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1. Introduction

In the following we describe a qeneralization of factors aof an
undirected araph X=(V(X),E(X)) introducing the concept of an
F-factor of X. This research has heen mptivated by a special
edge-colouring problem, the latter being a generalization of

the well known Maaic Squares.

In this paper we shall concentrate on the questions as to
which classes of graphs contain an F-factor and how to

determine an F-factor of a graph X, if it contains one.

We shall show that in the case of bipartite qraphs F-factors
are equivalent to the perfect matchings of an qraph and that
for arbitrary araphs an F-factor is a natural generalization
of reqular factors as defined by PETERSEN (/7/) and investi-

nated extensively hy KONIG (/5/).



An algorithmic method for finding an F-factor of an qiven
graph X is presented, which is based on alternating path in a
araph. This in turn estahlishes the connection with matching
problems. Nased on an algorithm for finding a maximal
matching, the algorithm descrihbed finds an F-factor of an
graph or halts if the araph does not contain such an factor.

The algorithm is polynomially time bhounded,

2. Nefinitions

An undirected graph X=(Y(X),E(X)) consists of a set ¥=V(X]),
the vertices, and a set E=E(X) of unordered pairs e= [x.,y] of

different elements out of V.The set E is the set of edges of X

e shall restrict the investigation to finite graphs and

without loss of generality we can assume X to be connected.



NDefinition 2.1:

Nefinition 2.2:

Nefinition 2.3:

Theorem 2.1:

A matching is defined to he a set M of edges,
so that no two edges of M are adjacent. A
vertex % is said to be saturated by a matching
M if an edge of M is attached to x.

A maximal matching is a matching M such that
the number of edges is maximum. A matching
that saturates all vertices of X is called a

perfect matching.

A path W in X is called an alternating path
with respect to a matchina M if the edges of W

are alternately in M and in E(X)-M.

An alternatina path is called an augmenting

path if it connects two unsaturated vertices.

A matching M is maximal if, and only if, there
exists no augmenting path with respect to M.
(/1)



A plain interpretation of the idea of an F-factor illustrates
that it is a generalization of a perfect matching and of regu-
lar factors, in the following sense: vertices can be saturated

by circles also.

One determines a set of vertex disjoint circles

&K}, V(Ki) n V(Kj) =P, i # J, so that each vertex x & V(X) belongs
to exactly one circle. (For the sake of simplicity let us assume for
the moment this set of circles to be nonempty.) This set {kKi of
disjoint circles can be partitioned into circles having an even
number of edges and into those having an odd number,

i.e. EK% = {K2ii” {K21+1], i=1,2,... . Trivially, for each circle
K2i€ {K21i a perfect matching Li can be determined, so that each

x € V(K21) is saturated with respect to Li‘ Therefore the vertices

of X can be saturated either by EL{E or by& K21+£i'

In general such a system of circles saturating all elements of V(X)
might not exist. Assume now [Kg saturating a partial set of V(X),

i.e. V(?K}) < V(X). If in addition there existsa matching L, saturating

0

exactly V(Ly) = V(X) - V({K}) then we say that LouiLiiu{szi

o)
spans an F-factor of X. Obviously, both cases V({Kg) =@ or LO =9
are included and are called perfect matching and reqular factor of

degree 2 respectively.
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3. Properties of F-factors and related concepts

Earlier results of PETERSEN (/7/) and ¥MMIA (/6/) regarding
reqular factors of dearee 1 and of deqree ? can he used for
several theorems of existence of F-factors: a regular factor
of deqgree 1 is usually called a perfect matching now, and a
reqular factor of denree 2 consists of spanning subaraphs
vthose components are circuits. Tt should be clear how to

construct an F-factor aiven a reqular factor of denree 2.

Theorem 3.1: The complete graph X =<2n) with 2n vertices
and nin=1)/2 edges, n=1,2,...., contains an

F-factor with {K,. k= 7.

