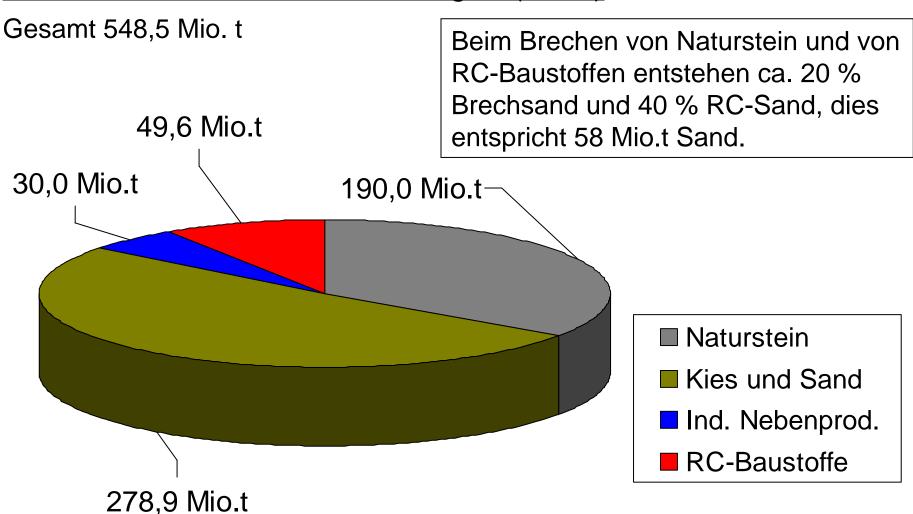


Mahlbarkeit von mineralischen Bauabfällen


Dipl.-Ing. Gabi Seifert Prof. Dr.-Ing. habil. Anette Müller

Fachtagung Recycling R'10 Weimar, 22. / 23.09.2010

Motivation

Produktion von Gesteinskörnungen (2004)

Verwertungsmöglichkeiten für Sande

- Rohstoff für Aufbaukörnungen (Vortrag Alexander Schnell)
- Einsatz als Betonzusatzstoff (Vortrag Alrik Badstübner)
- Einsatz in Kompositzementen

Vorteile:

- Erzeugung neuer Zuschläge für Leichtbeton
- Neue Zusätze für Beton
- Verbesserungen der Eigenschaften von Beton

Wirtschaftlichkeit ↑ CO₂ Emission ↓ Ressourcennutzung ↑

- Abfälle sind die Rohstoffe von morgen
- Mahlbarkeit dient als wichtiger technologischer Parameter
- → Aufgabe: Datenbank mit Mahlbarkeitswerten erstellen

Bauhaus-Universität Weimar

Mahlbarkeitstests

Professur Aufbaraitung von Baustoffen und Wi	ederverv	vertung
Mahlung	•	In de
nach	•	50 g
Hardgrove	•	Maß
		von
	•	Je k
		härte
Mahlung	•	In de
nach	•	30 g
Zeisel	•	Ursp
		Kug
	•	Erge
		Obe

- In den 30er Jahren von Hardgrove entwickelt
- 50 g Probemenge
- Maß für die Härte beim Mahlen, hauptsächlich von Kohle
- Je kleiner der Hardgrove-Index [°H], desto härter ist die Probe

Quelle: ACARP, Hardgrove Grindability Index, Australien

- In den 50er Jahren von Zeisel entwickelt
- 30 g Probemenge
- Ursprünglich für die Beurteilung von Kugelmühlen
- Ergebnis Zusammenhang erzielte spezifische Oberfläche zu Mahlenergie

Quelle: Technische Universität Clausthal, Mahlbarkeitsprüfung nach Zeisel. Handbuch. 2008

