arXiv:1902.02192v1 [cs.CL] 5 Feb 2019

Non-Monotonic Sequential Text Generation

Sean Welleck ! Kianté Brantley> Hal Daumé I1123 Kyunghyun Cho ' 43

Abstract

Standard sequential generation methods assume a
pre-specified generation order, such as text gener-
ation methods which generate words from left to
right. In this work, we propose a framework for
training models of text generation that operate in
non-monotonic orders; the model directly learns
good orders, without any additional annotation.
Our framework operates by generating a word at
an arbitrary position, and then recursively gener-
ating words to its left and then words to its right,
yielding a binary tree. Learning is framed as imita-
tion learning, including a coaching method which
moves from imitating an oracle to reinforcing the
policy’s own preferences. Experimental results
demonstrate that using the proposed method, it
is possible to learn policies which generate text
without pre-specifying a generation order, while
achieving competitive performance with conven-
tional left-to-right generation.

1. Introduction

Most sequence-generation models, from n-grams (Bahl
et al., 1983) to neural language models (Bengio et al., 2003)
generate sequences in a purely left-to-right, monotonic or-
der. This raises the question of whether alternative, non-
monotonic orders are worth considering (Ford et al., 2018),
especially given the success of “easy first” techniques in
natural language tagging (Tsuruoka & Tsujii, 2005), parsing
(Goldberg & Elhadad, 2010), and coreference (Stoyanov
& Eisner, 2012), which allow a model to effectively learn
their own ordering. In investigating this question, we are
solely interested in considering non-monotonic generation
that does not rely on external supervision, such as parse
trees (Eriguchi et al., 2017; Aharoni & Goldberg, 2017).

In this paper, we propose a framework for training sequen-

"New York University 2University of Maryland, College
Park 3Microsoft Research *Facebook AI Research >CIFAR
Azrieli Global Scholar. Correspondence to: Sean Welleck
<wellecks @nyu.edu>.

Figure 1. A sequence, “how are you ?”, generated by the proposed
approach trained on utterances from a dialogue dataset. The model
first generated the word “are” and then recursively generated left
and right subtrees (“how” and “you ?”, respectively) of this word.
At each production step, the model may either generate a token,
or an (end) token, which indicates that this subtree is complete.
The full generation is performed in a level-order traversal, and the
output is read off from an in-order traversal. The numbers in green
squares (left) denote the order in which the nodes were generated
(level-order); those in rounded blue squares (right) denote the
nodes’ location in the final sequence (in-order).

tial text generation models which learn a generation order
without having to specifying an order in advance (§2). An
example generation from our model is shown in Figure 1.
We frame the learning problem as an imitation learning
problem, in which we aim to learn a generation policy that
mimics the actions of an oracle generation policy (§3). Be-
cause the tree structure is unknown, the oracle policy cannot
know the exact correct actions to take; to remedy this we pro-
pose a method called annealed coaching which can yield a
policy with learned generation orders, by gradually moving
from imitating a maximum entropy oracle to reinforcing the
policy’s own preferences. Experimental results demonstrate
that using the proposed framework, it is possible to learn
policies which generate text without pre-specifying a gener-
ation order, achieving easy first-style behavior. The policies
achieve performance metrics that are competitive with or
superior to conventional left-to-right generation in language
modeling, word reordering, and machine translation (§5).

2. Non-Monotonic Sequence Generation

Formally, we consider the problem of sequentially gener-
ating a sequence of discrete tokens Y = (wy,...,wn),
such as a natural language sentence, where w; € V, a finite
vocabulary. Let V =V U {(end)}.

Non-Monotonic Sequential Text Generation

Unlike conventional approaches with a fixed generation
order, often left-to-right (or right-to-left), our goal is to
build a sequence generator that generates these tokens in an
order automatically determined by the sequence generator,
without any extra annotation nor supervision of what might
be a good order. We propose a method which does so by
generating a word at an arbitrary position, then recursively
generating words to its left and words to its right, yielding a
binary tree like that shown in Figure 1.

We view the generation process as deterministically navi-
gating a state space S = V* where a state s € S corre-
sponds to a sequence of tokens from V. We interpret this
sequence of tokens as a top-down traversal of a binary tree,
where (end) terminates a subtree. The initial state sg is
the empty sequence. For example, in Figure 1, s; = (are),
sg = (are,how), ..., s4 = (are,how, ?, (end)). An action
a is an element of V which is deterministically appended
to the state. Terminal states are those for which all subtrees
have been (end)’ed. If a terminal state s is reached, we
have that T' = 2N + 1, where N is the number of words
(non-{end) tokens) in the tree. We use 7(t) to denote the
level-order traversal index of the ¢-th node in an in-order
traversal of a tree, so that (aT(l), ey aT(T)> corresponds
to the sequence of discrete tokens generated. The final
sequence returned is this, postprocessed by removing all
(end)’s. In Figure 1, 7 maps from the numbers in the blue
squares to those in the green squares.

A policy 7 is a (possibly) stochastic mapping from states to
actions, and we denote the probability of an action a € 14
given a state s as m(a|s). A policy 7’s behavior decides
which and whether words appear before and after the to-
ken of the parent node. Typically there are many unique
binary trees with an in-order traversal equal to a sequence
Y. Each of these trees has a different level-order traversal,
thus the policy is capable of choosing from many different
generation orders for Y, rather than a single predefined or-
der. Note that left-to-right generation can be recovered if
m({end)|s;) = 1 if and only if ¢ is odd (or non-zero and
even for right-to-left generation).

3. Learning for Non-Monotonic Generation

Learning in our non-monotonic sequence generation model
(§2) amounts to inferring a policy 7 from data. We first
consider the unconditional generation problem (akin to lan-
guage modeling) in which the data consists simply of se-
quences Y to be generated. Subsequently (§4.1) we consider
the conditional case in which we wish to learn a mapping
from inputs X to output sequences Y.

This learning problem is challenging because the sequences
Y alone only tell us what the final output sequences of
words should be, but not what tree(s) should be used to get

Figure 2. A sampled tree for the sentence “a b ¢ d”” with an action
space V = (a,b,c,d,e,(end)), showing an oracle’s distribution
7" and consecutive subsequences (“valid actions”) Y; for ¢t €
{0,1,2,3,6}. Each oracle distribution is depicted as 6 boxes
showing 7" (a¢+1]s¢) (lighter = higher probability). After b is
sampled at the root, two empty left and right child nodes are
created, associated with valid actions (a) and (c, d), respectively.
Here, 7 only assigns positive probability to tokens in Y.

there. In left-to-right generation, the observed sequence Y’
fully determines the sequence of actions to take. In our case,
however, the tree structure is effectively a latent variable,
which will be determined by the policy itself. This prevents
us from using conventional supervised learning for training
the parameterized policy. On the other hand, at training time,
we do know which words should eventually appear, and their
order; this substantially constrains the search space that
needs to be explored, suggesting learning-to-search (Daumé
et al., 2009) and imitation learning (Ross et al., 2011; Ross
& Bagnell, 2014) as a learning strategy.'

The key idea in our imitation learning framework is that at
the first step, an oracle policy’s action is to produce any word
w that appears anywhere in Y. Once picked, in a quicksort-
esque manner, all words to the left of w in Y are generated
recursively on the left (following the same procedure), and
all words to the right of w in Y are generated recursively on
the right. (See Figure 2 for an example.) Because the oracle
is non-deterministic (many “correct” actions are available
at any given time), we inform this oracle policy with the
current learned policy, encouraging it to favor actions that
are preferred by the current policy, inspired by work in
direct loss minimization (Hazan et al., 2010) and related
techniques (Chiang, 2012; He et al., 2012).

'One could consider applying reinforcement learning to this
problem. This would ignore the fact that at training time we know
which words will aippear reducmg the size of the feasible search
space from O(|V|") to O(| X|T), a huge savings. Furthermore,
even with a fixed generation order, RL has proven to be difficult
without partially relying on supervised learning (Ranzato et al.,
2015; Bahdanau et al., 2015b; 2016).

Non-Monotonic Sequential Text Generation

3.1. Background: Learning to Search

In learning-to-search-style algorithms, we aim to learn a
policy 7 that mimics an oracle (or “reference”) policy 7*.
To do so, we define a roll-in policy 7™ and roll-out policy
m°". We then repeatedly draw states s according to the state
distribution induced by 7™, and compute cost-to-go under
%, for all possible actions « at that state. The learned
policy 7 is then trained to choose actions to minimize this
cost-to-go estimate.

