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Abstract
Cournot’s principle is a family of theses about how mathematical probability
can be used to make assertions about facts or events in the world. With one
nuance or another, these theses say that this is done by assigning probabilities
very close to zero or one to certain facts or events. Events with probabilities
close to zero will not happen (or, if they are repeatable, will happen rarely);
those with probabilities close to one will happen (or will usually happen).

In this working paper, which remains incomplete, I survey the many ways
Cournot’s priniciple has been formulated. I quote, with some commentary,
scores of prominent authors over several centuries. I include some authors who
formulated versions of Cournot’s principle only to disagree with them.

I have drawn on this compilation to formulate my own views on Cournot’s
principle, and I believe that it will also be helpful to others with other views. The
compilation can also be useful for historians interested in the contributions of
particular authors. The continuity of opinion may be greater than we sometimes
think, the originality of particular authors less than we sometimes suppose.

I also sketch a game-theoretic formulation of Cournot’s principle that has
been studied over the past quarter century by Vladimir Vovk and myself. This
formulation applies when mathematical probability is based on a multi-round
game in which probabilities are given on each round by one player and another
player bets against them. Here the role of an event of small probability is
played by the event that the second player multiplies the capital he risks by a
large factor, and Cournot’s principle becomes the assertion that this will not
happen. Because it involves two players, not just one, this formulation can help
us understand the diversity of Cournot’s principle.

This paper is dedicated to Thierry Martin, whose Probabilités et critique
philosophique selon Cournot introduced me and others to the many faces of
Cournot’s principle.
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1 Introduction
Early in the 21st century, when my wife and I were spending our summers
in Vermont’s Northeast Kingdom, I would occasionally drop by Hanover, New
Hampshire, to visit J. Laurie Snell, then retired but still active at Dartmouth
College. We would talk about martingales and about the philosophy of proba-
bility. On one occasion I tried to interest Laurie in Émile Borel’s dictum that
events of extremely small probability are impossible. He expressed his disin-
terest with a wave of his hand and a single sentence: “All the old guys said
that.”

Why did they all say that? Why were we saying it less often in the 21st
century? Did we know something the old guys did not know? What exactly were
they saying? Were we really saying it less often, or merely less loudly? These
questions had been haunting me long before my conversations with Laurie, and
this paper reports on my efforts to answer them.

1.1 Why I cared
In the 1970s, I pondered Jacob Bernoulli’s 17th-century concepts of moral (i.e.,
practical) impossibility and certainty and their roots in yet older thinking about
non-numerical probability. Bernoulli used the concepts in his book on proba-
bility, Ars conjectandi [14, 15], published after his death. There he equated
practical certainty with probability close to one, practical impossibility with
probability close to zero, and he proposed that the government instruct judges
on how close was close enough.

Bernoulli’s proposal for using mathematical probability in legal matters
seemed quaint, but as a teacher of statistics, I constantly encountered his ques-
tion of how close to zero is close enough. How small a probability is small enough
to reject a hypothesis? When teaching probability, I found myself explaining to
students that we are almost certain an event will not happen when its probabil-
ity is close or equal to zero. There was usually a clever student who argued that
what happens, when described in detail, always has a small or zero probability.
This has been called the lottery paradox. I would brush the paradox aside, but
I often felt that I was indoctrinating rather than teaching.

Bernoulli’s project had been to turn the mathematics of betting in games
of pure chance into a calculus that would help us decide what to believe in the
larger world — a guide to life, to use the words of the 18th-century theologian
Joseph Butler. This project was spectacularly successful in a way Bernoulli had
not intended: most mathematicians and scientists now accept without question
that the mathematics of probability should follow the rules for fair bets in games
of pure chance. Bernoulli’s own project was more complicated than this.

The part of Bernoulli’s project that mathematicians now celebrate is his
theorem concerning how we can learn about a probability of a repeatable event
from multiple trials. As an example, Bernoulli considered randomly drawing a
ball from an urn that contains a known total number of balls, some black and
some white, in unknown proportion. His theorem says that the frequency of
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black outcomes in sufficiently many draws with replacement will tell us the exact
number of black balls in the urn with probability as close to one as you want.
Choose your threshold for moral certainty, and Bernoulli could tell you a number
of draws with replacement sufficient to achieve it.1 Later mathematicians saw
that his calculation establishes a more general statement concerning independent
trials of an event with probability p: Given any positive numbers ϵ and δ, no
matter how small, there is an integer n such that the frequency f with which
the event happens in n trials will be within ϵ of p with probability at least 1−δ.
This has been called Bernoulli’s law of large numbers.

But Bernoulli was only incidentally interested in multiple trials of a repeat-
able event. His goal was to obtain numerical probabilities close to zero or one
for singular facts or isolated events, events that cannot be repeated. Did Mae-
vius murder Titius? There are mutliple arguments: Maevius hated Titius, he
turned pale when questioned, a sword stained by blood was found in his house,
he passed that day on the road where Titius was found slain, Caius testifies
that the two had quarreled that day [15, p. 318]. Bernoulli hoped that his law
of large numbers could be used to assess the probability of each argument. How
often does turning pale indicate guilt? Etc. Then the probabilities from differ-
ent arguments could be combined by rules that went beyond the mathematics
of betting in games of pure chance. As more evidence is gathered and more
arguments combined, one might reach moral certainty about the isolated event,
which could not be addressed directly by Bernoulli’s theorem.2

Bernoulli’s picture was constructive; we combine arguments until we reach
a probability close to one for the answer to our question. There is no lottery
here; no distribution of probabilities over many possibilities, each having a small
probability. Bernoulli would have agreed that each sequence of blacks and whites
in a long sequence of draws from his urn without replacement would have a very
small probability, but he was not interested in being morally certain that any
particular sequence would not be obtained; he was interested in moral certainty
about the number of black balls. And then he was interested in combining this
number with other similarly obtained numbers to decide with moral certainty
who murdered Gracchus.

Even though Bernoulli’s 18th- and 19th-century successors did not adopt
his rules for combining arguments, their probability calculus remained relatively
constructive. They constructed probabilities for complicated events from sim-
pler probabilities using the rules of total probability (additivity) and compound
probability. It was only in the 20th century that functional analysts like Mau-
rice Fréchet, Paul Lévy, and Andrei Kolmogorov proposed that mathematical
probability begin with a comprehensive probability measures that often, like the
probabilities for tickets in a lottery, involve a small probability for every precise
outcome. Only then did the need arise to somehow qualify the statement of

1See Stephen M. Stigler’s A History of Statistics [176] for a careful and detailed account
of Bernoulli’s formulation of his theorem and his proof.

2I wrote about Bernoulli’s project in 1978 [165]. A few years later, trying my hand as an
amateur medievalist, I contributed an article about moral certainty to Wiley’s Encyclopedia
of Statistical Sciences [166].
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Cournot’s principle to avoid the lottery paradox.
I have devoted the first decade of my scholarly career to challenging the

notion that probability theory should rely completely on the mathematics of
betting. In A Mathematical Theory of Evidence, published in 1976 [164], I
advocated a theory for combining arguments similar to Bernoulli’s. I called it
the theory of belief functions; it was later called the Dempster-Shafer theory,
because it was inspired not only by Bernoulli’s work but also by the work of my
mentor A. P. Dempster. It lives on in the hands of The Belief Functions Theory
and Applications Society.

In the early 2000s, when I was talking with Laurie, my interest in the history
of practical certainty had been rekindled by my collaboration with Volodya Vovk
on what he and I called game-theoretic probability. This was a new way of
developing the mathematics of betting, accompanied by a new way of relating
this mathematics to the world of experience.3

I saw my collaboration with Volodya as another step in a campaign against
the hegemony of a theory of betting masquerading as a general theory of ev-
idence and numerical probability. When we are using a theory of betting, I
argued, let’s be honest about it. And let’s be honest about what is involved in
connecting it with the world of experience.

How can we connect the theory of betting to the world of experience? I
learned a clear and precise answer to that question from Volodya, or at least
through my collaboration with him. To interpret betting odds as statements
about the world, as forecasts or predictions if you will, we think of them as
offers to bet. Their validity as forecasts lies in the ability or inability of an
opponent to make money by selecting which of the betting offers to take up.
My probability forecasts are discredited (or I am discredited as a forecaster) to
the extent that my opponent multiplies the money he risks by a large factor.
His multiplying his money by a large factor is related, in a way that can be
made precise, to an event of small probability happening. His multiplying his
money by an infinite factor is related to an event of zero probability happening.

Game-theoretic probability is best taught on its own, without too much
attention to the usual theory of probability. But most of those who might be
interested have already studied the usual theory, and so the connections must
also be explained. In particular, we need to explain how success in betting
against probabilities is related to an event of small probability, and how the
principle that such success discredits probabilities is related to the traditional
notions of moral certainty and moral impossibility. Here I have encountered
a surprising problem. In spite of their continuing relevance to practice, these
traditional notions have been so obfuscated in our teaching that many modern
students are not aware of them, and some authorities, especially some who see
Bayes’s theorem as more important than Bernoulli’s theorem, reject them.

I have thus come to believe that acceptance of the cogency of game-theoretic
probability by those who now study and teach probability theory requires a

3My collaboration with Volodya began in the mid 1990s. Our first book on game-theoretic
probability appeared in 2001 [169]; our second, much more complete on the mathematical
side, appeared in 2019 [172].
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fuller account of the history of moral certainty and moral impossibility, a fuller
understanding of why so many smart people saw them as important, and also
an understanding of why some did not.

1.2 How I learned
Many scholars became interested in the history of probability and statistics in
the 1970s. Among them were the members of a seminar on the topic in Paris,
and I had the good fortune of coming into contact with this group, especially in
the 1990s. Through Bernard Bru, one of the members of the group, I learned
about Thierry Martin’s work on Antoine Augustin Cournot (1801–1877). In
Thierry’s 1996 book, Probabilités et critique philosophique selon Cournot [129],
I learned that Bernoulli’s principle of moral certainty had a name; Maurice
Fréchet named it Cournot’s principle in 1949. Fréchet did this in French of
course: principe de Cournot.

Whereas Bernoulli had written about moral certainty, Cournot wrote about
physical certainty. He wrote that a probability close enough to one can be taken
as physical certainty. Going beyond Bernoulli, he wrote that this is the only
way to connect the mathematical theory of probability to the physical world
outside mathematics.

