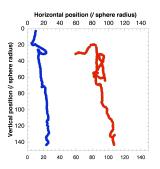
Fluctuations in the velocities of sedimenting particles

John Hinch


DAMTP, Cambridge

In collaboration with Élisabeth Guazzelli & Laurence Bergougnoux and their students

Fluctuating velocities

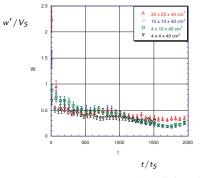
Particles do no fall at a constant speed in a suspension

Trajectories of two spheres at $\phi = 0.3$

Nicolai, Herzhaft, Hinch, Oger & Guazzelli. (1995) Phys. Fluids 7, 12-23.

The divergence paradox

► Theory: depend on size L of box $w' = V_S \sqrt{\phi_a^L}$


$$w' = V_S \sqrt{\phi \frac{L}{a}}$$

The divergence paradox

► Theory: depend on size L of box $w' = V_S \sqrt{\phi_a^L}$

$$w' = V_S \sqrt{\phi rac{L}{a}}$$

► Experiments: no such dependence

Nicolai & Guazzelli. (1995) Phys. Fluids 7, 3-5.

▶ Dilute: pair separated by r have $w' \sim V_{S\frac{a}{r}}$,

▶ Dilute: pair separated by r have $w' \sim V_{S\frac{a}{r}}$, so averaging with $p \sim n$ (const)

▶ Dilute: pair separated by r have $w' \sim V_S \frac{a}{r}$, so averaging with $p \sim n$ (const)

$$\int w'^2 \rho \, dV \quad \text{diverges like} \quad V_5^2 \phi \frac{L}{a}$$

Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

▶ Dilute: pair separated by r have $w' \sim V_S \frac{a}{r}$, so averaging with $p \sim n$ (const)

$$\int w'^2 p \, dV \quad \text{diverges like} \quad V_5^2 \phi \frac{L}{a}$$

Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

Explanation

Hinch (1988) Disorder and Mixing 153-60

▶ Dilute: pair separated by r have $w' \sim V_S \frac{a}{r}$, so averaging with $p \sim n$ (const)

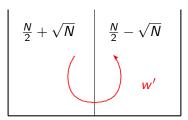
$$\int w'^2 p \, dV \quad \text{diverges like} \quad V_5^2 \phi \frac{L}{a}$$

Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

Explanation

$$\frac{N}{2} + \sqrt{N}$$
 $\frac{N}{2} - \sqrt{N}$

Hinch (1988) Disorder and Mixing 153-60

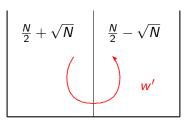

▶ Dilute: pair separated by r have $w' \sim V_S \frac{a}{r}$, so averaging with $p \sim n$ (const)

$$\int w'^2 p \, dV \quad \text{diverges like} \quad V_5^2 \phi \frac{L}{a}$$

Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

Hinch (1988) Disorder and Mixing 153-60

Explanation


▶ Dilute: pair separated by r have $w' \sim V_S \frac{a}{r}$, so averaging with $p \sim n$ (const)

$$\int w'^2 p \, dV \quad \text{diverges like} \quad V_5^2 \phi \frac{L}{a}$$

Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

Explanation

Hinch (1988) Disorder and Mixing 153-60

$$w' = \frac{\sqrt{N}mg}{6\pi\mu L}$$

▶ Dilute: pair separated by r have $w' \sim V_S \frac{a}{r}$, so averaging with $p \sim n$ (const)

$$\int w'^2 p \, dV \quad \text{diverges like} \quad V_5^2 \phi \frac{L}{a}$$

Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

Explanation Hinch (1988) Disorder and Mixing 153–60

 $\frac{\frac{N}{2} + \sqrt{N}}{\frac{N}{2} - \sqrt{N}}$

$$\mathbf{w'} = \frac{\sqrt{N}mg}{6\pi\mu L} = V_S \sqrt{\phi \frac{L}{a}}$$

▶ Dilute: pair separated by r have $w' \sim V_S \frac{a}{r}$, so averaging with $p \sim n$ (const)

$$\int w'^2 \rho \, dV \quad \text{diverges like} \quad V_5^2 \phi \frac{L}{a}$$

Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

Explanation

 $\frac{N}{2} + \sqrt{N}$ $\frac{N}{2} - \sqrt{N}$

Hinch (1988) Disorder and Mixing 153-60

$$\mathbf{w'} = \frac{\sqrt{N}mg}{6\pi\mu L} = V_S \sqrt{\phi \frac{L}{a}}$$

'Poisson' value

Bławdziewicz c1995, private communication - ignored.