Mahlung nach Bond

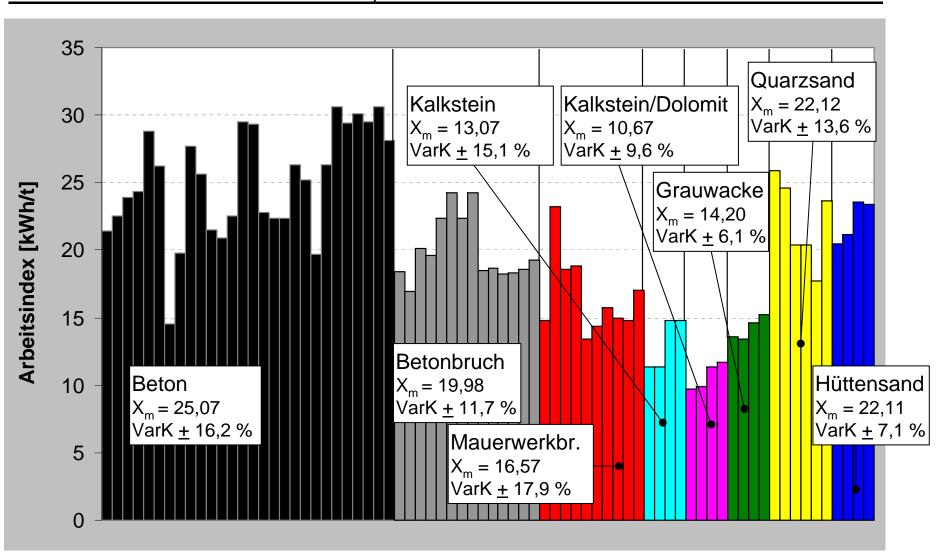
- 1952 von F. C. Bond entwickelt
- 700 cm³ Probemenge
- Simulierter Mahlkreislauf, als stoffunabhängig angenommen
- Unmittelbares Ergebnis: Mahlbarkeit G [g/U]
- Mittelbares Ergebnis: Arbeitsindex w_i [kWh/t]

Foto: Bauhaus-Universität Weimar, Gabi Seifert

Mahlbarkeitswerte

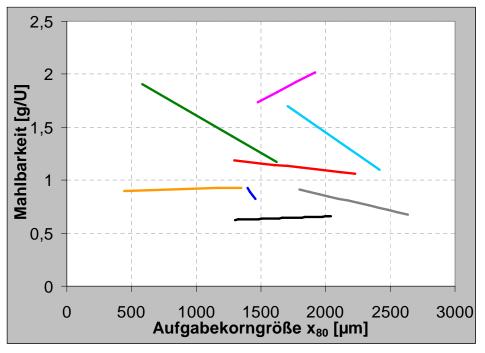
Arbeitsindices - von Bond 1953 ermittelt

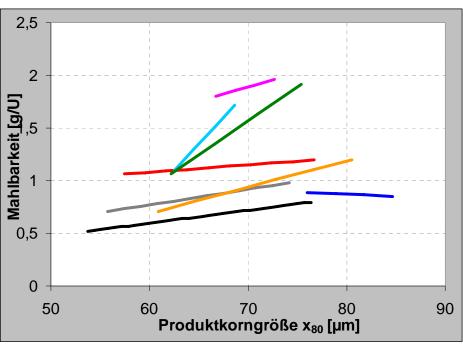
Stoff	w _i [kWh/t]
Gipsstein	6,73
Glas	12,31
Kalkstein	12,54
Koks	15,18
Schlacke	9,39
Schmirgel	56,70
Zementklinker	13,56
Zement-Rohm.	10,51


Quelle: Bond, F.C., Work Indexes Tabulated	l,
Mining engineering, 1953	

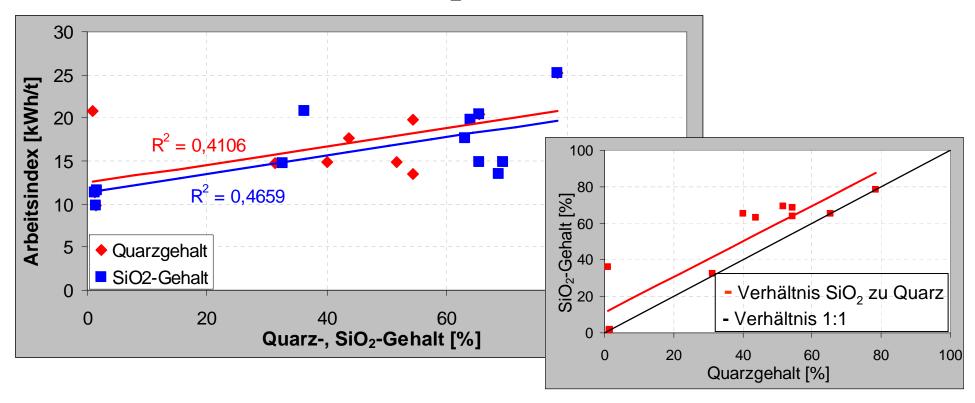
Stoff	w _i [kWh/t]	Stoff	w _i [kWh/t]
Andesit	18,25	Bauxit	8,78
Basalt	17,10	Bleierz	11,73
Baryt	4,73	Chromerz	7,64
Dolomit	11,27	Eisenerz	12,93
Feldspat	10,80	Golderz	14,93
Flint	26,16	Kupfererz	12,73
Flussspat	8,91	Manganerz	12,20
Gneis	20,13	Nickelerz	13,65
Granit	15,05	Pyriterz	8,93
Graphit	43,56	Rutilerz	12,68
Quarz	13,57	Spodumenerz	10,37
Schiefer	15,87	Titanerz	12,33
Syenit	13,13	Zinkerz	11,56