The name Cournot’s principle enjoyed some currency in the 1950s. It was
used less often when I began studying probability in the 1970s, but it is slowly
coming back. Google Scholar reports no instances of its use in academic articles
in the 1970s, two instances in the 1980s, three in the 1990s, and 86 since 2000.

I have done my part in this revival; 21 of the 86 instances since 2000 were
articles I authored or co-authored. Some of these articles were historical. Be-
ginning with the references that I found in Thierry’s work, I have been on the
lookout for what various authors said about various versions of Cournot’s prin-
ciple, how the principle evolved over time, and perhaps how the understanding
of it differed from one national or linguistic tradition to another. My own under-
standing of this evolution has evolved, of course. I do not stand by everything
I wrote about the history of Cournot’s principle in earlier articles [170, 168].

1.3 What I report here
As the title of this paper indicates, I am using Cournot’s principle as Fréchet did,
not to name a single well defined dictum but to name a family of principles. Even
in cases where authors seem to be saying the same thing, each says it in their
own way. This variety of thought is best presented, I think, by quoting many
different authors, in the language in which they wrote and also in translation.
Accordingly, I devote the next section to quotations from nearly 100 authors,
who wrote over many centuries.

In most cases, I provide some context for the quotations. Even with this
context, the brief quotations should not be seen as an adequate account of
the thought of any particular author. All the authors had a lot more to say,
and some changed their minds over time about some of the points quoted.
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My purpose here is not to tell all about particular authors but to exhibit the
larger flow of thinking. In the end, this can add to more in-depth profiles of
particular authors, because all too often studies of a particular author stumble
into attributing insights to the author that may have been commonplaces in
their time or even much earlier.

1.4 What I think now
Perhaps we can dismiss some of the disagreements among our authors as quib-
bling about words. But I emerge from pondering their many ways of using
words with the conviction that the interpretation of high probability as practi-
cal certainty is central to applications of the standard theory of mathematical
probability. We see this interpretation used in practice by authors with a variety
of philosophies about the meaning of probability; see for example the quotations
from William Feller (who thought of probability as frequency), Harold Jeffreys
(who thought of probability as rational belief), and A. Philip Dawid (who thinks
of probability as subjective belief).

Bruno de Finetti, while conceding that a person’s high probability for an
event can be called practical certainty insofar as he will take risks as if the
event is certain to occur, argued that high (and low) probabilities are not really
special, because they enter into calculations of expected utility that describe the
person’s behavior in the same way that other probabilities do. I am unconvinced
by this argument, because I do not accept the supposed principles of rationality
that require a person to make their actions conform to a system of probabilities
and utilities [167].

I agree with Condorcet that the concept of practical certainty belongs outside
the mathematical theory. Buffon, whom Condorcet criticized, is not the only
author to try to put it inside the theory; attempts in the 20th century include
those by Gillies and Kyburg. They never work.

All those who use the practical certainty, whatever their philosophy, need to
resolve the lottery paradox. I think that the resolution varies according to the
application. The requirement that the event of high or low probability be chosen
in advance is often one ingredient in a resolution. It is especially relevant when
we are testing probabilities. But after we have tested a system of probabilities
enough to gain confidence in its predictions (the events it asserts with high
probability), we want to use it to make new predictions. We want to make
calculations and find new events of high probability. We also want the right
to take as discrediting surprising events that we do not anticipate or predict in
advance. To resolve the lottery paradox, we must recognize limits on our right to
explore and our right to surprise. These limits vary with the application. Often
we need the insights of Wald, Ville, and Kolmogorov, and others concerning the
limited number of simple or “remarkable” events and the limits on our ability
to describe events. The number of black balls in Bernoulli’s urn with 50 balls
in total and the number of black balls drawn in 50,000 draws with replacement
are simpler to describe than the actual sequence of 50,000 draws.

Cournot, Borel, and others sometimes insisted that probabilities extremely
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close to zero or one should be deemed impossible or certain, not merely prac-
tically impossible or practically certain. I find their arguments convincing but
easily misunderstood. These authors wanted to understand scientific theories
that involve probabilities in the same way as other theories in physics. Physical
theories that do not use probabilities do not say “maybe” when they make pre-
dictions, they simply make predictions. They say some things will happen; they
are certain. They say some things will not happen; they are impossible. I think
such statements are reasonable so long as they are understood as statements
of what the theory says. When we accept the theory, we make the statements
about impossibility and certainty. But of course there is another level of thought
where we can concede that the theory might be not quite right after all or that
we might have misapplied it. If we demand a higher standard than this for
using the words “certain” and “impossible”, we might as well ban them from our
language.

1.5 Testing by betting
We can better understand the diversity of Cournot’s principle if we separate
the role of asserting probabilities from the role of testing them. A system of
probabilities begins as purely mathematical object. Then someone asserts that
the probabilities are valid or reliable in a particular situation. Then an op-
ponent tries to refute this by describing an event to which the system assigns
small probability. The requirement that the opponent describe the event means
that it has a simple description. In this picture, we see two ways that subjec-
tivity can enter. The probabilities can be considered the subjective opinion of
the “player” asserting them, even if this player is merely a preliminary theory
we are testing. The assertion of validity may be relative to the information,
computational capacity, or cleverness of the opponent or opponents. Yet the
system of probabilities gains a claim to objective value when the events of small
probability the opponents describe do not happen.

We can make this picture mathematical, add to its flexibility, and bring
in the requirement that the tests be chosen in advance by supposing that the
asserted probabilities are betting offers and that the opponent tests them by
choosing bets

Consider for example a multi-round game protocol with three players, whom
we call Forecaster, Skeptic, and Reality. On each round,

Forecaster announces a probability distribution, say P .
Skeptic announces a random variable Y with finite expected value under P .
Reality announces a value y for Y .
Skeptic pays Y ’s expected value and gets y in return.

Here Skeptic is betting against Forecaster. He discredits Forecaster if he makes
a lot of money. More precisely,

successive bets by Skeptic that begin with unit capital and never
risk more discredit Forecaster to the extent that the final capital is
large.
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In [172], Vovk and I called this the game-theoretic version of Cournot’s principle.
More recently, I have called it the fundamental principle for testing by betting.

If you want a little more notation, we can number the rounds, write K0

for the initial unit capital, and write Kn for the capital after the nth round of
betting:

K0 = 1.
For n = 1, . . . , N :

Forecaster announces Pn.
Skeptic announces Yn with finite expected value EPN

(Yn).
Reality announces Yn’s value yn.
Kn := Kn−1 + yn − EPn

(Yn).

The condition that Skeptic not risk more than his initial capital means that he
must always choose Yn so that

Kn−1 + yn − EPn
(Yn) = (capital at beginning of round n

+ net gain or loss on round n)
≥ 0

no matter what yn turns out to be. Sometimes we call this avoiding risk of
bankruptcy.

If many skeptics test a forecaster in this way and none of them obtain large
values of KN , then the forecaster can claim to be reliable. He can claim that
his forecasts describe the world. He can claim that they have objective value.
Quantum Mechanics has achieved this objective value in the eyes of today’s
physicists. National weather forecasters are now also making such claims.

When (1) Forecaster’s probabilities are dictated by theory or model (such
as Quantum Mechanics some model estimated by a statistician), (2) we accept
this model as valid, (3) Skeptic has a strategy that avoids risk of bankruptcy
and makes KN huge if Reality’s moves y1, . . . , yN fall in a set E, then we may
say that E is objectively impossible. Perhaps physically impossible if the theory
is a theory in physics and N and KN are huge, perhaps practically impossible
in less extreme cases.

2 Things some old guys said
Because the periods in which the authors listed have contributed to our topic
sometimes overlapped, it is impossible to list them in a way that corresponds
perfectly to the chronology of their contributions. For lack of a more perfect
ordering, I have listed them in order of their birth.

So far as today’s theory of mathematical probability is concerned, we could
begin our account of moral certainty with Jacob Bernoulli in the 17th century.
But the Latin terms that Bernoulli used — certitudo moralis and probabilitas —
go back much earlier. So I begin with a sampling of how earlier authors writing
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in Latin used these and related terms. Is it too narrow to discuss only what
was written in Latin and in later languages influenced by Latin? Other ancient
languages, such as Sanskrit, Chinese, Arabic, and Hebrew, surely have their
own ways of talking about practical certainty. But to translate these into Latin
or English might involve choices too arbitrary to be helpful here. How would
we decide whether an author is talking about degrees of certainty or degrees of
probability? For better or worse, our topic here is an intellectual evolution that
begins in Latin.

Cicero popularized the word probabilitas in Latin, teaching as the later Greek
Academicians had that we cannot have certainty — we must be content with
probability. But Jean Gerson, a Christian theologian who was chancellor of the
University of Paris in the early 15th century, more than a thousand years after
Cicero, was responsible for the earliest known use of certitudo moralis; see §2.3.

Here is a list of some other chronological milestones, points by which various
important ideas have appeared. It should not be taken as a list of “firsts”;
saying that a particular person was the first to think or say something is always
dangerous and usually wrong.

• Without using numbers, Luis de Molina (1535–1600; §2.6) cited the ran-
dom drawing from urns as an example where high probability can provide
moral certainty.

• Blaise Pascal (1623–1662; 2.12) can be counted as an opponent of the
concept of moral certainty. He famously argued that the reward of eternal
happiness justifies following the Catholic faith no matter how small you
think its probability is.

• Jacob Bernoull (1655–1705; §2.15) used a scale from zero to one for nu-
merical probability and declared that numerical probability close to one
provides moral certainty.

• John Arbuthnot (1667–1735; §2.16), who translated Huygens’s tract on
games of chance into English, used an observed event that had an ex-
tremely small probability under a hypothesis of randomness to reject that
hypothesis.

• Denis Diderot (1713–1784; §2.19) distinguished three types of certainty,
metaphysical, physical, and moral, on the kinds of evidence that underly
them.

• Georges-Louis Buffon (1707–1788; §2.17) argued that the distinction be-
tween physical and moral certainty is one of degree rather than kind and
proposed numerical thresholds for these two types of certainty.

• In his eulogy for Buffon at the French Academy of Sciences, Nicolas de
Condorcet (1743–1794; §2.21) argued that Buffon erred in trying to put
thresholds for certainty inside the mathematical theory. The principle of
moral certainty belongs outside the mathematical theory, bridging it to
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our belief, and the threshold should depend on what truth and what action
is being considered.

