed and
thus µ(j)N/2 has a meaning of energy.

Up to now the representation we discussed was purely
fermionic and expressed in terms of usual Grassmann vari-
ables when the path integral formalism is applied. The
only difference from slave fermionic approach is that imag-
inary chemical potentials are introduced to fulfill the con-
straint. Nevertheless, by making the replacement

ak(j, τ)) → ak(j, τ) exp
(

iπτ
β

2k − 1
N

)
āk(j, τ) → āk(j, τ) exp

(
− iπτ
β

2k − 1
N

)
(25)

we are coming to generalized Grassmann (semi-fermionic)
boundary conditions

ak(j, β) = ak(j, 0) exp
(
iπ 2k−1

N

)
āk(j, β) = āk(j, 0) exp

(
−iπ 2k−1

N

)
· (26)

This leads to a temperature diagram technique for Green
functions

Gαβ(j, τ) = −〈Tτaα(j, τ)āβ(j, 0)〉 (27)

of semi-fermions with Matsubara frequencies different
from both Fermi and Bose representations.

The minimal set of Matsubara frequencies ωn/(2πT )
forms for SU(N) with even N the triangle table shown in
Figure 2.

n+ 1

4

n + 1

8
n + 3

8

n+ 1

12
n+ 1

4
n+ 5

12

n+ 1

16
n+ 3

16
n + 5

16
n + 7

16

n + 1

20
n+ 3

20
n+ 1

4
n+ 7

20
n+ 9

20

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

n+ 1

2N
:::::::::::::::::::::::::::::::::::::::::::n + 1

2
(1� 1

N
)

Bose Fermi

n n+1/2

ωn

2πT

Fig. 2. The minimal set of Matsubara frequencies for SU(N)
representation with even N .

The exclusion principle for this case is illustrated on
Figure 3, where the first two groups SU(2) and SU(4) are
shown. The first point to observe is that the spin Hamil-
tonian does not distinguish the n particle and the n hole
(or N−n particle) subspace. Due to equation (20) the two
phase factors exp(βµn) and exp(βµ(N−n)) accompanying
these subspaces in equation (21) add up to a purely imag-
inary value within the same chemical potential, and the
empty and the fully occupied states are always canceled.

n=0

n=1

n=2

n=3

n=4 n=0

n=1 n=3

n=4

n=2

Re eβµn

Im eβµn

Re eβµn
Re eβµn

Im eβµn
Im eβµn

SU(4)

n=0

n=1

n=2

SU(2)

Fig. 3. Graphical representation of exclusion principle for
SU(N) semi-fermionic representation with even N , nc = 1 (we
use µ = iπT/2 for SU(2) and µ1 = iπT/4, µ2 = 3iπT/4 for
SU(4)).

In the case of N ≥ 4, where we have multiple chemical
potentials, the distribution function P (µ) linearly com-
bines these imaginary prefactors to select out the desired
physical subspace with particle number n = m.

In Figure 3, we note that on each picture the empty
and fully occupied states are canceled in their own unit
circle. For SU(2) there is a unique chemical potential µ =
±iπT/2 which results in the survival of single occupied
states. For SU(4) there are two chemical potentials (see
also Fig. 2). The cancellation of single and triple occupied
states is achieved with the help of proper weights for these
states in the distribution function whereas the states with
the occupation number 2 are doubled according to the
expression (22). In general, for SU(N) group with nc = 1
there exists N/2 circles providing the realization of the
exclusion principle.

We consider now the generalization of the SU(2) alge-
bra for the case of a large moment S with 2S + 1 projec-
tions. Here, the most convenient fermionic representation
is constructed with the help of a 2S+ 1 component Fermi
field ak(j) provided that the generators of SU(2) satisfy
the following equations

S+ =
S−1∑
k=−S

√
S(S + 1)− k(k + 1)a†k+1(j)ak(j)

S− =
S∑

k=−S+1

√
S(S + 1)− k(k − 1)a†k−1(j)ak(j)

Sz =
S∑

k=−S
ka†k(j)ak(j) (28)
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such that dimHF = 22S+1 whereas the constraint reads
as follows

nj =
k=S∑
k=−S

a†k(j)ak(j) = l = 1. (29)

We consider the distribution function for arbitrary l for
the sake of generality. It describes the orbital part of an
atomic subshell with orbital quantum number S, with l
particles present. We denote the corresponding distribu-
tion function of the chemical potential by P2S+1,l(µ(j)).
Following the same routine as for SU(N) generators and
using the occupancy condition to have l (or 2S + 1 − l)
states from the 2S + 1 states filled, one gets the following
distribution function, after using the particle-hole symme-
try of HS :

P2S+1,l(µ(j)) =
2i

2S + 1

×
bS+1/2c∑
k=1

sin
(
πl

2k − 1
2S + 1

)
δ(µ(j)− µk)

(30)

where the chemical potentials are µk = −iπT (2k −
1)/(2S + 1) and k = 1, ..., bS + 1/2c, similarly to
equation (20).

In the particular case of the SU(2) model with l = 1
for some chosen values of spin S the distribution functions
are determined by the following expressions

P2,1(µ(j)) = i δ(µ(j) +
iπT
2

) (31)

for S = 1/2

P3,1(µ(j)) = P3,2(µ(j)) =
i√
3
δ(µ(j) +

iπT
3

) (32)

for S = 1.
This result corresponds to the original Popov-Fedotov

description restricted to the S = 1/2 and S = 1 cases. We
present as an example some other distribution functions
obtained according to general scheme considered above:

P4,1(µ) = P4,3(µ)

=
i
√

2
4

(
δ(µ+

iπT
4

) + δ(µ+
3iπT

4

)
(33)

for S = 3/2, SU(2) and

P4,2(µ) =
i
2

(
δ(µ+

iπT
4

)− δ(µ+
3iπT

4
)
)

(34)

for effective spin “S = 1/2”, SU(4),

P5,1(µ) = P5,4(µ) =
i√
10

(√
1− 1√

5
δ(µ+

iπT
5

)

+

√
1 +

1√
5
δ(µ+

3iπT
5

)

)
(35)
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Fig. 4. The minimal set of Matsubara frequencies for SU(2)
representation for integer values of the spin and l = 1.

for S = 2, SU(2) etc.

A limiting distribution function corresponding to equa-
tion (23) for the constraint condition with arbitrary l is
given by

P∞,l(µ(j)) S→∞−→ β

2πi
exp(−βlµ(j)). (36)

For the case l = m = N/2→∞ and S = (N − 1)/2→∞
the expression for the limiting DF P∞,l(µ(j)) coincides
with (23). We note that in S →∞ (or N →∞) limit con-
tinuum chemical potentials play role of additional U(1)
fluctuating field whereas for finite S and N they are char-
acterized by fixed and discrete values.

When S assumes integer values, the minimal funda-
mental set of Matsubara frequencies is given by the table
in Figure 4.

The exclusion principle for SU(2) in the large spin limit
can be also understood with the help of Figure 3 and Fig-
ure 5. One can see that empty and fully occupied states are
canceled in each given circle similarly to even-N SU(N)
algebra. The particle-hole (PH) symmetry of the represen-
tation results in an equivalence of single occupied and 2S
occupied states whereas all the other states are canceled
due to proper weights in the distribution function (30). In
accordance with PH symmetry being preserved for each
value of the chemical potential all circle diagrams (see
Fig. 3, Fig. 5) are invariant with respect to simultaneous
change µ↔ −µ and nparticle ↔ nholes.

Let us make few comments concerning the general rect-
angular Young tableau of size nc∗m. The fermionic repre-
sentation (7) is characterized by an N ∗nc component field
with nc identical diagonal constraints and nc(nc−1)/2 off-
diagonal constraints (8). The effective “filling” determin-
ing the number of fermions on each site is mnc. However,
not all of these (ncN)!/((ncm)!((N − m)nc)!) states are
representing proper physical states. One should take into
account the constraints equation (8) to obtain the com-
plete set. The number of physical states of a rectangular
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Fig. 5. Graphical representation of exclusion principle for
SU(2) semi-fermionic representation for S = 1 and S = 2.
For any arbitrary integer value of spin there exists S circle
diagrams corresponding to the S different chemical potentials
and providing the realization of the exclusion principle.

Young tableau is given by the expression:

ν(N,m, nc) =

N−m︷ ︸︸ ︷
CmN+nc−1C

m
N+nc−2...C

m
m+nc

CmN−1C
m
N−2...C

m
m︸ ︷︷ ︸

N−m

=

nc︷ ︸︸ ︷
CmN+nc−1C

m
N+nc−2...C

m
N

Cmm+nc−1C
m
m+nc−2...C

m
m︸ ︷︷ ︸

nc

· (37)

While the diagonal part of equation (8) could be satisfied
with color-dependent chemical potentials µa(j), coupling
only to

∑
α c
†
αac

αa, an exclusion procedure for the off-
diagonal constraints needs either projection operators or
an a priori restriction on the trace, using e.g. coherent
states [17].

Another generalization is applicable for a broader
range of cases. The general Young tableau (not necessarily
rectangular), representing any irreducible representation
(p), can be described in the context of our approach in
the following way. The generators S(p)

m are expressed as
matrices

(S(p)
m )βα = 〈ψ(p)

β |T (k)×(l)
m |ψ(p)

α 〉 (38)

with T (k)×(l)
m = T

(k)
m + T

(l)
m being the generators in a suit-

able direct product of representations (k) and (l) and the
states |ψ(p)

α 〉 are obtained in terms of Clebsch-Gordon co-
efficients

|ψ(p)
α 〉 =

∑
µ,ν

(k, l;µ, ν|p;α)|ψ(k)
µ 〉 × |ψ(l)

ν 〉 · (39)

This procedure can be iterated until (k) and (l) are fun-
damental irreducible representations of SU(N). The size
of the matrices S(p)

m is equal to the dimension of the repre-
sentation, ν(p). The trace is now easily expressed in terms
of ν(p) fermionic fields, enforcing the constraint δnj ,1 with
the distribution of chemical potentials (see Eq. (21))

Pν(p),1(µ(j)) =
2i
ν(p)

bν(p)/2c∑
k=1

sin
(
π

2k − 1
ν(p)

)
δ(µ(j)− µk).

(40)

For the simple case of SU(2), which yields only single-row
tableaux, this procedure gives the fermionic representa-
tion described in equations (28–30). In the case of single-
column tableaux for SU(N), however, and in the general
case of mixed symmetry, it does not fully use the fermionic
commutation properties. Therefore, it is in general not the
representation with the minimal number of fermions and
the minimal number of chemical potentials in P (µ).

We discuss finally the real-time formalism based on
the semi-fermionic representation of SU(N) generators.
This approach is necessary for treating the systems be-
ing out of equilibrium, especially for many component
systems describing Fermi (Bose) quasiparticles interact-
ing with spins. The real time formalism is also an alterna-
tive approach for the analytical continuation method for
equilibrium problems allowing direct calculations of cor-
relators whose analytical properties as function of many
complex arguments can be quite cumbersome.

A long time ago Keldysh [38] and Schwinger [39] have
proposed a novel approach for the description of kinetic
phenomena in metals. This approach was found espe-
cially fruitful for normal metals [40], and, in many re-
cent applications, for superconductors [41], for disordered
interacting (normal or superconducting) electron liq-
uids [42] for example. The previous application of the real-
time formalism to the quantum theory of Bose-Einstein
condensation (BEC) [45] allowed the derivation of a
Fokker-Planck equation, which describes both kinetic and
coherent stages of BEC. Moreover [46] developed the
closed-time path integral formalism for aging effects in
quantum disordered systems being in contact with an en-
vironment. The Keldysh technique in application to dis-
ordered systems (see [42–44] and [47,48]) has also been
recently applied to develop a field theory alternative to
the previously used replica technique.

To derive the real-time formalism for SU(N) gen-
erators we use the path integral representation along
the closed time Keldysh contour (see Fig. 6). Following
the standard route [49] we can express the partition
function of the problem containing SU(N) generators
as a path integral over Grassmann variables ψl =
(al,1(j), ..., al,N (j))T where l = 1, 2 stands for upper and
lower parts of the Keldysh contour, respectively,

Z/Z0 =
∫

Dψ̄Dψ exp(iA)/
∫

Dψ̄Dψ exp(iA0) (41)

where the actions A and A0 are taken as an integral
along the closed-time contour Ct + Cτ which is shown



M.N. Kiselev et al.: Semi-fermionic representation of SU(N) Hamiltonians 59
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Fig. 6. The Keldysh contour going from −∞ → ∞ → −∞
in real time. The boundary conditions on the imaginary time
segment determine the generalized distribution functions for
quasiparticles.

in Figure 6. The contour is closed at t = −∞ + iτ
since exp(−βH0) = Tτ exp

(
−
∫ β

0 H0dτ
)

. We denote the
ψ fields on upper and lower sides of the contour Ct as ψ1

and ψ2 respectively. The fields Ψ stand for the contour
Cτ . These fields provide matching conditions for ψ1,2 and
are excluded from final expressions. Taking into account
the semi-fermionic boundary conditions for generalized
Grassmann fields (26) one gets the matching conditions
for ψ1,2 at t = ±∞,

ψµ1,α|k(−∞) = exp
(

iπ
2k − 1
N

)
ψµ2,α|k(−∞)

ψµ1,α|k(+∞) = ψµ2,α|k(+∞) (42)

for k = 1, ..., bN/2c and α = 1, ..., N . The correlation
functions can be represented as functional derivatives of
the generating functional

Z[η] = Z−1
0

∫
Dψ̄Dψ exp

(
iA+ i

∮
C

dt(η̄σzψ + ψ̄σzη)
)

(43)

where η represents sources and the σz matrix stands for
“causal” and “anti-causal” orderings along the contour.

The on-site Green’s functions (GF) which are matrices
of size 2N ×2N with respect to both Keldysh (lower) and
spin-color (upper) indices are given by

Gαβµν (t, t′) = −i
δ

iδη̄αµ(t)
δ

iδηβν (t′)
Z[η]|η̄,η→0. (44)

To distinguish between imaginary-time (27) and real-
time (44) GF’s we use different notations for Green’s func-
tions in these representations.