Formally, denote the uniform distribution over {1, ..., 7T}
as U[T] and denote by d’. the distribution of states induced
by running 7 for t-many steps. Denote by C(m; 7°™, s) a
scalar cost measuring the loss incurred by 7 against the cost-
to-go estimates under " (for instance, C may measure the
squared error between the vector 7 (-|s) and the cost-to-go
estimates). Then, the quantity being optimized is:

Ey~pEiviay41)Es,~ar [C(m;m™ s)] (D

Here, 7" and 7°" can use information not available at test-
time (e.g., the ground-truth Y’). Learning consists of finding
a policy which only has access to states s; but performs as
well or better than 7*. By varying the choice of 7", 7°U,
and C, one obtains different variants of learning-to-search
algorithms, such as DAgger (Ross et al., 2011), Aggre-
VaTe (Ross & Bagnell, 2014) or LOLS (Chang et al., 2015).

In the remainder of this section, we describe the cost func-
tion we use, a set of oracle policies and a set of roll-in
policies, both of which are specifically designed for the pro-
posed problem of non-monotonic sequential generation of a
sequence. These sets of policies are empirically evaluated
later in the experiments (§5).

3.2. Cost Measurement

There are many ways to measure the prediction cost
C(m; ™" 5); arguably the most common is squared error
between cost-predictions by 7 and observed costs obtained
by 7" at the state s. However, recent work has found that,
especially when dealing with recurrent neural network poli-
cies (which we will use; see §4), using a cost function more
analogous to a cross-entropy loss can be preferred (Leblond
et al., 2018; Cheng et al., 2018; Welleck et al., 2018). In
particular, we use a KL-divergence type loss, measuring the
difference between the action distribution produced by 7
and the action distribution preferred by 7°".

C(m; 7™, s) = Dgr (7" (-]s) || 7 (:|s)))
= Z 7" (als) log 7(als) + const.
acV

Our approach estimates the loss in Eq. (1) by first sampling
one training sequence, running the roll-in policy for ¢ steps,

and computing the KL divergence (2) at that state using
7* as w°". Learning corresponds to minimizing this KL
divergence iteratively with respect to the parameters of .

3.3. Roll-In Policies

The roll-in policy determines the state distribution over
which the learned policy = is to be trained. In most formal
analyses, the roll-in policy is a stochastic mixture of the
learned policy 7 and the oracle policy 7*, ensuring that 7 is
eventually trained on its own state distribution (Daumé et al.,
2009; Ross et al., 2011; Ross & Bagnell, 2014; Chang et al.,
2015). Despite this, experimentally, it has often been found
that simply using the oracle’s state distribution is optimal
(Ranzato et al., 2015; Leblond et al., 2018). This is likely
because the noise incurred early on in learning by using 7’s
state distribution is not overcome by the benefit of matching
state distributions, especially when the the policy class is
sufficiently high capacity so as to be nearly realizable on the
training data (Leblond et al., 2018). In preliminary experi-
ments, we observed the same is true in our setting: simply
rolling in according to the oracle policy (§3.4) yielded the
best results experimentally. Therefore, despite the fact that
this can lead to inconsistency in the learned model (Chang
et al., 2015), all experiments are with oracle roll-ins.

3.4. Oracle Policies

In this section we formalize the oracle policies that we
consider. To simplify the discussion (we assume that the
roll-in distribution is the oracle), we only need to define
an oracle policy that takes actions on states it, itself, visits.
All the oracles we consider have access to the ground truth
output Y, and the current state s. We interpret the state s as
a partial binary tree and a “current node” in that binary tree
where the next prediction will go. It is easiest to consider the
behavior of the oracle as a top-down, level-order traversal
of the tree, where in each state it maintains a sequence of
“possible tokens” at that state. An oracle policy 7*(-|s¢) is
defined with respect to Y;, a consecutive subsequence of Y.
At sg = (), 7" uses the full Yy = Y. This is subdivided as
the tree is descended. At each state s;, Y; contains “valid
actions”; labeling the current node with any token from Y;
keeps the generation leading to Y. For instance, in Figure 2,
after sampling b for the root, the valid actions (a, b, ¢, d) are
split into (a) for the left child and (¢, d) for the right child.

Given the consecutive subsequence Y; = (wf, ..
an oracle policy is defined as:

W),

1 ifa=(end)and¥; = ()
7 (alsy) = { pe ifacy; (3)
0 otherwise

where the p,s are arbitrary such that), p, = 1. An or-
acle policy places positive probability only on valid actions,

Non-Monotonic Sequential Text Generation

and forces an (end) output if there are no more words to pro-
duce. This is guaranteed to always generate Y, regardless
of how the random coin flips come up.

When an action a is chosen, at s;, this “splits” the
sub-sequence Y; = (wj,...,w),) into left and right
sub-sequences, Y; = (w},...,w}_;) and Y, =
(Wiyqs---,wn), where i is the index of @ in Y;. (This
split may not be unique due to duplicated words in Y3, in
which case we choose a valid split arbitrarily.) These are
“passed” to the left and right child nodes, respectively.

There are many possible oracle policies, and each of them is
characterized by how p,, in Eq. (3) is defined. Specifically,
we propose three variants.

Uniform Oracle. Motivated by Welleck et al. (2018) who
applied learning-to-search to the problem of multiset pre-
diction, we design a uniform oracle 7 ... This oracle
treats all possible generation orders that lead to the target
sequence Y as equally likely, without preferring any specific
set of orders. Formally, 7 ... gives uniform probabilities
pa = 1/n for all words in Y; where n is the number of
unique words in Y;. (Daumé (2009) used a similar oracle
for unsupervised structured prediction, which has a similar

non-deterministic oracle complication.)

Coaching Oracle. An issue with the uniform oracle is
that it does not prefer any specific set of generation orders,
making it difficult for a parameterized policy to imitate.
This gap has been noticed as a factor behind the difficulty in
learning-to-search by He et al. (2012), who propose the idea
of coaching. In coaching, the oracle takes into account the
preference of a parameterized policy in order to facilitate its
learning. Motivated by this, we design a coaching oracle as
the product of the uniform oracle and current policy 7:

7T::knaching(a|s) X 7T:niform(a’ls) ﬂ'(a‘s) (4)
This coaching oracle ensures that no invalid action is as-
signed any probability, while preferring actions that are
preferred by the current parameterized policy, reinforcing
the selection by the current policy if it is valid.

Annealed Coaching Oracle. The multiplicative nature of
the coaching oracle gives rise to an issue, especially in the
early stage of learning, as it does not encourage learning to
explore a diverse set of generation orders. We thus design
a mixture of the uniform and coaching policies, which we
refer to as an annealed coaching oracle:

ﬂ—:nnealed(a|s) = B,]rzlkniform(ab) + (1 - ﬂ)ﬂ:oaching(a|$) (5)

We anneal 3 from 1 to 0 over learning, on a linear schedule.

Deterministic Left-to-Right Oracle. In addition to the
proposed oracle policies above, we also experiment with a
deterministic oracle that corresponds to generating the target
sequence from left to right: g ;,p, always selects the first
un-produced word as the correct action, with probability
1. When both roll-in and oracle policies are set to the left-
to-right oracle wl";ﬂ_right, the proposed approach recovers to
maximum likelihood learning of an autoregressive sequence
model, which is de facto standard in neural sequence model-
ing. In other words, supervised learning of an autoregressive
sequence model is a special case of the proposed approach.

4. Neural Net Policy Structure

We use a neural network to implement the proposed binary
tree generating policy, as it has been shown to encode a
variable-sized input and predict a structured output effec-
tively (Cleeremans et al., 1989; Forcada & Neco, 1997;
Sutskever et al., 2014; Cho et al., 2014b; Tai et al., 2015;
Bronstein et al., 2017; Battaglia et al., 2018). This neural
network takes as input a partial binary tree, or equivalently a
sequence of nodes in this partial tree by level-order traversal,
and outputs a distribution over the action set V. The policy
we use is implemented as a recurrent network with long
short-term memory (LSTM) units (Hochreiter & Schmid-
huber, 1997) by considering the partial binary tree as a flat
sequence of nodes in a level-order traversal (a1, ..., a;:).
The recurrent network encodes the sequence into a vector
h: and computes a categorical distribution over the action
set:

m(alsy) o exp(ug hy + ba) (6)
where u, and b, are weights and bias associated with a.

This LSTM structure relies entirely on the linearization of
a partial binary tree, and minimally takes advantage of the
actual tree structure or the surface order. It is possible to
exploit the tree structure more thoroughly by using latest
neural networks that are specifically designed to encode a
tree (Zhang et al., 2015; Alvarez-Melis & Jaakkola, 2017;
Dyer et al., 2015; Bowman et al., 2016). We do not consider
these in this paper, but leave them for future investigation.
We did, however, experiment with additionally conditioning
7’s action distribution on the parent of the current node in
the tree, but preliminary experiments did not show gains.