Condorcet was one of the first proponents of Bayes’s rule as a principle
of probability. The subtle distinction between his version of Cournot’s
principle and Cournot’s own version is that Cournot saw the principle as
a bridge between the mathematics and the real world, whereas Condorcet
saw it as a bridge between mathematics and belief about the world. Other
Bayesians whose have accepted Condorcet’s version of Cournot’s principle
include A. Philip Dawid (§2.90).

• Joseph Fourier (1768–1830; §2.23) proposed a threshold for practical
certainty when calculating a large-sample confidence interval based on
Laplace’s central limit theorem.

• Siméon Denis Poisson (1781–1840; §2.25), who improved Laplace’s proof
of the central limit theorem, suggested different thresholds for practical
certainty in different contexts. He introduced the term “law of large num-
bers” to name the empirical regularity of certain statistical ratios over
time and offered a generalization of Bernoulli’s theorem as an explanation
of these regularities.

• Antoine Augustin Cournot (1801–1877; §2.27) contended that equating
very small probabilities with physical impossibility is the only way to
connect mathematical probability with phenomena.

In his 1843 book, Cournot gave a clear account of how Poisson’s law of
large numbers can be proven by combining Bernoulli’s theorem with the
principle that an event of very small probability is impossible.

Cournot also had a theory about how the phenomena predicted by high
probabilities arise in the world; he talked about the intersection of in-
dependent causal chains. So while Condorcet saw high probabilities as
features of our beliefs, Cournot saw them as features of how the world
worked.

• Robert Leslie Ellis (1817–1859; §2.32) rejected Bernoulli’s theorem and
Bernoulli’s use of the notion of moral certainty. Probabilities are sim-
ply frequencies, he argued, and no mumbo-jumbo is needed to make the
connection. John Venn (1834–1923; §2.33) took a similar view. Later au-
thors who explicitly rejected Cournot’s principle in favor of other ways of
connecting probabilities with frequencies include Emanuel Czuber (1851–
1925; §2.39), Johannes von Kries (1853–1928; §2.40, and Richard von
Mises (1883–1953; §2.55),

• Ludwig Boltzmann (1844–1906; §2.36) gave Cournot’s principle an impor-
tant role in physics by showing that the second law of thermodynamics
holds with exceedingly high probability. Boltzmann’s exceedingly high
probabilities were vastly closer to one than those achieved by the law of
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large numbers in the statistical applications discussed by Fourier, Poisson,
and Cournot.

• By the beginning of the 20th century, the probability theory of Laplace,
Fourier, and Poisson, based on the law of large numbers and the central
limit theorem, had been discredited in France by its erroneous applica-
tions. Beginning in 1906, the mathematician Émile Borel undertook to
revive it, emphasizing the certainty associated with statistical physics.

• Writing about Cournot’s proof of the law of large numbers in Russian in
1910, Aleksandr Chuprov (1874–1926; §2.51) explained that it used two
“lemmas”, a mathematical one and a logical one. The mathematical one
was Bernoulli’s theorem, the logical one being a version of our principle.
This version, which he called “Cournot’s lemma”, said not that events of
very small probability do not happen, it said only that they happen rarely.

• The Russian statistician Evgeny Slutsky (1880–1948; §2.54) made Chu-
prov’s formulation more widely known by publishing his own understand-
ing of it in German. Chuprov’s and Slutsky’s ideas were further popular-
ized in German by Oskar Anderson (1887–1960; §2.59).

• The English statistician R. A. Fisher (1890–1962; §2.61) expressed Cour-
not’s principle using the notion of typicality.

• Richard von Mises (1883–1953; §2.55) saw probability relating to the world
in somewhat different ways in statistics and in physics. In statistical
physics, he followed Boltzmann in taking a conclusion with exceedingly
high probability to be a scientific prediction. In ordinary applications of
statistics, he emphasized Bayes’s theorem but considered a mathematical
probability a feature of a more complicated mathematical object that he
called a collective (Kollektiv).

• In the 1930s, Abraham Wald (1902–1950; §2.68) introduced the notion of
computability into the interpretation of probability and randomness. As
he observed, there are only a countable number of computable tests (=
computable sets of probability zero); as there union also has probability
zero, they call all be ruled out.

• In 1939, Jean Ville (1910–1989; §2.76 gave a betting interpretation of
probabilities equal to zero or one and advanced another formulation of
Cournot’s principle: only probabilities close to zero or one have direct
meaning.

• In 1944, Trygve Haavelmo (1911–1999; §2.77) used Cournot’s principle to
interpret stochastic processes in cases, as in macroeconomics, where the
process as a whole is played out only once and cannot be repeated.

• In 1951 Maurice Fréchet completed the naming of Cournot’s principle, re-
placing Chuprov’s and Slutsky’s “lemma” by “principle”, on the grounds
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that “lemma” should be reserved for its use in axiomatic mathematics. He
stated three versions of the principle and added to the principle the caveat
(which goes without saying, he said) that the event of small probability
should be specified in advance. He also asserted that the principle sup-
ported his own favorite explication of the meaning of probability — that it
is a physical quantity like length, that can be assessed only approximately.
The assessment is by calculating frequency in repeated trials. This claim
seems to overlook the case of a stochastic process that cannot be repeated,
where, as Haavelmo had pointed out, Cournot’s principle can still be used.

• Bruno de Finetti (1906–1985; §2.73), partly in response to Fréchet, re-
jected and mocked Cournot’s principle as a way of relating probability to
the world. According to de Finetti’s subjective interpretation of proba-
bility, probabilities are related to the world only through real or potential
behavior and choices. Yes, a person may treat events to which he gives
very low probability as if they will not happen, but this special case is not
fundamental. Other subjective Bayesians, including Colin Howson (1945–
2020) and Peter Urbach (§2.89) and Persi Diaconis (born 1945) and Brian
Skyrms (born 1938) have similarly rejected Cournot’s principle (§2.88).

Except where otherwise noted, the translations are mine. Usually I first give
the translation and then provide the original in blue.

2.1 John of Salisbury, c. 1115–1180
John of Salisbury was a prominent twelfth-century English cleric; he served as
secretary to Thomas Becket and then became Bishop of Chartres in France.

At the University of Paris, where John studied, and at many other Catholic
universities, the seven topics of undergraduate study were divided into the Triv-
ium (grammar, dialectic, and rhetoric) and the Quadrivium (arithmetic, geom-
etry, astronomy, and music). Was the Trivium important, or did it merit the
disdain that its detractors attach to the word trivial? In 1159, John completed
a manuscript in defense of the Trivium. He called it the Metalogicon [160].

In the prologue of Metalogicon, John aligned himself with Cicero, with these
words:

Being an Academician in matters about which the wise are uncertain,
I cannot swear to the truth of what I say. Whether such propositions
be true or false, I am satisfied with mere probability.

Academicus in his quae sunt dubitabilia sapienti, non iuro uerum
esse quod loquor, sed seu uerum seu falsum sit, sola probabilitate
contentus sum.

(See also [82, pp. 233–235].) In Section 14 of Book 2, John took another step
towards “morally certain”. Here I will quote Daniel McGarry’s translation [161,
p. 106]:
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Probability alone is sufficient for dialectic. . . . There are some things
whose probability is so lucidly apparent that they come to be con-
sidered necessary; whereas there are others which are so unfamiliar
to us that we would be reluctant to include them in a list of proba-
bilities.

Sola enim probabilitas dialectico sufficit. . . . sunt enim quaedam
tanta probabilitatis luce conspicua, ut etiam necessaria reputentur.
Quaedam autem eo quod opinioni minus familiaria sint, uix ascri-
buntur probabilibus.

2.2 Thomas Aquinas, 1225–1274
We need not skip over Aquinas. In a passage in the Summa Theologiae that
he composed in Paris in 1271–1272, Aquinas quoted Aristotle’s dictum that we
must not expect to find certainty in all things and added that in matters that are
contingent and variable, probable certainty suffices (Et ideo sufficit probabilis
certitudo).4

Here is an English translation and the original text, both provided by the
Aquinas Institute https://aquinas.cc/la/en/~sT.II-II.Q70.A2.sC:

According to the Philosopher (Ethic. i, 3), we must not expect to
find certitude equally in every matter. For in human acts, on which
judgments are passed and evidence required, it is impossible to have
demonstrative certitude, because they are about things contingent
and variable. Hence the certitude of probability suffices, such as may
reach the truth in the greater number of cases, although it fail in the
minority. Now it is probable that the assertion of several witnesses
contains the truth rather than the assertion of one: and since the
accused is the only one who denies, while several witness affirm the
same as the prosecutor, it is reasonably established both by Divine
and by human law, that the assertion of several witnesses should be
upheld. . . .

Respondeo dicendum quod, secundum philosophum, in I Ethic., cer-
titudo non est similiter quaerenda in omni materia. In actibus enim
humanis, super quibus constituuntur iudicia et exiguntur testimo-
nia, non potest haberi certitudo demonstrativa, eo quod sunt circa
contingentia et variabilia. Et ideo sufficit probabilis certitudo, quae
ut in pluribus veritatem attingat, etsi in paucioribus a veritate de-
ficiat. Est autem probabile quod magis veritatem contineat dictum
multorum quam dictum unius. Et ideo, cum reus sit unus qui negat,
sed multi testes asserunt idem cum actore, rationabiliter institutum
est, iure divino et humano, quod dicto testium stetur. . . .

4Secunda Secundae, question 70, article 2.
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2.3 Jean Gerson, 1363–1429
Jean Gerson was elected Chancellor of the University of Paris at the age of 32,
in 1395. He subsequently took a prominent role at the Council of Constance but
was forced into exile from Paris as a result of his opposition to the justification
of the murder of the Duke of Orléans as tyrannicide. He is said to have been
the first to use the term certitudo moralis in writing, in a work he completed in
exile in 1418, De consolatione theologiae [95]; see [82, 162].

This passage, from [95, p. 231], is quoted by Knebel [110, p. 55] and Schüssler
[162]:

Denique certitudo quae moralis dici potest vel civilis tangitur ab
Aristotele . . . non enim consurgit certitudo moralis ex evidentia
demonstrationis, sed ex probabilibus conjecturis, grossis et figural-
ibus, magis ad unam partem quam ad alteram.

. . . the certainty that can be called moral or civil is touched on by
Aristotle . . . moral certainty arises not from the evidence of demon-
stration, but from probable conjectures, broad and figurative, more
on one side than on the other.

Sven Knebel cites several 16th-century authors who adopted certitudo
moralis and Gerson’s definition. In 1646, the Council of Trent used certitudo
moralis et probabilis instead of Aquinas’s certitudo probabilis [110, p. 55].