After a standard shift-transformation [49] of fields ψ
the Keldysh GF of free semi-fermions assumes the form

Gα0 (ε) = GR,α0

(
1− fε −fε
1− fε −fε

)
−GA,α0

(
−fε −fε

1− fε 1− fε

)
where the retarded and advanced GF’s are

G
(R,A)α
0 (ε) = (ε± iδ)−1, fε = f (N,k)(ε) (45)

with equilibrium distribution functions

f (N,k)(ε) = T
∑
n

eiωnkτ |+0

iωnk − ε
=

1
eiπ(2k−1)/N exp(βε) + 1

·

(46)

A straightforward calculation of f (N,k) for the case of even
N leads to the following expression

f (N,k)(ε) =
N∑
l=1

(−1)l−1 exp (βε(N − l)) exp
(
− iπl(2k − 1)

N

)
exp(Nβε) + 1

, (47)

where k = 1, ..., N/2.
The equilibrium distribution functions (EDF)

f (2S+1,k) for the auxiliary Fermi-fields representing
arbitrary S for SU(2) algebra are given by

f (2S+1,k)(ε) =
2S+1∑
l=1

(−1)l−1 exp (βε(2S + 1− l)) exp
(
− iπ(2k − 1)

2S + 1

)
exp((2S + 1)βε) + (−1)2S+1

(48)

for k = 1, ..., bS + 1/2c. Particularly simple are the cases
of S = 1/2 and S = 1,

f (2,1)(ε) = nF(2ε)− i
1

2 cosh(βε)

f (3,1)(ε) =
1
2
nB(ε)− 3

2
nB(3ε)− i

√
3

sinh(βε/2)
sinh(3βε/2)

· (49)

Here, standard notations for Fermi/Bose distribution
functions nF/B(ε) = [exp(βε)± 1]−1 are used.

In general the EDF for half-integer and integer spins
can be expressed in terms of Fermi and Bose EDF respec-
tively. We note that since auxiliary Fermi fields introduced
for the representation of SU(N) generators do not repre-
sent the true quasiparticles of the problem, helping only
to treat properly the constraint condition, the distribution
functions for these objects in general do not have to be real
functions. Nevertheless, one can prove that the imaginary
part of the EDF does not affect the physical correlators
and can be eliminated by introducing an infinitesimally
small real part for the chemical potential. In spin prob-
lems, a uniform/staggered magnetic field usually plays the
role of such real chemical potential for semi-fermions.

Let us illustrate the application of the semi-fermionic
formalism for spin Hamiltonians. As an example we con-
sider the SU(2) Heisenberg model for S = 1/2 with the
nearest neighbor interaction

Hint = −
∑
〈ij〉

JijSiSj . (50)
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Fig. 7. First few graphs for the free energy expanded with
respect to local molecular magnetic field. Solid line stands for
semi-fermions. Zig-zag line denotes the “condensate” field.

We start with imaginary-time semi-fermionic description
of the ferromagnetic (FM) state of the Heisenberg model
(J > 0). We follow the standard procedure developed in
the original paper of Popov and Fedotov [25]. After apply-
ing the Hubbard-Stratonovich transformation to decouple
the four-semi-fermion term in (50) by the local vector field
Φi(τ) the effective action is obtained:

AFM
eff [ψ,Φ] = Ã0[ψ,Φ]

− 1
4

∫ β

0

dτ
∑
q

(IFM(q))−1Φq(τ)Φq(τ) (51)

where ψT = (ψ↑ψ↓) - fields denoting the semi-fermions in
SU(2) representation of the S = 1/2 spin operators,

I(q) = IFM(q) =
1
N

∑
rij

IFM(rij)eiqr (52)

and I(0) = ZJ > 0 for the FM instability (here Z de-
notes the number of the nearest neighbors, N stands for
the number of unit cells). The FM phase transition cor-
responds to appearance at T = Tc of the nonzero average
〈Φz(0, 0)〉 which stands for nonzero uniform magnetiza-
tion, or by another words, corresponds to the Bose con-
densation of the field Φz .

Splitting the field Φz on the time-independent spatially
homogeneous (uniform) part and the fluctuating filed Φ̃z

Φz(k, ω) =M(βN)1/2δk,0δω,0 + Φ̃z(k, ω) (53)

make it possible to integrate over all semi-fermionic fields.
As a result, the nonpolynomial effective action can be de-
rived for the FM Heisenberg model

Aeff = A0[Φ] + Tr ln
(
G−1
σ (Φz , Φ±)

)
(54)

where Gσ = −〈Tτψσ(j, τ)ψ̄σ(j, 0〉 stands for the local
Green’s function of semi-fermions. The expansion of the
Tr lnG−1

σ with respect to Φ fields results in standard
Ginzburg-Landau functional (see Fig. 7). The effects of
molecular field are included into zero approximation for
GF:

G0
σ(iωn) = [iωn + σzσσM/2]−1.

In one loop approximation the standard molecular field
equation can be reproduced

M = IFM(0) tanh(βM/2). (55)

The saddle point (mean-field) effective action is given by
well-known expression

A0[M] = −N
[
βM2

4IM(0)
− ln

(
2 cosh

(
βM

2

))]
(56)

and the free energy per spin f0 (see Fig. 7) is determined
by standard equation:

βf0 = − lnZS =
βM2

4IM(0)
− ln

(
2 cosh

(
βM

2

))
· (57)

Calculation of the second variation of Aeff gives rise to the
following expression

δAeff =− 1
4

∑
k

Φz(k, 0)
[
I−1
M (k)− β

2 cosh2(βΩ)

]
Φz(k, 0)

− 1
4

∑
k,ω 6=0

I−1
M (k)Φz(k, ω)Φz(k, ω)

−
∑
k,ω

Φ+(k, ω)
[
I−1
M (k)− tanh(βΩ)

2Ω − iω

]
Φ−(k, ω)

(58)

where Ω = (gµBH +M)/2. For T > Tc one easily ob-
tains the effective static spin-spin interaction equivalent to
those given by the Random Phase Approximation (RPA)

Γ (q, 0) = 〈Φ(q, 0)Φ(−q, 0)〉 = 2I(q)/(1− 2χ0I(q)),

where χ+−
0 (q, 0) = 2χzz0 (q, 0) = 2χ0 = 2S(S + 1)β/3

stands for the on-site spin susceptibility in paramagnetic
state.

Let us now consider the Heisenberg model with antifer-
romagnetic (AFM) sign of the exchange integral (J < 0).

AAFM
eff [ψ,Φ] = Ã0[ψ,Φ]

+
1
4

∫ β

0

dτ
∑
q

(IAFM(q))−1Φq(τ)Φq(τ)

(59)

and I(Q) = ZJ < 0 for the AFM instability correspond-
ing to vector Q = (π, ..., π) (we consider the hypercubic
lattice for simplicity). In contrast to the FM case, we can
now represent the longitudinal component of the field Φz

as a superposition of the staggered time-independent part
(“staggered condensate”) and a fluctuating field

Φz(k, ω) = N (βN)1/2δk,Qδω,0 + Φ̃z(k, ω). (60)

As a result, the integration over semi-fermionic fields can
be done explicitly. Introducing two sublattices for ψ fields
one gets 4 × 4 matrix structure for the semi-fermionic
Green’s functions. Since the AFM instability is associated
with appearance of a nonzero staggered magnetization N ,
it is necessary to take into account both “normal” and
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“anomalous” GF determined as follows:

G0
σ(iωn) = −

∫ β

0

dτeiωnτ 〈Tτψσ(k, τ)ψ̄σ(k, 0)〉

= − iωn
ω2
n + Ω̃2

(61)

F0
σ(iωn) = −

∫ β

0

dτeiωnτ 〈Tτψσ(k, τ)ψ̄σ(k +Q, 0)〉

= − Ω̃σzσσ
ω2
n + Ω̃2

· (62)

where Ω̃ = (N + gµBh)/2. Integrating over all semi-
fermions one obtains the mean-field equation for the stag-
gered magnetization:

N = −IAFM(Q) tanh(βN/2) (63)

and

A0[N ] = N

[
βN 2

4IM(Q)
+ ln

(
2 cosh

(
βN
2

))]
· (64)

After taking into account the second variation of Aeff the
following expression for the effective action is obtained
(see e.g. [56,57]):

δAeff =
1
4

∑
k

Φz(k, 0)
[
I−1
M (k) +

β

2 cosh2(βΩ̃)

]
Φz(k, 0)

+
1
4

∑
k,ω 6=0

I−1
M (k)Φz(k, ω)Φz(k, ω)

+
∑
k,ω

Φ+(k, ω)

[
I−1
M (k)+

2Ω̃ tanh(βΩ̃)
4Ω̃2+ω2

]
Φ−(k, ω)

−
∑
k,ω

Φ+(k +Q, ω)
iω

4Ω̃2 + ω2
Φ−(k, ω). (65)

The application of the Schwinger-Keldysh formalism for
the Heisenberg model is straightforward. Applying the
semi-fermionic transformation to the partition function
one obtains the action as an integral along the closed-time
Keldysh-contour

A = A0 +Aint = A0 +
∮
C

dt
∑
q

J(q)Sq(t)S−q(t) (66)

where A0 corresponds to noninteracting semi-fermions

A0 =
∮
C

dt
∑
i

ψ̄i

(
(GR,α0 )−1 0

0 (GA,α0 )−1

)
ψi. (67)

We denote Jq=J
∑
〈l〉e

iql, νq=Jq/J0 and apply four-
component semi-fermionic representation for FM case
and eight-component representation with ψT=(ψ̃Tk ψ̃

T
k+Q)

for the AFM case. Performing the standard Hubbard-
Stratonovich transformation along the Keldysh contour

�
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a) b)

Fig. 8. Feynman diagrams contributing to dispersion (a) and
damping (b) of magnons. Solid line denotes semi-fermions.

with the help of the two-Keldysh-component vector (Bose)
field Φ, one gets

Aint = −1
2

Tr(ΦTqJ
−1
q σzΦq) + Tr(ψ̄Φµσγµψ). (68)

Now we integrate out ψ fields and express the effective
action in terms of Φ fields

Aeff = −1
2

Tr(ΦTqJ
−1
q σzΦq) + Tr ln

(
G−1

0 +Φµσγµ
)

where γµ=(σz ± 1)/2 acts in Keldysh space. Since in gen-
eral Φ is a time- and space-dependent fluctuating field
the partition function (41) cannot be evaluated exactly.
Nevertheless, when a magnetic instability occurs, we can
represent the longitudinal component of this field as a su-
perposition of a uniform (FM) or staggered (AFM) time-
independent part and a fluctuating field

Φzµ(q, ω) = condensate + φzµ(q, ω), (69)

where Φ±µ (q, ω) = φ±µ (q, ω) with the matching conditions
at t = ±∞

φα1 (−∞) = φα2 (−∞), φα1 (+∞) = φα2 (+∞). (70)

We expand Tr ln(G−1
0 + φµσγµ) in accordance with

Tr ln(...) = Tr lnG−1
0 + Tr

∞∑
n=1

(−1)n+1

n
(G0φµσγ

µ)n.

(71)

The spectrum of the excitations (FM or AFM magnons)
can be defined as poles of the transverse GF

D+−
x,t = D(x, t) = −i〈TCφ+

1 (x, t)φ−1 (0, 0)〉·

The procedure of the calculation of this GF is similar to
that for a “fermionic” GF. Introducing the sources and
evaluating (71) one gets

D0(ω) = DR
0

(
1 +Nω Nω
1 +Nω Nω

)
−DA

0

(
Nω Nω

1 +Nω 1 +Nω

)
where the retarded and advanced magnons GF’s are

DR,A(q, ω) = (ω − ω(q)± iδ)−1, Nω = (exp(βω)− 1)−1.
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The magnon spectrum is determined by the zeros of the
determinant of J−1

q −Π+−
2 (ω) (see Fig. 8a) in equilibrium

ωq = J0M(1− νq)⇒ λq2, (72)

for FM magnons and

ωq = |J0|N
√

1− ν2
q ⇒ c|q|, (73)

for AFM magnons. The uniform and staggered magnetiza-
tion are given by equations (55) and (63) correspondingly.

The magnon damping is defined by four-magnon pro-
cesses Π+−+−

4 , shown in Figure 8b. The derivation of the
kinetic equation and calculation of magnon damping is
reserved here for a detailed publication.

We consider now the second possibility to decouple
the four-fermion term in the Heisenberg model with the
antiferromagnetic sign of spin-spin interaction which can
be written in a form equivalent to (50):

Hint =
1
2

∑
〈ij〉

Jijψ
†
iψjψ

†
jψi +

1
4

∑
〈ij〉

Jijρiρj . (74)

Last term in the Hamiltonian (74) describes the fluctua-
tions of semi-fermionic density ρi = ψ†iψi and therefore
is irrelevant for our calculations. In contrast to descrip-
tion of the local correlations achieved with the help of the
local vector bosonic field we introduce now the bi-local
scalar bosonic field Λij depending on two sites and re-
sponsible for inter-site semi-fermionic correlations. Defin-
ing new coordinates R=(Ri+Rj)/2, r=Ri−Rj and ap-
plying a Fourier transformation we obtain the effective
action

Aeff = −1
2

Tr(ΛTPq1J
−1
q1−q2

σzΛPq2) + Tr ln
(
G−1

0 − Λµγµ
)
.

This effective action describes the nonequilibrium quan-
tum spin-liquid (SL). We confine ourselves to consider the
uniform phase [50,51,54,55] of Resonant Valence Bonds
(RVB) in 2D antiferromagnets. It is suitable to rewrite
the functional in new variables, namely the amplitude ∆
and the phase Θ = rA(R), according to formula

Λ〈ij〉µ (R, r) = ∆(r)Jγµ exp (irAµ(R)) . (75)

The exponent in (75) stands for gauge fluctuations to be
taken in eikonal approximation. As a result, the effective
action can be written in continuum limit in terms of the
gauge fields Aα as follows:

Aeff =
∮
C

dt
∫

dkAα(k, t)παβAβ(k, t). (76)

The spectrum of excitations in the uniform SL is defined
by the zeros of current-current correlation function [30]

πR,αβq,ω = Tr(pαpβ(GRp+qG
K
p +GKp+qG

A
p ) + δαβf(Jp∆))

in equilibrium [52,53] and is purely diffusive (see e.g. [50])

ω = iJ∆|q|3, ∆ = −
∑
q

ν(q) tanh
(
Jq∆

T

)
· (77)

We denote GK an off-diagonal element (Keldysh compo-
nent) of semi-fermionic GF in triangular representation,
provided that

GK0 (ε) = −i2πδ(ε± h)[B1/2(βε)± i sech(βε)]

is expressed in terms of a Brillouin function B1/2 contain-
ing correct information about occupied states. The equa-
tion of motion for GK generally constitutes the quantum
kinetic equation.

