

Institut für Hygiene und Arbeitsmedizin Universitätsklinikum Essen

Zelluläre Aufnahme, subzelluläre Verteilung und Toxizität von Arsenverbindungen in methylierenden und nicht-methylierenden Zellen

PD Dr. Elke Dopp

Institut für Hygiene und Arbeitsmedizin Universitätsklinikum Essen Universität Duisburg-Essen

Bereiche des Instituts:

➢ Belastungs- und Effect- Monitoring →

Medizinische Leistungen in den Bereichen Arbeitsmedizin, Hygiene und Umweltmedizin

▷ In vitro- und Molekulare Toxikologie

www.uni-due.de/arbeitsmedizin

Arbeitsschwerpunkt

 Untersuchung des Schädigungsprofils und der Wirkmechanismen umweltrelevanter und arbeitsplatzbezogener Noxen,
 Einstufung von Arbeits- und Umweltstoffen entsprechend
 ihres Gefährdungspotenzials für die menschliche Gesundheit

Projekte

- Toxizität metall(oid)organischer Verbindungen
- Zelluläre Effekte von Partikeln und Fasern
- Umweltöstrogene
- "Water related pollutants"
- "Food contaminants"
- Additive Effekte

AG "In vitro- und Molekulare//////kologie"

Toxikologische Endpunkte:

➢ Gentoxizität (direkt)

- Mikrokerntest
- Chromosomenaberrationen
- Comet Assay
- oxidative DNA-Schädigung (8-OHdG)
- Apoptose

Gentoxizität (indirekt)

- Bildung freier Radikale
- Cytotoxizität Änderungen des intrazellulären Calziumspiegels

Interactions of Xenobiotics with Cellular Components

- 1. Interaction with cell membranes
- 3. Interaction with mitochondria
- 5. Interaction with cell product

2. Uptake/translocation 4. Interaction with nucleus

Toxikologische Testsysteme

Cytotoxizität:

MTT-Test (Aktivität der Mitochondrien)

basiert auf der Umwandlung von Tetrazoliumsalzen durch Oxidoreduktasen innerhalb der Mitochondrien und der Peroxisomen in ein unlösliches blaues Produkt, das photometrisch bestimmt und quantifiziert werden kann.

Alternativ: Trypan-blau (Membranpermeabilität)

LDH (Laktat-Dehydrogenase)-Test

basiert auf der Enzymaktivität von LDH im Zytoplasma, das aus geschädigten Zellen freigesetzt wird und photometrisch gemessen werden kann

⇒ Grundlage aller toxikologischen Untersuchen, um nicht-toxische Konzentrationsbereiche zu ermitteln

Zelluläre Aufnahme

4. <u>Interaktion mit dem Zellkern</u>

Gene / Sequenz

Gen = Abschnitt auf der DNA

 wird in RNA umgeschrieben (Transkription)

Gen hat 2 Bereiche:

- 1.) kopierter DNA-Abschnitt (mRNA)
- 2.) zusätzliche DNA-Abschnitte, die

an der Regulation des Kopiervorgangs beteiligt sind

Genexpression und -regulation

Genexpression und -regulation

Antisense-RNA

RNA-Interferenz

Toxikologische Testsysteme

Gentoxizität:

Mikrokern-Test/Kinetochore

Mikrokerne sind DNA-haltige Abspaltprodukte des Zellkerns und Indikator für eine DNA-Schädigung. Die Anzahl gebildeter Mikrokerne kann nach DNA-Färbung quantifiziert werden.

Comet-Assay

Detektierung von DNA-Strang-Brüchen mit hoher Sensitivität -mikroskopische Auswertung -Ermittlung des "Olive tail moments"

Toxikologische Testsysteme

Gentoxizität: Chromosomenaberrationen (CA)

Nachweis von chromosomalen Schädigungen an Metaphasechromosomen (strukturelle Aberrationen) sowie von Polyploidie (numerische Aberrationen)

Schwesterchromatidenaustausch (SCE)

Reziproke Austausche von Chromatidenabschnitten eines Chromosomens, wird gefärbt und mikroskopisch ausgewertet

Intrazellulärer ROS-Nachweis

H₂DCFDA-Färbung

2',7'-Dichlordihydrofluoresceindiacetat wird deazetyliert durch zelluläre Esterasen. H_2DCF wird gebildet und reagiert mit ROS zu H_2DCFDA .

