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Introduction 
In the first three lectures we have been introduced to data flow analysis techniques. 
However, these techniques deal with languages without procedures and functions. 
Analyzing those languages is called intraprocedural analysis. Any programmer knows 
that in real life those languages are scarce and in most cases they are not applicable for 
humans (like assembler). This brings us to the need of extending our analysis techniques 
to languages with functions and procedures, or in other words- interprocedural analysis. 
Interprocedural analysis is more demanding and challenging than intraprocedural 
analysis; here we need to take into account the call-return and parameter passing 
mechanisms, local variable of the function and function recursion (can be unbounded). In 
some cases the called procedure is known only in run-time like with function pointers or 
with virtual functions. If we run in multithreaded environment, function concurrency can 
be a tough issue. If we are working with third party libraries, the source code is not 
always available. In contrast to dynamically allocated memory, the call-return mechanism 
is easier to track and thus better algorithmic solutions exist. 
 
In order to simplify the problem, we assume: 

• Parameters are passed by value – This means that the parameter value is being 
copied and a change to this parameter inside the function has no effect outside 
the function. 

• No object oriented. 
• No nesting functions – there is no definition of a function inside another function. 

This also means that we have only two kinds of variable scopes: 
o Local scope – the variable is known only inside the function and has no 

effect outside the function. 
o Global scope – the variable is known everywhere. 

• No concurrency – No parallel execution of functions. 
 
 
Reduction to intraprocedural analysis 
 
The first kind of solutions will exploit the fact that we already know how to analyze 
programs with no function calls. We will try to perform reduction from a program with 
function calls to an equivalent program without any function calls and then to analyze it 
in the same manner we have up till now.  



 
 
Trivial treatment of procedures 
 Analyze each procedure separately. After a function call continue with 
conservative information, global variables have unknown value. 
 
Example: Here g is a global variable and x is local variable whose address is not taken 
(by means of &x) when entering to the function p. 
 
proc p() 
{    [g  T] 
 g := 1 
    [g  1] 
} 
 
main() 
{    [g  T, x T] 

g := 2 
    [g 2, x T] 

x := 3 
    [g  2, x 3] 

call p() 
    [g  T, x 3] 

print g 
} 
 
 
This technique is easy to implement, and procedures can be written in different languages 
since there is no dependency of information between the analyses. Although we still 
achieve soundness in this technique, this oversimplifying may not yield an analysis which 
is precise enough for our need. It seems that in every function call we loose a lot of 
information. Modular programming encourages small frequently called functions, which 
decrease the ability of the algorithm to give interesting results.  
 
Procedure Inlining 
Another way for reduction to intraprocedural analysis is to inline functions. This is a very 
simple technique but it doesn’t handle recursion since it leads to unbounded in-lining 
even for recursion which is known to be bounded at runtime. Even for non-recursive 
programs the real problem with this technique is that it has an exponential blow up. 
For example: 
P1()    P2()    P3 
{ [P1 staff]  { [P2 staff]  { 
 call P2    call P3    …[P3 staff] 
 [P1staff]   [P2 staff]  } 
 
 call P2    call P3 



}    } 
 
Will be translated to: 
 P1() 
 { 
  [P1 staff] 
  [P2 staff] 
  [P3 staff] 
  [P2 staff] 

[P3 staff] 
  [P1 staff] 
  [P2 staff] 
  [P3 staff] 
  [P2 staff] 

[P3 staff] 
} 
 
 

Naïve Interprocedural solution 
A first attempt for an integrated Intra-Interprocedural analysis is the naïve solution in 
which we look at a global control flow graph, containing the control flow graphs of all 
procedures and: 

• Treating all procedure calls like a goto from the call instruction to the first 
instruction of the procedure. 

• Treating all return statements like a (non-deterministic) goto to the instruction 
following each call to the given procedure. 

For example: 
 
Void main()     int p(int a) 
{      { 
 
 
    
      } 

C1: x = p(7) 

C2: x = p(9) 

Return a + 1 

 
 
} 
 
After the transformation we have a legitimate intraprocedural program where we can 
obtain conservative solution by applying the chaotic iteration algorithm and find the least 
fixed point using the following equations: 
 

• dfentry[s] = i 
• dfentry[v] = {Џ {f(u, v) (dfentry[u]) | (u, v) є E } 
  



One problem with the naïve approach is that we allow impossible paths in our analysis 
and by that we loose accuracy. 
For example we allow the following path: 
 
Void main()     int p(int a) 
{      { 
 
 
    
      } 
 
 
} 
 
 
Running the chaotic iteration algorithm for constant propagation on this example will 
result with non-useful information. As we are entering function p with two different 
parameters a will map to T and the function will return value will be T. From the function 
exit point we return to the two call points and this is why x is mapped to T in both places. 
 