Bławdziewicz c1995, private communication - ignored.

Luke (2000) Phys. Fluids 12, 1619-21.

Bławdziewicz c1995, private communication - ignored.

Luke (2000) Phys. Fluids 12, 1619-21.

▶ If vertical change in density exceeds statistical fluctuation,

Bławdziewicz c1995, private communication - ignored.

Luke (2000) Phys. Fluids 12, 1619-21.

If vertical change in density exceeds statistical fluctuation, then heavy side sinks only to level of neutral buoyancy.

Bławdziewicz c1995, private communication - ignored.

Luke (2000) Phys. Fluids 12, 1619-21.

- ▶ If vertical change in density exceeds statistical fluctuation, then heavy side sinks only to level of neutral buoyancy.
- ▶ Blobs smaller than ℓ unaffected, with ℓ given by

$$\ell \frac{\partial n\ell^3}{\partial z} = \sqrt{n\ell^3}$$

Bławdziewicz c1995, private communication - ignored.

Luke (2000) Phys. Fluids 12, 1619-21.

- ▶ If vertical change in density exceeds statistical fluctuation, then heavy side sinks only to level of neutral buoyancy.
- ▶ Blobs smaller than ℓ unaffected, with ℓ given by

$$\ell \frac{\partial n\ell^3}{\partial z} = \sqrt{n\ell^3}$$
 so $\ell = n^{1/5} \left(-\frac{\partial n}{\partial z} \right)^{-2/5}$

Luke (2000) Phys. Fluids 12, 1619-21.

- ▶ If vertical change in density exceeds statistical fluctuation, then heavy side sinks only to level of neutral buoyancy.
- ▶ Blobs smaller than ℓ unaffected, with ℓ given by

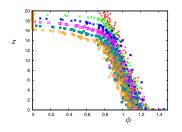
$$\ell \frac{\partial n \ell^3}{\partial z} = \sqrt{n \ell^3}$$
 so $\ell = n^{1/5} \left(-\frac{\partial n}{\partial z} \right)^{-2/5}$

Hence

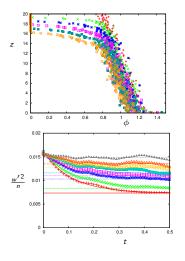
$$\mathbf{w}' = V_{s} \sqrt{\phi \frac{\ell}{a}}$$

Bławdziewicz c1995, private communication - ignored.

Luke (2000) Phys. Fluids 12, 1619-21.


- If vertical change in density exceeds statistical fluctuation, then heavy side sinks only to level of neutral buoyancy.
- ▶ Blobs smaller than ℓ unaffected, with ℓ given by

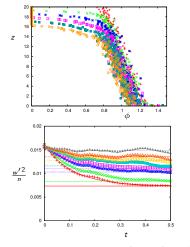
$$\ell \frac{\partial n \ell^3}{\partial z} = \sqrt{n \ell^3}$$
 so $\ell = n^{1/5} \left(-\frac{\partial n}{\partial z} \right)^{-2/5}$


Hence

$$w' = V_s \sqrt{\phi \frac{\ell}{a}} = V_S \phi^{3/5} \left(-a \frac{\partial \phi}{\partial z} \right)^{-1/5}$$

Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

Concentration profile at different times $\Delta\phi/\phi=0.4,\,2500 \text{ particles,}$ average over 40 realisations



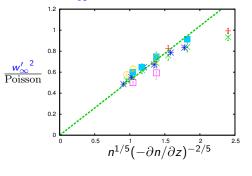
Concentration profile at different times

 $\Delta\phi/\phi=$ 0.4, 2500 particles, average over 40 realisations

Velocity fluctuations for $\Delta\phi/\phi=0,\ldots$,0.4 10^4 particles, h=10

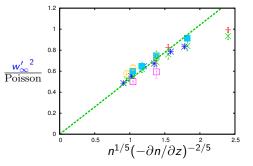
Initially stratified

Concentration profile at different times


 $\Delta\phi/\phi=$ 0.4, 2500 particles, average over 40 realisations

Velocity fluctuations for $\Delta\phi/\phi=0,\ldots,0.4$ 10^4 particles, h=10

Decay to a plateau value w_{∞}'

