
cs6463 1

Interprocedural Analysis
and Abstract
Interpretation

cs6463 2

Outline
 Interprocedural analysis

 control-flow graph
 MVP: “Meet” over Valid Paths
 Making context explicit

 Context based on call-strings
 Context based on assumption sets

 Abstract interpretation

cs6463 3

Control-flow graph for a whole
program
 At each function definition proc p(x)

 Create two special CFG nodes:
 init(p) and final(p)

 Build CFG for the function body
 Use init(p) as the function entry node
 Connect every return node to final(p)

 At each function call to p(x) with
 Split the original function call into two stmts

 Enter p(x) (before making the call) and exit p(x) (after the call exits)

 Connect enter p(x) ->init(p), final(p) -> exit p(x)
 Connect enter p(x) -> exit p(x) to allow the flow of extra context info

 Three kinds of CFG edges
 Intra-procedural: internal control-flow within a procedure
 Procedure calls: from enter p(x) to init(p)
 Procedure returns: from final(p) to exit p(x)

cs6463 4

Interprocedural CFG Example

 Problem: matching between function calls and
returns

int fib(int z) {
 if (z < 3) then return 1;
 else return fib(z-1) + fib(z-2);
}
Main program: return fib(15);

B0: init(fib)

B6: final(fib)

B1: if (z < 3)

B5: return 1

B2: enter fib(z-1)

B3:t1=exit fib(z-1)
 enter fib(z-2)

B4:t2=exit fib(z-2)
 return t1+t2;

A0:enter fib(15)

A1: t = exit fib(15)

cs6463 5

Extending monotone frameworks
 Monotone frameworks consists of

 A complete lattice (L,≤) that satisfies the Ascending Chain
Condition

 A set F of monotone transfer functions from L to L that
 contains the identity function and
 is closed under function composition

 Transfer functions for procedure definitions
 For simplicity, both init(p) and final(p) have identity transfer

functions
 Transfer functions for procedure calls

 For procedure entry: assign values to formal parameters
 For procedure exit: assign return values to outside

cs6463 6

Problem: calling context upon return

 Matching between function calls and returns
 Calculating solutions on non-existing paths could seriously

detriment precision
 E.g. enter fib(z-2) -> init(fib) -> … -> exit fib(z-1) -> …

int fib(int z) {
 if (z < 3) then return 1;
 else return fib(z-1) + fib(z-2);
}
Main program: return fib(15);

B0: init(fib)

B6: final(fib)

B1: if (z < 3)

B5: return 1

B2: enter fib(z-1)

B3:t1=exit fib(z-1)
 enter fib(z-2)

B4:t2=exit fib(z-2)
 return t1+t2;

A0:enter fib(15)

A1: t = exit fib(15)

cs6463 7

MVP: “Meet” over Valid Paths
 Problem: matching procedure entries and exits

(function calls and returns)
 A complete path must

 Have proper nesting of procedure entries and exits
 A procedure always return to the point immediately after

it is called

 A valid path must
 Start at the entry node of the main program
 All the procedure exits match the corresponding entries
 Some procedures may be entered but not yet exited

 The MVP solution
 At each program point t, the solution for t is

 MVP(t) = Λ { sol(p) : p is a valid path to t }

cs6463 8

Making Context Explicit
 Context sensitive analysis

 Maintain separate solutions for different callers of a
function

 Extending the monotone framework
 Starting point (context-insensitive)

 A complete lattice (L,≤) that satisfies the Ascending Chain Condition
 L = Power(D) where D is the domain of each solution

 A set F of monotone transfer functions from L to L
 Extension

 L = Power(D * C), where C includes all calling contexts
 F = L -> L, a separate sub-solution is calculated for each

calling context
 F (procedure entry) : attach caller info. to incoming solution
 F (procedure exit): match caller info, eliminate solution for

invalid paths

cs6463 9

Different Kinds of Context
 Call strings --- contexts based on control flow

 Remember a list of procedure calls leading to the current
program point

 Call strings of unbounded length --- remember all the
preceding calls

 Call strings of bounded length (k) --- remember only the
last k calls

 Assumption sets --- contexts based on data flow
 Assumption sets

 Use the solution before entering proc p(x) as calling
context (e.g., each context makes distinct presumptions
about values of function parameters)

 Large vs. small assumption sets
 How large is the context: use the entire solution or pick a

single constraint from the solution

cs6463 10

Example Context-sensitive Analysis

 Range analysis: for each variable reference x, is its value
>= or <= a constant value? (i.e, x >= x1; z<=n2)?

int fib(int z) {
 if (z < 3) then return 1;
 else return fib(z-1) + fib(z-2);
}
Main program: return fib(15);

B0: init(fib)

B6: final(fib)

B1: if (z < 3)

B5: return 1

B2: enter fib(z-1)

B3:t1=exit fib(z-1)
 enter fib(z-2)

B4:t2=exit fib(z-2)
 return t1+t2;

A0:enter fib(15)

A1: t = exit fib(15)

cs6463 11

Example Range Analysis

(none,t=?)