Theorem 3.2: The complete graph X = €2n+1) with 2n+l
vertices and n{n+l)/2 edges, n=1,2,...,

contains an F-factor with {K,; % # 7.

Corollary 2.1.: The complete araph X = <?n+f>, N=1,2, 0000,
contains -an F-factor, whose circuit component

consists of exactly one triannle.



Proof: aiven X = (2n+17 delete one vertex, say
a, and all 7n edges adjacent to a. This
yields a complete araph X' = {2nd.
According to theorem 3.1 X' contains an
F-factor which is a perfect matching .
Take any edge e = [u,v] out of ™ and
construct a trianagle spanned by
T ={[u,v],[u,a],[v,a]}. My T spans

the stated F-factor.

Theorem 3.3: A reqular agraph of even degree, i.e. an

Fulerian araph, contains an F-factor.

In the sequel we shall reqard the F-factor problem as a gener-
alized matching problem., In particular the algorithms used for
finding an F-factor of ¥ are based on the methods of findinn

alternating paths as is usual in matchino algorithms.

Theoren 3.4: A hipartite araph X contains an F-factor, iff

X contains a perfect matching.

Proof: Necause X is binartite it does not contain any

odd circuit. Therefore {'Kﬁﬂ} = .



Y [

An jmmediate conclusion of theorem 3.4 is the followinn:

Theorem 3,5: Every reqular bipartite araph X contains an F-

factor.

So far as trees are concerned the construction of F-factors is
rather simple. Trees are bipartite graphs and according to

theorem 3.4 the prohlem is reduced to a matching prohlem,

For the F-factor problem (as well as for the matchina prohlem)
restriction to aqraphs havfnq only inner-vertices (i.e.
vertices of deqree 2) is possible without loss of nenerality:
Let a € V(¥) he an endnode and e = [a,h) the only one
incidentinn edqge. Then the vertex a must he saturated hv F, if
¥ contains an F-factor F. Sn it is sufficient to investinate

the agraph

Xy = (Vl,E) with V1(X1]=\;(x) - {a,b}  and
1".1(3(1)=E('Y') -{I[b,x1/[>,x) € £00)}
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This reduction can he repeated until the yielded graph con-

tains inner nodes only.

If a graph X contains an F-factor then these F-factors of the
set of F-factors {F} are distinquished: that whose linear
component has a maximal number of edges; and given JL|, those
which have a maximum number \K3] of triangles etc. This

leads to the followina.

Nefinition 3.1: Let k =N,1,2,... denote the number |L)

24410
for i=0 and the number of circuits of lenath
2i+1, i=1,2,... of a given F-factor F. ‘e call
<k1’k3""‘k?i+1""‘k?r+1>-with
k2r+1¥ 0 and k?(r+j)+1=n for 3 21

a characteristic vector of F.

e 1_,1.1 1
Two characteristic vectors k -(kl.k3s----k25+1>

2 22 .2 2 _
and k=4 JKosees ks 1D can be compared
lexicographically. If necessarv, the dimension of ane vector

has to be extended by rightmost zeros before comparing.
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kbHk? holds, iff (k!;r ki) i
lek? 5=1,2,...10 % (k2K )
i i PEpinss 1417 " 1#1 ’

1,2 : B < 1 .2 o & T B
k*=k” holds, iff (r=s) & (ki'ki)' filr i=1,2,.. ,S.

Definition 2.2: Let Fy,F, be two F-factors of X and k',

kz their associated characteristic vectors.

Then F1 is said tn be greater than

FoF.» Fo. iff kK'> k2 holds.

2F17 Fpr 1

2

Remark : One should notice that k1=k implies F

1
to be isomorphic to FZ’ j.e. F] and F?

might be different subgraphs of X.

Nefinition 3.3: Let be {FY the set of F-factors of a2 araph ¥.
IF§F} # § then F e {FY is called canonical,

if F, 2 F for all € {F¥.