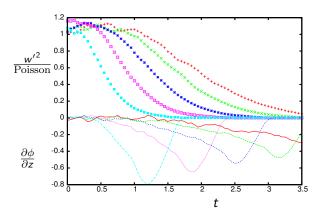

Plateau value $w_{\infty}^{\prime 2}$ plotted against stratification

Plateau value $w_{\infty}^{\prime 2}$ plotted against stratification

Different $n \& \delta x$

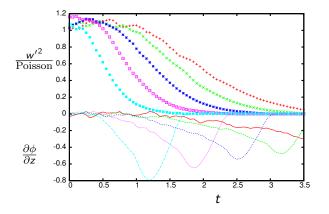
Plateau value $w_{\infty}^{\prime}^2$ plotted against stratification

Different $n \& \delta x$


Hence

$$w_{\infty}' = 0.94 V_S \phi^{3/5} \left(-a \frac{\partial \phi}{\partial z} \right)^{-1/5}$$

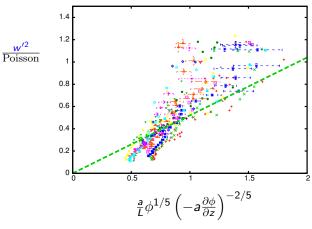
Initially uniform - stratified in descending front


Initially uniform - stratified in descending front

Viewed in windows at different heights: top, bottom

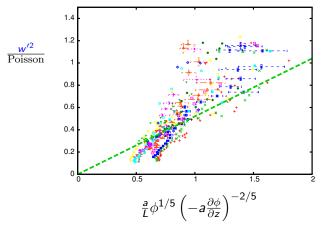
Initially uniform - stratified in descending front

Viewed in windows at different heights: top, bottom


Velocity fluctuations reduced when front arrives in window

Initially uniform - stratified in descending front

 w'^2 in front plotted against stratification


Initially uniform - stratified in descending front

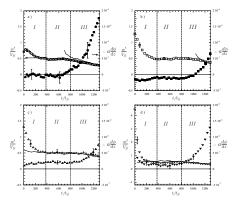
 w'^2 in front plotted against stratification

Initially uniform - stratified in descending front

 w'^2 in front plotted against stratification

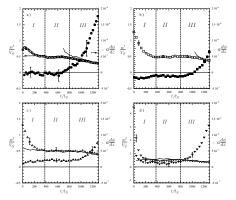
Fair agreement only, but recall time delay for initial value to decay

Experiments


Initially uniform - stratified in descending front

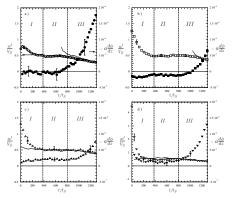
Four experiments at $\phi = 0.3\%$, with different box size and different particle sizes and densities. View in fixed window.

Experiments


Initially uniform - stratified in descending front

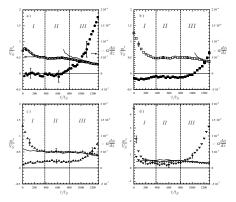
- Four experiments at $\phi=0.3\%$, with different box size and different particle sizes and densities. View in fixed window.
- ▶ Open symbols w'/V_S . Filled symbols $-a\partial\phi/\partial z$ (difficult).

Initially uniform - stratified in descending front


- Four experiments at $\phi=0.3\%$, with different box size and different particle sizes and densities. View in fixed window.
- ▶ Open symbols w'/V_S . Filled symbols $-a\partial\phi/\partial z$ (difficult).

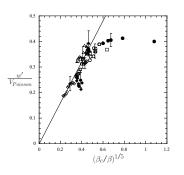
I – Decay of initial state,

Initially uniform - stratified in descending front


- Four experiments at $\phi=0.3\%$, with different box size and different particle sizes and densities. View in fixed window.
- ▶ Open symbols w'/V_S . Filled symbols $-a\partial\phi/\partial z$ (difficult).