(A0,z=15,fib=?)(B2/
B3,z=any,fib=1)

(B2/B3,z<=2)

(A0,z=15,t1/t2=?)(B
2/B3,z>=3,t1/t2=?)

(A0,z=15,t1=?)
(B2/B3,z>=3,t1=?)

(A0,z=15) (B2/B3,
z>=3)

(A0,z=15) (B2/B3,
z=?)

(A0,z=15) (B2/B3,
z=?)

(none)

(none,t>=1)(none,t >=1)(none,t=?)A1

(A0,z=15,fib>=1)(B2/
B3,z=any,fib>=1)

(A0,z=15,fib>=1)(B2
/B3,z=any,fib>=1)

(none,z/fib
=?)

B6

(B2,z=2) (B3,z<=2)(B2,z=2) (B3,z<=2)(none,
z=?)

B5

(A0,z=15,t1/t2>=1)(B
2/B3,z>=3,t1/t2>=1)

(A0,z=15,t1/t2=1)(B
2/B3,z>=3,t1/t2=1)

(none,
z/t1/t2=?)

B4

(A0,z=15,t1>=1)
(B2/B3,z>=3,t1>=1)

(A0,z=15,t1=1)
(B2/B3,z>=3,t1=1)

(none,
z/t1=?)

B3

(A0,z=15)(B2/B3,z>=
3)

(A0,z=15)(B2/B3,z>
=3)

(none,
z=?)

B2

(A0,z=15)(B2,z>=2)
(B3,z>=1)

(A0,z=15)(B2,z>=2)
(B3,z>=1)

(none,
z=?)

B1

(A0,z=15)(B2,z>=2)
(B3,z>=1)

(A0,z=15)(B2,z>=2)
(B3,z>=1)

(none,
z=?)

B0

(none)(none)(none)A0

Variables: x,z, t1, t2, fib, t; Contexts: A0, B2, B3,none;
Domain: Variables * (<=n, =n, >=n,?,any)

cs6463 12

Foundations of Abstract
Interpretation
 Definition from Wikipedia

 abstract interpretation is a theory of sound approximation of
the semantics of computer programs. It can be viewed as a
partial execution of a computer program without performing
all the calculations.

 Outline
 Monotone frameworks

 A complete lattice (L,≤) that satisfies the Ascending Chain Condition
 A set F of monotone transfer functions from L to L that

 contains the identity function and
 is closed under function composition

 Galois connections, closures,and Moore families
 Soundness and completeness of operations on abstract data
 Soundness and completeness of execution trace computation

cs6463 13

Galois Connections
 Two complete lattices

 C: the “concrete” (execution) data
 The execution of the entire program
 Infinite and impossible to model precisely

 A: the “abstract” (execution) data
 Properties (abstractions) of the “concrete” data
 The solution space (domain) of static program analysis

 For complete lattices C and A, a Galois connection is
 A pair of monotonic functions, α : C->A, γ : A -> C
 For all a ∈ A and c ∈ C: c ≤ γ (α(c)) and α(γ (a)) ≤ a
 Is Written as C<α,γ>A

C A

cs6463 14

Galois Connections (2)
 γ and α are inverse maps of each

other’s image
 For all c∈γ(A),c=γ(α(c)); for all

a∈α(C),a=α(γ(a))
 The maps α are

“homomorphism” mappings
between C and A

 Galois connections are closed
under
 Composition, product, and so

on
 Each instruction performs an

action f: C->C
 Can use α and γ to define an

abstract transfer function f#:
A->A for each f: C->C

{1}

{1,3,5,7…}

{1,3,5}

{}

{2,4}
{1,2,3}

{1,2,3,4,…}

oddeven

none

all

α

γ

cs6463 15

Closure Maps
 For C<α,γ>A, it is common that

A ⊆ C. This means A embeds
into C as a sub-lattice
 A’s elements name

distinguished sets in C
 A closure map defines the

embedding of A within C.
 Definition: ρ:C->C is a closure

map if it is
 Monotonic: ∀ c1,c2 ∈ C, c1 ≤

c2 => ρ(c1) ≤ ρ(c2);
 extensive: ∀ c ∈ C, c ≤ ρ(c);
 idempotent: ∀ c ∈ C, ρ(ρ(c))=