2.4 Andreas de Vega, 1498–1549
By the 16th century, the notions of certainty and possibility were involved in the
Roman Catholic doctrine of justification by faith. Was it possible for a person
to lead a blameless life? Was damnation certain for those not selected by God?

The Spanish Franciscan Andreas de Vega participated in the sixth session of
the Council of Trent, which promulgated its decree on the justification of faith
in January 1547. In 1548, de Vega published Tridentini decreti de justificatione
expostiion et defensio lib. XV distincta, which defended the decree and attacked
John Calvin’s objections to it. Here is a passage, republished in [182, p. 651]
and quoted in [110, p. 147]:

Some things are called morally possible or impossible, others logi-
cally or metaphysically. Morally, possible things can be done often
and without great difficulty, impossible things cannot be done except
very rarely and with great difficulty. . . . Things that are logically or
metaphysically possible can nevertheless be done, those that are log-
ically or metaphysically impossible cannot be done in any way.

Quaedem einim dicunter moraliter possibilia, seu impossibilia, alia
logice, seu metaphysicae. Et moraliter ea dicuntur possibilia, quae
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saepe et sine magna difficultate fieri possunt. Contra vero impossi-
bilia dicuntur, quae fieri non possunt, nisi rarissime et cum magna
difficultate. . . Logicè verò seu metaphysicè possibilia dicuntur, quae
utcunq fieri possunt & econtrario impossibilia, quae null modo.

2.5 Bartolomé de Medina, 1527–1580
The Spanish Dominican Bartolomé de Medina taught at the University of Sala-
manca. Less known than some of his fellow Dominicans there, he is now remem-
bered for the first clear formulation of the doctrine of probabilism. In 1577, in a
commentary on Aquinas, he acknowledged arguments that one should follow the
most probable opinion, but added this remark, translated by Stefania Tutino
[179, Ch. 2].

Certainly these seem very strong arguments, nevertheless I think
that if an opinion is probable, it is legitimate to follow it even if the
alternative is more probable.

Certe argumenta videntur optima, sed mihi videtur quod si est opinio
probabili [sic], licitum est eam sequi, licet opposita probabilior sit.

2.6 Luis de Molina, 1535–1600
Molina, a Jesuit who taught at universities in Spain in Portugal, was one of
the best known of the late scholastics. He did not measure probability numeri-
cally, but he regarded probability as a matter of degree. He insisted that high
probability provided moral certainty, and he used games of chance to provide
examples. This is documented by Sven K. Knebel [110].

Molina’s complicated reconciliation of grace and free will, which became
known as Molinism, sparked a controversy that continued for a century. See
[179] for history of probabilism.

2.7 Thomas Granger, 1578–1627
Many probabilities concurring prevail much. [97]

2.8 Juan de Lugo y Quiroga, 1583–1660
In the early 17th century, the Spanish Jesuits developed a tripartite classifi-
cation for evidence, certainty and impossibility. The three types were meta-
physical, physical, and moral. This tripartite distinction made its way into the
18th-century French encyclopedias, and physical and moral certainty became
identified with high probability.

Juan de Lugo, who became a professor of philosophy and theology in Spain
and then a cardinal in Rome, expressed the tripartite classification clearly in
1646 [126, Disput. II, Sectio I]:
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Thus it is metaphysical evidence when it appears clearly that the
thing is cannot possibly be any other way, e.g. two and two make
four, nothing can be and not be at the same time, etc. Physical
evidence, however, is when the thing is clearly established, although
it could be different metaphysically, but not physically, or taking into
account the power of physical and natural causes, e.g. fire makes
warmth, the substance of bread is present under the appearances of
bread, etc. Finally, it is called moral evidence when the contrary is
not ruled out metaphysically, nor even physically, that is, taking into
account natural causes; yet it appears so clearly and assuming the
contrary is so difficult that assuming the contrary is never assumed,
or at least such an assumption is never believed.

Quare evidentia metaphysica est, quando clarè apparet, rem nullo
modo poffe aliter se habere, v.g. duo & duo esse quatuor; nihil posse
simul esse, & non esse, & alia similia. Evidentia autem physica est
quando constat clarè rem, licèt metaphysicè posset aliter se habere,
non tamen physicè, seu attenta virtute causarum physicarum & nat-
uralium, v.g. ignem applicatum subjecto capaci calefacere, sub acci-
dentibus panis dari panis substantiam & similia. Denique evidentia
moralis dicitur, quando licèt metaphysicè non repugnet contrarium,
neque etiam physicè, hoc est attenta virtute causarum naturalium;
apparet tamen clarè talis, & tanta difficultas, ut ratione illius nun-
quam contrarium ponatur, vel ponendum credatur in aliquo casu.

De Lugo was not the only or the first Spanish Jesuit to make a meta-
physical/physical/moral distinction. Earlier authors in this tradition include
Luis de Molina (1535–1600), and Francisco Suárez (1548–1617). Molina,
a Jesuit who taught at universities in Spain and Portugal, wrote about
metaphysical/physical/moral impossibility. He used dice as an example.
This is documented by Sven K. Knebel [110, 392–399]. Saurez, in his
Metaphysicarum disputationum of 1597, distinguished metaphysical, physi-
cal, and moral arguments for God’s existence.

2.9 René Descartes, 1596–1650
Towards the end of the French edition of his Principles of Philosophy [62, pp.
482–483], published in 1647, Descartes argues that his system, if not mathe-
matically certain, is at least morally certain. He explains moral certainty this
way.

. . . so as to avoid doing harm to the truth by supposing it to be
less certain that it is, I will distinguish here between two kinds of
certainty. This first is called moral—sufficient, that is to say, for
governing our behavior, or as great as that of things affecting the
conduct of life that we scarcely ever doubt, even though they could
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happen, to speak in an absolute sense, to be false. Those who have
never been to Rome hardly doubt that it is a city in Italy, even
though it could be that everyone they have learned it from had
deceived them. And if someone who wants to decode an encoded
message written in ordinary letters thinks to read each A as a B,
each B as an A, and so on, substituting for each letter the one that
follows it in the alphabet, and if when reading it in this way finds
words that make sense, he will hardly doubt that he has found the
true meaning, even though it could be that the person who wrote it
gave it an entirely different meaning by interpreting each letter in
some other way: for it would be so hard for this to happen, especially
when the message has many words, that it is not morally believable.

. . . afin que je ne face point de tort à la verité en la supposant moins
certaine qu’elle n’est je distingueray icy deux sortes de certitudes.
La premiere est apelée morale c’est à dire suffisante pour regler
nos mœurs; ou aussi grande que celle des choses dont nous n’auons
point coustume de douter touchant la conduite de la vie, bien que
nous sçachions qu’il se peut faire, absolument parlant, qu’elles soient
fausses. Ainsi ceux qui n’ont jamais esté à Rome ne doutent point
que ce ne soit vne ville en Italie, bien qu’il se pourroit faire que tous
ceux desquels ils l’ont appris les ayent trompez. Et si quelqu’vn
pour duiner vn chiffre écrit auec les lettres ordinaires s’auise de lire
vn C par tout où il y aura vn B, & de lire vn C par tout où il y
aura vn B; & ainsi de substituer en la place de chaque lettere celle
qui la suit en l’ordre de l’alphabet, & que le lisant en cette façon il
y trouue des paroles qui ayent du sens, il ne doutera point que ce
ne soit le vray sens de ce chiffre qu’il aura ainsi trouué, bien qu’il
se pourrait faire que celuy qui la écrit y en ait mis vn autre tout
different en donnant vune autre signification à chaque lettre : car
cela peut si difficilement arriuer, principalement lors que le chiffre
contient beaucoup de mots, qu’ils n’est moralement croyable.

Descartes spent eight years of his youth in a Jesuit school.
In the Latin version of Part IV of his Principles of Philosophy, Descartes says

that “some things are considered as morally certain, that is, as having sufficient
certainty for application to ordinary life, even though they may be uncertain in
relation to the absolute power of God”. See pp. 289–290 of The Philosophical
Writings of Descartes, Vol. 1, J. Cottingham, R. Stoothoff, and D. Murdoch
(eds.), Cambridge University Press, 1985.

Jesuit Philosophy on the Eve of Modernity Edited by Cristiano Casalini,
Brill, Leiden and Boston, 2019

• Chapter 16, Descartes and the Jesuits, pp. 405–425, by Alfredo Gatto.
Notes that Descartes studied at the Jesuit College of La Flèche for 8 years.

• Chapter 17, John Locke and the Jesuits on Law and Politics, pp. 426–443
by Elliot Rossiter.
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2.10 Antoine Arnauld, 1612–1694, and Pierre Nicole,
1625–1695

The word probabilité does appear, along with certitude morale, in the later
sections of the Port Royal Logic [10], published by Pascal’s friends and fellow
Jansenists Antoine Arnauld and Pierre Nicole in the year of Pascal’s death.

We find this passage in Ch. XIII of Part IV:

. . . si toutes ces circonstnaces ont telles, qu’il arrive jamais ou fort
rarement que de pareilles circonstances soient accompagnées de faus-
seté, notre esprit se porte naturellemnt c̀roire que cela est vrai, & il
a raison de le faire, sur-tout dans la conduite de la vie, qui ne de-
mande pas une plus grande certitude que cette certitude morale, &
qui se doit même contenter en plusieurs rencontres de la plus grande
probabilité.

Then, in Ch. XIV, we find this:

. . . come nous nous devons contenter d’une certitude morale dans les
choses qui ne sont pas susceptibles d’une certitude metaphysique,
lors aussi que nous ne pouvons pas avoir une entière certitude morale,
le mieux que nous puissions faire quand nous sommes engagés à
prendre parti, est d’embrasser le plus probable, puisque ce seroit un
renversement de la raison d’embrasser le moins probable.

The authors also echo Pascal’s argument for belief in God and piety, ex-
pressing more clearly than Pascal did the premise of the argument:

. . . pour juger de ce que l’on doit faire our obtenir un bien, ou pour
éviter un mal, il ne faut pas seulement considerer le bien & le mal en
soi, mais aussi la probabilité qu’il arrive ou n’arrive pas; & regarder
geometriquement la proportion que toutes ces choses ont ensemble
. . .

2.11 Christiaan Huygens, 1621–1695
From the preface of his Treatise on Light, published in French in 1690:

Translate.