I – Decay of initial state, II – plateau,

Initially uniform - stratified in descending front

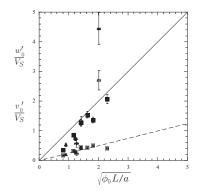

- Four experiments at $\phi=0.3\%$, with different box size and different particle sizes and densities. View in fixed window.
- ▶ Open symbols w'/V_S . Filled symbols $-a\partial\phi/\partial z$ (difficult).

I – Decay of initial state, II – plateau, III – in front

Initially uniform - stratified in descending front

Velocity fluctuations inhibited by stratification

Filled symbols on plateau (II), open in front (I).


Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

And initial values are the old divergent scaling

$$w_0' = V_S \sqrt{\phi \frac{L}{a}}$$

And initial values are the old divergent scaling

$$w_0' = V_S \sqrt{\phi \frac{L}{a}}$$

Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

▶ Does front between top of suspension and clear fluid diffuse?

- ▶ Does front between top of suspension and clear fluid diffuse?
- ► Self-diffusivity $D = w'\ell$

- ▶ Does front between top of suspension and clear fluid diffuse?
- ► Self-diffusivity $D = w'\ell = 2.75 V_s a \phi^{4/5} (-a \partial \phi / \partial z)^{-3/5}$

- ▶ Does front between top of suspension and clear fluid diffuse?
- ► Self-diffusivity $D = w'\ell = 2.75 V_s a \phi^{4/5} (-a \partial \phi / \partial z)^{-3/5}$
- Nonlinear diffusion equation

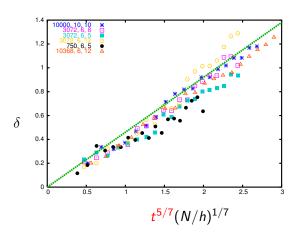
$$\frac{\partial \phi}{\partial t} - \frac{\partial (V_s \phi)}{\partial z} = \frac{\partial}{\partial z} \left(2.75 V_s a^{2/5} \phi^{4/5} \left(-\frac{\partial \phi}{\partial z} \right)^{2/5} \right)$$

Mucha & Brenner (2003) Phys. Fluids 15: 1305-13

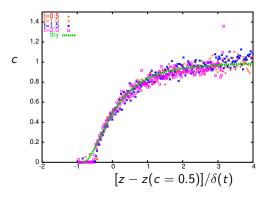
- Does front between top of suspension and clear fluid diffuse?
- ► Self-diffusivity $D = w'\ell = 2.75 V_s a \phi^{4/5} (-a \partial \phi / \partial z)^{-3/5}$
- Nonlinear diffusion equation

$$\frac{\partial \phi}{\partial t} - \frac{\partial (V_s \phi)}{\partial z} = \frac{\partial}{\partial z} \left(2.75 V_s a^{2/5} \phi^{4/5} \left(-\frac{\partial \phi}{\partial z} \right)^{2/5} \right)$$

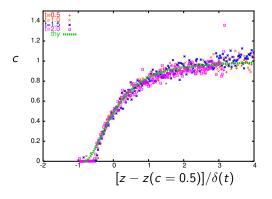
Mucha & Brenner (2003) Phys. Fluids 15: 1305-13


▶ Numerical value 2.75 of diffusivity from similarity solution . . .

► Similarity thickness of front


$$\delta = 3.07 a \phi^{1/7} (V_s t/a)^{5/7}$$

Similarity thickness of front


$$\delta = 3.07 a \phi^{1/7} (V_s t/a)^{5/7}$$

Similarity plot of concentration profile

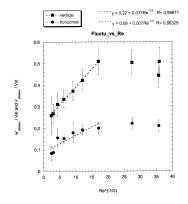
Similarity plot of concentration profile

 Nonlinear diffusion equation predicts concentration profile in diffusing front at top of suspension

Open question: effect of small inertia

The Poisson estimate was for blobs at low Reynolds numbers.

Open question: effect of small inertia


The Poisson estimate was for blobs at low Reynolds numbers. With inertia, estimate:

$$w' = V_s \phi^{1/3} Re_p^{-1/3}$$

Open question: effect of small inertia

The Poisson estimate was for blobs at low Reynolds numbers. With inertia, estimate:

$$w' = V_s \phi^{1/3} Re_p^{-1/3}$$

Recent preliminary experiments (Bergougnoux 2011)