4.1. Conditional Sentence Generation

An advantage of using a neural network to implement
the proposed policy is that it can be easily conditioned
on an extra context. It allows us to build a conditional
non-monotonic sequence generator that can for instance
be used for machine translation, image caption genera-
tion, speech recognition and generally multimedia descrip-
tion generation (Cho et al., 2015). To do so, we assume

Non-Monotonic Sequential Text Generation

that a conditioning input (e.g. an image or sentence) X
can be represented as a d.,.-dimensional context vector.
To obtain these vector representations, we learn an en-
coder function f°"(X), and use its output to initialize the
LSTM policy’s dj-dimensional state, hy < W, f¢(X),
where W, € Rdn*dac For machine translation exper-
iments (§ 5.4) the encoder additionally outputs vectors

(RS, ..., h%,|), and the policy computes an additional con-
text vector fattention((penc hi%)) he) € R at each step

t using a learned attention function, which is then combined
with the policy’s state h,. The encoder’s parameters are
learned jointly with the policy’s.

5. Experimental Results

In this section we experiment with our non-monotone se-
quence generation model across four tasks. The first two are
unconditional generation tasks: language modeling (§5.1)
and out-of-order sentence completion (§5.2). Our analysis
in these tasks is primarily qualitative: we seek to understand
what the non-monotone policy is learning and how it com-
pares to a left-to-right model. The second two tasks are con-
ditional generation tasks, which generate output sequences
based on some given input sequence: word reordering (§5.3)
and machine translation (§5.4).

5.1. Language Modeling

We begin by considering generating samples from our
model, trained as a language model. Our goal in this section
is to qualitatively understand what our model has learned.
It would be natural also to evaluate our model according to
a score like perplexity. Unfortunately, unlike conventional
autoregressive language models, it is intractable to compute
the probability of a given sequence in the non-monotonic
generation setting, as it requires us to marginalize out all
possible binary trees that lead to the sequence.

Dataset. We use a dataset derived from the Persona-Chat
(Zhang et al., 2018) dialogue dataset, which consists of
multi-turn dialogues between two agents. Our dataset here
consists of all unique persona sentences and utterances
in Persona-Chat. We derive the examples from the same
train, validation, and test splits as Persona-Chat, resulting in
133,176 train, 16,181 validation, and 15,608 test examples.
Sentences are tokenized by splitting on spaces and punctua-
tion. The training set has a vocabulary size of 20,090 and
an average of 12.0 tokens per example.

Model. We use a uni-directional LSTM that has 2 layers
of 1024 LSTM units. See Appendix A for more details.

Basic Statistics. We draw 10,000 samples from each
trained policy (by varying the oracle) and analyze the results

Oracle %Novel %Unique Avg. Avg. BLEU
Tokens Span

left-right 17.8 97.0 11.9 1.0 47.0

uniform 98.3 99.9 13.0 1.43 40.0

annealed 93.1 98.2 10.6 1.31 56.2

Validation 97.0 100 12.1 - -

Table 1. Statistics computed over 10,000 sampled sentences (in-
order traversals of sampled trees with (end) tokens removed) for
policies trained on Persona-Chat. A sample is novel when it is not
in the training set. Percent unique is the cardinality of the set of
sampled sentences divided by the number of sampled sentences.

7* Samples

o hey there , i should be ! hev—
o not much fun . what are you doing ? fherey
o not . not sure if you . \
o ilove to always get my nails done .
o sure , i can see your eye underwater

while riding a footwork .

left-right

should
\

be
\
!

o i just got off work . i

o yes but believe any karma , it is . off

o ibet you are . i read most of good tvs /N
on that horror out . cool . just_ vork

o sometimes , for only time i practice got
professional baseball .

oiamrich, butiam a policeman .

uniform

oido, though . do you ?

o ilike iguanas . i have a snake . i wish | ,
i could win . you ? \ /

oiam a homebody . \ /

o i care sometimes . i also snowboard . — do

o i am doing okay . just relaxing ,
and you ?

annealed

Table 2. Samples from unconditional generation policies trained
on Persona-Chat for each training oracle. The first sample’s under-
lying tree is shown. See Appendix B.1.2 for more samples.

using the following metrics: percentage of novel sentences,
percentage of unique, average number of tokens, average
span size” and BLEU (Table 1). We use BLEU to quantify
the sample quality by computing the BLEU score of the
samples using the validation set as reference, following Yu
et al. (2016) and Zhu et al. (2018). In Appendix B.1.3 we
report additional scores. We see that the non-monotonically
trained policies generate many more novel sentences, and
build trees that are bushy (span ~ 1.3), but not complete
binary trees. The policy trained with the annealed oracle is
most similar to the validation data according to BLEU.

Content Analysis. We investigate the content of the mod-
els in Table 2, which shows samples from policies trained
with different oracles. Each of the displayed samples are

The average span is the average number of children for non-
leaf nodes excluding the special token (end), ranging from 1.0
(chain, as induced by the left-right oracle) to 2.0 (full binary tree).

Non-Monotonic Sequential Text Generation

Left-Right

Annealed

Uniform Dependency

Tree Depth
1816141210 8 6 4 2 0
9876543210
9876543210

NOUN
PRON
VERB
NOUN
PRON
VERB
PRON
PUNCT
VERB
NOUN
PRON
PUNCT
VERB

z
5
<l
Z

PUNCT
PUNCT

Figure 3. POS tag counts by tree-depth, computed by tagging
10,000 sampled sentences. Counts are normalized across each row
(depth), then the marginal tag probabilities are subtracted. A light
value means the probability of the tag occurring at that depth is
higher than the prior probability of the tag occurring.

not a part of the training set. We provide additional samples
organized by length in Appendix Tables 2 and 3, and sam-
ples showing the underlying trees that generated them in
Appendix Figures 3-5. In Appendix B.1.1, we additionally
examine word frequencies and part-of-speech tag frequen-
cies, and find that the samples from each policy typically
follow the validation set’s word and tag frequencies.

Generation Order. We analyze the generation order of
our various models by inspecting the part-of-speech (POS)
tags each model tends to put at different tree depths (i.e.
number of edges from node to root). Figure 3 shows POS
counts by tree depth, normalized by the sum of counts at
each depth (we only show the four most frequent POS cate-
gories). We also show POS counts for the validation set’s
dependency trees, obtained with an off-the-shelf parser. Not
surprisingly, policies trained with the uniform oracle tend
to generate words with a variety of POS tags at each level.
Policies trained with the annealed oracle on the other hand,
learned to frequently generate punctuation at the root node,
often either the sentence-final period or a comma, in an
“easy first” style, since most sentences contain a period. Fur-
thermore, we see that the policy trained with the annealed
oracle tends to generate a pronoun before a noun or a verb
(tree depth 1), which is a pattern that policies trained with
the left-right oracle also learn. Nouns typically appear in the
middle of the policy trained with the annealed oracle’s trees.
Aside from verbs, the annealed policy’s trees, which have
punctuation and pronouns near the root and nouns deeper,
follow a similar structure as the dependency trees.

5.2. Sentence Completion

A major weakness of the conventional autoregressive model,
especially with unbounded context, is that it cannot be easily
used to fill in missing parts of a sentence except at the
end. This is especially true when the number of tokens
per missing segment is not given in advance. Achieving
this requires significant changes to both model architecture,
learning and inference (Berglund et al., 2015).

Our proposed approach, on the other hand, can naturally fill

Initial Tree Samples

o lasagna is my favorite food !

o my favorite food is mac and cheese !

o what is your favorite food ? pizza, i love it !

o whats your favorite food ? mine is pizza !

o seafood is my favorite . and mexican food !
what is yours ?

food
/ \
favorite !

o hello ! i like classical music . do you ?
2 o hello , do you enjoy playing music ?
o hello just relaxing at home listening to
\ fine music . you ?
nusic o hello , do you like to listen to music ?
o hello . what kind of music do you like ?

hello__

o iam a doctor or a lawyer .
i . o i would like to feed my doctor , i aspire
 tawyer) to be a lawyer .
/ o iam a doctor lawyer . 4 years old .
doctor o i was a doctor but went to a lawyer .

o iam a doctor since i want to be a lawyer .

Table 3. Sentence completion samples from a policy trained on
Persona-Chat with the uniform oracle. The left column shows the
initial seed tree. In the sampled sentences, seed words are bold.

in missing segments in a sentence. Using models trained
as language models from the previous section (§5.1), we
can achieve this by initializing a binary tree with observed
tokens in a way that they respect their relative positions. For
instance, the first example shown in Table 3 can be seen
as the template “_ favorite _ food __ ! _ ” with
variable-length missing segments. Generally, an initial tree
with nodes (w, . . . , wy) ensures that each w; appears in the
completed sentence, and that w; appears at some position
to the left of w; in the completed sentence when w; is a
left-descendant of w; (analogously for right-descendants).