ρ(c) (i.e. ρ * ρ = ρ)

{1}

{1,3,5,7…}

{1,3,5}

{}

{2,4}
{1,2,3}

{1,2,3,4,…}

oddeven

none

allα

γ

1) Every Galois connection,
C<α,γ>A defines a closure
map α • γ;

2) Every closure map, ρ:C-
>C,defines the Galois
connection, C<ρ,id>ρ(C).

cs6463 16

Moore Families
 Given C, can we define a closure map on it by choosing some

elements of C?
 Yes, if the elements we select are closed under greatest-lower-bounds

(meet) operation
 That is, the new set of elements forms a complete lattice

 Definition: M ⊆ C is a Moore family iff for all S ⊆ M, (^S) ∈ M.
 We can define a closure map as ρ(c)=^{c’ ∈ M | c ≤ c’}.
 That is, we map each element in C to the closest abstraction

(approximation) in M
 For each closure map, ρ:C->C, its image, ρ(C), is a Moore family.

Given C, we can define an abstract interpretation by selecting some M
⊆ C that is a Moore family

cs6463 17

Closed Binary Relations
 Often the solution of an analysis is a power set of its domain

 The Galois connection can be written as Power(D)<α,γ>A
 Given unordered set D and complete lattice A, it is natural to relate

the elements in D to those in A by a binary relation, R ⊆ D * A, s.t.
 (d,a) ∈ R (or d R a, d |=R a) means “d has property a”.
 Example: D=Int, A={none,neg,pos,zero,nonneg,nonpos,any}.

 Then 2 R nonneg, 2 R pos, and 2 R any.
 The adjoint function, γ : A->Power(D),can be defined as

 γ(a) = {d ∈ D | d R a}. E.g., γ (nonneg)={0,1,2,...}.
 If R defines a Galois collection, then γ(A) defines a Moore family.

 Proposition: R⊆D*A defines a Galois connection between
(Power(D), A) iff
 R is U-closed: c R a and a ≤ a’ imply c R a’;
 R is G-closed: c R ^ {a | c R a }

cs6463 18

Concrete and Abstract Operations
 Now that we know how to model a solution space via

abstraction function α : C -> A,
 We must model concrete computation steps, f:C->C, by abstract

computation steps, f#:A -> A.
 Example: we have concrete domain, Nat, and concrete

operation, succ: Nat -> Nat, defined as succ(n)=n+1.
 abstract domain, Parity = {any, even, odd, none}.
 abstract operation, succ#:Parity -> Parity, defined as

 succ#(even)=odd, succ#(odd)=even, succ#(any)=any,
succ#(none)=none,

 succ# must be consistent (sound) with respect to succ:
 if n Rn a, then succ(n) Rn succ#(a),
 where Rn ⊆ Nat * Parity relates numbers to their parities (e.g., 2 Rn

even, 5 Rn odd, etc.).

cs6463 19

Sound Approximation
 Given

 Galois connection C<α,γ>A and
 functions f : C->C and f#:A-> A,

 f# is a sound approximation of f iff
 For all c ∈ C, α(f(c)) ≤ f#(α(c))
 For all a ∈ A, f(γ(a)) ≤ γ(f#(a))

 That is, α defines a “semi-homomorphism” with respect
to f and f#

c α(c)

f(c) α(f(c)) ≤ f#(α(c))

α

α
f f#

cs6463 20

Sound Approximation Example
 Given

 Galois connection Power(Nat)<α,γ>Parity and
 Concrete transfer function succ : Nat->Nat, succ(S) = { n + 1 | n ∈ S }
 Abstract transfer function succ#: Parity -> Parity,
 succ#(even)=odd, succ#(odd)=even
 succ#(any)=any, succ#(none)=none

 succ# is a sound approximation of succ
 For all c ∈ Nat, α(succ(c)) = succ#(α(c))

{2,6} even

{3,7} odd

α

α
succ succ#

cs6463 21

Synthesizing f# from f
 Given C<α,γ>A, and function f : C->C, the most precise

f#:A->A that is sound with respect to f is
 f# best (a) = α (f (γ (a)))