The French original in on pp. 2–3 of the preface [105]:

On y verra de ces sortes de demonstrations , qui ne produisent pas
une certitude aussi grande que celles de Geometrie, & qui mesme
en different beaucoup , puisque au lieu que les Geometres prouvent
leurs Proportions par des Principes certains & incontestables, icy les
Principes se verifient par les conclusions qu’on en tire ; la nature de
ces choses ne souffrant pas que cela se fasse autrement. Il est possible

17



toutefois d’y arriver à un degré de vraisemblance, qui bien souvent
ne cede guère à une evidence entière. Sçavoir lors que les choses, q’on
a demontrées par ces Principes supposez, se raportent parfaitement
aux phenomenes que l’experience a fait remarquer ; sur tout quand il
y en a grand nombre, & encore principalement quand on se forme &
prévoit des phenomenes nouveaux , qui doivent suivre des hypotheses
qu’on employe, & qu’on trouve qu’en cela l’effet repond à nostre
attente. Que si toutes ces preuves de la vraisemblance se rencontrent
dans ce que je me suis proposé de traiter , comme il me semble
qu’elles font, ce doit estre une bien grande confirmation du succês
de ma recherche , & il se peut malaisement que les choses ne foient
à peu près comme je les represente.. . .

2.12 Blaise Pascal, 1623–1662
Pascal did not use the word “probabilité” in his work on the mathematics of
games of chance. Nor does it appear in his Pensées. When he presents his
famous probabilistic argument for belief in God in the Pensées, he uses the
word certitude instead:

. . . il ne sert de rien de dire qu’il est incertain si on gagnera, & qu’il
est certain qu’on hasarde; & que l’infinie distance qui est entre la
certitude de ce qu’on expose & l’incertitude de ce que l’on gagnera
égale le bien fini qu’on expose certainement à l’infiny qui est incer-
tain. Cela n’est pas ainsi: tout joüeur hasarde avec certitude pour
gagner avec incertitude; & neanmoins il hasarde certainement le fini
pour gagner incertainement le fini, sans pécher contre la raison. Il
n’y a pas infinité de distance entre cette certitude de ce qu’on expose,
& l’incertitude du gain; cela est faux. Il y a à la vérité infinité entre
la certitude de gagner & la certitude de perdre. Mais l’incertitude
de gagner est proportionnée à la certitude de ce qu’on hasarde selon
la proportion des hasards de gain & de perte: & de là vient que s’il
y a autant de hasards d’un costé que de l’autre, le parti est à joüer
égal contre égal; & alors la certitude de ce qu’on expose est égale à
l’incertitude de ce qu’on expose est égale à l’incertitude du gain, tant
s’en faut qu’elle en soit infiniment distante. & ainsi nostre proposi-
tion est dans une force infinie, quand il n’y a que le fini à hasarder
à un jeu où il y a pareils hasards de gain que de perte, & l’infiny
à gagner. Cela est démonstratif, & si les hommes sont capables de
quelques véritez ils le doivent estre de celle là.

2.13 John Locke, 1632–1704
Locke published his An Essay Concerning Human Understanding in 1689 [124].
Chapter XV of Book IV, entitled “Of probability”, includes this passage:
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. . . most of the propositions we think, reason, discourse—nay, act
upon, are such as we cannot have undoubted knowledge of their
truth: yet some of them border so near upon certainty, that we
make no doubt at all about them; but assent to them as firmly, and
act, according to that assent, as resolutely as if they were infalli-
bly demonstrated, and that our knowledge of them was perfect and
certain.

Locke famously criticized Descartes’s doctrine of innate ideas, and he was scorn-
ful of the scholastics. But he is not taking issue with them in this particular
passage.

In 1992 [78], the philosopher Richard Foley formulated a thesis of his own:

. . . it is epistemically rational for us to believe a proposition just
in case it is epistemically rational for us to have a sufficiently high
degree of confidence in it, sufficiently high to make our attitude
towards it one of belief.

Foley found this near enough to Locke’s views that he called the Lockean thesis.
The term has been popular in the recent philosophical literature; as of January
11, 2022, it had 678 citations in Google Scholar and 85 in JSTOR.

2.14 Gottfried Wilhelm Leibniz, 1646–1716
Leibniz’s musings about probability were mostly unpublished [140]. The Port
Royal Logic was surely part of his intellectual background. But like Pascal, he
did not emphasize the notion of moral certainty. We can count him as original
in two respects:

• Degree of probability was clearly represented by a number in the Port
Royal Logic, but full certainty was not represented by the number 1. Leib-
niz took this step.

• Leibniz saw this numerical probability as a degree of possibility rather
than as a degree of a person’s certainty.

These are nuances, but they may have influenced Bernoulli.

2.15 Jacob Bernoulli, 1655–1705
Bernoulli’s celebrated book on probability, Ars Conjectandi, was published
posthumously in 1713 [14]. Here are two brief quotations, translated by Edith
Sylla [15]:

• From Chapter I of Part IV: Something is morally certain if its proba-
bility comes so close to complete certainty that the difference cannot be
perceived. . . .
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• From Chapter II of Part IV: Because . . . it is rarely possible to obtain
certainty that is complete in every respect, necessity and use ordain that
what is only morally certain be taken as absolutely certain. It would be
useful, accordingly, if definite limits for moral certainty were established
by the authority of the magistracy. for instance, it might be determined
whether 99/100 of certainty suffices or whether 999/1000 is required. . . .

2.16 John Arbuthnot, 1667–1735
[7]; see articles by Shoesmith.

2.17 Georges-Louis Buffon, 1707–1788
Georges-Louis Leclerc, Comte de Buffon, was a distinguished naturalist and a
polymath. Like d’Alembert (see §2.20), he saw Cournot’s principle as a solution
to the St. Petersburg paradox.

In 1777 [36], Buffon argued that the distinction between moral and physical
certainty was one of degree. An event with probability 9999/10000 is morally
certain; an event with much greater probability, such as the rising of the sun, is
physically certain [125].

In 1774, Laplace began his work on probability with a remarkable article
introducing what was later called inverse probability or the Bayesian method.
When he saw the article, Buffon wrote to Laplace urging him to use Cournot’s
principle. Dated 21 April 1774, the letter was preserved by Laplace’s family
long enough to be printed in 1879 by the Academy of sciences [37]. Most of the
letter is reproduced here:

sir, I received and read with great pleasure your learned “Memoir on
the probability of causes from events”, and though I lack the talent,
which you have so kindly attributed to me, to know how to go from
events back to causes, at least not by paths as reliable as yours, I
felt the beauty of your work and I can only encourage you, sir, to
continue your research of this kind, which requires more delicacy
and pureness of mind than any other part of mathematics. I found
your your ideas to be in agreement with mine up until you spoke
of the game of heads and tails: the material difference of the coin
should indeed have a long-term influence on the number of events
for and against, but this is not the true cause that makes a theoret-
ically infinite probability nevertheless become finite in practice and
makes it the case that you will go bankrupt if you give only six or
seven écus of half-écus every time you play that game, instead of the
infinitely many écus or half-écus. Many mathematicians, including
Mr. Fontaine, have tried and failed to solve this problem, for lack of
a metaphysical and moral principle that joins here with the math-
ematical calculation; this principle is that whenever a probability is
greater than 1/1000, it is relatively to us perfectly equal to zero.
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As contradictory as this proposition seems in its formulation, I can
just the same prove it to you beyond any doubt [check original]; but
we will talk about this matter when I have the pleasure to see you
again.

J’ai reçu, Monsieur, et parcouru avec grand plaisir votre savant
“Mémoire sur la probabilité des causes par les événements”, et, sans
avoir le talent, que vous avez la bonté de m’accorder, de savoir re-
monter aux causes par les événements, du moins par des voies aussi
sûres que les vôtres, j’ai senti la beauté de votre travail et je ne puis
que vous exhorter, Monsieur, à continuer vos recherches en ce genre,
où il faut plus de délicatesse et d’esprit pur que dans aucune autre
partie des mathématiques. J’ai trouvé vos idées d’accord avec les
miennes jusquà l’endroit où vous parlez du jeu de croix et pile: la
différence matérielle de la piece doit en effet influer à la longue sur
le nombre des événements pour ou contre, mais ce n’est pas là la
vraie cause qui fait qu’une probabilité, qui dans la speculation est
infinie, devient néanmoins finie dans la pratique, et qui, au lieu d’un
équivalent infini d’écus ou de demi-écus, fait qu’on se ruinerait si l’on
donnait seulement six ou sept écus ou demi-écus toutes les fois qu’on
voudra jouer ce jeu. Plusieurs géometres, et entre autres Monsieur
Fontaine, qui ont voulu résoudre ce problème, en ont tous manqué
la solution, faute d’un principe métaphysique et moral qui se com-
bine ici avec le calcul mathématique; ce principe est que, toutes les
fois qu’une probabilité excède 1/1000, elle est relativement à nous,
parfaitement ègale a zéro. Quelque contradictoire que cette propo-
sition paraisse dans son énoncé, je puis néanmoins la démontrer a
n’en pouvoir douter; mais nous causerons de cette matière lorsque
j’aurai le plaisir de vous revoir.

2.18 David Hume, 1711–1776
Hume’s skepticism and his concept of probability did not leave much room for
Cournot’s principle. Here is a passage in the section entitled “Of the probabil-
ity of causes” (Book I, Part III, §XII) in A Treatise of Human Nature, which
appeared in 1739–1740 [103], that illustrates this point.

. . . there is no probability so great as not to allow of a contrary
possibility: because otherwise it would cease to be a probability,
and would become a certainty. That probability of causes, which
is most extensive . . . depends on a contrariety of experiments . . . An
experiment in the past proves at least a possibility for the future.

The skepticism is not expressed in this way in Hume’s more mature An
Enquiry into Human Understanding, which appeared in 1748 [104]. There, in
§VI, “Of probability”, we find his famous declaration that chance does not exist:
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Though there be no such thing as Chance in the world; our igno-
rance of the real cause of any event has the same influence on the
understanding, and begets a like species of belief or opinion.

He concedes that probability begets belief but will not concede that any of “the
received systems of philosophy" can justify moral or practical certainty.

2.19 Denis Diderot, 1713–1784
The second volume of Diderot’s Encyclopédie [65], which appeared in 1752,
contained an article on Certitude on pp. 845–862. Most of the article was
written by Jean-Martin de Prades. But the preface to the article, written by
Diderot, included this passage reporting on the distinctions the scholastics had
made.