The quantum kinetic equation for nonequilibrium spin
RVB-liquids can be obtained by taking into account the
higher order diagrams similarly to Figure 8b with current-
like vertices and will be presented elsewhere.

We discuss now briefly some possible applications
of the imaginary-time and real-time Schwinger-Keldysh
semi-fermionic formalism developed for SU(N) Hamilto-
nians for solution of the condensed matter physics prob-
lems. The Keldysh technique in application to disor-
dered systems attracts a constant interest (see [42–46])
as an alternative approach to the replica technique. The
main advantage of the closed-time contour calculations
is an automatic normalization (disorder independent) of
the partition function (see [42]). The application of real-
time Schwinger-Keldysh approach allows one to study the
quantum dynamics of disordered systems being out of
equilibrium. We note, that the formalism developed in
the present paper is also a very promising tool for de-
scription of a quantum phase transitions (magnetic, spin-
glass etc.) in SU(N) models (see [58,59]) Another possible
application of the semi-fermionic SU(N) representation
is the description of paramagnet-(ferro) antiferromag-
net or paramagnet-spin liquid transitions in equilibrium
and nonequilibrium strongly correlated electron systems
(see [60,61]). The nonlinear spin waves in strongly cor-
related local-itinerant magnets and the kinetic properties
of the nonequilibrium spin liquid are also possible prob-
lems to be considered with the method proposed. The
third interesting example of the application of the semi-
fermionic formalism is the Kondo systems [62], for exam-
ple the Kondo lattice model usually used for interpreta-
tion of an exotic properties of heavy-fermion compounds
or the nonequilibrium Kondo-systems in semiconducting
hetero-structures (see e.g. [63–66]). The main advantage
of the semi-fermionic representation in applications to the
strongly correlated systems in comparison with another
methods is that the local constraint is taken into account
exactly and the usual Feynman diagrammatic codex for
the composite itinerant-local compound is applicable.

Summarizing, we constructed a general scheme for the
semi-fermionic representation for generators of the SU(N)
algebra. A representation for the partition function is
found both in imaginary and real time. The approach de-
veloped leads to the standard diagram technique for Fermi
operators, although the constraint is taken into account
rigorously. The method proposed allows to treat SU(N)
generators on the same footing as Fermi and Bose systems.
The technique derived can be helpful for the description
of quantum systems in the vicinity of a quantum phase
transition point and for nonequilibrium systems.
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Resonance Kondo tunneling through a double quantum dot at finite bias
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It is shown that the resonance Kondo tunneling through a double quantum dot~DQD! with evenoccupation
andsingletground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation.
Using the renormalization group technique we derive scaling equations and calculate the differential conduc-
tance as a function of an auxiliary dc bias for parallel DQD described by SO(4) symmetry. We analyze the
decoherence effects associated with the triplet/singlet relaxation in DQD and discuss the shape of differential
conductance line as a function of dc bias and temperature.
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I. INTRODUCTION

Many fascinating collective effects, which exist
strongly correlated electron systems~metallic compounds
containing transition and rare-earth elements! may be ob-
served also in artificial nanosize devices~quantum wells,
quantum dots, etc.!. Moreover, fabricated nanoobjects pr
vide unique possibility to create such conditions for obser
tion of many-particle phenomena, which by no means m
be reached in ‘‘natural’’ conditions. Kondo effect~KE! is one
of such phenomena. It was found theoretically1,2 and ob-
served experimentally3–5 that the charge-spin separation
low-energy excitation spectrum of quantum dots un
strong Coulomb blockade manifests itself as a resona
Kondo-type tunneling through a dot with odd electron occ
pationN ~one unpaired spinS51/2). This resonance tunne
ing through a quantum dot connecting two metallic res
voirs ~leads! is an analog of resonance spin scattering
metals with magnetic impurities. A Kondo-type tunnelin
arises under conditions which do not exist in conventio
metallic compounds. The KE emerges as a dynamical p
nomenon in strong time dependent electric field,6–10 it may
arise at finite frequency under light illumination.11–13 Even
the net zero spin of isolated quantum dot~evenN) is not an
obstacle for the resonance Kondo tunneling. In this cas
may be observed in double quantum dots~DQD! arranged in
parallel geometry,14 in T-shaped DQD,14–16 in two-level
single dots17,18 or induced by strong magnetic field19–22

whereas in conventional metals magnetic field only s
presses the Kondo scattering. The latter effect was also
covered experimentally.23–25

One of the most challenging options in Kondo physics
quantum dots is the possibility of controlling the Kondo e
fect by creating the nonequilibrium reservoir of fermion
excitations by means of strong biaseV@TK applied between
the leads26 (TK is the equilibrium Kondo temperature whic
determines the energy scale of low-energy spin excitation
a quantum dot!. However, in this case the decoherence
fects may prevent the formation of a full scale Kondo re
nance~see, e.g., discussion in Refs. 27–29!. It was argued in
recent disputes that the processes, associated with the
current through a dot with oddN may destroy the coherenc
0163-1829/2003/68~15!/155323~9!/$20.00 68 1553
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on an energy scaleG@TK and thus prevent formation of
ground state Kondo singlet, so that only the weak coupl
Kondo regime is possible in strongly nonequilibrium cond
tions.

In the present paper we discuss Kondo tunneling thro
DQD with evenN, whose ground state is a spin singletuS&.
It will be shown that the Kondo tunneling throughexcited
triplet stateuT& arises at finiteeV. In this case the ground
state is stable against any kind of spin-flip processes indu
by external current, the decoherence effects develop onl
the intermediate~virtual! triplet state, and the estimates o
decoherence rate should be revisited.

As was noticed in Ref. 15, quantum dots with evenN
possess the dynamical symmetrySO(4) of spin rotator in
the Kondo tunneling regime, provided the low-energy part
excitation spectrum is formed by a singlet-triplet~ST! pair,
and all other excitations are separated from the ST mani
by a gap noticeably exceeding the tunneling rateg. A DQD
with evenN in a side-bound~T-shape! configuration where
two wells are coupled by the tunnelingv and only one of
them~say,l ) is coupled to metallic leads (L,R) is a simplest
system satisfying this condition.15 Such system was realize
experimentally in Ref. 30. Novel features introduced by t
dynamical symmetry in Kondo tunneling are connected w
the fact that unlike the case of conventionalSU(2) symme-
try of spin vectorS, theSO(4) group possesses two gener
tors S andP. The latter vector describes transitions betwe
singlet and triplet states of spin manifold~this vector is an
analog of Runge-Lenz vector describing the hidden symm
try of hydrogen atom!. As was shown in Ref. 14, this vecto
alone is responsible for Kondo tunneling through quant
dot with evenN induced by external magnetic field.

Another manifestation of dynamical symmetry peculiar
DQDs with evenN is revealed in this paper. It is shown th
in the case when the ground state is singletuS& and the S/T
gapd@TK , a Kondo resonance channel arises under a str
bias eV comparable withd. The channel opens atueV2du
,TK , and the tunneling is determined by thenondiagonal
componentJST5^TuJuS& of effective exchange induced b
the electron tunneling through DQD@see Fig. 1 ~right
panel!#.
©2003 The American Physical Society23-1
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II. COTUNNELING HAMILTONIAN OF T-SHAPED DQD

The basic properties of symmetric DQD occupied by ev
number of electronsN52n under strong Coulomb blockad
in each well are manifested already in the simplest casn
51, which is considered below. Such DQD is an artific
analog of a hydrogen molecule H2. If the interwell Coulomb
blockadeQ is strong enough, one hasN5nl1nr , nl5nr
51, the lowest states of DQD are singlet and triplet and
next levels are separated from ST pair by a charge tran
gap;Q. We assume that both wells are neutral atnl ,r51.
Then the effective interwell exchangeI responsible for the
singlet-triplet splitting arises because of tunnelingv between
two wells, I 5v2/Q5d. It is convenient to write the effec
tive spin Hamiltonian of isolated DQD in the form

Hd5ESUSL K SU1(
h

ETUThL K ThU[ (
L5S,Th

ELXLL,

~1!

where XLL85uL&^L8u is a Hubbard configuration chang
operator~see, e.g., Ref. 31!, ET5ES1d, h56,0 are three
projections ofS51 vector. Two other terms completing th
Anderson Hamiltonian, which describes the system show
Fig. 1 ~left panel!, are

Hb1Ht5(
kas

ekackas
† ckas1(

Ll
(
kas

~Ws
Llckas

† XlL1H.c.!.

~2!

The first term describes metallic electrons in the leads
the second one stands for tunneling between the leads
the DQD. Herea5L,R marks electrons in the left and righ
lead, respectively, the biaseV is applied to the left lead, so
that the chemical potentials aremFL5mFR1eV, Ws

Ll is the
tunneling amplitude for the welll ~left!, ul& are one-electron
states of DQD, which arises after escape of an electron w
spin projections from DQD in a stateuL&.

We solve the problem in a Schrieffer-Wolff~SW! limit,31

when the activation energiesuEL2El2mFau and Coulomb
blockade energyQ are essentially larger then the tunnelin
rate g, and charge fluctuations are completely suppres
both in the ground and excited state of DQD. In this lim
one may start with the SW transformation, which proje
out charge excitations. We confine ourselves with the b
eV&d!D, where D is the width of the electrons in th
leads, so the leads are considered in the SW transforma
as two independent quasi equilibrium reservoirs~see Refs.

FIG. 1. Left panel: Double quantum dot in a side-bound co
figuration. Right panel: cotunneling processes in biased DQD
sponsible for the resonance Kondo tunneling.
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8,9!. As is shown in Ref. 15, the SW transformation bei
applied to a spin rotator results in the following effectiv
spin Hamiltonian

H int5(
aa8

@~Jaa8
TT S1Jaa8

ST P!•saa81Jaa8
SS XSSnaa8#. ~3!

Here saa85(kk8ckas
† t̂ck8a8s8 , naa85(kk8ckas

† 1̂ck8a8s , t̂,

1̂ are the Pauli matrices and unity matrix, respectively. T
effective exchange constants are

Jaa8
LL8'

Ws
LlWs*

lL8

2 S 1

eFa2ES/2
1

1

eFa82ES/2
D .

In this approximation the small differences between sing

and triplet states are neglected. In addition,Jaa8
LL8;I in real

DQD.
Two vectorsS andP with spherical components

S15A2~X101X021!, S25A2~X011X210!,

Sz5X112X2121, Pz52~X0S1XS0!,

P15A2~X1S2XS21!, P25A2~XS12X21S! ~4!

obey the commutation relations ofo4 algebra

@Sj ,Sk#5 iejklSl , @Pj ,Pk#5 iejklSl , @Pj ,Sk#5 iejkl Pl

( j ,k,l are Cartesian coordinates andejkl is a Levi-Civita ten-
sor!. These vectors are orthogonal,S"P50, and the Casimir
operator isS21P253. Thus, the singlet state is involved i
spin scattering via the components of the vectorP.

We useSU(2)-like semifermionic representation forS
operators32–34

S15A2~ f 0
†f 211 f 1

†f 0!, S25A2~ f 21
† f 01 f 0

†f 1!,

Sz5 f 1
†f 12 f 21

† f 21 , ~5!

where f 61
† are creation operators for fermions with sp

‘‘up’’ and ‘‘down,’’ respectively, whereasf 0 stands for spin-
less fermion.32,33 This representation can be generalized
SO(4) group by introducing another spinless fermionf s to
take into consideration the singlet state. As a result, thP
operators are given by the following equations:

P15A2~ f 1
†f s2 f s

†f 21!, P25A2~ f s
†f 12 f 21

† f s!,

Pz52~ f 0
†f s1 f s

†f 0!. ~6!

The Casimir operatorS21P253 transforms to the local con
straint

(
L56,0,s

f L
† f L51.

The final form of the spin cotunneling Hamiltonian is

-
-

3-2
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H int5 (
kk8,aa85L,R

Jaa8
S f s

†f sckas
† ck8a8s

1 (
kk8,aa8LL8

~Jaa8
T ŜLL8

d
1Jaa8

ST P̂LL8
d

!

3tss8
d ckas

† ck8a8s8 f L
† f L8 , ~7!

where Ŝd and P̂d(d5x,y,z) are 434 matrices defined by
relations~4!–~6! andJS5JSS, JT5JTT, andJST are singlet,
triplet, and singlet-triplet coupling SW constants, resp
tively.

The cotunneling in the ground singlet state is described
the first term of the Hamiltonian~7!, and no spin flip pro-
cesses accompanying the electron transfer between the
emerge in this state. However, the last term in Eq.~7! links
the singlet ground state with the excited triplet and open
Kondo channel. In equilibrium this channel is ineffectiv
because the incident electron should have the energyd to be
able to initiate spin-flip processes. We will show in the ne
section that the situation changes radically, when str
enough external bias is applied.

III. KONDO SINGULARITY IN TUNNELING THROUGH
DQD AT FINITE BIAS

We deal with the case, which was not met in the previo
studies of non-equilibrium Kondo tunneling. The grou
state of the system is singlet, and the Kondo tunneling
equilibrium is quenched atT;d. Thus, the elastic Kondo
tunneling arises only providedTK@d in accordance with the
theory of two-impurity Kondo effect.15,35,36However, the en-
ergy necessary for spin flip may be donated by external e
tric field eVapplied to the left lead, and in the opposite lim
TK!d the elastic channel emerges ateV'd. The processes
responsible for resonance Kondo cotunneling at finite b
are shown in Fig. 1~left panel!.

