Interprocedural Analysis
and Abstract
Interpretation

666666

Outline

0 Interprocedural analysis
= control-flow graph
= MVP: "Meet” over Valid Paths

= Making context explicit
Context based on call-strings
Context based on assumption sets

o Abstract interpretation

cs6463

Control-tlow graph for a whole
program

o At each function definition proc p(x)

= Create two special CFG nodes:
init(p) and final(p)
= Build CFG for the function body
Use init(p) as the function entry node
Connect every return node to final(p)
o At each function call to p(x) with

= Split the original function call into two stmts
Enter p(x) (before making the call) and exit p(x) (after the call exits)

m Connect enter p(x) ->init(p), final(p) -> exit p(x)
= Connect enter p(x) -> exit p(x) to allow the flow of extra context info

o Three kinds of CFG edges
= Intra-procedural: internal control-flow within a procedure
= Procedure calls: from enter p(x) to init(p)
= Procedure returns: from final(p) to exit p(x)

cs6463

Interprocedural CFG

Example
——

int fib(int z) {

if (z < 3) then return 1;

else return fib(z-1) + fib(z-2);
}
Main program: return fib(15);

AO:enter fib(15)

Al: t =exit fib(15)

BO: init(fib)
v

B1: if (z < 3)

B2: enter fib(z-1)

B5: return 1

B3:ti=exit fib(z-1)

enter fib(z-2)

B4:t2=exit fib(z-2)
return t1+t2;

L —

B6: final(fib)

o Problem: matching between function calls and

returns

cs6463

O Monotone frameworks consists of

A complete lattice (L,=) that satisfies the Ascending Chain
Condition

A set F of monotone transfer functions from L to L that
contains the identity function and
is closed under function composition

O Transfer functions for procedure definitions

For simplicity, both init(p) and final(p) have identity transfer
functions

O Transfer functions for procedure calls
For procedure entry: assign values to formal parameters
For procedure exit: assign return values to outside

cs6463

Problem: calling context upon return

BO: init(fib)
int fib(int z) { ¢
if (z < 3) then return 1; —
else return fib(z-1) + fib(z-2); Bl:if (z<3)
} . __
Main program: return fib(15); B2: enter fib(z-1)
B5: return 1 B3:t1=exit fib(z-1)

AO:enter fib(15)

enter fib(z-2)

B4:t2=exit fib(z-2)
return t1+t2;

L —
B6: final(fib)

Al: t =exit fib(15)

O Matching between function calls and returns

= Calculating solutions on non-existing paths could seriously
detriment precision

E.g. enter fib(z-2) -> init(fib) -> ... -> exit fib(z-1) -> ...

cs6463 6

o Problem: matching procedure entries and exits
(function calls and returns)

o A complete path must
Have proper nesting of procedure entries and exits

A procedure always return to the point immediately after
it is called

o A valid path must
Start at the entry node of the main program
All the procedure exits match the corresponding entries
Some procedures may be entered but not yet exited

o The MVP solution

At each program point t, the solution for t is
MVP(t) = A { sol(p) : pisavalid pathtot }

cs6463 7

o Context sensitive analysis

Maintain separate solutions for different callers of a
function

o Extending the monotone framework

Starting point (context-insensitive)
A complete lattice (L,<) that satisfies the Ascending Chain Condition
= L =Power(D) where D is the domain of each solution
A set F of monotone transfer functions from L to L

Extension
L = Power(D * C), where C includes all calling contexts

F =L -> L, a separate sub-solution is calculated for each
calling context
= F (procedure entry) : attach caller info. to incoming solution

= F (procedure exit): match caller info, eliminate solution for
invalid paths

cs6463 8

o Call strings --- contexts based on control flow
Remember a list of procedure calls leading to the current
program point

Call strings of unbounded length --- remember all the
preceding calls

Call strings of bounded length (k) --- remember only the
last k calls
o Assumption sets --- contexts based on data flow

Assumption sets

Use the solution before entering proc p(x) as calling
context (e.g., each context makes distinct presumptions
about values of function parameters)