 Proposition: f# is sound with respect to f iff
 For all a ∈ A, f# best(a) ≤ f#(a)
 Of course, f#best has a mathematical definition—not an

algorithmic one—f#best might not be finitely computable!
 Parity example continued:

 succ#best(even)= α (succ (γ (even))) = α (succ {2n | n≥0 })) = α
({2n+1 | n≥0}) = odd

 Question: what about other operators on Nat, e.g., *, / ?

cs6463 22

Completeness of Approximation(skip)
Given C<α,γ>A, and function f : C->C,
 Function f#: A->A is sound with respect to f iff

 For all c ∈ C, α (f (c)) ≤ f# (α(c))
 For all a ∈ A, f(γ(a)) ≤ γ(f#(a))

 Function f#: A->A is forwards(γ) complete with respect to f iff
 For all a ∈ A, f(γ(a)) = γ(f#(a))
 That is, γ(A) is closed under f : f(γ(A))⊆ γ(A)

 Function f#: A->A is backwards(α) complete with respect to f iff
 For all c ∈ C, α (f (c)) = f# (α(c))
 That is, α partitions C into equivalence classes: α(c)= α(c’) implies
α(f(c))=α(f(c’))

 For an f# to be (forwards or backwards) complete, it must equal
f#best=α (f (γ (a)))
 The structure of C<α,γ>A and f: C->C determines whether f# is complete.

cs6463 23

Transfer Functions and
Computation steps
 Each program transition from program point pi to pj has

an associated transfer function, fij:C->C (or f#ij:A-> A),
which describes the associated computation.
 This defines a computation step of the form, (pi,s) -> (pj,fij(s))

 Example:
 Assignment p0:x=x+1;p1:··· has the transfer function
 f01(<…x:n…>) = <…x:n+1…>
 For multiple transitions in conditionals, attach a transfer function

to each possible transition (branch) to “filter” the data that arrives
at a program point.

 e.g. p0: cases x≤y: p1:y=y-x;
 y≤x: p2:x=x-y; end

 fp1(s) = if s[x] ≤ s[y] then s else bot; (filter out s unless s[x] ≤ s[y])
 fp2(s) = if s[y] ≤ s[x] then s else bot; (filter out s unless s[y] ≤ s[x])

cs6463 24

Execution Traces
 An execution trace is a (possibly infinite) sequence,

(p0,s0)->(p1,s1)->···->(pj,sj)-> ···,s.t.
 for all i≥0: (pi,si) -> psucc(i),fi,succ(i)(si)
 No si equals bot

P0: while (x != 1) {
P1: if Even(x)
P2: x = x div2;
P3: else
 x = 3*x + 1;
}
P5: exit;

Two concrete traces
((pi,v) means (pi,x=v)):

p0,4
p1,4
p2,4
p0,2
p1,2
p2,2
p0,1
p4,1

p0,6
p1,6
p2,6
p0,3
p1,3
p2,3
p0,10
p4,1
···

cs6463 25

Using Approximation to build
abstract traces

 Each concrete transition, (pi,s)-> (pj,fij(s)), is reproduced by a
corresponding abstract transition, (pi,a)->(pj,f#ij(a)), where s∈ γ(a)

 The traces embedded in the abstract trace tree “cover” (simulate)
the concrete traces

1. Each concrete
transition is generated
by an fij;

2. Each abstract transition
is generated by the
corresponding f#ij.

Abstract over approximating trace:
p0,even
p1,even

p4,odd
p1,any

p3,odd

p2,even
p0,any

cs6463 26

Shape Analysis
 Goal

 To obtain a finite representation of the memory
storage

 The analysis result can be used for
 Detection of pointer aliasing
 Detection of sharing between structures
 Software development tools

 Detection of pointer errors, e.g. dereferences of nil-pointers
 Program verification

 E.g.,reverse transforms a non-cyclic list to a non-cyclic list

cs6463 27

The Concrete Solution Space
 Model the memory (stack and heap)

 Storage of local variables
 Stack = Var -> (Value ∪ Loc)

 Map each local variable into a value or a unique location
 The heap storage

 Heap = (Loc * Sel) -> (Value ∪ Loc)
Map pairs of locations and selectors to values or locations

 Model the operational semantics of programs
 Program state: State = ProgramPoint * Stack * Heap
 Example: (p1, (x:3,y:Ly), ((Ly,val):5)) is a program state
 Each statement modifies Stack and Heap of the previous state

 Stmt: State -> State

cs6463 28

Building Abstract Domains
 Given an unordered set, D, of concrete data values, we might ask,

 “What are the properties about D that I wish to calculate?
 Can I relate these properties a ∈ A, to elements d ∈ D via a UG-closed

binary relation, R: D*A?
 Given a set, A, and a binary relation, R: D * A

 Define γ: A->Power(D) as γ(a) = {d ∈ D | d R a}
 Define partial ordering on A: a ≤ a’ iff γ(a) ≤ γ(a’)

 If there are distinct a and a’ such that γ(a)=γ(a’), then merge them to force U-
closure

 Ensure that γ(A) is a Moore family by adding greatest-lower-bound
elements to A as needed.