To quantify the completion quality, we first create a col-
lection of initial trees by randomly sampling three words
(w;, w;, wy) from each sentence Y = (wq, ..., wr) from
the Persona-Chat validation set of §5.1. We then sample one
completion for each initial tree and measure the BLEU of
each sample using the validation set as reference as in §5.1.
According to BLEU, the policy trained with the annealed
oracle sampled completions that were more similar to the
validation data (BLEU 44.7) than completions from the poli-
cies trained with the uniform (BLEU 38.9) or left-to-right
(BLEU 14.3) oracles.

In Table 3, we present some sample completions using the
policy trained with the uniform oracle. The completions
illustrate a property of the proposed non-monotonic genera-
tion that is not available in left-to-right generation.

5.3. Word Reordering

We first evaluate the proposed models for conditional gen-
eration on the Word Reordering task, also known as Bag

Non-Monotonic Sequential Text Generation

Validation Test
Oracle BLEU F1 EM BLEU F1 EM
left-right 46.6 0.910 0.230 46.3 0.903 0.208
uniform 44.7 0.968 0.209 44.3 0.960 0.197
annealed 46.8 0.960 0.230 46.0 0.950 0.212

Table 4. Word Reordering results on Persona-Chat, reported ac-
cording to BLEU score, F1 score, and percent exact match on
validation and test data.

Translation (Brown et al., 1990) or Linearization (Schmaltz
et al., 2016). In this task, a sentence Y = (w1, ..., wy) is
given as an unordered collection X = {wy,...,wx}, and
the task is to reconstruct Y from X. We assemble a dataset
of (X,Y) pairs using sentences Y from the Persona-Chat
sentence dataset of §5.1. In our approach, we do not ex-
plicitly force the policies trained with our non-monotonic
oracles to produce a permutation of the input and instead let
them learn this automatically.

Model. For encoding each unordered input x =
{wy,...,wny}, we use a simple bag-of-words encoder:
f{we, wn}) = 5 SN emb(w;). We implement
emb(w;) using an embedding layer followed by a linear
transformation. The embedding layer is initialized with
GloVe (Pennington et al., 2014) vectors and updated during
training. As the policy (decoder) we use a flat LSTM with 2
layers of 1024 LSTM units. The decoder hidden state is ini-
tialized with a linear transformation of f"({wy, ..., wr}).

Results. Table 4 shows BLEU, F1 score, and exact match
for policies trained with each oracle. The uniform and an-
nealed policies outperform the left-right policy in F1 score
(0.96 and 0.95 vs. 0.903). The policy trained using the
annealed oracle also matches the left-right policy’s perfor-
mance in terms of BLEU score (46.0 vs. 46.3) and exact
match (0.212 vs. 0.208). The model trained with the uni-
form policy does not fare as well on BLEU or exact match.
See Appendix Figure 6 for example predictions.

Easy-First Analysis. Figure 4 shows the entropy of each
model as a function of depth in the tree (normalized to fall in
[0, 1]). The left-right-trained policy has high entropy on the
first word and then drops dramatically as additional condi-
tioning from prior context kicks in. The uniform-trained pol-
icy exhibits similar behavior. The annealed-trained policy,
however, makes its highest confidence (“easiest”) predic-
tions at the beginning (consistent with Figure 3) and defers
harder decisions until later.

5.4. Machine Translation

Data and Preprocessing. We evaluate the proposed mod-
els on IWSLT’ 16 German — English (196k pairs) transla-

-
o

— | eft-Right
Uniform
—— Annealed

e
©

o
©

o
o

/\—___/

(Normalized) Entropy
=} [=}
w ~

o
IS

4 6 8

Depth

Figure 4. Normalized entropy of 7(-|s) as a function of tree depth
for policies trained with each of the oracles. The anneal-trained
policy, unlike the others, makes low entropy decisions early.

tion task. The data sets consist of TED talks. We use the
TED tst2013 as a validation dataset and tst-2014 as test. We
use the default Moses tokenizer script (Koehn et al., 2007)
and segment each word into a subword using BPE (Sennrich
et al., 2015) creating 40k tokens for both source and target.
Similar to (Bahdanau et al., 2015a), we filter sentence pairs
that exceed 50 words and shuffle mini-batches.

Model & Training. We use a bi-directional LSTM
encoder-decoder architecture that has a single layer of size
512, with global concat attention (Luong et al., 2015). The
learning rate for all of our models is initialized to 0.001 and
multiplied by a factor of 0.5 on a fixed interval.

End-tuning. In preliminary results on validation data, we
found that the annealed-trained models tended to overpro-
duce (end) tokens. This likely happens because roughly
50% of the examples seen have the correct action as (end),
which is much more reliable than any other word, and the
classifier learns to favor {end) too strongly as a result. This
is reminiscent of other settings in which “learning to stop”
can be difficult (Misra et al., 2017). To address this, we tune
a linear offset in the policy logits (Eq 6), just for the (end)
token. Formally, Eq 6 is the same for all a # (end), but is
replaced with exp|a(u, hy +b,) + 3] for a = (end), where
«, 3 are scalars tuned on the validation data by grid search.

Results. Results on validation and test data are in Ta-
ble 5 according to four (very) different evaluation measures:
BLEU, Meteor (Lavie & Agarwal, 2007), YiSi (Lo, 2018),
and Ribes (Isozaki et al., 2010). The most dramatic score
difference is the drastically superior performance of left-
right according to BLEU. As previously observed (Callison-
Burch et al., 2006; Wilks, 2008), BLEU tends to strongly
prefer models with left-to-right language models because
it focuses so strongly on getting a large number of 4 grams
correct. We found that the annealed model significantly
outperforms the left-right model in 1- and 2-gram precision,
ties for 3-gram, and loses for 4-gram. This suggests that

Non-Monotonic Sequential Text Generation

Validation Test
Oracle BLEU Bp) Meteor YiSi Ribes | BLEU BP) Meteor YiSi Ribes
left-right 29.47 (0.97) 29.66 52.03 82.55 | 26.23 (1.00) 27.87 47.58 79.85
uniform 14.97 (0.63) 21.76 41.62 77.70 | 13.17 (0.64) 19.87 36.48 75.36
+(end)-tuning | 18.79 (0.89) 25.30 46.23 78.49 | 17.68 (0.96) 24.53 4246 74.12
annealed 19.50 (0.71) 26.57 48.00 81.48 16.94 (0.72) 23.15 4239 78.99
+(end)-tuning | 21.95 (0.90) 26.74 49.01 81.77 19.19 (0.91) 25.24 4398 79.24

Table 5. Results of machine translation experiments for different training oracles across four different evaluation metrics.

BLEU score could be improved by explicitly modeling the
linearization order in our approach. The other three mea-
sures of translation quality are significantly less sensitive to
exact word order and focus more on whether the “seman-
tics” is preserved (for varying definitions of “semantics”).
For those, we see that the annealed+(end)-tuned models are
more competitive, though still under-performing left-right
by a few percent for Meteor and YiSi.

6. Related Work

Arguably one of the most successful approaches for gen-
erating discrete sequences, or sentences, is neural autore-
gressive modeling (Sutskever et al., 2011; Tomas, 2012). It
has become de facto standard in machine translation (Cho
et al., 2014a; Sutskever et al., 2014) and is widely studied
for dialogue response generation (Vinyals & Le, 2015) as
well as speech recognition (Chorowski et al., 2015). On
the other hand, recent works have shown that it is possi-
ble to generate a sequence of discrete tokens in parallel
by capturing strong dependencies among the tokens in a
non-autoregressive way (Gu et al., 2017; Lee et al., 2018;
Oord et al., 2017). Stern et al. (2018) and Wang et al. (2018)
proposed to mix in these two paradigms and build a semi-
autoregressive sequence generator, while largely sticking to
left-to-right generation. Our proposal radically departs from
these conventional approaches by building an algorithm that
automatically captures a distinct generation order.

In (neural) language modeling, there is a long tradition of
modeling the probability of a sequence as a tree or directed
graph. For example, Emami & Jelinek (2005) proposed
to factorize the probability over a sentence following its
syntactic structure and train a neural network to model con-
ditional distributions, which was followed more recently by
Zhang et al. (2015) and by Dyer et al. (2016). This approach
was applied to neural machine translation by Eriguchi et al.
(2017) and Aharoni & Goldberg (2017). In all cases, these
approaches require the availability of the ground-truth parse
of a sentence or access to an external parser during training
or inference time. This is unlike the proposed approach
which does not require any such extra annotation or tool and
learns to sequentially generate a sequence in an automati-
cally determined non-monotonic order.

