UNIVERSITÄT BREMEN - SS 2013

- Übungen zur Vorlesung Analysis 2 -

Aufgabenblatt 9

(Themen der Woche 9: Totales Differential, Richtungsableitung, partielle Differenzierbarkeit; Jacobi-Matrix; Holomorphie; Cauchy-Riemannsch Differentialgleichungen).

1. Berechnen Sie die Jacobi-Matrix $J_F(x,y,z)$ der Abbildung $F:\mathbb{R}^3\to\mathbb{R}^3$, die gegeben ist durch

$$F((x,y,z)):=\left(e^{2x}+z,x+y^2+\cos z^3,xy+y+(\sinh z)^2\right), \text{ für alle } (x,y,z)\in\mathbb{R}^3$$

2. Verwenden Sie das Beispiel der Funktion $f:\mathbb{R}^2\to\mathbb{R}$, die gegeben ist, für alle $(x,y)\in\mathbb{R}^2$, durch

$$f((x,y)) := := \begin{cases} 0 & \text{für } (x,y) = (0,0) \\ (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{für } (x,y) \neq (0,0) \end{cases}$$

um zu beweisen, dass eine differenzierbare Funktion im Allgemeinen nicht notwendig stetig partiell differenzierbar ist. [10]

3. Es sei die Abbildung $G: \mathbb{R}^2 \to \mathbb{R}^2$ gegeben durch

$$G((x,y)) := (x^2 - y^2, 2xy), \text{ für alle } (x,y) \in \mathbb{R}^2$$

- (a) Berechnen Sie die Jacobi-Matrix $J_G(x,y)$ der Abbildung G. [5]
- (b) Berechnen Sie die Inverse der Jacobi-Matrix $J_G(x,y)$, zumindest für die Punkte wo diese existiert. [5]
- 4. Beweisen Sie den folgenden Mittelwertsatz für Funktionen mehrerer Veränderlicher:

Es sei V eine offene Teilmenge des \mathbb{R}^n , und es sei $T:V\to\mathbb{R}$ eine in V differenzierbare Abbildung. Ausserdem seien $x,y\in V$ so gewählt, dass die Verbindungsstrecke $\ell(x,y)$ zwischen x und y ganz in V enthalten ist. Unter diesen Voraussetzungen existiert dann ein $z\in\ell(x,y)$ mit $z\neq x$ und $z\neq y$, so dass gilt

$$T(y) - T(x) = DT(z)(x - y)$$

(Hinweis: Betrachten Sie die Funktion $h:[0,1] \to \mathbb{R}$, die für alle $s \in [0,1]$ gegeben ist durch h(s) := T(x + s(y - x)), und wenden Sie den Ersten Mittelwertsatz für Funktionen einer Veränderlichen (Lagrange) an). [10]

5. Es seien $u: \mathbb{R}^2 \to \mathbb{R}$ und $v: \mathbb{R}^2 \to \mathbb{R}$ die zwei Komponentenfunktionen der auf einer offenen Teilmenge U der Menge der komplexen Zahlen holomorphen Funktion $f: U \to \mathbb{C}$ (d.h. f(x+iy) = u(x,y) + iv(x,y), für alle $(x,y) \in \tilde{U} := \{(x,y) \in \mathbb{R}^2 : x+iy \in U\}$). Zeigen Sie, dass wenn u und v auf \tilde{U} zweimal stetig partiell differenzierbar sind, dann ist sowohl u als auch v eine harmonische Funktion auf \tilde{U} . [10]

Der hierbei verwendete Begriff harmonisch ist wie folgt definiert:

Eine Funktion $\phi: \tilde{U} \to \mathbb{R}$ heisst harmonisch auf \tilde{U} , falls für alle $(x,y) \in \tilde{U}$ gilt, dass

$$\frac{\partial^2 \phi}{\partial x \partial x}((x,y)) + \frac{\partial^2 \phi}{\partial y \partial y}((x,y)) = 0$$