In conventional spinS51/2 quantum dots the Kondo re
gime out of equilibrium is affected by spin relaxation a
decoherence processes, which emerge ateV@TK ~see, e.g.,
Refs. 9,27–29!. These processes appear in the same orde
Kondo cotunneling itself, and one should use the n
equilibrium perturbation theory~e.g., Keldysh technique! to
take them into account in a proper way. In our case th
effects are expected to be weaker, because the nonzero
state is involved in Kondo tunneling only as an intermedi
virtual state arising due toS/T transitions induced by the
second term in the Hamiltonian~3!, which contains vectorP.
The nonequilibrium repopulation effects in DQD are weak
well ~see next section, where the nonequilibrium effects
discussed in more details!.

Having this in mind, we describe Kondo tunnelin
through DQD at finiteeV&d within the quasiequilibrium
perturbation theory in a weak coupling regime~see the qua-
siequilibrium approach to description of decoherence rat
large eV in Ref. 27!. To develop the perturbative approac
for T.TK we introduce the temperature Green’s functio
~GF! for electrons in a dot,GL(t)52^Tt f L(t) f L

† (0)&, and
GF for the electrons in the left~L! and right ~R! lead,
15532
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GL,R(k,t)52^TtcL,Rs(k,t)cL,Rs
† (k,0)&. Performing a Fou-

rier transformation in imaginary time for bare GF’s, we com
to following expressions:

Gka
0 ~en!5~ i en2eka1mL,R!21,

G h
0~vm!5~ ivm2ET!21, h521,0,1,

G s
0~en!5~ i en2ES!21, ~8!

with en52pT(n11/2) and vm52pT(m11/3).32,33 The
first leading and next to leading parquet diagrams are sh
on Fig. 2.

Corrections to the singlet vertexG(v,0;v8,0) are calcu-
lated using an analytical continuation of GF’s to the real a
v and taking into account the shift of the chemical poten
in the left lead. Since the electron from the left lead tunn
into the empty state in the right lead separated by the ene
eV, we have to putv5eV, v850 in the final expression for
G(v,0;v8,0). Thus, unlike conventional Kondo effect w
deal with the vertex at finite frequencyv similarly to the
problem considered in Ref. 27. We assume that the le
remain in equilibrium under applied bias and neglect
relaxation processes in the leads~‘‘hot’’ leads!. In a weak
coupling regimeT.TK the leading non-Born contribution
to the tunnel current are determined by the diagrams of F
2~b!–2~e!.

The effective vertex shown in Fig. 2~b! is given by the
following equation:

GLR
(2b)~v!5JLL

STJLR
TS(

k

12 f ~ekL2eV!

v2ekL1mL2d
. ~9!

Changing the variableekL for ekL2eV one finds that

GLR
(2b)~v5eV!;JLL

STJLR
TSn ln~D/max$~eV2d!,T%!.

Here D;«F is a cutoff energy determining effective ban
width, n is a density of states on a Fermi level andf («) is
the Fermi function. Therefore, under conditionueV2du
!max@eV,d# this correction does not depend oneV and be-
comes quasielastic.

FIG. 2. Leading~b!,~d! and next to leading~c!,~e! parquet dia-
grams determining renormalization ofJS ~a!. Solid lines denote
electrons in the leads. Dashed lines stand for electrons in the d
3-3
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Unlike the diagram Fig. 2~b!, its ‘‘parquet counterpart’’
term Fig. 2~c! containseV1d in the argument of the Kondo
logarithm:

GLR
(2c)~v!5JLL

STJLR
TS(

k

f ~ekL2eV!

v2ekL1mL1d
. ~10!

At eV;d@T this contribution is estimated as

GLR
(2c)~eV!;JLL

STJLR
TSn ln~D/~eV1d!!!GLR

(2b)~eV!.

Similar estimates for Figs. 2~d! and 2~e! give

GLR
(2d)~v!;JLL

STJLL
T JLR

TSn2ln2~D/max$v,~eV2d!,T%!,

GLR
(2e)~v!;JLL

STJLL
T JLR

TSn2ln~D/max$v,~eV2d!,T%!

3 ln~D/max$v,eV,T%. ~11!

ThenGLR
(2e)(v)!GLR

(2d)(v) at eV→d.
Thus, the Kondo singularity is restored in nonequilibriu

conditions where the electrons in the left lead acquire ad
tional energy in external electric field, which compensa
the energy lossd in a singlet-triplet excitation. The leadin
sequence of most divergent diagrams degenerates in this
from a parquet to a ladder series.

Following the poor man’s scaling approach, we derive
system of coupled renormalization group~RG! equations for
Eq. ~7!. The equations for LL cotunneling are

dJLL
T

d ln D
52n~JLL

T !2,
dJLL

ST

d ln D
52nJLL

STJLL
T . ~12!

The scaling equations forJLR
L are as follows:

dJLR
T

d ln D
52nJLL

T JLR
T ,

dJLR
ST

d ln D
52nJLL

STJLR
T ,

dJLR
S

d ln D
5

1

2
nS JLL,1

ST JLR,2
TS 1

1

2
JLL,z

ST JLR,z
TS D . ~13!

One-loop diagrams corresponding to the poor man’s sca
procedure are shown in Fig. 3. To derive these equations
collected only terms;(JT)nlnn11(D/T) neglecting contribu-

FIG. 3. Irreducible diagrams contributing to RG equation
Hatched boxes and circles stand for triplet-triplet and singlet-trip
vertices respectively. Notations for lines are the same as in Fig
15532
i-
s
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tions containing ln@D/(eV)#. The analysis of RG equation
beyond the one loop approximation will be published el
where.

The solution of the system~13! reads as follows:

Ja,a8
T

5
J0

T

12nJ0
Tln~D/T!

, Ja,a8
ST

5
J0

ST

12nJ0
Tln~D/T!

,

JLR
S 5J0

S2
3

4
n~J0

ST!2
ln~D/T!

12nJ0
Tln~D/T!

. ~14!

Herea5L, a85L,R. One should note that the Kondo tem
perature is determined by triplet-triplet processes only
spite of the fact that the ground state is singlet. One fin
from Eq. ~14! that TK5D exp@21/(nJ0

T)#. This temperature
is noticeably smaller than the ‘‘equilibrium’’ Kondo tempera
tureTK0, which emerges in tunneling through triplet chann
in the ground state, namely,TK'TK0

2 /D. The reason for this
difference is the reduction of usual parquet equations forTK
to a simple ladder series. In this respect our case differs
from conventional Kondo effect at strong bias,27 where the
nonequilibrium Kondo temperatureT* 'TK0

2 /eV arises. In
our model the finite bias does not enterTK because of the
compensationeV'd in spite of the fact that we take th
argumentv5eV in the vertex~9!.

The differential conductanceG(eV,T)/G0;uJLR
STu2 ~see

Ref. 37! is the universal function of two parametersT/TK
andeV/TK , G05e2/p\:

G/G0; ln22~max@~eV2d!,T#/TK!. ~15!

Its behavior as a function of bias and temperature is show
Fig. 4. It is seen from this picture that the resonance tunn
ing ‘‘flashes’’ ateV;d and dies away out of this resonanc
In this picture the decoherence effects are not taken
account, and it stability against various non-equilibrium c
rections should be checked.

IV. DECOHERENCE EFFECTS

We analyze now the decoherence rate\/td associated
with T/S transition relaxation induced by cotunneling. T
calculations are performed in the same order of the pertu
tion theory as it has been done for the vertex renormaliza

.
t

2.

FIG. 4. The Kondo conductance as a function of dc-biaseV/TK

andT/TK . The singlet-triplet splittingd/TK510.
3-4
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~see Figs. 2 and 3!. The details of the calculation scheme a
presented in the Appendix.

To estimate the decoherence effects, one should calcu
the decay of the triplet state or in other terms to find
imaginary part of the retarded self-energy of triplet sem
fermion propagators at actual frequency@see discussion be
fore Eq. ~9!#, \/td522 ImST

R(v). The second and third
order diagrams determining\/td are shown in Figs. 5~a!–
5~d!. Two leading terms given by the diagrams of Figs. 5~a!,
5~b! describe the damping of triplet excitation due to its
elastic relaxation to the ground singlet state. These terms
calculated in Appendix@see Eqs.~A8!, ~A10!#. One finds
from these equations that the relaxation rate associated
ST transition is

1/td
ST;~JST/D !2max@eV,v,TK#. ~16!

It should be noted that for corrections associated with
~RR! diagrams@Fig. 5~a!#, describing cotunneling processe
on a left~right! lead, the use of quasiequilibrium technique
fully justified when the leads themselves are in thermal eq
librium. We are interested in the zero frequency damping
resonanceeV'd. Neglecting the small difference betwee
JT andJST ~see Ref. 15!, we also takeJT'JST5J. Thus the
T→S spin relaxation effect~16! does not contain logarithmic
enhancement factor in the lowest order. It is estimated a

1/td
ST;~eV!~J/D !2'J3/D2. ~17!

The repopulation of triplet state as a function of exter
bias is controlled by the occupation number for triplet st
modified by the biaseV. The latter, in turn, depends on th
modified exchange splittingd* given by solution of the
equation

d* 2d5ReSR~d* ,eV,T!. ~18!

The ReSR @Figs. 5~a!, 5~b!# is given by

ReSTST
R(2)~v,eV,T!52a2S J

D D 2

v lnS D

max@v,eV,T# D ,

~19!

where a2;1 is a numerical coefficient. As it is seen, th
perturbative equation for ReSR is beyond the scope o
leading-log approximation. As a result,d* (eV)2d!d and

FIG. 5. Leading diagrams~a!–~d! for \/td ~see text!. Dashed
line in the self-energy part stands for the singlet state of a t
electron configuration in the dot.
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repopulation of the triplet state is exponentially small. T
corresponding factor in the occupation number is

Pt~eV!5exp@2d* ~eV!/T#. ~20!

The effects of repopulation become important only
eV@d when ud* 2du;d. In that case the quasiequilibrium
approach is not applicable and one should start with
Keldysh formalism.27,28This regime is definitely not realized
in conditions considered above.

Next second order contribution is the damping of trip
state itself given by Eqs.~A12!, ~A14!. It is seen from these
equations that this damping is of threshold character

1/td
TT;~J/D !2~v2d!u~v2d!, ~21!

where u(v) is a Heaviside step function. These proces
emerge only atv.d, so unlike the conventional case27 they
are not dangerous.

Corresponding contribution to ReSR casts the form

ReSTTT
R(2)52b2S J

D D 2

~d2v!lnU D

max@~d2v!,T#
U, ~22!

whereb2;1.
Next, one has to check whether the higher order logar

mic corrections modify the estimate~17!. These corrections
start with the third order terms shown in Figs. 5~c!, 5~d!.
Straightforward calculations lead toeV(J/D)3ln(D/eV) cor-
rection@see the first term Eq.~A23!#. This leading term like
the second order term originates fromT→S spin relaxation
processes. All other contributions are either of thresh
character, or vanish atv→0. As a result, the estimate

\/td;eV~J0
ST/D !2$11O@nJ ln„D/~eV!…#%

holds. The topological structure~sequence of intermediat
singlet and triplet states and cotunneling processes in the
and right lead! in perturbative corrections for the triplet sel
energy part is different from those for the singlet-singlet v
tex ~see Appendix!. Namely, the leading~ladder! diagrams
for the vertex contain maximal possible number of interm
diate triplet states, whereas the higher order nonthresh
log-diagrams for the self-energy part must contain at le
one intermediate singlet state. As it is seen from the App
dix @Eqs. ~A18!–~A23!#, the higher order contributions to
Im ST(v) are not universal and the coefficients in front
log have sophisticated frequency dependence. As a result
perturbative series for triplet self-energy part cannot be c
lected in parquet structures and remain beyond the lead
log approximation discussed in the Sec. III. There is
strong enhancement of the second order term in SO(4)
rotator model in contrast to SU(2) case discussed in Ref.
As was pointed out above, the main reason for difference
estimates of coherence rate is that in case of QD with oddN,
the Kondo singlet develops in the ground state of the d
and decoherence frustrate this ground state. In DQD w
evenN the triplet spin state arises only as a virtual state
cotunneling processes, and our calculations demonstrate
plicitly that decoherence effects in this case are essent
weaker.

-

3-5
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The third order correction to ReS is given by

ReSR(3)~v!;S J

D D 3

v ln2S D

v D ~23!

~see Appendix!. This correction also remains beyond th
leading-log approximation.

Thus we conclude that the decoherence effects are
destructive for Kondo tunneling through T-shaped DQD, i
the TK@\/td is valid provided

d~d/D !2!TK!d. ~24!

This interval is wide enough becaused/D!1 in the Ander-
son model.

The same calculation procedure may be repeated
Keldysh technique. It is seen immediately that in the leadi
log approximation the off-diagonal terms in Keldysh mat
are not changed in comparison with equilibrium distributi
functions because of the same threshold character of rep
lation processes, so in the leading approximation the
diagram Fig. 5~b! ~determiningL-R current through the dot!
calculated in Keldysh technique remains the same as
~A8!–~A10!.

In fact, repopulation effects result in asymmetry of t
Kondo-peak similar to that in Ref. 28 due to the thresh
character of ImSTTT ~see Appendix!. This asymmetry be-
comes noticeable ateV@d, where our quasiequilibrium ap
proach fails, but this region is beyond our interest, beca
the bias-induced Kondo tunneling is negligible at large
ases~see Fig. 4!.

V. CONCLUDING REMARKS

We have shown in this paper that the tunneling throu
DQD with evenN with singlet ground state and triplet exc
tation divided by the energy gapd@TK from the singlet state
exhibits a peak in differential conductance ateV'd ~Fig. 4!.
This result is in striking contrast with the zero bias anom
~ZBA! at eV'0 which arises in the opposite limitd,TK . In
the latter case the Kondo screening is quenched at ene
less thand, so the ZBA has a form of a dip in the Kond
peak~see Ref. 18 for a detailed explanation of this effect!.

In this case strong external bias initiates the Kondo eff
in DQD, whereas in a conventional situation~QD with odd
N spin 1/2 in the ground state! strong enough bias is destru
tive for Kondo tunneling. We have shown that the princip
features of Kondo effect in this specific situation may
captured within a quasiequilibrium approach. The scal
equations ~13!, ~14! can also be derived in Schwinge
Keldysh formalism~see Refs. 28,33! by applying the ‘‘poor
man’s scaling’’ approach directly to the dot conductance.8

Of course, our RG approach is valid only in the we
coupling regime. Although in our case the limitations im
posed by decoherence effects are more liberal than th
existing in conventional QD, they apparently prevent the f
formation of the Kondo resonance. To clarify this point o
has to use a genuine non-equilibrium approach, and we h
to do it in forthcoming publications.