The followina properties of canonical F-factors are worthwhile
to be mentioned: if F, is a canonical factor of X and if Kl
helongs to the circuit component of Fk’ then Hl does not

contain a chord in X, i.e. there is no edne

e = [x,v] € E(X) - E(Kll with x,v € Vlel. Further, two
odd circuits Kl,K? of a canonical Fk of X cannot he
connected by an edne, i.e. there is no edge

e = [x,y] € E(X) with xe V(KI) and v € V(Kz). A proof of

the above properties can easily be given by contradiction.
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IInfortunately, aiven an arhitrary F-factor and decomposing it
according to the ahove concept hy finding chords and 1inking

edqes does not produce a canonical factor in general,

The following theorem shows an immediate connection with
matchina problems and illustrates also why the concept of

canonical F~factors minht he central for further research.

Theorem 3,5: Let Fk he a canonical F-factor of X, Then a
maximal matching M on ¥ can be established

from Fk in 0(Iv(¥)]) staps.

Proof: First we present an algorithm which transforms
a gqiven canonical F-factor into a maximal
matching, then we prove it to work correctly.

The time bound Q(IV(¥XM) is obvious.

Algorithm 3.1: Input: Fk' canonical, respresented hy a
set of edges spaninn Fk in X,

Nutput: a maximal matchina M. in X,

(i) HF:=L; /a " is initialized hy
L of 'Fk * /
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(ii) for every circuit K?i+1 of Fk
ro;
define a maximal matching

Mosiq ON Kogyqs

Moo M UM,

od;

I Fy just consists of a linear component only all is
ivi J b _ i i o
trivial. Let K?i+1 e an odd circuit so that M21+1
consists of i edges. Mecause the circuits are vertex-disjoint

the set H._. is always a matching in X while repeating Toon (ii).

The numter r of vertices not saturated by MF enquals the
number of odd circuits of F, and, evidently, MF is a

maximal matching for r=1.

Let Ué{ul,ug,...ﬁﬂ} he the set of unsaturated verti-
ces, r3 2. If ' was not maximal an augrenting path

W (ui 2Uy ) must exist connecting two odd circuits
| S
K K

24417 Kogep» 1»3 not necessarily distinct.
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1. Constructinn F-factors

In this chapter we are interested in Ffinding an F~factor of a
qiven aqraph X or in deciding whether X contains one. Ye shall
use a method which is based on alternating paths (/2/, /3/,
/4/). This underlines the immediate implication to matchings
once more, Without loss of generality X is assumed to he
connected and to have innernodes only. The latter is not
relevant in the sequel and rather should he seen as an

araument for reducing the average number of fterations.

We start with an algorithm which eventually finds an F-factor,
The aligned discussions of why this method could fail are

useful for the algorithm 4.2 presented finally in this paper.

Mgorithm 4,1: Input: X = (V,E), connected,
Nutput: an F-factor F={V,E(F))

in the case P = ¢, as definerd below.



SN:

Sl:

W
™~
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F(F)Y=¢: P=@ /* initializing the sets E(F) and P */

construct a maximal matching ;

E(F):=M;

/* Let be U = {ul,...,u‘_} the set of unsaturated
vertices */

while U = @ do;

™y

S2.1: take u; € I, aenerates a vertex ﬁif v(X)
and construct the following nraph ¥:
VIR):=v(x) v { 1_11.};

AREE SRR { IR VA (IR T~ E(X) §

$2.2: Try to find an augmentina path '!(ui,ﬁi!
in ¥ with respect to '\
if # H(ui.ui)

then U:=Ll-{u_.} 3 Pe=p u{ui'l,;
else do;
/* et ”=[u1.,x1'l ,[xl,x?],....
""[xs—l’xs] .[xs,ni]
he the found augmenting path with
{[xlix:?l’[xa’xp 3 - o=

