

Präsentation

Zusammenfassung:

OSI-Schichtenmodell, Hub, Switch

Themenübersicht:

- 1. OSI-Schichtenmodell
- 2. Hub
- 3. Switch

Themenübersicht:

1. OSI-Schichtenmodell

- 1. 1. Eigenschaften
- 1. 2. Ablauf
- 1. 3. Bitübertragungsschicht
- 1. 4. Sicherungsschicht
- 1. 5. Netzwerkschicht
- 1. 6. Transportschicht
- 1. 7. Sitzungsschicht
- 1. 8. Darstellungsschicht
- 1. 9. Anwendungsschicht

1.1. Eigenschaften

- OSI → Open Systems Interconnection
- entwickelt 1984 zur Vereinheitlichung der Datenübertragung von der International Standart Organisation (ISO)
- herstellerunabhängig
- bestehend aus 7 Schichten
- jede Schicht hat ihre eigenen spezifischen Aufgaben und ist Sinnvollerweise in sich abgeschlossen
- Schichten können nicht übersprungen werden
- OSI veraltert nicht
- OSI unterteilbar in 2 Gruppen → Transport & Anwendung

1.2. Ablauf

Originaldaten	HA							Anwendung (Application)	Originaldaten	HA						
Originaldaten		Ho						Darstellung (Presentation)	Originaldaten		Ho					
Originaldaten			Hs					Sitzung (Session)	Originaldaten			Hs				
Originaldaten				Нт				Transport (Transport)	Originaldaten			Ų	Нт			
Originaldaten					Hn			Netzwerk (Network)	Originaldaten					Hn		
Originaldaten					1	Hv		Sicherung (Datalink)	Originaldaten						Ηv	
Originaldaten							HP	Bitübertragung (Physical)	Originaldaten							HP

- Durchlaufen aller OSI-Schichten in System A und E
- Anwendungsprogramm (System A) → Anwendungsschicht → Darstellungsschicht
 - → usw. → Bitübertragungsschicht
- Bitübertragungsschicht gibt Daten ans physische Medium
- Übertragung zum System E (nicht OSI)
- Bitübertragungsschicht (System E) → Sicherungsschicht → usw. → Anwendungsschicht → Anwendungsprogramm
- Anhängen eines Header von Schicht 7 zu Schicht 1 pro Schicht

1.3. Bitübertragungsschicht

7	Anwendungsschicht	Application Layer
6	Darstellungsschicht	Presentation Layer
5	Sitzungsschicht	Session Layer
4	Transportschicht	Transport Layer
3	Netzwerkschicht	Network Layer
2	Sicherungsschicht	Data Link Layer
В	itübertragungsschicht	Physical Layer

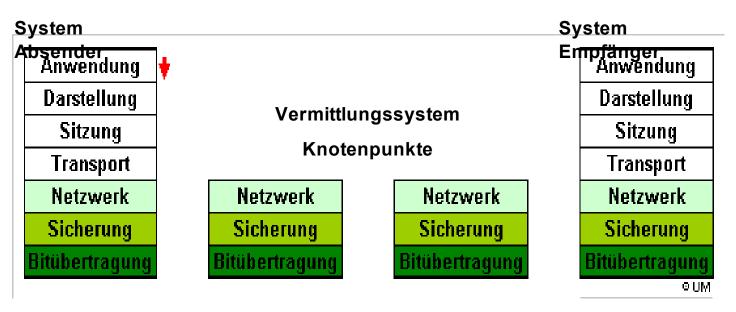
- reine Hardware z.B. Netzwerkschnittstellenkarte(n)
- reguliert Aktivierung, Aufrechterhaltung und Deaktivierung der physischen Verbindung
- Umwandlung der Datenströme in elektrische Signale
- Übertragung von einzelnen Bits zwischen Computern
- richtige Dateninterpretation
- Kodierung der Daten

1.4. Sicherungsschicht

7	Anwendungsschicht	Application Layer
6	Darstellungsschicht	Presentation Layer
5	Sitzungsschicht	Session Layer
4	Transportschicht	Transport Layer
3	Netzwerkschicht	Network Layer
2	Sicherungsschicht	Data Link Layer
1	Bitübertragungsschicht	Physical Layer