Large vs. small assumption sets

How large is the context: use the entire solution or pick a
single constraint from the solution

cs6463 9

Example Context-sen

sittve Analysis
N

int fib(int z) {

if (z < 3) then return 1;

else return fib(z-1) + fib(z-2);
b
Main program: return fib(15);

AO:enter fib(15)

Al: t =exit fib(15)

BO: init(fib)
v

B1: if (z < 3)

B2: enter fib(z-1)

B5: return 1

B3:ti=exit fib(z-1)

enter fib(z-2)

B4:t2=exit fib(z-2)
return t1+t2;

L —

B6: final(fib)

0 Range analysis: for each variable reference x, is its value
>= Oor <= a constant value? (i.e, x >= x1; z<=n2)?

cs6463

10

Variables: x,z, t1, t2, fib, t; Contexts: A0, B2, B3,none;

Domain: Variables * (<=n, =n, >=n,?,any)

A0 | (none) (none) (none) (none)

BO | (none, (A0,z=15) (B2/B3, (A0,z=15)(B2,z>=2) | (A0,z=15)(B2,z>=2)
z=7?) z=7?) (B3,z>=1) (B3,z>=1)

B1 | (none, (A0,z=15) (B2/B3, (A0,z=15)(B2,z>=2) | (A0,z=15)(B2,z>=2)
z=?) z=?) (B3,z>=1) (B3,z>=1)

B2 | (none, (A0,z=15) (B2/B3, (A0,z=15)(B2/B3,z> | (A0,z=15)(B2/B3,z>=
z=?) z>=3) =3) 3)

B3 | (none, (A0,z=15,t1="?) (A0,z=15,t1=1) (A0,z=15,t1>=1)
z/t1=7) (B2/B3,z>=3,t1=?) | (B2/B3,z>=3,t1=1) |(B2/B3,z>=3,t1>=1)

B4 | (none, (A0,z=15,t1/t2=?)(B | (A0,z=15,t1/t2=1)(B | (A0,z=15,t1/t2>=1)(B
z/t1/t2=7) | 2/B3,z>=3,t1/t2=?) |2/B3,z>=3,t1/t2=1) | 2/B3,z>=3,t1/t2>=1)

B5 (nq)r)me, (B2/B3,z<=2) (B2,z=2) (B3,z<=2) | (B2,z=2) (B3,z<=2)
Z="

B6 | (none,z/fib | (A0,z=15,fib=?)(B2/ | (A0,z=15,fib>=1)(B2 | (A0,z=15,fib>=1)(B2/
=? B3,z=any,fib=1) /B3,z=any,fib>=1) B3,z=any,fib>=1)

Al | (none,t=?) | (none,t=7?) (none,t >=1) (none,t>=1)

cs6463

11

O Definition from Wikipedia

abstract interpretation is a theory of sound approximation of
the semantics of computer programs. It can be viewed as a
partial execution of a computer program without performing
all the calculations.

o Outline

Monotone frameworks
A complete lattice (L,<) that satisfies the Ascending Chain Condition

A set F of monotone transfer functions from L to L that
= contains the identity function and
= is closed under function composition

Galois connections, closures,and Moore families
Soundness and completeness of operations on abstract data
Soundness and completeness of execution trace computation

cs6463 12

(Galois Connections

O Two complete lattices

m C: the “concrete” (execution) data
The execution of the entire program
Infinite and impossible to model precisely

= A:the “abstract” (execution) data
Properties (abstractions) of the “concrete” data
The solution space (domain) of static program analysis
O For complete lattices C and A, a Galois connection is
= A pair of monotonic functions, a : C->A,y: A->C
m ForallacAandceC: c=y(a(c)) and a(y (a)) =a
= Is Written as C<a,y>A

cs6463

13

Galots Connections (2)

0 vy and o are inverse maps of each
other’s image
= For all cey(A),c=y(a(c)); for all Y

aca(C),a=a(y(a)) {1,2,3.4,...
m The maps a are (1357..)
“homomorphism” mappings

between C and A {1,2,3} {1,3,/5}\ cven Odd

. . o —>
O Galois connections are closed 04 e
under ’ {n none
= Composition, product, and so -
on {

