Geometric and Electronic Structures of Complexes

1

The Five d-Orbitals

Crystal Field Theory (CFT)

- CFT is based on the electrostatic repulsion between d electrons of the metal and ligand electrons
- In CFT, ligands are considered to be negative point charges, whereas metal ions are positive point charges

d-d Transitions and UV/VIS Spectra

Note that the spectrum is not as simple as previously described! The shoulder in the spectrum is due to the Jahn-Teller effect (described later)

Tetragonal Distortions

Crystal Field Stabilization Energies

CFSE = Energy released when a complex rearranges from the (hypothetical) spherical field to its final geometry

All species are paramagnetic

Examples:

d⁹ (Cu²⁺)

CFSE = $(6 \times -0.4) + (3 \times 0.6) \Delta_0 = -0.6 \Delta_0$

Paramagnetic

Diamagnetic

Cu(II) – d⁹ and the Jahn-Teller Effect

Jahn-Teller Theorem (1937): For a non-linear molecule in an electronically degenerate state, distortion must occur to lower the symmetry, remove the degeneracy, and lower the energy.

- The electronic ground state of octahedral Cu(II) is degenerate (the electron "hole" can be in either of the two e_q orbitals)
- Therefore, a tetragonal distortion of octahedral Cu(II) complexes should occur
- Such distortion (along the z axis) removes the degeneracy and leads to a higher CFSE
- The gain in CFSE is what drives this process!

The Jahn-Teller effect is visible in the UV/VIS spectra of Cu(II) and Ti(III)* complexes in form of a shoulder in the absorption peak

* See page 5

High-spin and low-spin configurations (octahedral field)

High-spin versus Low-spin

- (a) d⁵ ion in a <u>weak octahedral field</u> (small Δ_0) results in a high-spin complex (e.g. [Mn(H₂O)₆]²⁺)
- (b) d⁶ ion in a strong octahedral field (large Δ_0) results in a low-spin complex (e.g. [Fe(CN)₆]⁴⁻)

Factors Governing the Magnitude of Δ

1. Oxidation state of the metal ion:

 Δ increases with increasing ionic charge of the central metal ion

2. Nature of the metal ion:

 Δ increases for analogous complexes within a given group in the order 3d < 4d < 5d (Rule of thumb: $3d \rightarrow 4d \le 50$ % increase in Δ)

3. Number and geometry of ligands:

 Δ for tetrahedral complexes is ~ 50 % as large as for octahedral complexes

4. Nature of the ligands:

Based on absorption spectra (d-d transitions) of a variety of complexes with different types of ligands and central metal ions, one can order the ligands according to their 'field strength'. The order is known as the Spectrochemical Series.

The Spectrochemical Series

The field strength (and thus Δ) increases in the following order:

 $I^{-} < Br^{-} < S^{2-} < SCN^{-} < CI^{-} < N_{3}^{-}, F^{-} < urea, OH^{-} < ox, O^{2-} < H_{2}O$ < <u>N</u>CS⁻ < NH₃ < en < bpy, phen < NO₂⁻ < CH₃⁻, C₆H₅⁻ < CN⁻ < CO < NO

(ox = oxalate, en=ethylenediamine, bpy=2,2'-bipyridine, phen=1,10phenanthroline; for the thiocyanato ligand: underlined atoms are bound to the metal centre)

- Important note: The spectrochemical series of ligands cannot be explained by the CFT!
- The series can be explained, however, with the help of the Ligand Field Theory (extension of CFT which includes MO theoretical considerations)

Applications of CFT

Hydration energies:

the smaller the cation, the larger its hydration energy (which is closely related to the enthalpy of formation of $[M(H_2O)_6]^{2+}$, for instance.)

cations possessing CFSE show higher hydration energies than otherwise expected. CFSE therefore adds to the stabilization of the aqua complexes.

V²⁺ and Ni²⁺ have the highest CFSE values. This is reflected in the so-called "double-humped" curve of hydration energies.

Figure 8.9

(a) Hydration energies of the +2-charged $3d^n$ ions (solid circles); (b) Crystal field stabilization energies of these ions; (a, open circles) hydration energies with the CFSEs subtracted.

Enthalpy of complex formation

same considerations as with the hydration energies (i.e., same type of double-humped curve is observed), since hydration energies are only a specific case of complex formation enthalpies

Looking back at the previous figure, one can order the metals according to their magnitude of complex formation enthalpies: This is the IRVING-WILLIAMS series of metal ions

Irving-Williams series for divalent 3d metal ions

Mn < Fe < Co < Ni < Cu > Zn

Cu(II) is the most acidic metal ion, Zn(II) is next (although it is the hardest ion in the series)

Figure 8.12

Radii of the +2 ions (a) and the +3 ions (b) as a function of the $3d^n$ electron configuration. Open circles represent high-spin (weak-field) ions; closed circles represent low-spin (strong-field) ions. [Adapted from R. D. Shannon and C. T. Prewitt, *Acta Crystallogr. Sect. B*, **26**, 1076 (1970).]

For low-spin complexes: minimum of the curve is at Fe(II) – d^6 (because all electrons are in the t_{2q} orbitals \rightarrow maximal CFSE)

For high-spin complexes: an increase in radius occurs after $V(II) - d^3$ (because a fourth electron would occupy the e_g orbital, which directly points towards the ligands \rightarrow repulsion \rightarrow effective increase in radius)