5_1,)(;\} cM

{Iu.i!xil .[x?'x'._';l! -w e

oot 00k E(X) = W */

sl X

construct N hy
F(N)Y:= (E(W) v [xs,-ri']) -

[x u.l;
od;
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$2.2: /* N is an odd circuit Ks+1 with
>
[ui,xil,[xl.x?],...,[xs,ui] /

FIFY:=E(F) w E(K_,.); /* E(F):=E(F) v 1 */;

s+1

U:=U-fu

§3: If P = ¢ then F(F) spans a F-factor of X

Fstahlishing an augmenting path H(ui,y) the case vy e U is
not possible because otherwise " would not he maximal. There-

fore y = u, if such a path H(ui,yl exists. An odd cir-

5
cuit is obtained by an identification of ﬁi with u,.

This circuit is added to E€(F). In addition, while construction
auqmenting paths H(uj,ﬁj) one knows also that such a

path H(uj,ﬁj) does not reach any vertex of a circuit

added to F already. If this was possible an augnenting path

H(uj,ui] would be constructable in contradiction to the

maximality of M.
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Applying lemma 4.1 if algorithm 4.1 terminates unsuccsessfully

we obtain the following: the set P contains those unsaturated

vertices u; € Il which have not yet heen saturated by one of

the circuits constructed according step S2.2. My virtue of

lemna 4.1 one has to find the set {AW(p,x)} of alternating

naths AW(p,x), for every p ¢ P. Take any AW(p,y) so that y can

he saturated by an odd circuit as stated in steps S2.1 - S2.3.

This is possible iff X contains an F-factor. 'lo path AW(p,x)

can reach a vertex x which has bheen saturated previously- by an odd circuit,
because this would form an aumgmenting path which would he

contradiction to M being maximal.

So we can formulate the following algorithm for finding an

F-factor in a graph X.

Maorithm 4.2:  dnput: X = (V,E), connected
output: either an F-factor of X or the
messange "X does not contain an

F-factor".
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apply algorithm 4.1;
while P # # do;
T2.1: choose p & P;
T2.2: construct the set of alternating paths
AN(n,x) dsf AW
/* this step is bounded hylViX)! 3 as it is
shown in (BA/767) */
T2.3: NOTFOUND:= true;
while NOTFOUND & (AW # 7);
fn;
choose a path AW(p,x): delete it; i.e.:
AW: = AW - AW(p,x);
apply steps S.2,1;, S2.? of algorithm 4.1
accordingly for finding an augmentina path
W(x,X) aiven the matching
MuARip,x)) = (M AW(p,x)).
If one has found such a nath W(x,x)

then NOTFOUND:= false:
od;

T2.4: if NOTFOUND then do;
print "Y does not contain a
F-factor":

stop
Gd'f



T3:

T2:5%

=
T2.6:

M: = IMv AW(p,2)) = (M AAW(n,2) )

/* note: p is saturated by M, but x is not */

P: =P -{p}

/* Apply step S2.3 accordingly */
Construct the odd circuit K by

[X,‘{l,[xl,xg “..,[xs,i]

exchanainn [xg,;] by [Xg,’f]?

s+l

E(F):
E(F):

E(F) VE(K )
(E(F) v AW(p,x)) = (E(F) A~ AW(p,x);

spans an F-factor of X.
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5. Further research

First of all a highly efficient implemertation of an algorithm
finding an F-factor should be of interest. The particular
question i wheter <uch an algorithm has the same time com-
plexity as a matching algorithm (see /4/ ) has in the best

case. For the case of a bipartite graph this obviously holds.

So far as theorem 3.6 is concerned an algorithm for finding a
canonical F-factor might be central for further investiga-
tions. We conjecture that the fundamental system of circuits
plays an important role for establishing such an algorithm. If
this were so a differen~ approach to matching problems would
have been found, not based only on alternating path methods as

current algorithms are.
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