 
 
 
 
 
 
 
 
 
 

C1: x = p(7) 

C2: x = p(9) 

Return a + 1 

void main()  
{ 

int p(int a)  
{ 
   [a  T] 
    return a + 1; 
   [a  T, return  T] 
 
} 

    int x ; 
    x = p(7) ; 
     [x  T] 
    x = p(9) ; 
     [x  T] 
} 
 

Call String 
In order to overcome the previous problem we want to be able to distinct between two 
different function calls and thus avoid invalid paths. In the call string approach 
we “remember” where we came from, i.e., the context of the call and where we return to 
by keeping a string that “simulates” the stack. The ideal solution is to keep track of the 
whole stack.  A valid path is a control flow path that can be taken by respecting the stack 
regime.  



 

P() {  
 … 
 R();  
 … 
} 

R(){ 
   …  
}   

Q() {  
 … 
 R();  
 …  
} 

call 

return 

call 

return 

 
Intuitively, this is a very natural concept: every return jumps to the instruction following 
the call that matches it as parenthesis match in a legal arithmetical expression.  
By adding the context of the call to the information of the step we can overcome the 
passing through invalid paths. 
 
For example: 
 
 
 
 
 
 
 
 
 
 
 

void main() 
 { 
    int x ; 
    c1: x = p(7); 
    ε: [x  8] 
    c2: x = p(9) ; 
    ε: [x  10] 
}

int p(int a) 
 { 
   c1:[a 7]  
   c2:[a 9] 
    return a + 1; 
   c1:[a 7, $$ 8]  
   c2:[a 9, $$ 10] 
}

Here we save the labels c1 and c2 in the state information of p so the variable a gets 
different values in each different call. Saving c1 and c2 help us with the return value, we 
know that when returning from c1 the return value is 8 and for c2 it’s 10.  
 
This algorithm is easy for implementation and efficient for small strings. If the string is 
too big we can save only constant number of strings and by that we limit the dept of 
function call. Using this technique with recursion is problematic since the same label 
can’t distinct between two calls to the method. Because a recursion is unbounded we can 
use only constant depth of the string for which we loose accuracy. 
 
 



In the following example, where we lose precision, we follow the first step of the analysis 
for a recursive procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

int p(int a)  
{ 
    c1: [a  7]    c1.c2+: [a  T] 
    if (…) 
   { 
       c1: [a  7]  c1.c2+: [a  T]  

      a = a -1 ; 
      c1: [a  6]   c1.c2+: [a  T] 
      c2: p (a); 
      c1.c2*: [a  T] 
      a = a + 1; 
      c1.c2*: [a  T]  

   } 
   c1.c2*: [a  T] 
   x = -2*a + 5; 
 
c1.c2*: [a  T, x T] 
} 
 

void main() 
 { 
    c1: p(7); 
    ε: [x  T] 
} 

In the example we can see that we use regular expressions to express sequence of C2. 
C2+ means a sequence of one or more C2s.  C2* means a sequence of zero or more C2.  
This technique is easy to implement and efficient for small call strings. Sometimes finite 
domains can be precise even with recursion. However this technique guarantees only 
limited precision due to space limitation. Sometimes the order of calls can be abstracted 
by sets counting occurrences of call cites. 
 
 



Functional approach 
 
The reduction views the procedure in a degenerated fashion. It executes the functionality 
line by line, but the abstraction of the function idea was lost. In the functional approach 
we would like to compute the meaning or effect of the procedure and address the 
procedure as a transformation from input to output. We would like to see how the 
procedure maps input states to output states. The main idea is to recover the meaning of 
the procedure independent of the concrete values. For example, the meaning of a function 
f(x) {return x + 1 ;} is to compute x + 1 for ever value of x without affecting any other 
variables. 
 
The approach uses two phase algorithm: 

– First phase: Compute the dataflow solution at the exit of a procedure as a function 
of the initial values at the procedure entry (functional values). 

– Second phase: Compute the dataflow values at every point using the functional 
values. The second phase is similar to the standard intraprocedural analysis and 
uses the functional values computed in the first phase to compute the effect of 
procedure calls. 