Fluoreszenz-Messung mit ELISA

Intrazellulärer ROS-Nachweis

TBARS-Färbung

Malondialdehyd (MDA) ist eine Thiobarbitursäure-reaktive Substanz (TBARS), die spektrometrisch gemessen werden kann


```
Malondialdehyd, CH<sub>2</sub>(CHO)<sub>2</sub>
```

```
⇒ Marker f
ür oxidativen Stress
```

- erhöhte TBARS-Konzentrationen sind ein Marker f
 ür Lipidperoxidation und oxidativen Stress
- Fluoreszenz-Messung mit ELISA

Lipidperoxidation: oxidative Degradation von Lipiden in der Zellmembran durch freie Radikale \Rightarrow führt zur Zellschädigung

- Fixed threshold = 0.2
- Expression fold value: 2- ΔΔCt
- Significant change: < 0.5 und > 2.0

Weitere Vorkommen von Arsenverbindungen in der Umwelt

Anorganische Verbindungen

Gestein (Arsenerze, Steinkohle), Trinkwasser, Nahrungskette (Reis, Fisch)

<u>Arsentoxizität</u> durch Biomethylierung von anorganischem Arsen in der Leber

Organische Verbindungen

biogene Quellen: anorganisches Arsen wird durch methanogene und sulfatreduzierende Mikroorganismen biomethyliert: Feuchtgebiete, Tierhaltung

anthropogene Quellen: Mülldeponie, Altlasten, Abwasser, Klärschlamm, Industrie

- Zigarettenrauch

- Lebensmittel
- bei Kleinkindern durch kontaminierte Böden

 Natriumarsenat aus wässriger Lösung

Anreicherung in Leber, Niere, Gallenblase, Haut, Haare, Nägel

Ausscheidung hauptsächlich als DMA(V) über die Niere

Arsenverbindungen sind humankanzerogen und können Blasen-, Nieren-, Leber-, Haut- und Lungenkrebs hervorrufen.

Aufnahme und Deposition von Arsen

Biomethylierung von anorganischem Arsen (I)

Challenger-Mechanismus

(Challenger, Chem. Rev. (1945) 36: 315)

R = Reduktion, OM = oxidative Methylierung

- Die Methylierung findet hauptsächlich in der Leber unter Beteiligung von Methyldonoren (SAM, GSH) statt.
- Methyliertes Arsen(III) weist eine höhere Toxizität auf als anorganisches Arsen

Biomethylierung ist keine Detoxifizierung !

Biomethylierung von anorganischem Arsen (II)

Hayakawa-Mechanismus

(Hayakawa et al., Arch. Toxicol. (2005) 79: 183)

Ergebnisse eigener Versuche

- 1.) Zelluläre Aufnahme von Arsenverbindungen
- 2.) Subzelluläre Verteilung der Arsenverbindungen
- 3.) Toxizität der Arsenverbindungen
 - Cytotoxizität
 - Genotoxizität
 - Intrazelluläre Radikalbildung

4.) Änderung des intrazellulären Calciumspiegels

5.) Genanalysen (COX-2)

Verwendete Arsenverbindungen

- AsNaO₂ Natriumarsenit [As_i(III)]
- AsHNa₂O₄ Natriumarsenat [As_i(V)]
- MeAs(OH)₂ Monomethylarsonige Säure [MMA(III)]
- MeAsO(OH)₂ Monomethylarsonsäure [MMA(V)]
- Me₂AsOH Dimethyarsinige Säure [DMA(III)]
 Me₂AsOOH Dimethylarsinsäure [DMA(V)]
- Me₃AsO Trimethylarsinoxid [TMAO(V)]

1.) Intrazelluläre Arsenkonzentrationen

 nichtmethylierende Zellen sind in der Lage, größere Arsenmengen aufzunehmen / zu speichern als methylierende Zellen (verstärkte aktive Ausschleusung)

Zelluläre Aufnahme (absolut)

- Konzentrationsabhängige Aufnahme der Arsenverbindungen (Expositionszeit: 1 h)

- 0 Dreiwertige methyliente Verbindungen werden bessersaufgenommen als die fünf-wertigen Arsenverbindungen Concentration of As in exposure medium (µM)
- Berechnung der relativen Arsenaufnahme in Abhängigkeit von der extrazellulär applizierten Arsenkonzentration

Zelluläre Aufnahme (relativ)

• höchste Aufnahme bei relativ niedrigen Konzentrationen (UROtsa: DMA(III), 0.1 μM)

Zelluläre Aufnahme (relativ)

<u>CHO cells</u>										
Concentration of arsenic in	Intracellular concentration of arsenic expressed as % of dosed arsenic concentration									
treatment solution (μM)	As _i (III)	As _i (V)	MMA(III)	MMA(V)	DMA(III)	DMA(V)	TMAO			
0.1	-	- / /	-		0.80	-				
0.5	1.20	1.17	0.37	-	9.98	n.d.				
1	0.48	1.58	0.38	0.02	7.30		n.d.			
5	//-/	///-/			6.67					
10	0.78	0.41	1.10	n.d.	6.14	n.d.	0.13			
25	//-/	-//-	2.19				-			
50	//-/	-//-/	1.58				- /			
100	0.41	0.28		0.03		0.01	0.01			
500	0.19	0.14		0.01		0.02	0.01			
1000	-	0.05				0.02	n.d.			
10000	0.10	0.03			///-		-			