One should mention yet another possible experimenta
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alization of resonance Kondo tunneling driven by exter
electric field. Applying the alternate fieldV5Vaccos(vt) to
the parallel DQD, one takes into consideration two effec
namely, ~i! enhancement of Kondo conductance by tuni
the amplitude of ac voltage to satisfy the conditionueVac
2du!TK and ~ii ! spin decoherence effects due to finite d
coherence rate.8 One can expect that if the decoherence r
\/t@TK ,

Gpeak/G0; ln22~\/tTK!, ~25!

whereas in the opposite limit\/t!TK ,

Gpeak5G~Vaccos@vt# ! ~26!

is averaged over a period of variation of ac bias. In this c
the estimate~15! is also valid.

In conclusion, we have provided an example of Kon
effect, which existsonly in non-equilibrium conditions. It is
driven by external electric field in tunneling through a qua
tum dot with even number of electrons, when the low-lyi
states are those of spin rotator. This is not too exotic situa
because as a rule, a singlet ground state implies a tri
excitation. If the ST pair is separated by a gap from oth
excitons, then tuning the dc bias in such a way that app
voltage compensates the energy of triplet excitation, o
reaches the regime of Kondo peak in conductance. This th
retically predicted effect can be observed in dc- and
biased double quantum dots in parallel geometry.
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APPENDIX

We calculate perturbative corrections forS(v) by per-
forming analytical continuation ofS( ivn) into upper half
plane ofv. The parameter of perturbation theory isnJ!1
where n denotes the density of states for conduction el
trons at the Fermi surface.

The second order self-energies have the following str
ture ~the indicesT and ST in exchange vertices are tempo
rarily omitted!:

S (2)~ ivn!;J2T2 (
v1v2

(
k1,k2

G0~2 iv1 ,2k1!

3G0~ iv2 ,k2!G 0~ ivn1 iv11 iv2!. ~A1!

The Green functions~GF! are defined in Eq.~8!. Performing
summation over Matsubara frequenciesv1 ,v2 and replacing
3-6
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the summation overk1,k2 by integration overj1 ,j2 in accordance with standard procedure, we come to following expres

S (2)~ ivn!;
1

2
~Jn!2E

2D

D

dj1E
2D

D

dj2

F tanhS l

2TD2tanhS j2

2TD GF tanhS j1

2TD2tanhS j22l

2T D G
ivn1j22j12lS,T

. ~A2!
s

c

r
re

pa
m

ipl

w

ing
.
r-

g

by
.

Here we assumed that conduction electron’s band ha
width W52D, eF;D andn51/D in order to simplify our
calculations. This assumption is sufficient for log-accura
of our theory. The Lagrange multiplierslS,T are different for
singlet ~triplet! GF, namely,lS5ES andlT5ET1 ipT/3.

To account for decoherence effects in the same orde
perturbation theory as we have done for the vertex cor
tions, we focus on the self-energy~SE! part of triplet GF.
This SE has to be plugged in back to a semifermionic pro
gator to provide a self-consistent treatment of the proble
We denote the self-energy parts associated with singlet/tr
and triplet/triplet transitions asSTST andSTTT , respectively.

To prevent double occupancy of singlet/triplet states
take the limit Re@lS,T#@T in the numerator of Eq.~A2!. As
a result, Eq.~A2! casts the form

S (2)~ ivn!;~Jn!2E
2D

D

dj1E
2D

D

dj2

n~j2!@12n~j1!#

ivn1j22j12lS,T
.

~A3!

Since all spurious states are ‘‘frozen out’’ we can putl̃S

50 and l̃T5d5ET2ES in denominator~in the latter case
we perform a shiftl̃T5lT2 ipT/3) and proceed with the
analytical continuationivn→v1 i01. Without loss of gen-
erality we assumev.0. As a result, we get for retarded~R!
self-energies

Im STST
(2)R~v!;~JSTn!2E

2D

D

dj1E
2D

D

dj2n~j2!

3@12n~j1!#d~v1j22j1!, ~A4!

ReSTST
(2)R~v!;~JSTn!2E

2D

D

dj1E
2D

D

dj2n~j2!

3@12n~j1!#P
1

v1j22j1
, ~A5!

Im STTT
(2)R~v!;~JTn!2E

2D

D

dj1E
2D

D

dj2n~j2!@12n~j1!#

3d~v1j22j12d!, ~A6!

ReSTTT
(2)R~v!;~JTn!2E

2D

D

dj1E
2D

D

dj2n~j2!

3@12n~j1!#P
1

v1j22j12d
, ~A7!

whereP denotes the principal value of the integral.
15532
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We start with discussion of self-energy parts determin
the spin relaxation due toT→S transitions shown in Figs
5~a!, 5~b!. AssumingT!D and neglecting temperature co
rections at low temperaturesv@T, we get

Im STST
(2)R~v!;~JSTn!2E

0

D

dj1E
2D

0

dj2d~v1j22j1!

;@JSTn~0!#2E
0

v

dj;~JSTn!2v, ~A8!

ReSTST
(2)R~v!;~JSTn!2E

0

D

dj1E
2D

0

dj2P
1

v1j22j1

;~JSTn!2v lnS D

v D . ~A9!

In the opposite limitT@v

Im STST
(2)R~v!;~JSTn!2T, ~A10!

ReSTST
(2)R~v!;~JSTn!2v lnS Dg

2pTD , ~A11!

where lng5C50.577••• is the Euler constant.
Next we turn to calculation of the triplet level dampin

due to TT relaxation processes@Figs. 5~a!, 5~b!#. According
to the Feynman codex, we can putES50 at the first stage
since the population of triplet excited state is controlled
finite level splittingd. The contribution from diagram Fig
5~a! is given by

Im STTT
(2LL)5Im STTT

(2RR);~J0
Tn!2~v2d! u~v2d!,

~A12!

ReSTTT
(2LL)5ReSTTT

(2RR);~J0
Tn!2~v2d! lnU D

v2dU.
~A13!

Similarly for Fig. 5~b!,

Im STTT
(2LR)5Im STTT

(2RL);~J0
Tn!2~v2d! u~v2d!

~A14!

and, with logarithmic accuracy

ReSTTT
(2LR)5ReSTTT

(2RL);~J0
Tn!2~v2d! lnU D

v2dU.
~A15!
3-7
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FIG. 6. Fourth order leading
diagrams~a!–~f! for triplet self-
energy part.
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The threshold character of relaxation determined by
Fermi golden rule is the source of asymmetry in broaden
of triplet line ~see the text!.

Now we turn to calculation of the third order diagram
S (3) shown in Figs. 5~c!, 5~d!.

S (3c)~ ivn!;J3T3 (
v1,2,3

(
k1,2,3

G0~2 iv1 ,2k1!

3G0~ iv2 ,k2!G0~2 iv3 ,2k3!

3G 0~ ivn1 iv11 iv2!G 0~ ivn1 iv21 iv3!,

S (3d)~ ivn!;J3T3 (
v1,2,3

(
k1,2,3

G0~ iv1 ,k1!

3G0~2 iv2 ,2k2!G0~ iv3 ,k3!

3G 0~ ivn1 iv11 iv2!G 0~ ivn1 iv21 iv3!.

Evaluation of Matsubara sums gives

S (3c)~ ivn!;~Jn!3E
2D

D

dj1E
2D

D

dj2E
2D

D

dj3

3
n~j2!@12n~j1!#@12n~j3!#

~ ivn1j22j32l1!~ ivn1j22j12l2!
,

~A16!

S (3d)~ ivn!;~Jn!3E
2D

D

dj1E
2D

D

dj2E
2D

D

dj3

3
n~j1!n~j3!@12n~j2!#

~ ivn1j32j22l1!~ ivn1j12j22l2!
.

~A17!

Let us consider first the casel15l25lS50 which corre-
sponds to two singlet fermionic lines inserted in self-ene
part. Analytical continuation leads to following expressi
for S (3)5S (3b)1S (3c) at T!v

Im STSST
(3) ~v!;~JSTn!3

JS

JSTFv lnS D

v D2vG , ~A18!

ReSTSST
(3) ~v!;~JSTn!3

JS

JST
vReF Li 2S 2

D

v D G
;S J

D D 3

v ln2S D

v D , ~A19!
15532
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whereLi 2(x) is a dilogarithm function.40 As we already no-
ticed, the first log correction to ImS appears only in third
order of the perturbation theory. Thus,

Im STSST~v!;~JSTn!2vF11a~JSn!lnS D

v D1•••G ,
~A20!

ReSTSST~v!;~JSTn!2Fv lnUDvUH 11b~JSn!lnUDvU1•••J
1c~v2d!lnU D

v2dUH 11d~JSn!lnU D

v2dU
1•••J G ~A21!

with coefficient a,b,c,d;1. These results are consiste
with the Abrikosov-Migdal theory38,39 for SU~2! Kondo
model.

We assume now thatl15l25lT5d. It corresponds to
the situation when both internal semifermionic GF cor
spond to different components of the triplet. Following t
same routine as for calculation ofS (2) we find

Im STTTT
(3) ~v!;~JTn!3F ~v2d!lnU D

v2dU2~v2d!G
3u~v2d!. ~A22!

Thus, the corrections to the relaxation rate associated w
transitions between different components of the triplet hav
threshold character determined by the energy conservati

Finally, we consider a possibility when two internal sem
fermionic GF correspond to different states, e.g.,l15lS
50, whereasl25lT5d. Performing the calculations, on
finds

Im STSTT
(3) ~v!;~JSTn!3

JT

JSTS Fd lnUDd U2~d2v!lnU D

d2vU
2vG1Fd lnUDd U2v lnUDvU2~d2v!G
3u~v2d! D . ~A23!

A similar expression can be derived for ImSTTST
(3) (v).

Any insertion of the triplet line in diagrams Figs. 5~a!–
3-8
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5~d! results in additional suppression of corresponding c
tribution for v,eV, which, in turn, prevents the effectiv
renormalization of the vertexJS in contrast to the processe
shown in Fig. 3. The leading corrections in the fourth ord
.

c
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Semi-Fermionic Approach for Quantum Spin Systems∗

M. Kiselev

Abstract. We present a general derivation of semi-fermionic representation for gen-
erators of SU(N) group as a bilinear combination of Fermi operators. The con-
straints are fulfilled by means of imaginary Lagrange multipliers. The important
case of SU(2) group is discussed. We demonstrate how the idea of semi-fermionic
representation might be extended to the groups possessing dynamic symmetries.
As an example, SO(4) group is considered. We illustrate the application of semi-
fermionic representations for various problems of strongly correlated physics.

PACS numbers: 71.27.+a, 75.20.Hr

Introduction

It is known that spin operators satisfy neither Fermi nor Bose commutation rela-
tions. For example, the Pauli matrices for S = 1/2 operator commute on different
sites and anticommute on the same site. The commutation relations for spins are
determined by SU(2) algebra, leading to the absence of a Wick theorem for the
generators. To avoid this difficulty and construct a diagrammatic technique and
path integral representation for spin systems various approaches have been used.
The first class of approaches is based on representation of spins as bilinear com-
bination of Fermi or Bose operators [1]-[6], whereas the representations belonging
to the second class deal with more complex objects like, e.g. the Hubbard [7] and
supersymmetric [8] operators, the nonlinear sigma model [9] etc. However, in all
cases the fundamental problem which is at the heart of the difficulty is the local
constraint problem. To illustrate it, let’s consider e.g., first class of representa-
tions. Introducing the auxiliary Fermi or Bose fields makes the dimensionality of
the Hilbert space, where these operators act, greater than the dimensionality of the
Hilbert space for the spin operators. As a result, the spurious unphysical states
should be excluded from the consideration which leads in turn to some restric-
tions (constraints) on bilinear combinations of Fermi/Bose operators, resulting in
substantial complication of corresponding rules of the diagrammatic technique.
The representations from the second class suffer from the same kind of problem,
transformed either into a high nonlinearity of resulting model (non-linear sigma
model) or hierarchical structure of perturbation series in the absence of Wick the-
orem (Hubbard operators). The exclusion of double occupied and empty states

∗Extended version of the talk given at TH-2002 conference, Paris, July 22-27, 2002



156 M. Kiselev Proceedings TH2002

for a S = 1/2 impurity interacting with conduction electron bath (single impurity
Kondo model), is controlled by fictitious chemical potential (Lagrange multiplier)
of Abrikosov pseudofermions [4]. At the end of calculations this “chemical poten-
tial” λ should be put λ→ −∞ to “freeze out” all unphysical states. In other words,
there exists an additional U(1) gauge field which freezes the charge fluctuations
associated with this representation. The method works for dilute systems where
all the spins can be considered independently. Unfortunately, attempts to gener-
alize this technique to the lattice of spins results in the replacement of the local
constraint (the number of particles on each site is fixed) by the so-called global
constraint where the number of particles is fixed only on an average for the whole
crystal. There is no reason to believe that such an approximation is a good starting
point for the description of the strongly correlated systems. Another possibility to
treat the local constraint rigorously is based on Majorana fermion representation.
In this case fermions are “real” and corresponding gauge symmetry is Z2. The
difficulty with this representation is mostly related to the physical regularization
of the fluctuations associated with the discrete symmetry group.

An alternative approach for spin Hamiltonians, free from local constraint
problem, has been proposed in the pioneering paper of Popov and Fedotov [10].
Based on the exact fermionic representation for S = 1/2 and S = 1 operators,
where the constraint is controlled by purely imaginary Lagrange multipliers, these
authors demonstrated the power and simplification of the corresponding Matsub-
ara diagram technique. The semi-fermionic representation (we discuss the meaning
of this definition in the course of our paper) used by Popov and Fedotov is neither
fermionic, nor bosonic, but reflects the fundamental Pauli nature of spins. The goal
of this paper is to give a brief introduction to a semi-fermionic (SF) approach. A
reader can find many useful technical details, discussion of mathematical aspects of
semi-fermionic representation and its application to various problems in the origi-
nal papers [10]-[21]. However, we reproduce the key steps of important derivations
contained in [18],[19] in order to make the reader’s job easier.