 
 
Here is an intuitive example. Note that a is local and x is global. In the first phase we 
compute the least fixed point of the function p by chaotic iteration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

} 
 

[a a0, x T] 
x = -2*a + 5; 
[a a0, x -2a0 + 5] 

 
} 

int p(int a) 
 { 

  [a a0, x x0] 
 if (…) 
  {  

      a = a -1 ;  
     [a a0-1, x x0] 

        p (a); 
     [a a0-1, x T] 
      a = a + 1; 
     [a a0, x T]  

When the chaotic iteration reaches the recursive call to P, we use the current function 
effect taken from the exit point of the procedure. 
So here the function effect is: p(a0,x0) = [a a0, x -2a0 + 5] 



 
In phase two we form again the chaotic iteration, but now when we reach the procedure 
call, we take the effect of the procedure. 
 
We want to adopt the concept of JOP used in the intraprocedural analysis for 
interprocedural analysis. Note that in the latter, due to the call-return nature of the stack 
we will deal with invalid path as shown in the following graph. 
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Here the path marked in blue is valid meaning it conforms to the stack regime; however 
the red path is invalid as it starts in the call from P but returns to Q. 
We want to formally define the set of all valid paths, and to show that it can be defined 
with a Context Free Grammar.  
 
Arithmetical expressions and syntactical structure resemblance demand that we define 
valid paths using context free grammar. Our alphabet of terminal symbols will be 
composed of the union of the union of these two sets: 

 
• C = {the symbol (ci | ci is a procedure call label} 
• R = {the symbol )ri | ri is a procedure return label} 

 
The non terminal symbols are {matched, valid} 
Assumption: For each i, ri and ci are matching call and return sites. 
The following will be the derivation rules in our context free grammar 
 
matched  e | matched matched | (ci matched )ri |  
                                                                            for all matching ci and ri



 
valid  matched |  (ci valid     for all ci in C 
 
Matched means that a path starts at a certain invocation instance and ends at the same 
invocation instance, i.e. every call is matched by the appropriate return. On the other 
hand, valid means that some of the calls were matched but others still not; we still have 
some frames in the stack to unwind. This only specifies the sequence of call/return labels 
of a valid path. The following Context Free Grammar rules describe the rest of the paths. 
 
intra  e | (li, lj) intra   for labels li, lj that are neither call or return 
 
 
 
matched  e | intra | matched  matched | (lc, ls) matched (le, lr) 
   

for all 4-tuples of labels lc, lr, ls, le where lc and lr are matching call/return labels and ls, 
le the starting/ending label of the procedure called in lc. 

 

valid  matched | lc valid     for all procedure call labels lc

 
A point to notice is that this Context Free Grammar defines too many paths. For example, 
the intra  derivation rule doesn’t constraint edges to be from labels that really have an 
edge between in the transfer graph, or even labels in the same procedure. But, it can 
easily be proved that the set of paths in the extended control flow graph presented in the 
previous section is a regular language. The intersection between that set and the Context 
Free language here defined is the set of valid paths. Because the intersection of a context 
free language and a regular language yields a context free language, we have that the set 
of valid paths can be defined by a context free language. The conclusion from this section 
is that the set of valid paths can be defined by a Context Free Grammar. 
 
So now we can define the Join Over all Valid Paths. 
For each sequence of edges e1, e2, …, en that constitute a valid path, define: 
f[e1, e2, …, en]: L  L by composing the effects of the basic statements: 
f[](s) = s  i.e., the empty path does not modify the state 
f[e, p](s) = f[p](fe(s))  i.e., apply the effect of the last statement to the overall effect of the  
   previous statements 
 
The Join over all Valid Paths, JVP, is defined by the following expression: 
 
JVP[n] = Џ {f[e1, e2, …, e](i) | for all valid paths [e1, e2,…, e]  ending in label n} 

Where i is the information known at the beginning of the program. ■ 
 

 



JVP at node n is defined to be the least upper bound on the set of abstract values that 
result by applying the abstract transformers along all valid paths that lead to n. 
 
Now we can apply the join over all valid paths in the functional approach. When we 
move along the path from node N1 to node N2 we assemble the transition function. 
 



 
As we mentioned above, the main idea of the functional approach is to first find out what 
is the overall effect of each function call and second, once we know the effect of every 
function, we can do chaotic iteration, and when we encounter a procedure call, we can 
use the knowledge acquired in the first phase about the actual effect of the call. 
 
The advantage of this method is that it can compute the JVP, however, it requires that the 
transfer function be distributive. 
 
Here is an example with constant propagation. 
 