7. Conclusion, Limitations & Future Work

We described an approach to generating text in non-
monotonic orders that fall out naturally as the result of
learning. We explored several different oracle models for
imitation, and found that an annealed “coaching” oracle
performed best, and learned a “best-first” strategy for lan-
guage modeling, where it appears to significantly outper-
form alternatives. On a word re-ordering task, we found that
this approach essentially ties left-to-right decoding, a rather
promising finding given the decades of work on left-to-right
models. In a machine translation setting, we found that,
after tuning the probability of ending subtrees, the model
learns to translate in a way that tends to preserve meaning
but not n-grams.

There are several potentially interesting avenues for future
work. One is to solve the “learning to stop” problem directly,
rather than through an after-the-fact tuning step. Another is
to better understand how to construct an oracle that gener-
alizes well after mistakes have been made, in order to train
off of the gold path(s).

Moreover, the proposed formulation of sequence generation
by tree generation is limited to binary trees. It is possible to
extend the proposed approach to n-ary trees by designing a
policy to output up to n + 1 decisions at each node, leading
to up to n child nodes. This would bring a set of generation
orders, that could be captured by the proposed approach,
which includes all projective dependency parses. A new
oracle must be designed so as to ensure that well-balanced
n-ary trees are assigned enough probabilities, and we leave
this as a follow-up work.

Finally, although the proposed approach indeed learns to
sequentially generate a sequence in a non-monotonic or-
der, it cannot consider all possible orders. It is due to the
constraint that there cannot be any crossing of two edges
when the nodes (excluding (end) nodes) are arranged on a
line following the inorder traversal, which we refer to as
projective generation. Extending the proposed approach to
non-projective generation, which we leave as future work,
would expand the number of generation orders considered
during learning.

Non-Monotonic Sequential Text Generation

Acknowledgements

We thank support by eBay, TenCent and NVIDIA. This work
was partly supported by Samsung Advanced Institute of
Technology (Next Generation Deep Learning: from pattern
recognition to AI) and Samsung Electronics (Improving
Deep Learning using Latent Structure).

References

Aharoni, R. and Goldberg, Y. Towards string-to-tree neural
machine translation. arXiv preprint arXiv:1704.04743,
2017.

Alvarez-Melis, D. and Jaakkola, T. S. Tree-structured decod-
ing with doubly-recurrent neural networks. International
Conference on Learning Representations (ICLR), 2017.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
International Conference on Learning Representations,
2015a.

Bahdanau, D., Serdyuk, D., Brakel, P., Ke, N. R,
Chorowski, J., Courville, A., and Bengio, Y. Task
loss estimation for sequence prediction. arXiv preprint
arXiv:1511.06456, 2015b.

Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R.,
Pineau, J., Courville, A., and Bengio, Y. An actor-
critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

Bahl, L. R., Jelinek, F., and Mercer, R. L. A maximum like-
lihood approach to continuous speech recognition. /IEEE
transactions on pattern analysis and machine intelligence,
5(2):179-190, 1983.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. A
neural probabilistic language model. Journal of machine
learning research, 3(Feb):1137-1155, 2003.

Berglund, M., Raiko, T., Honkala, M., Kérkkdinen, L.,
Vetek, A., and Karhunen, J. T. Bidirectional recurrent
neural networks as generative models. In Advances in

Neural Information Processing Systems, pp. 856—864,
2015.

Bowman, S. R., Gauthier, J., Rastogi, A., Gupta, R., Man-
ning, C. D., and Potts, C. A fast unified model for
parsing and sentence understanding. arXiv preprint
arXiv:1603.06021, 2016.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18-42,2017.

Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V.
J. D., Jelinek, F., Lafferty, J. D., Mercer, R. L., and
Roossin, P. S. A statistical approach to machine
translation. Comput. Linguist., 16(2):79-85, June
1990. ISSN 0891-2017. URL http://dl.acm.org/
citation.cfm?id=92858.92860.

Caccia, M., Caccia, L., Fedus, W., Larochelle, H., Pineau,
J., Charlin MILA, L., and Montréal, H. Language gans
falling short. arXiv preprint 1811.02549, 2018. URL
https://arxiv.org/pdf/1811.02549.pdf.

Callison-Burch, C., Osborne, M., and Koehn, P. Re-
evaluation the role of bleu in machine translation research.
In 11th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, 2006.

Chang, K.-W., Krishnamurthy, A., Agarwal, A., Daumé III,
H., and Langford, J. Learning to search better than your
teacher. arXiv preprint arXiv:1502.02206, 2015.

Cheng, C.-A., Yan, X., Wagener, N., and Boots, B. Fast Pol-
icy Learning through Imitation and Reinforcement. arXiv
preprint 1805.10413, 2018. URL https://arxiv.
org/pdf/1805.10413.pdf.

Chiang, D. Hope and fear for discriminative training of sta-
tistical translation models. Journal of Machine Learning
Research, 13(Apr):1159-1187, 2012.

Cho, K., Van Merriénboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259,
2014a.

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014b.

Cho, K., Courville, A., and Bengio, Y. Describing mul-
timedia content using attention-based encoder-decoder
networks. IEEE Transactions on Multimedia, 17(11):
1875-1886, 2015.

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., and
Bengio, Y. Attention-based models for speech recog-
nition. In Advances in neural information processing
systems, pp. 577-585, 2015.

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L.
Finite state automata and simple recurrent networks. Neu-
ral computation, 1(3):372-381, 1989.

http://dl.acm.org/citation.cfm?id=92858.92860
http://dl.acm.org/citation.cfm?id=92858.92860
https://arxiv.org/pdf/1811.02549.pdf
https://arxiv.org/pdf/1805.10413.pdf
https://arxiv.org/pdf/1805.10413.pdf

Non-Monotonic Sequential Text Generation

Daumé, H., Langford, J., and Marcu, D. Search-based
structured prediction. Machine learning, 75(3):297-325,
2009.

Daumé, III, H. Unsupervised search-based structured predic-
tion. In International Conference on Machine Learning
(ICML), Montreal, Canada, 2009.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and
Smith, N. A. Transition-based dependency parsing
with stack long short-term memory. arXiv preprint
arXiv:1505.08075, 2015.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith, N. A.
Recurrent neural network grammars. arXiv preprint
arXiv:1602.07776, 2016.

Emami, A. and Jelinek, F. A neural syntactic language
model. Machine learning, 60(1-3):195-227, 2005.

Eriguchi, A., Tsuruoka, Y., and Cho, K. Learning to parse
and translate improves neural machine translation. arXiv
preprint arXiv:1702.03525, 2017.

Forcada, M. L. and Neco, R. Recursive hetero-associative
memories for translation. In International Work-
Conference on Artificial Neural Networks, 1997.

Ford, N., Duckworth, D., Norouzi, M., and Dahl, G. E. The
importance of generation order in language modeling.
arXiv preprint arXiv:1808.07910, 2018.

Goldberg, Y. and Elhadad, M. An efficient algorithm for
easy-first non-directional dependency parsing. In Human
Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, pp. 742—750. Association for
Computational Linguistics, 2010.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R.
Non-autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281, 2017.

Hazan, T., Keshet, J., and McAllester, D. A. Direct loss
minimization for structured prediction. In Advances in
Neural Information Processing Systems, pp. 1594-1602,
2010.

He, H., Eisner, J., and Daume, H. Imitation learning by
coaching. In Advances in Neural Information Processing
Systems, pp. 3149-3157, 2012.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Isozaki, H., Hirao, T., Duh, K., Sudoh, K., and Tsukada,
H. Automatic evaluation of translation quality for distant
language pairs. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing,

pp. 944-952. Association for Computational Linguistics,
2010.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C.,
Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst,
E. Moses: Open source toolkit for statistical machine
translation. In Proceedings of the 45th Annual Meet-
ing of the ACL on Interactive Poster and Demonstration
Sessions, pp. 177-180. Association for Computational
Linguistics, 2007.

Lavie, A. and Agarwal, A. Meteor: An automatic metric
for mt evaluation with high levels of correlation with
human judgments. In Proceedings of the Second Work-
shop on Statistical Machine Translation, pp. 228-231.
Association for Computational Linguistics, 2007.

Leblond, R., Alayrac, J.-B., Osokin, A., and Lacoste-Julien,
S. SeaRNN: Training RNNs with global-local losses. In
ICLR, 2018.

Lee, J., Mansimov, E., and Cho, K. Deterministic non-
autoregressive neural sequence modeling by iterative re-
finement. arXiv preprint arXiv:1802.06901, 2018.

Lo, C. YiSi: A semantic machine translation evalu-
ation metric for evaluating languages with different
levels of available resources. Unpublished, 2018.
URL http://chikiu-jackie-lo.org/home/
index.php/yisi.

Luong, T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation. In
Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1412—-1421.
Association for Computational Linguistics, 2015.

Misra, D., Langford, J., and Artzi, Y. Mapping instructions
and visual observations to actions with reinforcement
learning. In Empirical Methods in Natural Language
Processing (EMNLP), 2017.