The manuscript is organized as follows: in Section I, the general concept of
semi-fermions is introduced. We begin with the construction of the SF formalism
for the fully antisymmetric representation of SU(N) group and the fully symmetric
SF representation of SU(2) group using the imaginary-time (Matsubara) represen-
tation. We show a “bridge” between different representations using the simplest
example of S = 1 in SU(2) and discuss the SF approach for SO(4) group. Finally,
we show how to work with semi-fermions in real-time formalism and construct the
Schwinger-Keldysh technique for SF. In this section, we will mostly follow original
papers by the author [11], [18]. The reader acquainted with semi-fermionic tech-
nique can easily skip this section. In Section II, we illustrate the applications of SF
formalism for various problems of condensed matter physics, such as ferromagnetic
(FM), antiferromagnetic (AFM) and resonance valence bond (RVB) instabilities
in the Heisenberg model, competition between local and non-local correlations in
Kondo lattices in the vicinity of magnetic and spin glass critical points and the
Kondo effect in quantum dots. In the Epilogue, we discuss some open questions
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and perspectives.

1 Semi-fermionic representation

To begin with, we briefly reproduce the arguments contained in the original paper
of Popov and Fedotov. Let’s assume first S = 1/2. We denote as Hσ the Hamil-
tonian of spin system. The standard Pauli matrices can be represented as bilinear
combination of Fermi operators as follows:

σz
j → a†jaj − b†jbj , σ+

j → 2a†jbj , σ−
j → 2b†jaj . (1)

on each site i of the lattice. The partition function of the spin problem Zσ is given
by

Zσ = Tr exp(−βĤσ) = iNTr exp(−β(ĤF + iπN̂F /(2β)) (2)

where ĤF is the operator obtained from Ĥσ by the replacement (1) and

N̂ =
N∑

j=1

(a†jaj + b†jbj) (3)

(N is the number of sites in the system and β = 1/T is inverse temperature). To
prove equation (2) we note that the trace over the nonphysical states of the i-th
site vanishes

Trunphys exp(−β(ĤF + iπN̂F/(2β)) = (−i)0 + (−i)2 = 0 (4)

Thus, the identity (2) holds. The constraint of fixed number of fermions N̂j = 1,
is achieved by means of the purely imaginary Lagrange multipliers µ = −iπ/(2β)
playing the role of imaginary chemical potentials of fermions. As a result, the
Green’s function

G = (iωF − ε)−1 (5)

is expressed in terms of Matsubara frequencies ωF = 2πT (n+ 1/4) corresponding
neither Fermi nor Bose statistics.

For S = 1 we adopt the representation of Ĥσ in terms of the 3-component
Fermi field:

σz
j → a†ja− b†jb, σ+

j →
√

2(a†jcj + c†jbj), σ−
j →

√
2(c†jaj + b†jcj). (6)

The partition function Zσ is given by

Zσ = Tr(−βĤσ) =
(

i√
3

)N

Tr exp(−β(ĤF + iπN̂F /(3β)). (7)

It is easy to note that the states with occupation numbers 0 and 3 cancel each
other, whereas states with occupation 1 and 2 are equivalent due to the particle-
hole symmetry and thus can be taken into account on an equal footing by proper
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normalization of the partition function. As a result, the Green’s function in the
imaginary time representation is expressed in terms of ωF = 2πT (n + 1/3) fre-
quencies.

In this section, we show how semi-fermionic (Popov-Fedotov) representation
can be derived using the mapping of partition function of the spin problem onto the
corresponding partition function of the fermionic problem. The cases of arbitrary
N (even) for SU(N) groups and arbitrary S for SU(2) group are discussed.

1.1 SU(N) group

We begin with the derivation of SF representation for SU(N) group. The SU(N)
algebra is determined by the generators obeying the following commutation rela-
tions:

[Ŝβ
α,iŜ

ρ
σj ] = δij(δρ

αŜ
β
σi − δβ

σ Ŝ
ρ
αi), (8)

where α, β = 1, ..., N . We adopt the definition of the Cartan algebra [22] of the
SU(N) group {Hα} = Sα

α similar to the one used in [23], noting that the diag-
onal generators Sα

α are not traceless. To ensure a vanishing trace, the diagonal
generators should only appear in combinations

N∑

α=1

sαS
α
α with

N∑

α=1

sα = 0, (9)

which effectively reduce the number of independent diagonal generators to N − 1
and the total number of SU(N) generators to N2 − 1.

In this paper we discuss the representations of SU(N) group determined by
rectangular Young Tableau (YT) (see [23] and [18] for details) and mostly concen-
trate on two important cases of the fully asymmetric (one column) YT and the
fully symmetric (one row) YT.

The generator Ŝα
β may be written as biquadratic form in terms of the Fermi-

operators
Ŝα

β =
∑

γ

a†αγa
βγ (10)

where the ”color” index γ = 1, ..., nc and the nc(nc + 1)/2 constraints

N∑

α=1

a†αγ1
aαγ2 = δγ2

γ1
m (11)

restrict the Hilbert space to the states with m∗nc particles and ensure the charac-
teristic symmetry in the color index a. Here m corresponds to the number of rows
in rectangular Young Tableau whereas nc stands for the number of columns. The
antisymmetric behavior with respect to α is a direct consequence of the fermionic
representation.
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Let us consider the partition function for the Hamiltonian, expressed in terms
of SU(N) generators

ZS = Tr exp(−βHS) = Tr′ exp(−βHF ) (12)

where Tr′ denotes the trace taken with constraints (11). As it is shown in [18], the
partition function of SU(N) model is related to partition function of corresponding
fermion model through the following equation:

ZS =
∫ ∏

j

dµ(j)P (µ(j))Tr exp (−β(HF − µ(j)nF )) =

∫ ∏

j

dµ(j)P (µ(j))ZF (µ(j)) (13)

here P (µj) is a distribution function of imaginary Lagrange multipliers. We cal-
culate P (µj) explicitely using constraints (11).

We use the path integral representation of the partition function

ZS/Z
0
S =

∫ ∏

j

dµ(j)P (µ(j)) exp(A)/
∫ ∏

j

dµ(j)P (µ(j)) exp(A0) (14)

where the actions A and A0 are determined by

A = A0 −
∫ β

0

dτHF (τ), A0 =
∑

j

N∑

k=1

∫ β

0

dτāk(j, τ)(∂τ + µ(j))ak(j, τ) (15)

and the fermionic representation of SU(N) generators (10) is applied.
Let us first consider the case nc = 1. We denote the corresponding distribu-

tion by PN,m(µ(j)), where m is the number of particles in the SU(N) orbital, or
in other words, 1 ≤ m < N labels the different fundamental representations of
SU(N).

nj =
N∑

k=1

āk(j)ak(j) = m (16)

To satisfy this requirement, the minimal set of chemical potentials and the corre-
sponding form of PN,m(µ(j)) are to be derived.

To derive the distribution function, we use the following identity for the
constraint (16) expressed in terms of Grassmann variables

δnj ,m =
1
N

sin (π(nj −m)) / sin
(
π(nj −m)

N

)
(17)

Substituting this identity into (12) and comparing with (14) one gets

PN,m(µ(j)) =
1
N

N∑

k=1

exp
(
iπm

N
(2k − 1)

)
δ(µ(j) − µk), (18)
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where
µk = − iπT

N
(2k − 1). (19)

Since the Hamiltonian is symmetric under the exchange of particles and holes
when the sign of the Lagrange multiplier is also changed simultaneously, we can
simplify (18) to

PN,m(µ(j)) =
2i
N

�N/2�∑

k=1

sin
(
πm

2k − 1
N

)
δ(µ(j) − µk) (20)

where �N/2� denotes the integer part of N/2. As shown below, this is the minimal
representation of the distribution function corresponding to the minimal set of the
discrete imaginary Lagrange multipliers. Another distributions function different
from (20) can be constructed when the sum is taken from k = N/2 + 1 to N .
Nevertheless, this DF is different from (20) only by the sign of imaginary Lagrange
multipliers µ̃k = µ∗

k = −µk and thus is supplementary to (20).
Particularly interesting for even N is the case when the SU(N) orbital is

half–filled, m = N/2. Then all Lagrange multipliers carry equal weight

PN,N/2(µ(j)) =
2i
N

N/2∑

k=1

(−1)k+1δ (µ(j) − µk) . (21)

Taking the limit N → ∞ one may replace the summation in expression (21) in a
suitable way by integration. Note, that while taking N → ∞ and m → ∞ limits,
we nevertheless keep the ratio m/N = 1/2 fixed. Then, the following limiting
distribution function can be obtained:

PN,N/2(µ(j)) N→∞−→ β

2πi
exp

(
−βµ(j)

N

2

)
(22)

resulting in the usual continuous representation of the local constraint for the
simplest case nc = 1

ZS = Tr(exp (−βHF ) δ
(
nj − N

2
)
)

(23)

We note the obvious similarity of the limiting DF (22) with the Gibbs canonical
distribution provided that the Wick rotation from the imaginary axis of the La-
grange multipliers µ to the real axis of energies E is performed and thus µ(j)N/2
has a meaning of energy.

Up to now, the representation we discussed was purely fermionic and ex-
pressed in terms of usual Grassmann variables when the path integral formalism
is applied. The only difference from slave fermionic approach is that imaginary La-
grange multipliers are introduced to fulfill the constraint. Nevertheless, by making
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the replacement

ak(j, τ)) → ak(j, τ) exp
(
iπτ

β

2k − 1
N

)
, āk(j, τ) → āk(j, τ) exp

(
− iπτ

β

2k − 1
N

)

(24)
we arrive at the generalized Grassmann (semi-fermionic) boundary conditions

ak(j, β) = ak(j, 0) exp
(
iπ

2k − 1
N

)
, āk(j, β) = āk(j, 0) exp

(
−iπ 2k − 1

N

)
(25)

This leads to a temperature diagram technique for the Green’s functions

Gαβ(j, τ) = −〈Tτaα(j, τ)āβ(j, 0)〉 (26)

of semi-fermions with Matsubara frequencies different from both Fermi and Bose
representations (see Fig.2).

The exclusion principle for this case is illustrated on Fig.1, where the S = 1/2
representation for the first two groups SU(2) and SU(4) are shown. The first point
to observe is that the spin Hamiltonian does not distinguish the n particle and
the n hole (or N −n particle) subspace. Eq. (19) shows that the two phase factors
exp(βµn) and exp(βµ(N − n)) accompanying these subspaces in Eq. (20) add up
to a purely imaginary value within the same Lagrange multiplier, and the empty
and the fully occupied states are always canceled. In the case of N ≥ 4, where
we have multiple Lagrange multipliers, the distribution function P (µ) linearly
combines these imaginary prefactors to select out the desired physical subspace
with particle number n = m.

In Fig.1, we note that on each picture, the empty and fully occupied states
are canceled in their own unit circle. For SU(2) there is a unique chemical potential
µ = ±iπT/2 which results in the survival of single occupied states. For SU(4) there
are two chemical potentials (see also Fig.2). The cancellation of single and triple
occupied states is achieved with the help of proper weights for these states in the
distribution function whereas the states with the occupation number 2 are doubled
according to the expression (21). In general, for SU(N) group with nc = 1 there
exists N/2 circles providing the realization of the exclusion principle.

1.2 SU(2) group

We consider now the generalization of the SU(2) algebra for the case of spin S.
Here, the most convenient fermionic representation is constructed with the help
of a 2S + 1 component Fermi field ak(j) provided that the generators of SU(2)
satisfy the following equations:

S+ =
S−1∑

k=−S

√
S(S + 1) − k(k + 1)a†k+1(j)ak(j),
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Re e−βµN

e−βµNIm 

n=0

n=1

n=2

SU(2)

n=0

n=1

n=2

n=3

n=4

Re e−βµN

e−βµNIm 

n=0

n=1 n=3

n=4

n=2

Re e−βµN

e−βµNIm SU(4)

Figure 1: Graphical representation of exclusion principle for SU(N) semi-fermionic
representation with even N , nc = 1 (we use µ = iπT/2 for SU(2) and µ1 =
iπT/4, µ2 = 3iπT/4 for SU(4)).
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S− =
S∑

k=−S+1

√
S(S + 1) − k(k − 1)a†k−1(j)ak(j),

Sz =
S∑

k=−S

ka†k(j)ak(j) (27)

such that dimHF = 22S+1 whereas the constraint reads as follows

nj =
k=S∑

k=−S

a†k(j)ak(j) = l = 1 (28)

Following the same routine as for SU(N) generators and using the occupancy
condition to have l = 1 (or 2S) states of the (2S + 1) states filled, one gets
the following distribution function, after using the particle–hole symmetry of the
Hamiltonian HS :

P2S+1,1(µ(j)) =
2i

2S + 1

�S+1/2�∑

k=1

sin
(
π

2k − 1
2S + 1

)
δ(µ(j) − µk) (29)

where the Lagrange multipliers are µk = −iπT (2k−1)/(2S+1) and k = 1, ..., �S+
1/2�, similarly to Eq.(19). In the particular case of the SU(2) model for some chosen
values of spin S the distribution functions are given by the following expressions

P2,1(µ(j)) = i δ

(
µ(j) +

iπT

2

)

for S = 1/2

P3,1(µ(j)) = P3,2(µ(j)) =
i√
3
δ

(
µ(j) +

iπT

3

)

for S = 1.
This result corresponds to the original Popov-Fedotov description restricted

to the S = 1/2 and S = 1 cases. A limiting distribution function corresponding to
Eq. (22) for the constraint condition with arbitrary l is found to be

P∞,l(µ(j)) S→∞−→ β

2πi
exp(−βlµ(j)). (30)

For the case l = m = N/2 → ∞ and S = (N − 1)/2 → ∞ the expression
for the limiting DF P∞,l(µ(j)) coincides with (23). We note that in S → ∞ (or
N → ∞) limit, the continuum “chemical potentials” play the role of additional
U(1) fluctuating field whereas for finite S and N they are characterized by fixed
and discrete values.