The lattice - L = Var  N U {T, ⊥} 
 
For each procedure we want to find a summary that gives us the net effect of the 
procedure on the lattice. Thus, we perform chaotic iterations over the domain of functions 
from L to L Domain -  F: L  L 
 
Our functions are distributive i.e. (f1 Џ f2)(x) = f1(x) Џ f2(x) 
We will use lambda notation.  
Here is a simple example: 
 
 

1.Id = λenv.env 
 
 2.   λenv.env[x  7] 
                                              

x=7

3.λenv.env[x  7] o λenv.env 
 

 4.λenv.env[y  env(x) + 1] 

y=x+1 

 
x=y 5.λenv.env[y  env(x) + 1]o λenv.env[x              

7] o λenv.env 
 

 
1. Id = λenv.env 
This is the Id of the function that maps each environment to itself (the identity 
function).This is how we start. 
2. λenv.env[x  7] 
This is the function describes the effect of the statement x=7 on the state. The rest of the 
variables belong to this environment, stay the same. 
3. λenv.env[x  7] o λenv.env 
This is the function that describes the effect of the compound statement x=7 and the Id 
function. It is the composition of the transformers of each of the atomic statements. 
4. λenv.env[y  env(x) + 1] 
This is the function describes the effect of the statement y=x+1 on the state. 
3 λenv.env[y  env(x) + 1]o λenv.env[x  7] o λenv.env  



This is the function that describes the effect of the compound statement of y=x+1; x=7 
and the Id function. It is the composition of the transformers of each of the atomic 
statements. 
 
In the following CFG the two statements preceded a join point: 

Id = λenv.env    Id = λenv.env 

x = 7 y = x + 1

x=y 

 
λenv.env[y  env(x) + 1] Џ λenv.env[x  7] 

 
 
We join to compute the combined effect of both paths on the last statement: 
λenv.env[x  7] 
λenv.env[y  env(x) + 1] 
 
The algorithm works by chaotic iterations. Its input is a CFG whose edges are annotated 
with functions describing the effect of atomic. It begins by setting the function at the 
entry node to the procedure to be the identity function and at all other nodes we set it to 
⊥. In the first phase, the algorithm iterates over the graph from the leaves upwards, 
however, instead of propagating elements in L, it propagates functions in L L., 
modifying them according to the atomic statements of the graph edges. Whenever the 
algorithm reaches a call, it propagates to the return node the function at the call-site, 
combined with the function found at the procedure exit – which is the current estimation 
of the procedure net effect. In the second phase the algorithm performs the constant 
propagation using the functional values. 
 
 
 
 
 
 
 
 



 
 
Example: 
 
Initialization: each statement is indexed. 
The procedures entries point as associated with the identity function. 
 
 

a=79

call p10

call p11

print(x)12

p1

If( … )2

a=a-13

call p4

call p5

a=a+16

x=-2a+57

end8

begin0

end13

λe.z3-13

λe.[x→e(x), a→e(a)]=id1

λe.[x→e(x), a→e(a)]=id0

FunctionN

 
 
 
 
 
 
 
Phase 1: 
We start from the leafs going upwards in the call graph.We compute for each procudure 
its net effect. Note that when we compute 5 we take into account the current effect of p – 
stored in the exit point 8.  
 



λe.[x→-2(e(a)-1)+5, a→ e(a)] Џ
λe.[x→ e(x), a→ e(a)]

7

λe.[x→-2(e(a)-1)+ 5, a→ e(a)-1]6

Id7
λe.[x→-2e(a)+5, a→ e(a)]8

λe.[x→e(x), a→ e(a)-1]4

λa, x.[x→-2e(a)+5, a→ e(a)]8

f8 ○ λe.[x→e(x), a→ e(a)-1] =
λe.[x→-2(e(a)-1)+5, a→ e(a)-1]

5

Id3

Id2
λe. [x→e(x), a→e(a)]=id1
FunctionN

a=79

call p10

call p11

print(x)12

p1

If( … )2

a=a-13

call p4

call p5

a=a+16

x=-2a+57

end8

begin0

end13

λa, x.[x→-2e(a)+5, a→ e(a)] ○ f1011
λe.[x→e(x), a→7]10
λe.[x→e(x), a→e(a)]=id0

 
 
 
 
 
Phase2: 
Now we proceed to do constant propagation analysis.  
This phase proceeds as follows. 
 

• The state at the entry of a procedure is the join of the states at all call sites. 
• At return labels, apply the procedure transformer (found in the exit node of the 

procedure from the first iteration) to the abstract state at the call-site. 
• To all other labels apply the label’s transformer (found in the first iteration) to the 

initial state of the procedure they are in.  
 