Mahlbarkeitswerte


Arbeitsindices nach Bond, Mittelwert und Variationskoeffizient



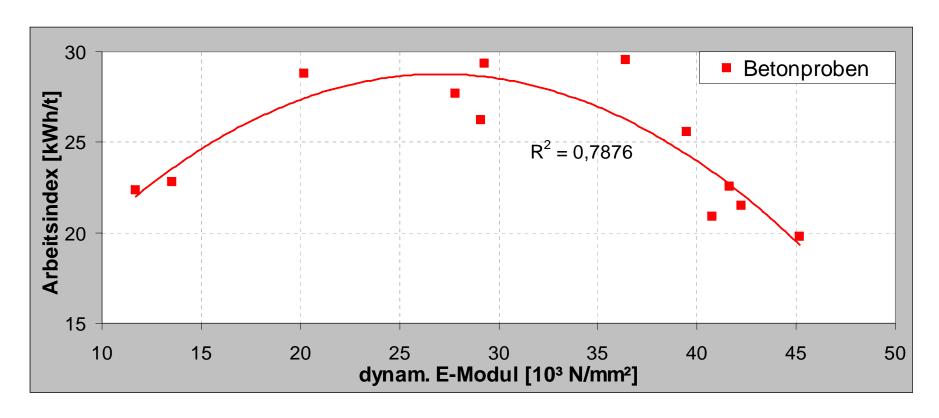
Mahlbarkeit nach Bond zur Korngröße



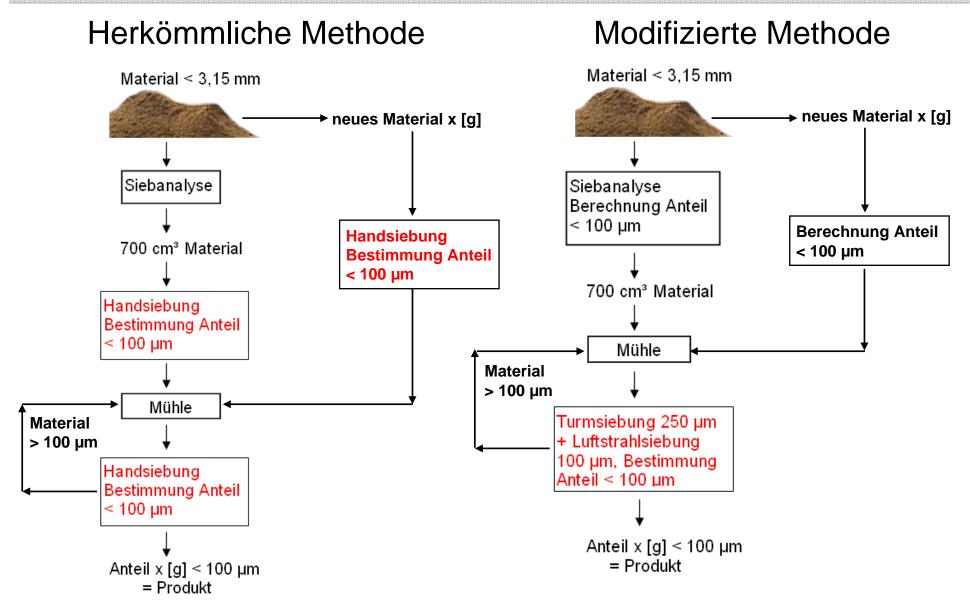


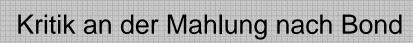
Einflussgrößen für die Mahlbarkeit

Korrelation Quarzgehalt / SiO₂-Gehalt - Mahlbarkeit



- SiO₂-Gehalt immer höher als Quarzgehalt
- Je höher der Quarz- bzw. SiO₂-Gehalt, um so höher der Arbeitsaufwand