When S assumes integer values, the minimal fundamental set of Matsubara
frequencies is given by the table in Fig.2.
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Figure 2: The minimal set of Matsubara frequencies for a) SU(N) representation
with even N/ SU(2) representation for half-integer value of the spin. b) SU(2)
representation for integer values of the spin and l = 1.
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n=0n=3

n=1n=2 S=1
e Im 

βµn

 Re 
βµe n

n=0n=5

e Im 
βµn

 Re 
βµe n

S=2
n=1n=4

n=2n=3

n=0

e Im 
βµn
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βµe n

n=2

n=1

n=5

n=3

n=4

Figure 3: Graphical representation of exclusion principle for SU(2) semi-fermionic
representation for S = 1 and S = 2. For any arbitrary integer value of spin there
exists S circle diagrams corresponding to the S different chemical potentials and
providing the realization of the exclusion principle.
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The exclusion principle for SU(2) in the large spin limit can be also un-
derstood with the help of Fig.1 and Fig.3. One can see that the empty and the
fully occupied states are canceled in each given circle similarly to even-N SU(N)
algebra. The particle-hole (PH) symmetry of the representation results in an equiv-
alence of single occupied and 2S occupied states whereas all the other states are
canceled due to proper weights in the distribution function (29). In accordance
with PH symmetry being preserved for each value of the chemical potential all cir-
cle diagrams (see Fig.3, Fig.5) are invariant with respect to simultaneous change
µ↔ −µ and nparticle ↔ nholes.

1.3 From SU(2) to SO(4)

We have shown that the general rectangular Young Tableau of size nc ∗ m is
represented by N ∗nc component fermionic field with nc diagonal constraints and
nc(nc −1)/2 off-diagonal constraints. However, the fully symmetric representation
(one row) requires only nc + 1 = 2S + 1 component field. The general scheme of
projected representation for SU(N) group is given in [18]. We illustrate this idea
on a simple example of S = 1.

We start with 2 ∗ nc = 4 - field representation

(a11, a12, a21, a22) (31)

There are two diagonal and two off-diagonal constraints which read as follows:

a†11a11 + a†21a21 = 1, a†12a12 + a†22a22 = 1. (32)

a†11a12 + a†21a22 = 0, a†12a11 + a†22a21 = 0 (33)

and generators of SU(2) group are given by

S− = S1
2 = a†11a21 + a†12a22, S+ = S2

1 = a†21a11 + a†22a12

2Sz = S2
2 − S1

1 = a†21a21 + a†22a22 − a†11a11 − a†12a12 (34)

Combining definition (34) with constraint (33) we reach the following equations:

S− = a†11(a21 + a12) + (a†12 + a†21)a22,

S+ = (a†21 + a†12)a11 + a†22(a12 + a21), (35)

Sz = a†22a22 − a†11a11

Therefore, we conclude that the antisymmetric (singlet) combination a12−a21 does
not enter the expression for spin S = 1 operators. Thus, three (out of four) com-
ponent Fermi-field is sufficient for the description of S = 1 SU(2) representation.
Defining new fields as follows

a11 = f−1, a22 = f1,
1√
2
(a12 + a21) = f0,

1√
2
(a12 − a21) = s. (36)
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where fermions f1, f0, f−1 stand for Sz = 1, 0 − 1 projections of the triplet state
and fermion s determines the singlet state, we come to standard S = 1 SU(2)
representation (c.f 6)

S+ =
√

2(f †
0f−1 + f †

1f0), S− =
√

2(f †
−1f0 + f †

0f1), Sz = f †
1f1 − f †

−1f−1, (37)

with the constraint
n1 + n0 + n−1 + ns = 2 (38)

where nα = f †
αfα.

Nevertheless, the constraint (38) transforms to a standard SU(2) S = 1 con-
straint in both cases ns = 0 and ns = 1 since there is no singlet/triplet mixing
allowed by SU(2) algebra.

To demonstrate the transformation of the local constraint let’s first consider
the case ns = 0. The constraint reads as follows

n1 + n0 + n−1 = 2S ⇐⇒ S2 = S(S + 1). (39)

On the other hand, the the states with 2S occupation are equivalent to the states
with single occupation due to particle-hole symmetry. Thus, the constraint (38)
might be written as

ñ1 + ñ0 + ñ−1 = 1 (40)

where ñα = 1 − nα. The latter case corresponds to ns = 1.
We start now with definition of SO(4) group obeying the following commu-

tation relations

[Sj , Sk] = iejklSl, [Pj , Pk] = iejklSl, [Pj , Sk] = iejklPl (41)

where 6 generators of SO(4) group, namely vectors S and P are represented by
the matrices

S+ =
√

2





0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0



 , S− =
√

2





0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0



 ,

Sz =





1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0



 , P+ =
√

2





0 0 0 1
0 0 0 0
0 0 0 0
0 0 −1 0



 ,

P− =
√

2





0 0 0 0
0 0 0 0
0 0 0 −1
1 0 0 0



 , P z =





0 0 0 0
0 0 0 −1
0 0 0 0
0 −1 0 0



 . (42)
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Figure 4: The Keldysh contour going from −∞ → ∞ → −∞ in real time. The
boundary conditions on the imaginary time segment determine the generalized
distribution functions for quasiparticles.

With the Casimir operator

S · P = 0, S2 + P2 = 3.

Unlike SU(2) group, the singlet/triplet transitions are allowed in SO(4) group and
determined by P operators. Using the definition of singlet/triplet fermions one
comes to following representation

S+ =
√

2(f †
0f−1 + f †

1f0), S− =
√

2(f †
−1f0 + f †

0f1), Sz = f †
1f1 − f †

−1f−1, (43)

P+ =
√

2(f †
1s− s†f−1), P− =

√
2(s†f1 − f †

−1s), Pz = −(f †
0s+ s†f0). (44)

with the only constraint
n1 + n0 + n−1 + ns = 1

whereas the orthogonality condition is fulfilled automatically.

1.4 Real-time formalism

We discuss finally the real-time formalism based on the semi-fermionic representa-
tion of SU(N) generators. This approach is necessary for treating the systems out
of equilibrium, especially for many component systems describing Fermi (Bose)
quasiparticles interacting with spins. The real time formalism [24], [25] provides
an alternative approach for the analytical continuation method for equilibrium
problems allowing direct calculations of correlators whose analytical properties as
function of many complex arguments can be quite cumbersome.

To derive the real-time formalism for SU(N) generators we use the path
integral representation along the closed time Keldysh contour (see Fig.4). Following
the standard route [26], we can express the partition function of the problem
containing SU(N) generators as a path integral over Grassmann variables ψl =
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(al,1(j), ..., al,N (j))T where l = 1, 2 stands for upper and lower parts of the Keldysh
contour, respectively,

Z/Z0 =
∫
Dψ̄Dψ exp(iA)/

∫
Dψ̄Dψ exp(iA0) (45)

where the actions A and A0 are taken as an integral along the closed-time contour
Ct + Cτ which is shown in Fig.4. The contour is closed at t = −∞ + iτ since
exp(−βH0) = Tτ exp

(
− ∫ β

0 H0dτ
)
. We denote the ψ fields on upper and lower

sides of the contour Ct as ψ1 and ψ2 respectively. The fields Ψ stand for the contour
Cτ . These fields provide the matching conditions for ψ1,2 and are excluded from
the final expressions. Taking into account the semi-fermionic boundary conditions
for generalized Grassmann fields (25) one gets the matching conditions for ψ1,2 at
t = ±∞,

ψµ
1,α|k(−∞) = exp

(
iπ

2k − 1
N

)
ψµ

2,α|k(−∞),

ψµ
1,α|k(+∞) = ψµ

2,α|k(+∞) (46)

for k = 1, ..., �N/2� and α = 1, ..., N . The correlation functions can be represented
as functional derivatives of the generating functional

Z[η] = Z−1
0

∫
Dψ̄Dψ exp

(
iA + i

∮

C

dt(η̄σzψ + ψ̄σzη)
)

(47)

where η represents sources and the σz matrix stands for ”causal” and ”anti-causal”
orderings along the contour.

The on-site Green’s functions (GF) which are matrices of size 2N × 2N with
respect to both Keldysh (lower) and spin-color (upper) indices are given by

Gαβ
µν (t, t′) = −i δ

iδη̄α
µ(t)

δ

iδηβ
ν (t′)

Z[η]|η̄,η→0. (48)

To distinguish between imaginary-time (26) and real-time (48) GF’s, we use dif-
ferent notations for Green’s functions in these representations.

After a standard shift-transformation [26] of the fields ψ the Keldysh GF of
free semi-fermions assumes the form

Gα
0 (ε) = GR,α

0

(
1 − fε −fε

1 − fε −fε

)
−GA,α

0

( −fε −fε

1 − fε 1 − fε

)
,

where the retarded and advanced GF’s are

G
(R,A)α
0 (ε) = (ε± iδ)−1, fε = f (N,k)(ε), (49)

with equilibrium distribution functions

f (N,k)(ε) = T
∑

n

eiωnk
τ |+0

iωnk
− ε

=
1

eiπ(2k−1)/N exp(βε) + 1
. (50)
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A straightforward calculation of f (N,k) for the case of even N leads to the following
expression

f (N,k)(ε) =

N∑

l=1

(−1)l−1 exp (βε(N − l)) exp
(
− iπl(2k− 1)

N

)

exp(Nβε) + 1
, (51)

where k = 1, ..., N/2. The equilibrium distribution functions (EDF) f (2S+1,k) for
the auxiliary Fermi-fields representing arbitrary S for SU(2) algebra are given by

f (2S+1,k)(ε) =

2S+1∑

l=1

(−1)l−1 exp (βε(2S + 1 − l)) exp
(
− iπ(2k − 1)

2S + 1
)
)

exp((2S + 1)βε) + (−1)2S+1
(52)

for k = 1, ..., �S + 1/2�. Particularly simple are the cases of S = 1/2 and S = 1,

f (2,1)(ε) = nF (2ε) − i
1

2 cosh(βε)

f (3,1)(ε) =
1
2
nB(ε) − 3

2
nB(3ε) − i

√
3

sinh(βε/2)
sinh(3βε/2)

(53)

Here, the standard notations for Fermi/Bose distribution functions nF/B(ε) =
[exp(βε)±1]−1 are used. For S = 1/2 the semi-fermionic EDF satisfies the obvious
identity |f (2,1)(ε)|2 = nF (2ε).

In general the EDF for half-integer and integer spins can be expressed in
terms of Fermi and Bose EDF respectively. We note that since auxiliary Fermi
fields introduced for the representation of SU(N) generators do not represent the
true quasiparticles of the problem, helping only to treat properly the constraint
condition, the distribution functions for these objects in general do not have to
be real functions. Nevertheless, one can prove that the imaginary part of the
EDF does not affect the physical correlators and can be eliminated by introducing
an infinitesimally small real part for the chemical potential. In spin problems,
a uniform/staggered magnetic field usually plays the role of such real chemical
potential for semi-fermions.

2 Application of semi-fermionic representation

In this section we illustrate some of the applications of SF representation for
various problems of strongly correlated physics.

2.1 Heisenberg model: FM, AFM and RVB

The effective nonpolynomial action for Heisenberg model with ferromagnetic (FM)
coupling has been investigated in [10]. The model with antiferromagnetic (AFM)
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interaction has been considered by means of semi-fermionic representation in [16]
and [17] (magnon spectra) and in [11] for resonance valence bond (RVB) excita-
tions. The Hamiltonian considered is given as

Hint = −
∑

<ij>

Jij

(
�Si
�Sj − 1

4

)
(54)

• Ferromagnetic coupling J = IFM > 0

The exchange �Si
�Sj is represented as four-semi-fermion interaction. Applying the

Hubbard-Stratonovich transformation by the local vector field �Φi(τ) the effective
nonpolynomial action is obtained in terms of vector c-field. The FM phase transi-
tion corresponds to the appearance at T ≤ Tc of the nonzero average 〈Φz(q = 0, 0)〉
which stands for the nonzero magnetization, or in other words, corresponds to the
Bose condensation of the field Φz.

Φz(�k, ω) = M(βN)1/2δ�k,0δω,0 + Φ̃z(�k, ω). (55)

In one loop approximation the standard molecular field equation can be reproduced

M = IFM (0) tanh(βM/2). (56)

The saddle point (mean-field) effective action is given by well-known expression

A0[M] = −N
[
βM2

4IM (0)
− ln

(
2 cosh

(
βM
2

))]
, (57)

and the free energy per spin f0 is determined by the standard equation:

βf0 = − lnZS =
βM2

4IM (0)
− ln

(
2 cosh

(
βM
2

))
(58)

Calculation of the second variation of Aeff gives rise to the following expression

δAeff = −1
4

∑

�k

Φz(�k, 0)
[
I−1
M (�k) − β

2 cosh2(βΩ)

]
Φz(�k, 0)

− 1
4

∑

�k,ω �=0

I−1
M (�k)Φz(�k, ω)Φz(�k, ω)−

∑

�k,ω

Φ+(�k, ω)
[
I−1
M (�k) − tanh(βΩ)

2Ω − iω

]
Φ−(�k, ω)

(59)

where Ω = (gµBH +M)/2. The magnon spectrum (T ≤ Tc) is determined by the
poles of 〈Φ+Φ−〉 correlator, ω = λk2.