On distingue dans l’Ecole deux sortes de certitude ; l’une
de spéculation, laquelle nâıt de l’évidence de la chose ; l’autre
d’adhésion, qui nâıt de l’importance de la chose. Les Scholastiques
appliquent cette derniere aux matieres de foi. Cette distinction
parôıt assez frivole : car l’adhésion ne nâıt point de l’importance de
la chose, mais de l’évidence ; d’ailleurs la certitude de spéculation
& l’adhésion sont proprement un seul & même acte de l’esprit.

On distingue encore, mais avec plus de raison, les trois especes
suivantes de certitude, par rapport aux trois degrés d’évidence qui
la font nâıtre.

La certitude métaphysique est celle qui vient de l’évidence
métaphysique. Telle est celle qu’un Géometre a de cette proposi-
tion, que les trois angles d’un triangle sont égaux à deux angles
droits, parce qu’il est métaphysiquement, c’est-à-dire, absolument
aussi impossible que cela ne soit pas, qu’il l’est qu’un triangle soit
quarré.

La certitude physique est celle qui vient de l’évidence physique :
telle est celle qu’a une personne, qu’il y a du feu sur sa main, quand
elle le voit, & qu’elle se sent brûler ; parce qu’il est physiquement
impossible que cela ne soit pas, quoiqu’absolument & rigoureusement
parlant, cela pût ne pas être.

La certitude morale, est celle qui est fondée sur l’évidence morale
: telle est celle qu’une personne a du gain ou de la perte de son
procès, quand son Procureur ou ses amis le lui mandent, ou qu’on
lui envoye copie du jugement ; parce qu’il est moralement impossible
que tant de personnes se réunissent pour en tromper une autre à qui
elles prennent intérêt, quoique cela ne soit pas rigoureusement &
absolument impossible.
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2.20 Jean Le Rond d’Alembert, 1717–1783
In 1761 [52, p. 8], when he was a leading French intellectual and the unquestioned
leader of mathematics in Paris, d’Alembert gave this account of how Cournot’s
principle provides a solution of the St. Petersburg paradox.

. . .when the probability of an event is very small, it should be con-
sidered and treated as zero, and we should not multiply (as has been
recommended until now) this probability by the gain hoped for in or-
der to find the stake or expectation. For example, if Peter bets with
James on 100 tosses of a coin, agreeing that James will give him 2100

écus if he get heads on the 100th toss and not before, we find by the
usual rule that Peter should give one écu to James before the tosses.
I say that Peter should not give that écu, because he will certainly
lose it. There will certainly be a head before the 100th toss, even
though it does not happen necessarily.

Que conclure de ces refléxions? C’est que quand la probabilité d’un
événement et fort petite, elle doit être regardée & traitée comme
nulle; & qu’il ne faut point multiplier (comme on l’a prescrit jusqu’à
présent) cette probabilité par le gain espéré pour avoir l’enjeu ou
l’espérance. Par exemple, que Pierre joue avec Jacques en 100 coups,
à cette condition que si Pierre amene croix au centiéme coup, & non
auparavant , il recevra de Jacques 2100 écus: on trouve (en suivant
la régle ordinaire) que Pierre devroit donner un écu à Jacques avant
le jeu. Or je dis que Pierre ne doit pas donner cet écu; parce qu’il
le perdra certainement, & que croix arrivera certainement avant le
centiéme coup, bien qu’il ne doive pas arriver nécessairement.

2.21 Nicolas de Condorcet, 1743–1794
In his famous and lengthy eulogy of Buffon, delivered to the Academy of sciences
and published in 1790, we find the following passage [43, pp. 36–37]:

Mr. de Buffon proposed that we assign a precise value to the very
large probability that we can consider moral certainty, and beyond
this to ignore the small possibility of a contrary event. This principle
is true when we only want to make ordinary use of a calculation; and
in this sense all men have adopted it in practice and all philosophers
have followed it in their reasoning. But it ceases to be correct if we
introduce it into the calculus itself, and especially if we want to use
to establish theories, to explain paradoxes, and to prove or refute
general rules. Besides, this probability, which may be called moral
certainty, must be greater or smaller according to the nature of the
objects considered and the principles that should guide our conduct;
and it would have been necessary to fix the degree of probability at

23



which it begins to be reasonable to believe and allowed to act for
each type of truth and action.

This passage is the first source I have seen for two important points:
Cournot’s principle is outside the probability calculus, and the degree of prob-
ability needed depends on the nature of the objects considered.

M. de Buffon proposait d’assigner une valeur précise à la prob-
abilité très-grande, que l’on peut regarder comme une certitude
morale, et de n’avoir au delà de ce terme, aucun égard à la petite pos-
sibilité d’un événement contraire. Ce principe est vrai , lorsque l’on
veut seulement appliquer à l’usage commun le résultat d’un calcul; et
dans ce sens tous les hommes l’ont adopté dans la pratique, tous les
philosophes l’ont suivi dans leurs raisonnements: mais il cesse d’être
juste, si on l’introduit dans le calcul même, et surtout si on veut
l’employer à établir des théories, à expliquer des paradoxes, à prou-
ver ou à combattre des règles générales. D’ailleurs, cette probabilité,
qui peut s’appeler certitude morale, doit être plus ou moins grande,
suivant la nature des objets que l’on considère, et les principes qui
doivent diriger notre conduite; et il aurait fallu marquer pour chaque
genre de vérités et d’actions, le degré de probabilité où il commence
à être raisonnable de croire et permis d’agir.

The following passage, from Condorcet’s essay on the probabilities of de-
cisions [42, xiii–xv], gives an account of the difference between complete and
physical certainty.

Il est cependant entre les vérités, regardées comme ayant une
certitude entière & les autres, une différence qu’il est essentiel de
remarquer.

Pour les premières, nous ne sommes obligés d’admettre qu’une
seule supposition fondée sur la probabilité, celle que le souvenir
d’avoir eu la conscience de la vérité d’une proposition ne nous ayant
jamais trompé, ce même souvenir ne nous trompera point dans une
nouvelle occasion: mais pour les autres, le motif de croire eft fondé
d’abord sur ce principe, & ensuite sur l’espèce de probabilité pro-
pre à chaque objet. La possibilité de l’erreur dépend de plusieurs
causes combinées. Si on la suppose la même pour chacune, le calcul
montrera qu’elle sera plus que double s’il y deux causes, plus que
triple s’il y en a trois, &c. Ainsi nous donnons le nom de certitude
mathématique à la probabilité, lorsqu’elle se fonde sur la constance
des loix observées dans les opérations de notre entendement. Nous
appelons certitude physique la probabilité qui suppofe de plus la
même constance dans un ordre de phénomènes indépendans de nous,
& nous conservons le nom de probabilité pour les jugemens exposés
de plus à d’autres sources d’incertitude.
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Si nous comparons maintenant le motif de croire les vérités que
nous venons d’examiner, avec le motif de croire d’après une proba-
bilité calculée, nous n’y trouverons que trois différences; la première,
que dans les espèces de vérités que nous avons examinées, la prob-
abilité est inassignable, & presque toujours tellement grande qu’il
seroit superflu de la calculer: la seconde, qu’accoutumés dans le
cours de la vie à fonder nos jugemens fur cette probabilité, nous for-
mons ces jugemens fans songer à la nature du motif qui les détermine,
au lieu que dans les questions soumises au calcul des probabilités,
nous y arrêtons notre attention: dans le premier cas, nous cédons
fans le savoir à un penchant involontaire; dans le second, nous nous
rendons compte du motif qui détermine ce penchant: la troisième,
que dans le premier cas nous pouvons savoir seulement que nous
avons des motifs de croire plus ou moins forts; au lieu que dans
la seconde, nous pouvons exprimer en nombres les rapports de ces
différens motifs .

2.22 Pierre Simon Laplace, 1749–1827
In this paragraph, from the introduction to his Essai philosophique sur les prob-
abilités [114],5 Laplace combines a statement of Cournot’s principle with a like-
lihood principle:

When a simple event or an event composed of many simple
events, such a round of a game, has been repeated a large num-
ber of times, the possibilities of the simple events make what one
has observed most likely are those that the observation indicates
with the greatest likelihood: as the observed event is repeated, that
likelihood increases, finally become indistinguishable from certainty
as the number of repetitions becomes infinite.

Lorsqu’un événement simple ou composé de plusieurs événemens
simples, tel qu’une partie de jeu, a été répété un grand nombre de
fois ; les possibilités des événemens simples , qui rendent ce que
l’on a observé, le plus probable, sont celles que l’observation indique
avec le plus de vraisemblance : à mesure que l’événement observé
se répète, cette vraisemblance augmente et finirait par se confondre
avec la certitude, si le nombre des répétitions devenait infini.

5The paragraph quoted appears on p. 81 of Bernard Bru’s critical edition of Laplace’s fifth
edition, published in 1825. The translation is mine. There are several English translations of
the entire Essai ; the paragraph quoted appears on p. 36 of Andrew Dale’s translation [115].
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2.23 Joseph Fourier, 1768–1830
Fourier proposed a threshold for practical certainty when calculating what we
now call a large-sample confidence interval. The level was very high; he allowed
a probability of error of only one in 20,000.

In the last decade of his life, in the 1820s, Fourier held a post in the census
bureau of the Paris region. In the bureau’s report for 1826, he included a
manual for using the probability calculus to interpret census results. He used
Laplace’s normal approximation to the probability distribution of the average
A of independent measurements y1, . . . , ym of an unknown quantity H. Instead
of what we now call A’s standard deviation, he used

g =

√
2

m

(∑m
i=1 y

2
i

m
−A2

)
,

which is equal to
√
2 times from A’s standard deviation; some later authors

called g the modulus. Fourier explained that an interval extending 2.86783g
above and below the average (about 4 standard deviations) would provide an
interval certain to contain H. Here is how he explained the calculation [80,
pp. xxi–xxii]:

To complete this discussion, we must find the probability that H,
the quantity sought, is between proposed limits A + D and A + D.
Here A is the average result we have found, H is the fixed value that
an infinite number of observations would give, and D is a proposed
quantity that we add to or subtract from the value A. The following
table gives the probability P of a positive or negative error greater
than D; this quantity D is the product of g and a proposed factor ∂.