- Daten werden in Pakete oder Datenrahmen zerlegt
- Art der Datenrahmen von Netzwerktopologie abhängig
- regelt physische Adressierung, Netzwerktopologie, Fehlererkennung, Frame-Abfolge, Flusssteuerung
- garantiert fehlerfreie Übertragung über Netzwerkleitung für die höheren Netzwerkschichten
- erwartet immer Empfangsbestätigung
- Aufteilung in 2 Subebenen → LLC (Logical Link Control) und MAC (Medium Access Control)

1.5. Netzwerkschicht


7	Anwendungsschicht	Application Layer		
6	Darstellungsschicht	Presentation Layer		
5	Sitzungsschicht	Session Layer		
4	Transportschicht	Transport Layer		
3	Netzwerkschicht	Network Layer		
2	Sicherungsschicht	Data Link Layer		
1	Bitübertragungsschicht	Physical Layer		

- Verbindung zwischen 2 kommunizierenden Endgeräten
- Routing → Auswahl der Paketrouten durch statische Tabellen oder dynamisch nach Netzauslastung
- verantwortlich für das Ankommen der Daten am richtigen Ort
- 3 Verbindungsarten → Leitungsvermittlung, Nachrichtenvermittlung & Paketvermittlung
- Adressierung durch logische Netzadressen

1.5. Netzwerkschicht II

- Aufbau einer gesicherten Verbindung in der Sicherungsschicht zu einem Knotenpunkt
- Knotenpunkt verbindet sich mit dem nächsten Knotenpunkt, usw.
- letztlich verbindet sich ein Knotenpunkt mit dem Empfängerendgerät
- Netzwerkschichtschicht steuert die Zusammenschaltung der einzelnen Verbindungen zwischen den Endgeräten

1.6. Transportschicht

7	Anwendungsschicht	Application Layer
6	Darstellungsschicht	Presentation Layer
5	Sitzungsschicht	Session Layer
4	Transportschicht	Transport Layer
3	Netzwerkschicht	Network Layer
2	Sicherungsschicht	Data Link Layer
1	Bitübertragungsschicht	Physical Layer

- Aufbau einer Ursprungs-zu-Ziel-Verbindung
- Zerlegung der Nachrichten in kleinere Einheiten (Datenpakete)
- Transportdienste → verbindungsorientierter Transport, Pakettransport und Broadcast
- Zusammensetzung der richtigen Datenpaketreihenfolge
- Multiplexen von Kanälen der Vermittlungsschicht
- Fehlererkennung
- Flusssteuerung zur Geschwindigkeitsanpassung

1.7. Sitzungsschicht

7	Anwendungsschicht	Application Layer	
6	Darstellungsschicht	Presentation Layer	
T	Sitzungsschicht	Session Layer	
4	Transportschicht	Transport Layer	
3	Netzwerkschicht	Network Layer	
2	Sicherungsschicht	Data Link Layer	
1	Bitübertragungsschicht	Physical Layer	

- Mitglied der anwendungsorientierten Schichten
- Organisation und Strukturierung der aktuellen Verbindung
- Synchronisation der Kommunikation
- Reaktion auf Übertragungsfehler oder Unterbrechung

1.8. Darstellungsschicht

7	Anwendungsschicht	Application Layer
3	Darstellungsschicht	Presentation Layer
5	Sitzungsschicht	Session Layer
4	Transportschicht	Transport Layer
3	Netzwerkschicht	Network Layer
2	Sicherungsschicht	Data Link Layer
1	Bitübertragungsschicht	Physical Layer

- Formatieren, Strukturieren, Verschlüsseln und Komprimieren von Daten
- Schnittstelle zum Netzwerk
- bestimmt ein Dateiformat → Daten werden in einheitliches Dateiformat gebracht
 - gewährleistet die Kommunikation zwischen unterschiedlichen Plattformen

1.9. Anwendungsschicht

7	Anwendungsschicht	Application Layer	
6	Darstellungsschicht	Presentation Layer	
5	Sitzungsschicht	Session Layer	
4	Transportschicht	Transport Layer	
3	Netzwerkschicht	Network Layer	
2	Sicherungsschicht	Data Link Layer	
1	Bitübertragungsschicht	Physical Layer	

- Anfangspunkt und Zielort der Datenübertragung
- direkte Verbindung eines Benutzers zum Netzwerk
- Programme wie der Browser, ein FTP-Client, E-Mail Programme, Datenbanken

Themenübersicht:

- 2. Hub
 - 2. 1. Einführung
 - 2. 2. Funktionsweise Hub
 - 2. 3. Funktionsweise Switching Hub