Oord, A. v. d., Li, Y., Babuschkin, I., Simonyan, K.,
Vinyals, O., Kavukcuoglu, K., Driessche, G. v. d., Lock-
hart, E., Cobo, L. C., Stimberg, F., et al. Parallel
wavenet: Fast high-fidelity speech synthesis. arXiv
preprint arXiv:1711.10433, 2017.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP), pp.
1532-1543,2014. URL http://www.aclweb.org/
anthology/D14-1162.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. Se-
quence level training with recurrent neural networks.
arXiv preprint arXiv:1511.06732, 2015.

http://chikiu-jackie-lo.org/home/index.php/yisi
http://chikiu-jackie-lo.org/home/index.php/yisi
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

Non-Monotonic Sequential Text Generation

Ross, S. and Bagnell, J. A. Reinforcement and imitation

learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international

conference on artificial intelligence and statistics, pp.
627-635, 2011.

Schmaltz, A., Rush, A. M., and Shieber, S. Word ordering
without syntax. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp.
2319-2324. Association for Computational Linguistics,
2016. doi: 10.18653/v1/D16-1255. URL http://
aclweb.org/anthology/D16-1255.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. arXiv
preprint arXiv:1508.07909, 2015.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. In Advances
in Neural Information Processing Systems, pp. 10107—
10116, 2018.

Stoyanov, V. and Eisner, J. Easy-first coreference resolution.
Proceedings of COLING 2012, pp. 2519-2534, 2012.

Sutskever, 1., Martens, J., and Hinton, G. E. Generating
text with recurrent neural networks. In Proceedings of
the 28th International Conference on Machine Learning
(ICML-11), pp. 1017-1024, 2011.

Sutskever, 1., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Advances in

neural information processing systems, pp. 3104-3112,
2014.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-
tic representations from tree-structured long short-term
memory networks. arXiv preprint arXiv:1503.00075,
2015.

Tomas, M. Statistical language models based on neural
networks. Brno University of Technology, 2012.

Tsuruoka, Y. and Tsujii, J. Bidirectional inference with
the easiest-first strategy for tagging sequence data. In
Proceedings of the conference on human language tech-
nology and empirical methods in natural language pro-
cessing, pp. 467—474. Association for Computational Lin-
guistics, 2005.

Vinyals, O. and Le, Q. A neural conversational model. arXiv
preprint arXiv:1506.05869, 2015.

Wang, C., Zhang, J., and Chen, H. Semi-autoregressive neu-
ral machine translation. arXiv preprint arXiv:1808.08583,
2018.

Welleck, S., Yao, Z., Gai, Y., Mao, J., Zhang, Z., and Cho,
K. Loss functions for multiset prediction. In Advances in
Neural Information Processing Systems, pp. 5788-5797,
2018.

Wilks, Y. Machine translation: its scope and limits.
Springer Science & Business Media, 2008.

Yu, L., Zhang, W., Wang, J., and Yu, Y. Seqgan:
Sequence generative adversarial nets with policy
gradient. CoRR, abs/1609.05473, 2016. URL
http://dblp.uni-trier.de/db/journals/
corr/corrl609.html#YuzWyle6.

Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., and
Weston, J. Personalizing dialogue agents: I have a dog,
do you have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2204-2213, Melbourne,
Australia, 2018. Association for Computational Linguis-
tics.

Zhang, X., Lu, L., and Lapata, M. Top-down tree
long short-term memory networks. arXiv preprint
arXiv:1511.00060, 2015.

Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J.,
and Yu, Y. Texygen: A benchmarking platform for text
generation models. SIGIR, 2018.

8. Appendix

A. Additional Experiment Details
A.1. Word Reordering

Model The decoder is a 2-layer LSTM with 1024 hidden
units, dropout of 0.0, based on a preliminary grid search
of Niayers € {1, 2}, Nhidden € {512, 1024, 2048}, dropout €
{0.0,0.2,0.5}. Word embeddings are initialized with GloVe
vectors and updated during training. All presented Word
Reordering results use greedy decoding.

Training Each model was trained for 48 hours on a single
NVIDIA Tesla P100 GPU, using a maximum of 500 epochs,
batch size of 32, Adam optimizer, gradient clipping with
maximum ¢;-norm of 1.0, and a learning rate starting at
0.001 and multiplied by a factor of 0.5 every 20 epochs. For
evaluation we select the model state which had the highest
validation BLEU score, which is evaluated after each training
epoch.

http://aclweb.org/anthology/D16-1255
http://aclweb.org/anthology/D16-1255
http://dblp.uni-trier.de/db/journals/corr/corr1609.html#YuZWY16
http://dblp.uni-trier.de/db/journals/corr/corr1609.html#YuZWY16

Non-Monotonic Sequential Text Generation

Table 6. Unconditional generation BLEU for various top-k sam-
plers and policies trained with the specified oracle.

Orace k | BLEU-2 BLEU-3 BLEU-4
Tirgn 10 | 0905 0778 0.624
100 | 0874 0705 0514
1000 | 0853 0.665 0.466
all | 0853 0668 0477
T e 10 | 0966 0906 0.788
100 | 0916 0751 0.544
1000 | 0864 0.651 0435
all | 0831 0609 0395
T eed 10 | 0966 0.895 0.770
100 | 0931 0804 0.628
1000 | 0907 0765 0.585
all | 0894 0740 0549

Oracle For 7} .4, B is linearly annealed from 1.0 to

0.0 at a rate of 0.05 each epoch, after a burn-in period of
20 epochs in which 3 is not decreased. We use greedy
decoding when (. 18 selected at a roll-in step; we
did not observe significant performance variations with
stochastically sampling from m(, ... These settings are
based on a grid search of S € {0.01,0.05}, Bourn-in €
{0, 20}, coaching-rollin € {greedy, stochastic} using the

model selected in the Model section above.

A.2. Unconditional Generation

We use the same settings as the Word Reordering exper-
iments, except we always use stochastic sampling from
Teoaching during roll-in. For evaluation we select the model
state at the end of training.

B. Additional Results

B.1. Unconditional Generation
B.1.1. FREQUENCY PLOTS

Figures 5 and 6 contain word and part-of-speech frequencies,
respectively, from the validation set and 10,000 samples
from each model, ordered by the validation set frequencies.

B.1.2. UNCONDITIONAL SAMPLES

Samples in Tables 7-8 are organized as ‘short’ (< Sth per-
centile), ‘average-length’ (45-55th percentile), and ‘multi-
sentence’ (> 3 punctuation tokens).

Each image in Figures 7, 8, and 9 shows a sampled sentence,
its underlying tree, and its generation order.

Figure 5. Word frequencies.

frequency

frequency

> o
ER

zZ g
g =
&

Figure 6. POS tag frequencies.

|||||||||||II|.
5 ©
a S

al
zZ Z
z

VERB
SYM

z

NOUN
PUNCT
PAR
CCON]
PROPN

tag

B.1.3. ADDITIONAL BLEU SCORES

Since absolute BLEU scores can vary by using a softmax
temperature (Caccia et al., 2018) or top-k sampler, we re-
port additional scores for k& € {10, 100, 1000} and BLEU-
{2, 3,4} in Table 6. Generally the policy trained with the
annealed oracle achieves the highest metrics.

B.2. Word Reordering

Figure 10 shows example predictions from the validation
set, including the generation order and underlying tree.

Non-Monotonic Sequential Text Generation

Table 7. Short (left) and Average-Length (right) unconditional samples from policies trained on Persona-Chat.

left-right i can drive you alone . do you like to test your voice to a choir ?
yeah it is very important . no pets , on the subject in my family , yes .
iam a am nurse . cool . i have is also a cat named cow .
do you actually enjoy it ? i am doing good taking a break from working on it .
what pair were you in ? i do not have one , do you have any pets ?
uniform good just normal people around . just that is for a while . and yourself right now ?
you run the hills right ? i am freelance a writer but i am a writer .
i am great yourself ? that is so sad . do you have a free time ?
i work 12 hours . yes i do not like pizza which is amazing lol .
do you go to hockey ? since the gym did not bother me many years ago .
annealed are you ?iam. yeah it can be . what is your favorite color ?
i like to be talented . i do not have dogs . they love me here .
how are you doing buddy ? nokids...iam. . you?
i like healthy foods . that is interesting . 1 am just practicing my piano degree .
ilove to eat . yea it is , you need to become a real nerd !