∂ P
0.47708 1

2

1.38591 1
20

1.98495 1
200

2.46130 1
2000

2.86783 1
20000

Each number in the P column tells the probability that the exact
value H, the object of the research, is between A + g∂ and A − g∂.
Here A is the average result of a large number m of particular values
a, b, c, d, . . . , n, ∂ is a given factor, g is the square root of the quotient
found by dividing by m twice the difference between the average
of the squares a2, b2, c2, d2, . . . , n2 and the square A2 of the average
result. We see from the table that the probability of an error greater
than the product of g and 0.47708, i.e. greater than about half of g,
is 1

2 . It is a 50–50 or 1 out of 2 bet that the error committed will not
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exceed the product of g and 0.47708, and we can bet just as much
that the error will exceed this product.

The probability of an error greater than the product of g and
1.38591 is much less; it is only 1

20 . It is a 19 out of 20 bet that the
error of the average result will not exceed this second product.

The probability of an even greater error becomes extremely small
as the factor ∂ increases. It is only 1

200 when ∂ approaches 2. The
probability then falls below 1

2000 . Finally one can bet much more
than twenty thousand to one that the error of the average result will
be less than triple the value found for g. So in the example cited in
Article VI, where the average result was 6, we can consider it certain
that the value 6 is not wrong by a quantity three times the fraction
0.082 that the rule gave for the value of g.

The quantity sought, H, is therefore between 6− 0.246 and 6 +
0.246.

2.24 André-Marie Ampère, 1775–1836
Whereas Bernoulli, d’Alembert, and Buffon had proposed selecting some num-
ber less than one that would suffice for moral certainty, Ampère realized that
he could develop a theory of gambler’s ruin with a more demanding concept of
moral certainty. In his 1802 book Considerations sur la théorie mathématique
du jeu [3], he defined this concept on p. 3:

If we represent absolute certainty, the certainty resulting from math-
ematical demonstration for example, by unity, as is usually done,
then we can consider moral certainty to be any variable fraction
that never becomes equal to unity but can get close enough to it as
to exceed any particular fraction.

En représentant , comme on le fait ordinairement , par l’unité la
certitude absolue , celle par exemple qui résulte d’une démonstration
rigoureuse , on pourra regarder comme une certitude morale toute
fraction variable qui , sans devenir jamais égale à l’unité , peut en
approcher d’assez près pour surpasser toute fraction déterminée.

To illustrate his concept of moral certainty, Ampère imagined a man who
throws two balanced dice indefinitely many times, for his whole life and beyond
if need be, until he gets two sixes. His success is morally certain. The probability
of success on each throw is only 1/36, but the probability of eventual success is

1

36
+

35

36

1

36
+

(
35

36

)2
1

36
+ · · · =

∞∑
n=0

(
35

36

)n
1

36
, (1)

which is equal to one or, as Ampère preferred to say, as close to one as you
want.
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Ampère similarly imagined a person who starts with a finite fortune and
continually bets, each time making a fair bet of one unit at even odds. He may
bankrupt many opponents along the way, but there is always another, and so
in effect he is betting against an opponent with an infinite fortune. Summing
a series, as in (1), Ampère found that the player’s own bankruptcy is morally
certain.

Here is an English translation of Ampère’s explanation:

1. . . . leaving aside moral considerations that make the value of money de-
pend on the players’ circumstances, there cannot be any disadvantage in
playing at equal odds against a player who is equally rich, because the
one cannot lose anything the other does not gain, and everything is equal
between them;

2. the same is true between two players with unequal fortunes provided they
agree to play only a number of rounds small enough that neither can lose
everything he has;

3. it is not the same when the number of rounds of play is indefinite: the
possibility of staying in the game longer gives the richer of the two an
advantage, which increases with the difference between their fortunes;

4. this advantage becomes infinite if one of the fortunes can be infinite, then
the less rich player will be sure to be bankrupt, and it is for this reason that
a player heads to a certain ruin when he plays indifferently with everyone
he encounters in society: in the theory we must in effect treat all these
opponents as a single opponent with an infinite fortune.

1*. en écartant les considérations morales qui font varier la valeur
de l’argent, suivant les circonstances où se trouvent les joueurs , il
ne saurait y avoir aucun désavantage à jouer à jeu égal contre un
adversaire également riche , puisque l’un ne peut rien perdre que
l’autre ne gagne, et que tout est égal de part et d’autre; 2*, la
même chose a lieu entre deux joueurs , de fortunes inégale , s’ils sont
décidés à ne faire qu’un nombre de parties déterminé , et assez petit
pour que ni l’un ni l’autre ne puisse être dans le cas de perdre tout
ce qu’il pcssède ; 3*. il n’en est pas de même lorsqu’il s’agit d’un
nombre indéfini de parties : la possibilité de tenir le jeu plus long-
temps , donne au plus riche des deux joueurs un avantage d’autant
plus grand qu’il y a plus de différence entre leurs fortunes ; 4*. cet
avantage deviendrait infini , si l’une des fortunes pouvait l’être , le
joueur le moins riche serait alors sûr de se ruiner , et c’est pour cela
que c’est courir à une ruine certaine , que de jouer indifféremment
contre tous ceux qui se rencontrent dans la société : on doit en effet
, dans la théorie , les considérer comme un seul adversaire dont la
fortune serait infinie.
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2.25 Siméon Denis Poisson, 1781–1840
Poisson advanced Laplace’s theory substantially. Beginning in the 1820s, he
simplified the proof of Laplace’s theorem, making it accessible to many more
mathematicians [100, §17.3]. In 1830, he gave straightforward instructions for
calculating limits of practical certainty for the difference between two propor-
tions [151].6 Finally, in 1837, he pulled together his theoretical and applied
results on probability in an impressive treatise, Recherches sur la probabilité des
jugements [152].

Like Fourier, Poisson discussed limits in terms of numbers of moduli. When
writing theory, he required 3, 4, or even 5 moduli for practical certainty [152,
§§80, 87, and 96]. But when analyzing data, he used less exigent limits. In §89,
when dealing with Buffon’s data, he gave limits and odds corresponding to 2
moduli. In §111, he reduced this to 1.92 moduli, corresponding to a bet at odds
150 to 1.

An example of a theoretical discussion is found in §87, where Poisson con-
sidered the problem of testing whether the unknown probability of an event E
has changed between the times two samples are taken. There are µ observations
in the first sample; E happens in n of them, and its opposite F = Ec happens in
m = µ − n of them. For the second sample, he uses analogous symbols µ′, n′,
and m′. He gives formulas, under the assumption that the unknown probability
has not changed, for the estimated modulus of the difference m′

µ′ − m
µ and for the

probability that this difference will be within u moduli of 0. Then he writes,

So if we had chosen a number like three or four for u, making the
probability ω̃ very close to certainty (no 80), and yet observation
gives values for m′

µ′ − m
µ or n′

µ′ − n
µ that are substantially outside these

limits, we will have grounds to conclude, with very high probability,
that the unknown probabilities of the events E and F have changed
in the interval between the two series of trials, or even during the
trials.

Si donc on a pris pour u un nombre tel que trois ou quatre, qui
rende la probabilit’e ω̃ très approchante de la certitude (no 80),
et si, néamoins, l’observation donne pour m′

µ′ − m
µ ou n′

µ′ − n
µ des

valeurs qui s’écartent notablement de ces limites,on sera fondé à en
conclure, avec une très grande probabilité, que les chances inconnu
des évévements E et F ont changé, dans l’intervalle des deux séries
d’épreuves, ou même pendant ces épreuves.

The closest Poisson came to identifying ±2 moduli with practical certainty
may have been in §135 of the book, where he considered the 42,300 criminal trials

6In his second memoir on mathematical statistics, in 1829 [81], Fourier had explained how
to calculate limits on a function of several estimated quantities, but he had not spelled out
how his formulas specialize to the case where this function is simply the difference between
two proportions.
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in France during the years 1825 through 1830. The defendant was convicted in
25,777 of these trials. So his estimate of the average probability of conviction,
which he called R5, was (42300/25777) ≈ 0.6094. His estimate of its modulus
was 0.00335. He states that if we use 2 moduli,

. . . we will also have
P = 0.9953,

for the probability, very close to certainty, that the unknown R5

and the fraction 0.6094 will not differ from each other by more than
0.0067.

. . . on aura aussi
P = 0.9953,

pour la probabilité, très approchante de la certitude, que l’inconnue
R5 et la fraction 0,6094 ne différent pas de 0,0067, l’une de l’autre.

2.26 Thomas Galloway, 1796–1851
In his Treatise on Probability [93, p. 144], Galloway adopted Fourier’s suggestion
that we can consider it certain that the error of a least squares estimate will
not exceed 3 moduli. This treatise, published as a book in 1839, first appeared
as the article on probability in the 7th edition of the Encyclopedia Britannica.
Karl Pearson recommended it in the book on the philosophy of science that he
published in 1892 [148, pp. 177, 180].

2.27 Antoine Augustin Cournot, 1801–1877
In 1833, Cournot published a translation into French of John Herschel’s Treatise
on Astronomy, which had appeared in English that same year. In an appendix
to the translation, he discussed the application of probability to astronomical
observations [134]. Here we find this statement about practical certainty [47,
vol. XI.2, p. 686].

A probability of 1000 to 1 is almost considered equivalent to cer-
tainty, and one can hardly make the same judgement about a prob-
ability of 12 to 1.

La probabilité de 1000 contre 1 est presque réputée équivalente à la
certitude, et il s’en faut bien qu’on porte le même jugement d’une
probabilité de 12 contre 1.

Saying that an event of very small or vanishingly small probability will not
happen is one thing. Cournot, as I have repeatedly mentioned, said more. He
seems to have been the first to say that this is the only way to give probability
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objective meaning. He said this in his 1843 book, Exposition de la théorie des
chances et des probabilités [44, §43]:7

. . .The physically impossible event is therefore the one that has in-
finitely small probability, and only this remark gives substance—
objective and phenomenal value—to the theory of mathematical
probability.

. . .L’événement physiquement impossible est donc celui dont la prob-
abilité mathématique est infiniment petite; et cette seule remarque
donne une consistance, une valeur objective et phénoménale à la
théorie de la probabilité mathématique.

The phrase “objective and phenomenal” refers to Kant’s distinction between the
noumenon, or thing-in-itself, and the phenomenon, or object of experience [53].