O Each instruction performs an
action f: C->C

= Can use o and y to define an

abstract transfer function f#:
A->A for each f: C->C

cs6463 14

O For C<o,y>A, it is common that
A C C. This means A embeds
into C as a sub-lattice

A’s elements name

(1234,

/”5/7T

{1,2,3}y {1,3,5}

all

<

even odd

distinguished sets in C (2.4) el
o A closure map defines the ’ /{1} none
embedding of A within C. 0

Definition: p:C->C is a closure

map if it is Every Galois connection,

1)

Monotonic: ¥V ¢1,c2cC, c1 <
c2 => p(c1) = p(c2);
extensive: V¥ ceC, ¢ < p(C);
idempotent: V c e C, p(p(c))=
p(c) (i.e.p " p=p)

cs6463

C<a,y>A defines a closure
map o. ® v;

Every closure map, p:C-
>C,defines the Galois
connection, C<p,id>p(C).

15

Moore Families

O Given C, can we define a closure map on it by choosing some
elements of C?

m Yes, if the elements we select are closed under greatest-lower-bounds
(meet) operation

= That is, the new set of elements forms a complete lattice
O Definition: M C C is a Moore family iff for all S C M, ("S) € M.
» We can define a closure map as p(c)={c’ M | c =< c’}.
» That is, we map each element in C to the closest abstraction
(approximation) in M
O For each closure map, p:C->C, its image, p(C), is a Moore family.

Given C, we can define an abstract interpretation by selecting some M
C C that is a Moore family

cs6463 16

Closed Binary Relations

O

O

Often the solution of an analysis is a power set of its domain
= The Galois connection can be written as Power(D)<a,y>A
Given unordered set D and complete lattice A, it is natural to relate

the elements in D to those in A by a binary relation, RC D * A, s.t.

m (d,a)eR (ordRa, dlI=ra)means “d has property a”.
= Example: D=Int, A={none,neg,pos,zero,nonneg,nonpos,any}.
Then 2 R nonneg, 2 R pos, and 2 R any.

The adjoint function, y : A->Power(D),can be defined as
= y(@)={deDIldRa}. E.g.,y(nonneg)={0,1,2,...}.
= If R defines a Galois collection, then y(A) defines a Moore family.

Proposition: RCD*A defines a Galois connection between
(Power(D), A) iff

m Ris U-closed:cRa and a<a’ implycR a’;

m Ris G-closed:.cRA"{alcRa}

cs6463

17

o0 Now that we know how to model a solution space via
abstraction function o : C -> A,
We must model concrete computation steps, f:C->C, by abstract
computation steps, f#:A -> A.
0 Example: we have concrete domain, Nat, and concrete
operation, succ: Nat -> Nat, defined as succ(n)=n+1.

abstract domain, Parity = {any, even, odd, none}.
abstract operation, succ#:Parity -> Parity, defined as

succ#(even)=odd, succ#(odd)=even, succ#(any)=any,
succ#(none)=none,

succ# must be consistent (sound) with respect to succ:

if n Rn a, then succ(n) Rn succ#(a),
where Rn C Nat * Parity relates numbers to their parities (e.g., 2 Rn
even, 5 Rn odd, etc.).

cs6463 18

Sound Approximation

o Given
= Galois connection C<a,y>A and
= functions f : C->C and f#:A-> A,
f# is a sound approximation of f iff
= Forall c € C, a(f(c)) = f#(a(c))
= Foralla €A, f(y(a)) = y(f#(a))

O That is, a defines a “semi-homomorphism” with respect

to f and f#
(0

» o)

1: f \f#

f(c) = » a(f(c)) = f#(a(c))

cs6463

19

Sound Approximation Example

o Given
= Galois connection Power(Nat)<a,y>Parity and
m Concrete transfer function succ : Nat->Nat, succ(S)={n+1In&S}
m Abstract transfer function succ#: Parity -> Parity,
succ#(even)=o0dd, succ#(odd)=even
succ#(any)=any, succ#(none)=none
O succ# is a sound approximation of succ
m For all c € Nat, a(succ(c)) = succ#(a(c))

o
{296} » even

l suce } l succ#
{397} » odd

cs6463 20

0 Given C<a,y>A, and function f : C->C, the most precise
f#:A->A that is sound with respect to f is
f# best (a) = a (f (y (a)))
0 Proposition: f# is sound with respect to f iff
For alla € A, f# best(a) < f#(a)

Of course, f#best has a mathematical definition—not an
algorithmic one —f#best might not be finitely computable!