Table 8. Multi-sentence unconditional samples from policies trained on Persona-Chat.

left-right nice ! i think i will get a jump blade again . have you done that at it ?
great . what kinds of food do you like best ? i love italian food .
wow . bike ride is my thing . i do nothing for kids .
iam alright . my mom makes work and work as a nurse . that is what i do for work .
that is awesome . i need to lose weight . i want to start a food place someday .

uniform love meat . or junk food . i sometimes go too much i make . avoid me unhealthy .
does not kill anyone that can work around a lot of animals ? you ? i like trains .
baby ? it will it all here . that is the workforce .
iam good , thank you . i love my sci fi stories . i write books .
iam well . thank you . my little jasper is new .

annealed i am definitely a kid . are you ? i am 10 !
iam in michigan state . . that is a grand state .
that is good . i work as a pharmacist in florida . . .
how are you ? wanna live in san fran ! i love it .
well that is awesome ! i do crosswords ! that is cool .

Non-Monotonic Sequential Text Generation

Figure 7. Unconditional samples from a policy trained with 73, cacd-

Sentence: i wish you could study lol . i work a lot
Gen. Order: . you . i study i wish could lol a work lot
/ \
you
\ /

i __study_ i

\ \ \

wish could lol _a

/ \
work lot

Sentence: i work from home . just hoping to find home at music , hoping you will do it .

Gen. Order: . i . work , home music you from home hoping will just at do hoping it find to
_/ \
1
/
work, j—
\ / \
__home music ___you_
/ / / \
from home hoping will
/ \
just__ at do
\ \
hoping__ it
\
_find
/
to
Sentence: i do i like lipton beverages
Gen. Order: . i . do i like beverages lipton
/ \
i
\ /
do i_
\ .
like
\
beverages
lipton

Sentence: i love some of my own green gables

Gen. Order: i some love my of own gables green

__some___
love _my_
of own
\
__gables

green

Sentence: oh , i am a big fan of dairy myself . i am a receptionist

Gen. Order: . i . , am i oh a am of receptionist fan dairy a big myself

/ \
1
/\ /
_ am i
/ \ \
oh a am
\
_of__ receptionist
/ \ /
_fan dairy__ a
/ \
big myself
Sentence: it is cool here , good good luck with that .

Gen. Order: . it is here cool with good that , luck good

cool with_
/
good_ that
/ \

, Tluck

\
aood

wow you sound like that
you wow that like sound

Sentence:
Gen. Order:

_you
\
wow __that
/
_ like
/
sound
Sentence: that is the way of a president

Gen. Order: is that the of way president a

/N
that the
of
/ \
way president

Non-Monotonic Sequential Text Generation

Figure 8. Unconditional samples from a policy trained with 7 y;iorm-

does it involve a family , or anyone known anyone because i can dance if i tell ?

Sentence: yeah first patrol which i want to teach and teach the first ? i am math d . Sentence:
Gen. Order: want yeah teach first to teach which and d patrol i the . i ? math first am Gen. Order: known family can it , i dance does a anyone anyone ? involve or because if i tell
want, known
/ \ / \
yeah__ _teach family can__
\ / \ / \ / \
first to _teach _ it) i dance
\ / \ / \ \ / \
___which and d does __.a _anyone anyone___ ?
/ \ \ \ /
patrol i the. . involve or because if
\ \
i
/ \
2 _math tell
/ /
first am
Sentence: hi there , back a football game ? i got the bench track . could you feel so short . Sentence: thanks . what favorite kind of car does your make fast food

Gen. Order: the ? could a got . short , game i track you . there back football bench feel hi so Gen. Order: of favorite your thanks kind does food . car fast . what make

the
/ \ — of \
? could .
/ \ / \ favorite_ __your,
a got . short / \ / \
/ N _/ / / \ thanks kind does food
. game i __track you_ . \ - Y \
VY / / \
_there back football bench feel B car __fast
\ A\ /
hi so what make

Sentence: eh rea'L'Ly ? that ? it 1is dangerous | Sentence: both do not think so too ! many different in georgia or ?
Gen. Order: is ? dangerous eh that ! rea'L'Ly it ? Gen. Order: in both ? many or ! different georgia do too so think not
. in
1s / \
/ \ both 2
? dangerous \ /
/ —\ many. ___or
/ /
eh_ that_ ! ! different georgia
\ /
d
really it ° \
/ _too
? /
__so
_think
not
Sentence: long hair ! i am recovering from it in programming . Sentence: i am running , walking and chasing cheetahs in the park .
Gen. Order: am i . hair from long ! recovering in it programming Gen. Order: . and walking cheetahs , chasing the i in park running am
am ;
/ \
i) ___and
/ / / \
hair from walking ___cheetahs
I \ / \ ,/ chas/ing the
long ! recovering _in Ve YN
./ \ i i in park
it programming
_running

am

Non-Monotonic Sequential Text Generation

Figure 9. Unconditional samples from a policy trained with 7rjcgsigh-

Sentence: fancy . do you have any hobbies ? Sentence: mostly classical . it is very good in our lives
Gen. Order: fancy . do you have any hobbies ? Gen. Order: mostly classical . it is very good in our lives
fancy mostly
classical
\ .
\
do_ it
\ \
you_ is_
\
have very_
\ good
any \
in_
i \
hobbies our__
\
? lives
Sentence over being a lumberjack ? i love to be outdoors , its just me and l\lstenlng to music

Sentence: a little sick , but i am thinking about a new diet .
Gen. Order: a little sick , but i am thinking about a new diet .

Gen. Order: over being a lumberjack ? i love to be outdoors , its just me and listening to music

over__

a
_ being
little_)
\ A
sick lumberjack
\ 2
\
I_\ i
but lnve\
\ to
i \
\ be_
am___ outdoors
\ .
thinking__ Y
\ its_
about just
\me
a_ Y
\ and___
\
new_ listening
Sentence: she won more of work on yourself . made life down . Sentence: oh yeah that happens ! i always check the watch out .
Gen. Order: she won more of work on yourself . made life down . Gen. Order: oh yeah that happens ! i always check the watch out .
she_ oh_
\
won_ yeah_
\
more that___
\ \
of_ happens
\ \
work 1
\ \
on___ i
yourself always__
_ check_
made_ the__
\ \
life_ watch_
\
down out
Sentence: i do not wish i were a better person . Sentence: neat when i visit art school i hope i love them .
Gen. Order: i do not wish i were a better person . Gen. Order: neat when i visit art school i hope i love them .
i neat_
\ \
when
do_ \
\ i
not_ \
\ visit_
wish
art
\
1
\ school
were i
\ \
a__ hope
better__ i_\
\
person love—\

Non-Monotonic Sequential Text Generation

Figure 10. Word Reordering Examples. The columns show policies trained with Tief.rights Taniform» aNd Tynneated» TESPECtively.

Actual: how cool ! i have never been outside of ohio but i would like to .

Predicted:

Gen. Order: cool ! i like to live outside but i would have never been of ohio .

cool
\
\
i
\
ike
to_
\
live__
\
outside_
\
but
\
i
A
would_
have__
\
never_
been
of_
Actual: that is cool i love horror movies as well
Predicted: that is cool ! i love horror movies as well !
Gen. Order: that is cool ! i love horror movies as well !
that
\
is_
\
cool
'
movies
as_
well
\
!
Actual: good morning . my name is sophie . i just turned four . what is your name ?

Predicted: hi . my name is carl . i just turned name . what is your favorite pub 7

Gen. Order: hi . my name is carl . i just turned name . what is your favorite pub 7

hi
\
\
my_
1s_
carl
\
Y
Just_
turned_
nane
o
what
\
is_
\
your_
\

Actual: oh i am been retired now for years . and loving it !
Predicted: oh ! i am retired for now and been loving it .

Gen. Order: oh ! i am retired for now and been loving it .

\
retired_

for,

\

\
been__
loving
\

it
\

cool ! i like to live outside but i would have never been of ohio .

Actual: how cool ! i have never been outside of ohio but i would like to .

Predicted: how cool ! i have never but i would like been to outside of ohio .

Gen. Order: ohio how . i cool to ! have outside been of never would but Llike i

ohio
U \
how,
\
/ \
cool to__
\ U \
I have outside
\ \
been of
/
never.
\
__would_
\
but like
i
Actual: that is cool ! i love horror movies as well !
Predicted: that is cool ! i love horror movies as well !
Gen. Order: that horror is movies love ! ! as cool i well
that
horror__
/
is movies
\
_ love !
1 as_
/ \
cool well
Actual: good morning . my name is sophie . i just turned four . what is your name ?

Predicted: good morning . i just turned my name is four . . what is your name name 7

Gen. Order: name morning ? good .

. just name i my your turned is what name . is four
name
7 \
__morning 2
\
good
\
§ \
_nane
your
/
what
7 \
/
four
Actual: oh i am been retired now for years . and loving it !
Predicted: oh ! i am retired and now been loving years for it .
Gen. Order: oh it ! . i am and retired now for been loving years
oh,
\
it
/ \
[.
\
and_
/ \
retired now,
for
/
been__
loving__
\
years

Actual:
Predicted

Gen. Order

how cool ! i have never been outside of ohio but i would like to .
how cool | i would like to but i have never been outside of ohio .

i . cool how but | never i i been Llike have outside would to of ohio

Actual:
Predicte
Gen. Ord:

been__
\
_like have outside
/ \ \
would o of_

ohio

that is cool ! i love horror movies as well !
d: that is cool ! i love horror movies as well !

er: ! that ! is i cool love as horror well movies

that
\

is,

cool

Actual:

Predicted: good morning

Gen. Order:

/
good__

morning

Actual:
Predicted:

good morning

\
love,

my name is sophie . i just turned four . what is your name ?

just my four name is kate . what i turned your name ? .