 



[x→-9, a→7]8

[x→T, a→7]7

[x→-7, a→7]6

[x→0, a→7]7
[x→-9, a→7]8

[x→0, a→6]4

[x→T, a→T]1

[x→-7, a→6]1

[x→0, a→7]3

[x→0, a→7]2
[x→0, a→7]1
FunctionN

a=79

Call p(a)10

Call p11

print(x)12

p1

If( … )2

a=a-13

Call p4

Call p5

a=a+16

x=-2a+57

end8

begin0

end13

[x→-9, a→7]11
[x→0, a→7]10
[x→0, a→0]0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Interprocedural Distributive Finite Subset 
 
The work “Precise Interprocedural Dataflow analysis via Graph Reachability” of Thomas 
Reps, Susan Horwitz and Mooly Sagiv shows how a large class of interprocedural 
dataflow-analysis problems can be solved precisely in polynomial time by transforming 
them into a special kind of graph-reachability problem. In the IFDS framework, a 
program is represented using a directed graph G* = (N*, E*) called a supergraph. 
For example: 

 
 
 
The novel idea in this paper is in the way distributive functions are being represented. 
The representation relation of function f is defined as follows: 

  
 



For example: 
The Identity function will be represented like this:  Φ          a          b          c 

VV .f λ=
},{}),f({ baba =  

                Φ          a          b          c   
 
And constant function that maps each variable to b:Φ          a          b          c 

}{.f bVλ=

}{}),f({ bba =                Φ          a          b          c 
Here we can see that because each group contains the empty group, it’s enough to have 
one arrow that goes from the empty group to b. 
 
“Gen/Kill” function: remove b and add c.           Φ          a          b          c 

               Φ          a          b          c 

}{.f bVλ=

}{}),f({ bba =

Here we can see that because each group contains the empty group, it’s enough to have 
one arrow that goes from the empty group to c. We need the arrow from a to a will be in 
the result set if it was in the input set. 
 
Using the dataflow functions we build the graph G#. The edges of the G# corresponded 
to the representation relations of the dataflow functions on the edges of G*. 
For example if we take graph G* and build the corresponding G# graph for the “possibly-
uninitialized variables” problem, we will get the following graph: 



 
 
Because of the relationship between function composition and paths in composed 
representation-relation graphs, the path problem can be shown to be equivalent to IP. i.e. 
dataflow-fact d holds at supergraph node n if and only if there is a  “realizable path” 
(valid path) from a distinguished node in G# to the node in G# that represents fact d at 
node n. 
In the previous G# graph for the “possibly-uninitialized variables” problem we can see 
that closed circles represent nodes that are reachable along realizable paths from 
<Smain,0>. Open circle represent unreachable nodes along realizable paths. For example 
node <n8,g> is reachable only along non-realizable paths from <Smain,0> (the red path 
in the following graph). 



 

x = 3 

p(x,y) 

return from p 

start main 

exit main 

start p(a,b) 

if . . .

b = a 

p(a,b) 

return from p 

exit p 

Λ
Λx y a b 

printf(y) 
printf(b) NO

(

 
 

The running time of his algorithm is O(ED3) . 
Typically: E ≈ N, hence O(ED3) ≈ O(ND3). 
In he “Gen/Kill” problems: O(ED). 
 
Under certain conditions it is possible to combine two dataflow functions, which reduce 
the number of nodes and edges. 
 
 Φ          a          b          c                                   
 
       Φ          a          b          c 
 
 Φ          a          b          c 
      Φ          a          b          c 
 
 Φ          a          b          c 
 
 
 
 
 

 

 

Invalid Path 
(Stack regime). 



Conclusions 
 
Interprocedural analysis is a very important feature of abstract interpretation as most of 
the real world programs include procedure calls. However there are several difficulties 
involved. The naïve solution that suggest few reductions to intraprocedural analysis such 
as inline, using ‘gotos’ and labeling or even call string all enjoy the more simpler nature 
of analysis when there is one procedure, but since this is only a reduction from a much 
more difficult problem we have high price to pay – either in exponential blow up and no 
support in recursion (inline) or lost of precision (call string) etc. The Join over all Valid 
Paths is a lower limit on the result we can reach. 
The functional approach may yield an optimal solution (JVP) but there are several issues 
that must be resolved.  It may work in cases where the transfer functions are distributive, 
closed under composition and join and can be efficiently represented, computed and 
checked for equality.  
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