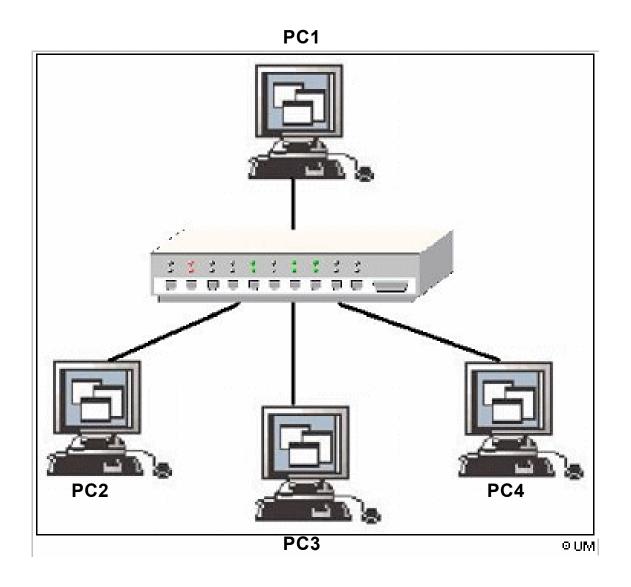
1.1. Einführung

- Bechul

- Hub → Nabe / Mittelpunkt
- dient zur Verbindung mehrer PCs untereinander
- Hub Arten:
 - Ethernet Hub 10 Mbps (OSI-Schicht-1)
 - Fast Ethernet Hub 100 Mbps (OSI-Schicht-1)
 - Dualspeed Hub 10/100 Mbps (OSI-Schicht-1)
 - Switching Hub (OSI-Schicht-2)

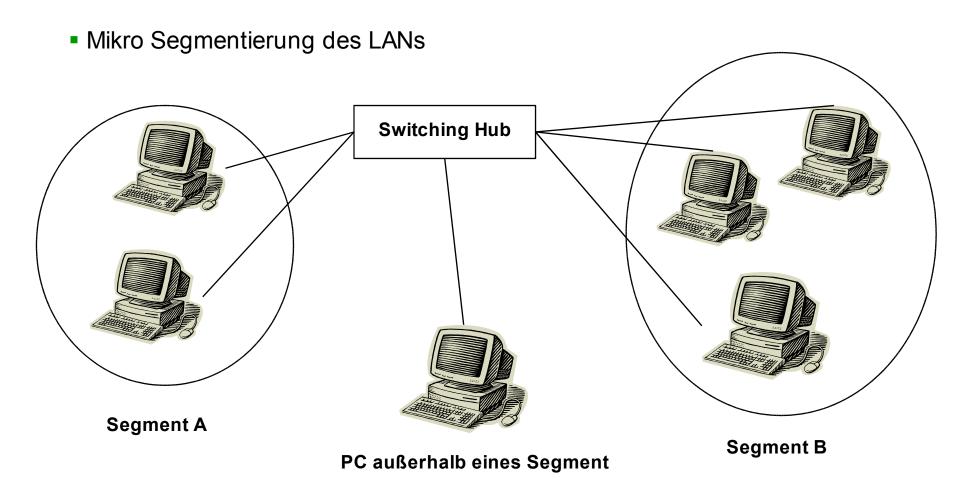
1.2. Funktionsweise Hub I

- Stern Topologie Datenübertragung wie bei Bus Topologie
- angeschlossene PCs teilen sich die Bandbreite des Hubs
 - > Rechenbeispiel:


100Mbps 5 Port Hub
5 angeschlossene PCs

20 Mbps

1.2. Funktionsweise Hub II



1.3. Funktionsweise Switching Hub

Erste Grundstufe zur Strukturierung und Verkehrskontrolle im LAN

Themenübersicht:

- 3. Switch
 - 3. 1. Einführung
 - 3. 2. Funktionsweise Switching
 - 3. 3. MAC Adressen

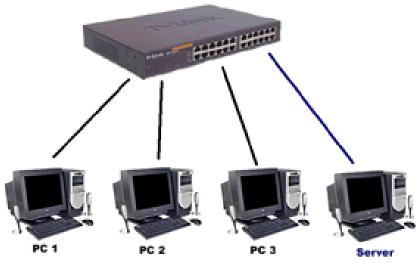
3.1. Einführung

- Switch ist ein intelligenter Hub
- dient zur Verbindung mehrer PCs untereinander
- Switch Arten:
 - Ethernet Switch 10 Mbps
 - Fast Ethernet Switch 100 Mbps
 - Dualspeed Switch 10/100 Mbps
 - Gigabit bis zu 1000Mbps