• Antiferromagnetic coupling J = IAFM < 0. Néel solution
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The AFM transition corresponds to formation of the staggered condensate

Φz(�k, ω) = N (βN)1/2δ�k, �Qδω,0 + Φ̃z(�k, ω) (60)

The one-loop approximation leads to standard mean-field equations for the stag-
gered magnetization

N = −IAFM (Q) tanh(βN/2),

A0[N ] = N

[
βN 2

4IAFM (Q)
+ ln

(
2 cosh

(
βN
2

))]
. (61)

After taking into account the second variation of Aeff , the following expres-
sion for the effective action is obtained [(see e.g. [16],[17]):

δAeff =
1
4

∑

�k

Φz(�k, 0)
[
I−1
AFM (�k) +

β

2 cosh2(βΩ̃)

]
Φz(�k, 0)

+
1
4

∑

�k,ω �=0

I−1
AFM (�k)Φz(�k, ω)Φz(�k, ω)

+
∑

�k,ω

Φ+(�k, ω)

[
I−1
AFM (�k) +

2Ω̃ tanh(βΩ̃)
4Ω̃2 + ω2

]
Φ−(�k, ω)

−
∑

�k,ω

Φ+(�k + �Q, ω)
iω

4Ω̃2 + ω2
Φ−(�k, ω). (62)

The AFM magnon spectrum ω = c|k|.
• Antiferromagnetic coupling. Resonance Valence Bond solution

The four-semi-fermion term in (54) is decoupled by bilocal scalar field Λij . The
RVB spin liquid (SL) instability in 2D Heisenberg model corresponds to Bose-
condensation of exciton-like [27] pairs of semi-fermions:

∆0 = −
∑

q

Iq
I0

tanh
(
Iq∆0

T

)
, A0 =

β|I|∆2
0

2
−
∑

q

ln [2 cosh(βIq∆0)] (63)

where ∆0 = ∆(q = 0) is determined by the modulus of Λij field

Λ<ij>(�R, �r) = ∆(�r) exp
(
i�r �A(�R)

)
(64)

whereas the second variation of δAeff describes the fluctuations of phase Λij

Aeff =
∑

k,ω

Aα(k, ω)παβ
k,ωAβ(k, ω),

παβ
k,ω = Tr(pαpβ(Gp+kGp +Gp+kGp) + δαβf(Ip∆0)) (65)

The spectrum of excitation in uniform SL is determined by zeros of πR and is
purely diffusive [28]-[29].
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2.2 Kondo lattices: competition between magnetic and Kondo correla-
tions

The problem of competition between Ruderman-Kittel-Kasuya-Yosida (RKKY)
magnetic exchange and Kondo correlations is one of the most interesting problem
of the heavy fermion physics. The recent experiments unambiguously show, that
such a competition is responsible for many unusual properties of the integer valent
heavy fermion compounds e.g. quantum critical behavior, unusual antiferromag-
netism and superconductivity (see references in [19]). We address the reader to
the review [30] for details of complex physics of Kondo effect in heavy fermion
compounds. In this section we discuss the influence of Kondo effect on the compe-
tition between local (magnetic, spin glass) and non-local (RVB) correlations. The
Ginzburg-Landau theory for nearly antiferromagnetic Kondo lattices has been con-
structed in [19] using the semi-fermion approach. We discuss the key results of this
theory.

The Hamiltonian of the Kondo lattice (KL) model is given by

H =
∑

kσ

εkc
†
kσckσ + J

∑

j

(
Sjsj +

1
4
Njnj

)
(66)

Here the local electron and spin density operators for conduction electrons at site
j are defined as

nj =
∑

jσ

c†jσcjσ, sj =
∑

σ

1
2
c†jσ τ̂σσ′cjσ′ , (67)

where τ̂ are the Pauli matrices and cjσ =
∑

k ckσ exp(ikj). The spin glass (SG)
freezing is possible if an additional quenched randomness of the inter-site exchange
Ijl between the localized spins arises. This disorder is described by

H ′ =
∑

jl

Ijl(SjSl). (68)

We start with a perfect Kondo lattice. The spin correlations in KL are charac-
terized by two energy scales, i.e., I ∼ J2/εF , and ∆K ∼ εF exp(−εF/J) (the
inter-site indirect exchange of the RKKY type and the Kondo binding energy, re-
spectively). At high enough temperature, the localized spins are weakly coupled
with the electron Fermi sea having the Fermi energy εF , so that the magnetic
response of a rare-earth sublattice of KL is of paramagnetic Curie-Weiss type.
With decreasing temperature either a crossover to a strong-coupling Kondo sin-
glet regime occurs at T ∼ ∆K or the phase transition to an AFM state occurs at
T = TN ∼ zI where z is a coordination number in KL. If TN ≈ ∆K the interference
between two trends results in the decrease of both characteristic temperatures or in
suppressing one of them. The mechanism of suppression is based on the screening
effect due to Kondo interaction. As we will show, the Kondo correlations screen
the local order parameter, but leave nonlocal correlations intact. The mechanism
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Figure 5: Kondo-screening of local moment by conduction electrons (solid line).

of Kondo screening for single-impurity Kondo problem is illustrated on Fig.5.ω
The magnetization of local impurity in the presence of Kondo effect is given by:

M(H) = S(gµB)T
∑

ω

(G↑(ω) − G↓(ω)) =

S(gµB) tanh
(
Hβ

2

)[
1 − 1

ln(T/TK)
− ln(ln(T/TK))

2 ln2(T/TK)
+ ...

]
. (69)

To take into account the screening effect in the lattice model we apply the semi-
fermionic representation of spin operators. In accordance with the general path-
integral approach to KL’s, we first integrate over fast (electron) degrees of freedom.
The Kondo exchange interaction is decoupled by auxiliary field φ [32] with statis-
tics complementary to that of semi-fermions which prevents this field from Bose
condensation except at T = 0. As a result, we are left with an effective bosonic
action describing low-energy properties of KL model at high T > TK temperatures.

• Kondo screening of the Néel order

To analyze the influence of Kondo screening on formation of AFM order, we adopt
the decoupling scheme for the Heisenberg model discussed in Section II.A. Taking
into account the classic part of Néel field, we calculate the Kondo-contribution to
the effective action which depends on magnetic order parameter N :

Aφ = 2
∑

q,n

[
1

J̃
− Π(N )

]
|φn(q)|2. (70)

where a polarization operator Π(N ) casts the form

Π(N ) = ρ(0) ln
( εF
T

)
+
[
π

2

(
1

cosh(βN )
− 1
)

+O

( N 2

T εF

)]
, (71)
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where ρ(0) is the density of states of conduction electrons at the Fermi level and
the Kondo temperature TK = εF exp (−1/(ρ(0)J)). Minimizing the effective action
A(φ,N ) with respect to classic field N , the mean field equation for Néel transition
is obtained (c.f. with (56))

N = tanh
(
IQN
2T

)[
1 − aN

ln (T/TK)
cosh2(βIQN/2)
cosh2(βIQN )

]
. (72)

As a result, Kondo corrections to the molecular field equation reduce the Néel
temperature

• Kondo enhancement of RVB correlations

Applying the similar procedure to nonlocal RVB correlations, we take into account
the influence of Kondo effect on RVB correlations

Π(Iq∆) = ρ(0) ln
(εF
T

)

+
∑

k

[
1

coshβ(Ik∆)
− 1 + Ik∆ tanh(βIk∆)

]
1

ξ2k+q + (π/2β)2
. (73)

Here ξk = ε(k) − εF . Minimizing the effective action with respect to ∆ we obtain
new self-consistent equation to determine the non-local semi-fermion correlator.

∆ = −
∑

q

Iq
I0

[
tanh

(
Iq∆
T

)
+ asl

Iq∆
T ln(T/TK)

]
. (74)

It is seen that unlike the case of local magnetic order, the Kondo scattering favors
transition into the spin-liquid state, because the scattering means the involvement
of the itinerant electron degrees of freedom into the spinon dynamics.

• Kondo effect and quenched disorder

Let’s assume that the RKKY interactions are random (e.g. due to the presence of
non-magnetic impurities resulting in appearance of random phase in the RKKY
indirect exchange). In this case the spin glass phase should be considered. As it
has been shown in [15] and [19], the influence of static disorder on Kondo effect in
models with Ising exchange on fully connected lattices (Sherrington-Kirkpatrick
model) can be taken into account by the mapping KL model with quenched disor-
der onto the single impurity Kondo model in random (depending on replicas) mag-
netic field. It allows for the self-consistent determination of the Edwards-Anderson
qEAorder parameter given by the following set of self-consistent equations

q̃ = 1 − 2c
ln(T/TK)

−O

(
1

ln2(T/TK)

)
,

q =
∫ G

x

tanh2

(
βIx

√
q

1 + 2c(βI)2(q̃ − q)/ ln(T/TK)

)
+O

(
q

ln2(T/TK)

)
. (75)
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Figure 6: Feynman diagrams for nonlocal excitations associated with the overlap
of Kondo clouds.

Here q = qEA and q̃ are nondiagonal and diagonal elements of Parisi matrix re-
spectively. Therefore, the Kondo-scattering results in the depression of the freezing
temperature due to the screening effects in the same way as the magnetic moments
and the one-site susceptibility are screened in the single-impurity Kondo problem
(c.f. Fig.5) when Ising and Kondo interactions are of the same order of magnitude.
Let’s now briefly discuss the fluctuation effects in Kondo lattices. The natural way
to construct the fluctuation theory is to consider the non-local dynamical Kondo
correlations described by the field φ(q, ω) (see Fig.6). In fact, the non-locality of
the “semi-Bosonic” field is associated with an overlap of Kondo clouds [19] and
responsible for a crossover from the localized magnetism to the itinerant-like fluc-
tuational spin-liquid magnetism. The temperature dependence of static magnetic
susceptibility becomes nonuniversal in spite of the fact that we are in a region of
critical AFM fluctuations which is consistent with recent experimental observa-
tions.

2.3 Kondo effect in quantum dots

The single electron tunneling through the quantum dot [33] has been studied in
great details during the recent decade. Among many interesting phenomena be-
hind the unusual transport properties of mesoscopic systems, the Kondo effect in
quantum dots, recently observed experimentally, continues to attract an atten-
tion both of experimental and theoretical communities. The modern nanoscience
technologies allow one to produce the highly controllable systems based on quan-
tum dot devices and possessing many of properties of strongly correlated electron
systems. The quantum dot in a semiconductor planar heterostructure is a con-
fined few-electron system (see Fig.7) contacted by sheets of two-dimensional gas
(leads). Junctions between dot and leeds produce the exchange interaction be-
tween the spins of the dot and spins of itinerant 2D electron gas. Measuring the dc
I −V characteristics, one can investigate the Kondo effect in quantum dots under
various conditions.

Various realizations of Kondo effect in quantum dots were proposed both
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Figure 7: (a) Double quantum dot in a side-bound configuration (b) co-tunneling
processes in biased DQD responsible for the resonance Kondo tunneling.

theoretically and experimentally in recent publications (see e.g. [34] for review).
In order to illustrate the application of semi-fermionic approach we discuss briefly
electric field induced Kondo tunneling in double quantum dot (DQD). As was
noticed in [35], quantum dots with even N possess the dynamical symmetry SO(4)
of spin rotator in the Kondo tunneling regime, provided the low-energy part of
its spectrum is formed by a singlet-triplet (ST) pair, and all other excitations
are separated from the ST manifold by a gap noticeably exceeding the tunneling
rate γ. A DQD with even N in a side-bound configuration where two wells are
coupled by the tunneling v and only one of them (say, l) is coupled to metallic
leads (L,R) is a simplest system satisfying this condition [35]. Such system was
realized experimentally in Ref.[36]. As it was shown in [20] the Shrieffer-Wolff (SW)
transformation, when applied to a spin rotator results in the following effective spin
Hamiltonian

Hint =
∑

kk′,αα′=L,R

JS
αα′f †

sfsc
†
kασck′α′σ

+
∑

kk′,αα′ΛΛ′

(
JT

αα′ Ŝd
ΛΛ′ + JST

αα′ P̂ d
ΛΛ′

)
τd
σσ′c

†
kασck′α′σ′f †

ΛfΛ′ (76)

where the c-operators describe the electrons in the leads and f -operators stand
for the electrons in the dot. The matrices Ŝd and P̂ d (d=x,y,z) are 4× 4 matrices
defined by relations (41) (see Section I.C) and JS = JSS , JT = JTT and JST are
singlet, triplet and singlet-triplet coupling SW constants, respectively.

Applying the semi-fermionic representation of SO(4) group introduced in Sec-
tion I.C we started with perturbation theory results analyzing the most divergent
Feynman diagrams for spin-rotator model [20]. Following the “poor man’s scal-
ing” approach we derive the system of coupled renormalization group equations
for effective couplings responsible for the transport through DQD. As a result,
the differential conductance G(eV, T )/G0 ∼ |JST

LR |2 is shown to be the universal
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function of two parameters T/TK and V/TK , G0 = e2/πh̄:

G/G0 ∼ ln−2 (max[(eV − δ), T ]/TK) (77)

Thus, the tunneling through singlet DQDs with δ = ET − ES � TK exhibits a
peak in differential conductance at eV ≈ δ instead of the usual zero bias Kondo
anomaly which arises in the opposite limit, δ < TK . Therefore, in this case the
Kondo effect in DQD is induced by a strong external bias. The scaling equations
can also be derived in Schwinger-Keldysh formalism (see [11] and also [18]) by
applying the “poor man’s scaling” approach directly to the dot conductance. The
detailed analysis of the model (76) in a real-time formalism is a subject for a
separate publication.

3 Epilogue and perspectives

In this paper, we demonstrated several examples of the applications of semi-
fermionic representation to various problems of condensed matter physics. The
list of these applications is not exhaustive. We did not discuss, e.g., the interest-
ing development of SF approach for the Hubbard model with repulsive [14] and
attractive [13] interaction, Dicke model, 2D Ising model in transverse magnetic
field, application of SF formalism to mesoscopic physics [21] etc. Nevertheless, we
would like to point out some problems of strongly correlated physics where the
application of SF representation might be a promising alternative to existing field-
theoretical methods.

Heavy Fermions

• Crossover from localized to itinerant magnetism in Kondo lattices

• Quantum critical phenomena associated with competition between local and
nonlocal correlations

• Nonequilibrium spin liquids

• Effects of spin impurities and defects in spin liquids

• Crystalline Electric Field excitations in spin liquids

• Dynamic theory of screening effects in Kondo spin glasses.

Mesoscopic systems

• Nonequilibrium Kondo effect in Quantum Dots

• Two-channel Kondo in complex multiple dots

• Spin chains, rings and ladders
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• Nonequilibrium spin transport in wires

Summarizing, we constructed a general concept of semi-fermionic representation
for SU(N) groups. The main advantage of this representation in application to the
strongly correlated systems in comparison with another methods is that the local
constraint is taken into account exactly and the usual Feynman diagrammatic
codex is applicable. The method proposed allows us to treat spins on the same
footing as Fermi and Bose systems. The semi-fermionic approach can be helpful
for the description of the quantum systems in the vicinity of a quantum phase
transition point and for the nonequilibrium spin systems.
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