0 Parity example continued:

succ#best(even)= a (succ (y (even))) = a (succ{2n I n=0})) = o
({2n+1 | n=0}) = odd

Question: what about other operators on Nat, e.g., *, / ?

cs6463 21

Given C<a,y>A, and function f : C->C,

0 Function f#: A->A is sound with respect to f iff
Forallc € C, a (f (c)) = f# (a(c))
For all a € A, f(y(a)) = y(f#(a))

0 Function f#: A->A is forwards(y) complete with respect to f iff
For all a € A, f(y(a)) = y(f#(a))
That is, y(A) is closed under f : f(y(A))C y(A)

O Function f#: A->A is backwards(a.) complete with respect to f iff
Forallc € C, a (f (¢)) = f# (a(c))
That is, a partitions C into equivalence classes: a(c)= a(c’) implies
a(f(c))=a(f(c’))

O For an f# to be (forwards or backwards) complete, it must equal

f#best=aL (f (v (2)))

The structure of C<a,y>A and f: C->C determines whether f# is complete.

cs6463 22

0O Each program transition from program point pi to pj has
an associated fransfer function, fij:C->C (or f#ij:A-> A),
which describes the associated computation.

This defines a computation step of the form, (pi,s) -> (pj,fij(s))

0 Example:
Assignment p0:x=x+1;p1::-- has the transfer function
fO1(<...x:n...>) =<..x:n+1...>
For multiple transitions in conditionals, attach a transfer function
to each possible transition (branch) to “filter” the data that arrives
at a program point.
e.g. pO0:cases xsy: pl:y=y-x;
y=X: p2:x=x-y; end
fp1(s) = if s[x] = s[y] then s else bot; (filter out s unless s[x] < s[y])
fp2(s) = if s[y] = s[x] then s else bot; (filter out s unless s[y] < s[x])

cs6463 23

Execution Traces

O An execution trace is a (possibly infinite) sequence,
(p0,s0)->(p1,s81)->-->(pj,sj)-> -*,S.1.

= for all i=0: (pi,si) -> psucc(i),fi,succ(i)(si) Two concrete traces

= No si equals bot ((pi,v) means (pi,x=V)):

PO: while (x != 1) { g?’j 00,6
P1: if Even(x) p2,4 p1,6
P2: x=xdiv2; p0’2 p2,6
P3: else 01 5 pO,3

X=3*x+1; p2’2 p1,3
} 01 P23
P5: exit; p4:1 p0,10

p4,1

cs6463

Abstract over approximating trace:

pO,even 1. Each concrete
p1.even transition is generated
p2,even by an fij;
p0.any 2. Each abstract transition
/ F‘a ny is generated by the
p4,0dd ’ I corresponding f#ij.
p3,0dd

O Each concrete transition, (pi,s)-> (pj,fij(s)), is reproduced by a
corresponding abstract transition, (pi,a)->(pj,f#ij(a)), where s< y(a)

O The traces embedded in the abstract trace tree “cover” (simulate)
the concrete traces

cs6463 25

0 Goal
To obtain a finite representation of the memory
storage

0 The analysis result can be used for
Detection of pointer aliasing
Detection of sharing between structures

Software development tools
Detection of pointer errors, e.g. dereferences of nil-pointers

Program verification
E.g.,reverse transforms a non-cyclic list to a non-cyclic list

cs6463

26

0 Model the memory (stack and heap)

Storage of local variables
Stack = Var -> (Value U Loc)

Map each local variable into a value or a unique location
The heap storage
Heap = (Loc * Sel) -> (Value u Loc)
Map pairs of locations and selectors to values or locations
O Model the operational semantics of programs

Program state: State = ProgramPoint * Stack * Heap
Example: (p1, (x:3,y:Ly), ((Ly,val):5)) is a program state
Each statement modifies Stack and Heap of the previous state
Stmt: State -> State

cs6463 27

O Given an unordered set, D, of concrete data values, we might ask,
“What are the properties about D that | wish to calculate?
Can | relate these properties a € A, to elements d € D via a UG-closed
binary relation, R: D*A?