- ist abhängig vom Zelltyp (der Membranpermeabilität) und der Arsenspezies

2.) Subzelluläre Verteilung

Differentialzentrifugation zur Zellfraktionierung (5 Fraktionen)

Differentialzentrifugation

Subzelluläre Verteilung [iAs]

Subzelluläre Verteilung [MMA]

Subzelluläre Arsen-Verteilung in UROtsa-Zellen

- without cytosolic fraction

Dopp et al., Drug Metabol. Dispos. (2008), 36(5):971-9

3.) Cytotoxizität

LC₅₀ values: Induktion von 50% Zelltod

LC ₅₀ values in µM								
UROtsa								
	As _i (III)	As _i (V)	MMA(III)	DMA(III)				
1 h	5000	n.ct.	83	15				
24 h	170	1530	18	12				
Hepatocytes								
1 h	n.ct.	n.ct.	20	13				
24 h	130	500	12.4	8.6				

- die pentavalenten Arsenspezies MMA(V), DMA(V) and TMAO(V) waren nicht cytotoxisch (n.ct.) bis zu einer getesteten Konzentration von 5 mM
- cytotoxische Effekte waren in Hepatozyten ausgeprägter als in Urothelzellen

Gentoxische Effekte in Fibroblasten (CHO-Zellen)

Chromatiden-Translokation nach Exposition von CHO-Zellen gegenüber MMA(III) (50 µM, 30 min)

Gentoxische Effekte in humanen Hepatozyten

signifikante Induktion von gentoxischen Effekten durch dreiwertige Arsenverbindungen

Dopp et al., Drug Metabol. Dispos. (2008), 36(5):971-9

Gentoxische Effekte in humanen Urothelzellen

Lipidperoxidation

- große zellartspezifische Unterschiede hinsichtlich MDA-Freisetzung
- höhere Radikalbildung in primären Hepatozyten als in transformierten Zellen

zeitabhängige MDA-Bildung [MMA(III)]

4.) Änderungen des [Ca²⁺], durch Arsenverbindungen

Florea et al., Env. Health Persp. 113 (2005) 6, 659-664

5.) Genanalyse COX-2

UROtsa-Zellen , 10 µM							
	IMA(III) ∆∆Ct	Expression fold value	significant				
miRNA-26a	chang	8,75	↑				
miRNA-101	-1,59	3,01	1				
miRNA-143	-2,60	6,06	1				
COX-2	3,13	0,11	\rightarrow				

 \Rightarrow Verminderte COX-2 Expression

Zusammenfassung

- ⇒ Zelltyp-spezifische Unterschiede hinsichtlich Aufnahme, Verbleib und intrazellulärer Verteilung von Arsenverbindungen sowie cytotoxischen und radikalbildenden Eigenschaften
- ⇒ Gentoxische Effekte waren in allen untersuchten Zellarten detektierbar
- ⇒ Die höchsten Arsenkonzentrationen wurden im Cytosol von humanen Blasenzellen gefunden. Hepatozyten scheinen Arsen schneller wieder auszuschleusen.
- ⇒ Dreiwertige methylierte Verbindungen sind gut membrangängig und induzieren die stärksten zellulären Effekte
- ⇒ Zellkern, Mitochondrien und Ribosomen weisen ebenfalls erhöhte Arsenkonzentrationen auf
- ⇒ Mögliche Konsequenzen: Störungen der mitochondrialen Aktivität und der Proteinsynthese

DFG (FOR 415)

Institut für Hygiene und Arbeitsmedizin, Universitätsklinikum Essen

Prof. Albert W. Rettenmeier Dr. U. v. Recklinghausen Behnaz Shokouhi, MSc Ilona Pollock, BSc Inga Stueckradt Gabrielle Zimmer Ute Zimmermann

Institut für Umweltanalyse, Universität Duisburg-Essen

Prof. Dr. Alfred Hirner Dr. Louise Hartmann Dr. Sasan Rabieh Jörg Hippler

University of California, Davis, USA

Prof. Dr. E.N. Yamoah und Team

Institut für Genetik, Universität Duisburg-Essen Prof. Dr. Günter Obe und Team

Institut für Physiologie, Universitätsklinikum Essen Prof. Dr. D. Büsselberg und Team

Institut für Physiologische Chemie Universitätsklinikum Essen

Prof. Dr. de Groot Priv.-Doz. Dr. Ursula Rauen und Team

University of North Dakota, USA

Prof. Dr. S. Garrett Dr. D. Sens