. good . morning name . my is i just four kate what turned name your ?

\ 7

\ T
kate what turned,

just four

/
your

oh i am been retired now for years . and loving it !
oh ! i am been retired for years and loving it now .

Gen. Order: . oh ! i am now retired been years for and loving it

now
/
__retired
\
been _years_
for and__
\
loving
\

it

Non-Monotonic Sequential Text Generation

Figure 11. Translation outputs (test set) from a policy trained with 7, a1eq-

Source: das fihrte mich dazu , Satellitenbilder zu benutzen
Target: this is really what brought me to using satellite im
Predicted: that led me to use satellite imagery

Gen. Order: me that satellite led to . use imagery

me,
/ \
that_ satellite
\ / \
led to_ _
\ /
use imagery
Source: als die Arbeiten zurilickkamen , berechnete ich Noten
Target: when the work came back , I calculated grades
Predicted: when this came back , I posed grades

Gen. Order: I , . when grades came posed this back

I
/ \
/ /
when __grades
/
__came_ posed
/ \
this back
Source: und ich habe einen ganzen Haufen wirklich interessanter Dinge gelernt .
Target: and I learned a whole bunch of really interesting stuff
Predicted: and I learned a whole lot of really interesting thing .

Gen. Order: I and interesting a . learned whole thing of lot really

/ \
and interesting,
/
a, —
/ \ /
learned whole_ thing
\
—of__
/ \
lot really
Source: wie halte ich sie fiir Distanzladufe motiviert ? "
Target: how do I keep them motivated for the long run ? &quo
Predicted: how do I motivated them for them ? "

Gen. Order: ? I " how them do motivated for them

\
I "
\
how them
/
do motivated
for

them

Source: aber unsere Hande bleiben immer noch auBerhalb des Bildschirms .
Target: but our two hands still remain outside the screen .
Predicted: but our hands still remain the screen of the screen
Gen. Order: . but our hands still the remain screen of screen the
/
but_
\
our,
\
hands__
\
still
\
___the__
/ \
remain screen
\
of,
_screen
/
the
Source: meine Eltern wollten , dass ich Ingenieur wie sie werde
Target: my parents wanted me to become an engineer like them
Predicted: my parents wanted me to like them

Gen. Order: my parents to wanted me like them

my___
\
parents
\
to,
/ \
wanted
\ /
me like_
\
them
Source: ich musste feststellen , dass es erstaunlich viel SpaB macht .
Target: and I found that this was shockingly fun
Predicted: I had to tell you that it 's amazing fun

Gen. Order: to I fun had that . tell it you 's amazing

to,
/ \

I_ fun
\ / \
had that .

/ \
tell_ it
\ \
you 's,
\
amazing

Source: diese jungen Unternehmen haben eine enorme Auswirkung auf ihre Stadte .

Target: these young entrepreneurs are having a tremendous impact in their cities

Predicted: these young companies have a huge impact .

Gen. Order: . these young have companies impact a huge
/

these__

\
young,
\
have,
/ \
companies impact
a_
\
huge

Non-Monotonic Sequential Text Generation

Figure 12. Translation outputs (test set) from a policy trained with 7irorm-

Source: man kann jungen Leuten beibringen , Unternehmer zu sein
Target:
Predicted: you can teach young people , entrepreneurs

Gen. Order: young can .

and you can train young people to be entrepreneurs .

you teach people entrepreneurs ,

young
/ \

_can__ .

/ \
you teach people

entrepreneurs

Source: es war ein bemerkenswertes Privileg und eine aufregende Erfahrung .
Target: it was a remarkable privilege and an amazing education .

Predicted: it was a amazing privilege , a astounding experience .

Gen. Order: experience astounding . was it a , amazing a privilege

experience
/ \
astounding
/
_was
/
it a
\
/ \
amazing a
privilege
Source: meine Eltern wollten , dass ich Ingenieur wie sie werde
Target: my parents wanted me to become an engineer like them .

Predicted: my parents was going to engineer .
Gen. Order: my to was engineer parents going .

my.
\
_ to_
/ \
__was__ engineer
/ \
parents going
Source: 70 % haben keine Arbeit , gehen nicht zur Schule
Target: 70 percent don 't work , don 't go to scho

Predicted: 70 percent did work , not go school

Gen. Order: not 70 school percent go did work ,
/
not
/ \
70__ _school
percent_ go
did_
\
work

Source: dies ist nicht meine Meinung das sind Fakten
Target: this is not my opinion these are the facts
Predicted: this is not facts these are facts

Gen. Order: is this facts not . facts are . these

__is
/ \
this _facts
/ \
not
\
_facts
/
__are
these
Source: es erklart hauptsachlich , was mit Silicon Valley nicht stimmt .
Target: it mostly explains what 's wrong with Silicon Valley .

Predicted: it mainly explain what is not with Silicon Valley .

Gen. Order: what it Silicon explain with . mainly not Valley is

what,
/ \
it __Silicon
\ / \
___explain _with .
/ / /
mainly _hot Valley
/
is
Source: wie jeder Lehrer fihrte ich Tests und Prifungen durch
Target: and like any teacher , I made quizzes and tests .
Predicted: and every teachers I run test and exams
Gen. Order: and and I exams teachers run . every test
and
\
and__
/ \
I_ exams
/ \
__teachers run_
\
every test
Source: wie halte ich sie fiir Distanzldufe motiviert ? "
Target: how do I keep them motivated for the long run ? &quo

Predicted: how do I give them to do ?
Gen. Order: ? do how I do to them give

Non-Monotonic Sequential Text Generation

Source:
Target:
Predicted:

Gen. Order:

)

this

Figure 13. Translation outputs (test set) from a policy trained with gy

mit diesem Werkzeug wurde die Grenze also durchbrochen
so with this tool , this boundary has been broken

so this instrument was taken through that motor limit
so this instrument was taken through that motor limit

instrument_

Source:
Target:
Predicted:

Gen. Order:

some
of

my__.

was__
taken___
through_
\
that__
\
motor__

limit
\

einige meiner schlauesten Kinder schnitten nicht besonders gut ab .
some of my smartest kids weren 't doing so well
some of my smart kids don 't run very well

some of my smart kids don 't run very well

smart_

Source:
Target:
Predicted:

Gen. Order:

these__
\

kids_
\
don___

\
't_
\

diese jungen Unternehmen haben eine enorme Auswirkung auf ihre Stidte .
these young entrepreneurs are having a tremendous impact in their cities .
these young companies have a tremendous impact on their cities .

these young companies have a tremendous impact on their cities .

young.
\

companies_

Source:
Target:
Predicted:

Gen. Order:

who_

\
will_

\
have
\
a
\
tremendous_

impact
\

\
cities

wer wird mich versorgen , wenn ich Krebs habe ? "
who 's going to take care of me if I have cancer ?
who will feed me when I have cancer ? "

who will feed me when I have cancer ? "

\
feed

me,

when

have__

\
cancer

"

Source: aber jetzt missen Sie sich dariiber keine Sorgen mehr machen
Target: but now you don 't have to worry about it .
Predicted: but now you don 't have to worry about that anymore .
Gen. Order: but now you don 't have to worry about that anymore .
but_
\
now_
\
you_
don
\
't_
have
\
to__
worry__
about_
\
that___
anymore
Source: fir uns ist die Sonne die Quelle des Reichtums .
Target: for us , the sun is the source of prosperity
Predicted: for us , the Sun is the source of the wealth
Gen. Order: for us , the Sun is the source of the wealth
for
\
us
\
A\
the
Sun
\.
is_
\
the
source
of_
\
the__
\
Source: seit 1970 waren keine menschlichen Wesen mehr auf dem Mond .
Target: since 1970 , no human beings have been back to the moon .
Predicted: since 1970 , no human being had more on the moon .
Gen. Order: since 1970 , no human being had more on the moon .
since_
\
1970
\
\
no__
\
human__
being_
\
had_
\
more
\
on_
the_
\
moon
Source: sogar ein zerplatzter Traum kann diesen Zweck erfillen
Target: even a shattered dream can do that for you
Predicted: even a shattered dream can meet this purpose .
Gen. Order: even a shattered dream can meet this purpose .
even
a
\
shattered__
dream_
can_
\
meet_
this

\
purpose