3.2. Funktionsweise/Switching I

- Stern Topologie
- angeschlossene PCs haben volle Bandbreite des Switch
- Adresstabelle
- Zielrechner
- Puffer

3.2. Funktionsweise/Switching II


- Twisted-Pair-Kabeln
- Sternarchitektur
- Punkt-zu-Punkt-Verbindungen
- zentralen Knoten
- leistungsstärkeren Vorgehensweise
 - > lernt mit der Zeit, an welchem Port welche Station angeschlossen ist
 - Paketweiterleitung nur auf den Port der Zielstation
 - höhere Bandbreite
 - > Stationen können jeweils paarweise miteinander kommunizieren

3.2. Funktionsweise/Switching III

MAC - Media Access Control

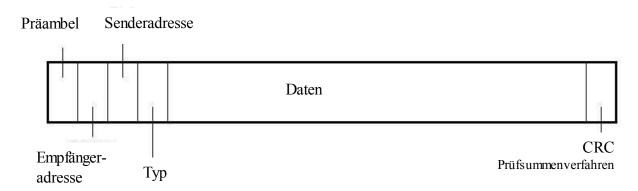
- 12 Stellen
- keine identischen Adressen
- von den Herstellern festgelegt
- Verteilung erfolgt durch Schlüssel

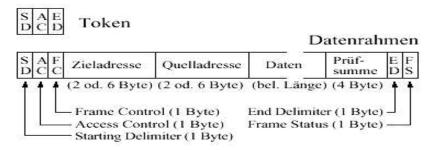
Vielen Dank für Eure Aufmerksamkeit

Kleiner Tipp:

www.its-portal.de

♥ Downloads


♥ IT-Referate


Datenrahmenvergleich

Ethernet und Rahmenformat

Token Ring und Rahmenformat

- SD und ED enthalten "illegale" diff. Manchester-Codes
 - dadurch sind Rahmengrenzen in laufendem Bitstrom erkennbar
- AC enthält zwei Bits 'T' und 'M':
 - T = 0 <==> Freitoken (sonst Datenrahmen mit impliz. Belegttoken)
 - M für "Stempel" des Monitors (Erkennung alter Datenrahmen)
- FS enthält zwei Bits 'A' (address recognized)
 und 'C' (frame copied) --> automatisches Acknowledge
 - A = 0 ==> Empfänger unbekannt (oder abgeschaltet)
 - C = 0 => Nachricht wurde vom Empfänger nicht abgenommen (z.B. weil nicht genügend Pufferplatz vorhanden war)

ISO-OSI-Ref.	(Bsp.) Standards	DoD-F	amilie	SAA-Familie	Novell	
Application	X.400 FTAM	SNMP		DCA/DIA	Btrieve MHS Compiler	
Presentation	ASN.1	FTP		SNADS	Netware Kern	
Session	ISO 8326/27		LNET S/NSP	APPC- Schnittst.		
Transport	ISO 8072/73	ТСР	UDP	LU 6.2	IPX SPX NetBios	
Network	X.25 WAN	ICMP EGP			SPA	
Network	A.25 WAIT	IP ARP RARP		PU 2.1		
Data Link	X.25 WAN ISO 8802 LAN	ARPANET ETHERNET TOKEN RING		Token Ring Local Area Net Ethernet	irgendeines von ca.80	
Physical	2 X.25 WAN ISO 8802 LAN		NET 25 PDN idere	oder SDLC	verschiedenen LANs	
	Das F	rotoko	II-Labyı	rinth		

- für Informationsaustausch sind geeignete Protokolle unablässig
- das einzelne Protokoll arbeitet immer in einem bestimmten Funktionsbereich
- sind mehrere Protokolle aufeinander abgestimmt → Protokollstapel (-stack)
- Datenübertragungsprotokoll legt Semantik und Syntax, Parameter etc. fest
- anfänglich nur herstellerspezifische Protokolle → Protokollfamilien
- In den 80er Jahre Entwicklung von Protokollen mit herstellerübergreifendem Charakter → XNS-Protokolle, TCP/IP-Protokolle
- bitorientiert oder zeichenorientiert