 This forces G-closure
 Use the existing machinery to define the Galois connection between

Power(D) and A

cs6463 29

Abstracting the Program State
 Build a binary relation, Rd: Data*AbsData

 Rv: Value -> AbsValue ; Rl: Loc -> AbsLoc
 May ignore the values of non-pointer variables.

 Build induced Galois connection, Power(Data)<α,γ>AbsData, we can
 Build Galois connections that abstract the concrete data
 <xi : vi> Rs <xi : ai> iff vi Rd ai
 Example: <x:3, y:4> Rs <x:any, y:any>
 A program point is abstracted to itself: p Rp p,
 the abstract domain of program points is ProgramPoint ∪ {top, bot} (to

make it a complete lattice)
 Finally, we can relate each concrete state to an abstract one:
 (p,s) Rs (p’,s’) iff p = p’ and s Rs s’

cs6463 30

Shape Graphs
 Shape analysis uses a shape graph to abstract the

memory storage
 Graph nodes denote a finite number of abstract locations:

 Aloc = {Nx | Nx is pointed to by a set of local variables} ∪ Nφ
 Nx : the node represents all concrete Locations referred to by variables

in x
 Nφ : abstract summary location (all the other locations)

 Each graph node abstracts a distinctive set of concrete Locations
 If variables x and y may be aliased, they must share a single graph

node
 A graph edge sel connect nodes n1 and n2 if n2 is pointed to by

n1.sel

N{x}

N{y}

N{z}

Nφ

x

y
znext

next next

cs6463 31

Abstraction of Program States
 Abstraction of memory storage

 Abstract Stack
 AbsStack = Var -> ALoc

 Map each pointer variable into a unique abstract location (a shape graph node)
 Abstract heap

 AbsHeap = (ALoc * Sel) -> (ALoc)
Mapping pairs of abs locations and selectors to abs locations

 Sharing information
 IS : ALoc -> { yes, no}
 For each abstract location in the shape graph, is it shared by pointers in the

heap?
 If IS(Nx) = yes, then Nx must have an incoming edge from Nφ or have more

than one incoming edges
 Transfer functions: P(AbsState) -> P(AbsState)

 Program state: AbsState=ProgramPoint * AbsStack * AbsHeap * IS
 Each statement modifies mappings in the previous state

cs6463 32

Transfer functions(1)
 x = nil

 F (S,H,IS) = (S’,H’,IS’) where (S’,H’,IS’) is obtained from (S,H,IS) by
 Removing x from all mappings (killing all previous info. about x)

 Merging all Nφ nodes

Nv

N{x} Nwx

sel1

sel2

Nφ Nv

Nw

sel1

sel2

Nφ

(S,H,IS) (S’,H’,IS’)

cs6463 33

Transfer functions(2)
 x = y

 F (S,H,IS) = (S’,H’,IS’) where
 (S’,H’,IS’) is obtained by modifying mappings for x to be

identical to those for y

Nv

N{y,..} Nwy

sel1

sel2

N{x,…}

(S,H,IS) (S’,H’,IS’)

x
Nv

N{x,y,.
}

Nwy

sel1

sel2

N{…}
x

cs6463 34

Transfer functions(3)
 x = y.sel

 Remove the old binding for x
 Establish a new binding for x to be the same as y.sel

 If there is no abstract location defined for y
 Error: dereference a null pointer

 If there is an abstract location Ny s.t. S[y] = Ny, but there is no
abstract location for (Ny,sel)

 Error dereference a non-existing field
 If there exist abstract locations Ny and Nz s.t. S[y] = Ny and

H[Ny,sel] = Nz.
 Modify the mappings so that x points to Nz
 If Nz = Nφ, create a new node N{x} for x --- may need to create

multiple shape graphs to cover different cases
 Other transfer functions

 E.g. x.sel = y; x.sel = nil; allocate(x);