Korrelation E-Modul der Betonproben - Mahlbarkeit



Bei mittlerem dynamischen E-Modul - Arbeitsaufwand am größten

Kritik an der Mahlung nach Bond

<u>Vergleich – herkömmliche und modifizierte Methode</u>

Methode	Mahlbarkeit [Masse < 100 μm in g/U]	Anteil < 100 μm im Material > 100 μm [%]	Zeitaufwand [h]
Beton			
Herkömmliche Methode	0,78	10,1	3,5
Modifizierte Methode	1,00	1,04	14,5
Betonbruch			
Herkömmliche Methode	0,90	4,08	3,5
Modifizierte Methode	1,09	1,28	16,5

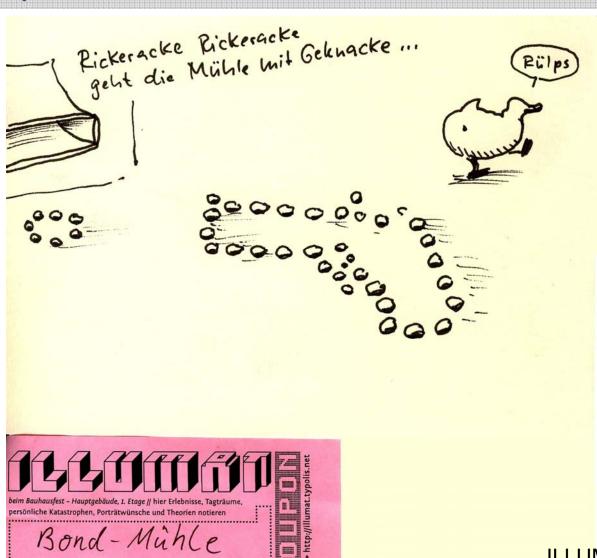
Zusammenfassung

Nach Seifert, 2004 - 2010			
Stoff	Mittelwert w _i [kWh/t]		
Betonbruch	19,43 (16,92 – 24,21)		
Mauerwerkbruch	15,83 (14,30 – 18,87)		
Beton	24,87 (19,68 – 30,65)		
Kalkstein	13,07 (11,33 – 14,80)		
Kalkstein/Dolomit	10,67 (9,71 – 11,72)		
Quarzsand	22,12 (17,73 – 25,90)		
Grauwacke	14,20 (13,38 – 15,21)		
Hüttensand	22,11 (20,43 – 23,52)		

Nach Bond, 1953		
Stoff	w _i [kWh/t]	
Zementklinker	13,56	
Zement-Rohmaterial	10,51	
Glas	12,31	
Gipsstein	6,73	
Kalkstein	12,54	
Schlacke	9,39	
Schmirgel	56,70	
Baryt	4,73	
Dolomit	11,27	
Feldspat	10,80	
Granit	15,05	
Quarz	13,57	
Schiefer	15,87	

Quelle: Bond, F.C., Work Indexes Tabulated, Mining engineering, 1953

Zusammenfassung / Ausblick


Zusammenfassung

- Große Unterschiede der Arbeitsindices der verschiedenen Materialien und innerhalb eines Materials
- Der Arbeitsaufwand ist umso höher, die Mahlbarkeit umso schlechter:
 - Je höher der Quarz- bzw. SiO₂-Gehalt ist
 - Bei mittlerem dynamischen E-Modul
- Bond-Methode konnte verbessert werden, an den Stand der Technik angepasst werden

Ausblick

- Mahlungen an definierten Gemischen
- Einflussgrößen für Mahlbarkeit präzisieren
- Weitere Verbesserungen an der Durchführung der Mahlung nach Bond

ILLUMAT – Automat für Spontanzeichnung

Vielen Dank für Ihre Aufmerksamkeit

http://www.uni-weimar.de/bauing/aufber/

gabi.seifert@uni-weimar.de