O Given a set, A, and a binary relation, R: D * A
Define y: A->Power(D) as y(a) ={deDIdR a}
Define partial ordering on A: a < a’iff y(a) < y(a’)

If there are distinct a and a’ such that y(a)=y(a’), then merge them to force U-
closure

Ensure that y(A) is a Moore family by adding greatest-lower-bound
elements to A as needed.
This forces G-closure

Use the existing machinery to define the Galois connection between
Power(D) and A

cs6463 28

O Build a binary relation, Rd: Data*AbsData
Rv: Value -> AbsValue ; RI: Loc -> AbslLoc
May ignore the values of non-pointer variables.

0 Build induced Galois connection, Power(Data)<a,y>AbsData, we can
Build Galois connections that abstract the concrete data
<Xi : vi> Rs <xi : ai> iff vi Rd ai
Example: <x:3, y:4> Rs <x:any, y:any>
A program point is abstracted to itself: p Rp p,

the abstract domain of program points is ProgramPoint U {top, bot} (to
make it a complete lattice)

Finally, we can relate each concrete state to an abstract one:
(p,s) Rs (p’,s’)iffp=p’ and sRs s’

cs6463 29

O Shape analysis uses a shape graph to abstract the
memory storage

Graph nodes denote a finite number of abstract locations:
Aloc ={Nx | Nx is pointed to by a set of local variables} U N¢
= Nx : the node represents all concrete Locations referred to by variables
in X
= N¢ : abstract summary location (all the other locations)
Each graph node abstracts a distinctive set of concrete Locations

= |f variables x and y may be aliased, they must share a single graph
node

A graph edge sel connect nodes n1 and n2 if n2 is pointed to by
ni.sel

X — N{x} ot TN} — 7

Y TNy} —

next Nb next
cs6463 30

Abstraction of Program States

O Abstraction of memory storage
= Abstract Stack
AbsStack = Var -> ALoc
Map each pointer variable into a unique abstract location (a shape graph node)
m Abstract heap
AbsHeap = (ALoc * Sel) -> (ALoc)
Mapping pairs of abs locations and selectors to abs locations
» Sharing information
IS : ALoc -> { yes, no}
For each abstract location in the shape graph, is it shared by pointers in the
heap?
If IS(Nx) = yes, then Nx must have an incoming edge from N¢ or have more
than one incoming edges

O Transfer functions: P(AbsState) -> P(AbsState)
= Program state: AbsState=ProgramPoint * AbsStack * AbsHeap * IS
= Each statement modifies mappings in the previous state

cs6463 31

Transfer functions(1)

o X = nil
= F(S,H,IS) = (S’ H'IS") where (5,H',IS’) is obtained from (S,H,IS) by
= Removing x from all mappings (killing all previous info. about x)
o Merging all N¢ nodes

sel2

(S,H,IS) (5%H,15%)

cs6463

32

Transfer functions(2)

OX=Y
= F(S5,H,IS) = (S,H',IS") where
o (S',H',IS") is obtained by modifying mappings for x to be

identical to those for y

y ¢

(S',H,IS7)

cs6463 33

Transfer functions(3)

o X = y.sel
= Remove the old binding for x

= Establish a new binding for x to be the same as y.sel
If there is no abstract location defined for y
= Error: dereference a null pointer

If there is an abstract location Ny s.t. S[y] = Ny, but there is no
abstract location for (Ny,sel)

= Error dereference a non-existing field
If there exist abstract locations Ny and Nz s.t. S[y] = Ny and
H[Ny,sel] = Nz.
= Modify the mappings so that x points to Nz
= If Nz = N¢, create a new node N{x} for x --- may need to create
multiple shape graphs to cover different cases

o Other transfer functions
= E.g. x.sel = y; x.sel = nil; allocate(x);

cs6463

34