As examples of physically impossible events, Cournot mentioned a cone bal-
ancing on its point, the frequency of heads in a long sequence of flips of a fair
coin differing too much from one-half, and a loose tile happening to fall on his
head from a roof as he walked along a French street. One might suppose that an
infinitely small probability is exactly zero, but Cournot and his contemporaries
interpreted the idea more broadly. He explained this explicitly in 1875 ([46],
§IV.4):

In practice, moreover, and in the world of realities, what geome-
ters call an infinitely small probability is and can only be an exceed-
ingly small probability. The tip of this very sharp needle is not a
mathematical point like the apex of the cone in question. Viewed
through a magnifying glass, it becomes a blunt tip. With whatever
care we polish the plane of steel or agate on which we try to balance
it, very delicate experiments will show roughness and streaks. It
follows that the probability of success in putting the needle in equi-
librium is no longer infinitely small, that it is only excessively small,
as would be the probability of rolling an ace a hundred times with an
unloaded die, which is enough for us to judge, with no fear of being
refuted by experience, that the equilibrium is physically impossible.

The same remarks apply to the market value of commercial
chances. . . .

En pratique d’ailleurs et dans le monde des réalités, ce que les
géomètres appellent une probabilité infiniment petite, n’est et ne
saurait être qu’une probabilité excessivement petite. La pointe de
cette aiguille si effilée n’est pas un point mathématique comme le

7Oscar Sheynin’s English translation of Cournot’s 1843 book is available at www.
probabilityandfinance.com. A German translation appeared in 1849 and a Russian trans-
lation in 1970.
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sommet du cône en question. Elle devient une pointe mousse, re-
gardée à la loupe. Avec quelque soin qu’on ait poli le plan d’acier
ou d’agathe sur lequel on essaie de la faire tenir en équilibre, des
expériences très délicates y indiqueront des aspérités et des stries.
Il en résulte que la probabilité de réussir à mettre l’aiguille en
équilibre n’est plus à la rigueur infiniment petite, qu’elle n’est
qu’excessivement petite, comme le serait la probabilité d’amener l’as
cent fois de suite avec un dé non pipé: ce qui suffit pour que l’on
juge, sans crainte d’être démenti par l’expérience, que l’équilibre est
physiquement impossible.

Pareille remarque s’applique aux valeurs vénales des chances
mises dans le commerce. . . .

The concluding section of Cournot’s 1843 book summarized its ideas as fol-
lows:

Let us summarize in a few words the main points that we have
undertaken to establish in this essay.

1. The idea of chance is the idea of the concurrence of indepen-
dent causes to produce a given event. The combinations of different
independent causes that all give rise to the same event is what should
be meant by the chances of that event.

2. When only one out of an infinity of chances can produce
the event, that event is called physically impossible. The notion of
physical impossibility is neither a mental fiction nor an idea that
has value only relative to the imperfect state of our knowledge. It
must figure as an essential element in the explanation of natural
phenomena, whose laws do not depend on the knowledge that people
might have about them.

3. When we consider a large number of trials of the same event,
the ratio of the number of cases where the event happens to the total
number trials becomes practically equal to the ratio of the number of
chances favorable to the event to the total number of chances, or to
what we call the mathematical probability of the event. If we could
repeat the trial an infinite number of times, it would be physically
impossible that the two ratios would differ by a finite amount. In this
sense, the mathematical probability can be considered a measure of
the possibility of the event, or of the facility with which it happens.
By the same token, the mathematical probability expresses a ratio
that stands outside the mind that conceives of it, a law to which
phenomena are subject, whose existence does not depend on the
expansion or narrowing of the our knowledge about their happening.

4. If, with our imperfect knowledge, we have no reason to sup-
pose that one combination happens more often than another, even
though in reality these combinations are events that can have un-
equal mathematical probabilities or possibilities, and if we under-
stand the probability of an event to be the ratio of the number of
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combinations favorable to the event to the total number of combina-
tions that we put in the same group, this probability can still serve,
when there is nothing better, to fix the terms of a bet or any other
risky exchange, but it will no longer express a real and objective re-
lation between things. It will take on a purely subjective character
and will be liable to vary from one individual to another depending
on their knowledge. Nothing is more important than to carefully
distinguish between these two meanings of the term probability, one
an objective meaning, the other a subjective meaning, if we want to
avoid confusion and error, whether in the exposition of the theory
or in the applications we make of it.

5. In general, for natural events, whether physical or social,
objective mathematical probability, conceived of as measuring the
possibility of events arising from the concurrence of independent
causes, can only be determined by experience. If the number of
trials of the same chance increases to infinity, the probability will be
determined exactly, with a certainty comparable to that for an event
whose contrary is physically impossible. When the number of trials
is merely very large, the probability is given only approximately, but
we are still entitled to consider it very unlikely that the real value
differs notably from the value derived from observations. In other
words, we will very rarely err significantly in taking the observed
value to be the real value.

6. When the number of trials is not very great, the usual formulas
for evaluating probabilities a posteriori become illusory. They no
longer give us anything but subjective probabilities, appropriate for
determining the terms of a bet but without use with respect to the
determination of natural phenomena.

7. Nevertheless, we should not conclude from the preceding re-
mark that the number of trials should always be very large in order
to give the real values of the probability of an event with sufficient
precision and sufficient confidence. We should conclude merely that
the confidence will not be equivalent to a probability in the objective
sense. We cannot evaluate the chance we have of erring when we say
that the real value falls between certain limits. In other words, we
cannot determine the ratio of the number of mistaken judgements
to the total number of judgements made in similar circumstances.

8. Independently of mathematical probability, in the two senses
considered above, there are probabilities that are not reducible to the
enumeration of chances but motivate a host of our judgements, and
even the most important ones. These probabilities pertain mainly to
our idea of the simplicity of nature’s laws, of the order and rational
sequence of phenomena, and for this reason we can call them philo-
sophical probabilities. All reasonable people have a confused sense
of these probabilities. When it becomes distinct or concerns delicate
subjects, it belongs only to cultivated intelligences or can even con-
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stitute a mark of genius. It forms the basis of a system of critical
philosophy, glimpsed in the most ancient schools, that represses or
conciliates skepticism and dogmatism, but which we must not, for
fear of strange aberrations, bring into the domain of mathematical
probability.

Résumons en quelques mots les principaux points de doctrine que
nous avons pris à tâche d’établir dans cet essai.

1. L’idée de hasard est celle du concours de causes indépendantes,
pour la production d’un événement déterminé. Les combinaisons
de diverses causes indépendantes, qui donnent également lieu à la
production d’un même événement, sont ce qu’on doit entendre par
les chances de cet événement.

2. Quand, sur une infinité de chances, il n’y en a qu’une qui
puisse amener l’événement, cet événement est dit physiquement im-
possible. La notion de l’impossibilité physique n’est point une fiction
de l’esprit, ni une idée qui n’aurait de valeur que relativement à l’état
d’imperfection de nos connaissances: elle doit figurer comme élément
essentiel dans l’explication des phénomènes naturels, dont les lois ne
dépendent pas de la connaissance que l’homme peut en avoir.

3. Lorsque l’on considère un grand nombre d’épreuves du même
hasard, le rapport entre le nombre des cas où le même événement
s’est produit, et le nombre total des épreuves, devient sensiblement
égal au rapport entre le nombre des chances favorables à l’événement
et le nombre total des chances, ou à ce qu’on nomme la probaba-
bilité mathématique de l’événement. Si l’on pouvait répéter l’épreuve
une infinité de fois, il serait physiquement impossible que les deux
rapports différassent d’une quantité finie. En ce sens, la proba-
bilité mathématique peut être considérée comme mesurant la possi-
bilité de l’événement, ou la facilité avec laquelle il se produit. En
ce sens pareillement, la probabilité mathématique exprime un rap-
port subsistant hors de l’esprit qui le conçoit, une loi à laquelle les
phénomènes sont assujettis, et dont l’existence ne dépend pas de
l’extension ou de la restriction de nos connaissances sur les circon-
stances de leur production.

4. Si, dans l’état d’imperfection de nos connaissances, nous
n’avons aucune raison de supposer qu’une combinaison arrive plutôt
qu’une autre, quoiqu’en réalité ces combinaisons soient autant
d’événements qui peuveut avoir des probabilités mathématiques ou
des possibilités inégales, et si nous entendons par probabilité d’un
événement le rapport entre le nombre des combinaisons qui lui sont
favorables, et le nombre total des combinaisons mises par nous sur la
même ligne, cette probabilité pourra encore servir, faute de mieux,
à fixer les conditions d’un pari, d’un marché aléatoire quelconque;
mais elle cessera d’exprimer un rapport subsistant réellement et
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objectivement entre les choses; elle prendra un caractère purement
subjectif, et sera susceptible de varier d’un individu à un autre,
selon la mesure de ses connaissances. Rien n’est plus important
que de distinguer soigneusement la double acception du terme de
probabilité, pris tantôt dans un sens objectif, et tantôt dans un sens
subjectif, si l’on veut éviter la confusion et l’erreur, aussi bien dans
l’exposition de la théorie que dans les applications qu’on en fait.

5. La probabilité mathématique, prise objectivement, ou conçue
comme mesurant la possibilité des événements amenés par le con-
cours de causes indépendantes, ne peut en général, et lorsqu’il s’agit
d’événements naturels, physiques ou moraux, être déterminée que
par l’expérience. Si le nombre des épreuves d’un même hasard crois-
sait à l’infini, elle serait, déterminée exactement, avec une certitude
comparable à celle de l’événement dont le contraire est physiquement
impossible. Quand le nombre des épreuves est seulement très grand,
la probabilité n’est donnée qu’approximativement; mais on est en-
core autorisé à regarder comme extrêmement peu probable que la
valeur réelle diffère notablement de la valeur conclue des observa-
tions. En d’autres termes, il arrivera très-rarement que l’on com-
mette une erreur notable en prenant pour la valeur réelle la valeur
observée.

6. Lorsque le nombre des épreuves est peu considérable, les
formules données communément pour l’évaluation des probabilités
à posteriori deviennent illusoires : elles n’indiquent plus que des
probabilités subjectives, propres à régler les conditions d’un pari,
mais sans application dans l’ordre de production des phénomènes
naturels.

7. Il ne faut pourtant pas conclure de la remarque précédente,
que le nombre des épreuves doive toujours être très-grand, pour
donner avec une exactitude suffisante et avec un degré suffisant de
vraisemblance, les valeurs réelles de la probabilité d’un événement;
seulement cette vraisemblance n’équivaudra pas à une probabilité
prise dans le sens objectif. On ne pourra pas assigner la chance que
l’on a de se tromper, en prononçant que la valeur réelle tombe entre
des limites déterminées: en d’autres termes, on ne pourra pas as-
signer le rapport du nombre des jugements erronés au nombre total
des jugements portés dans des circonstances semblables.

8. Indépendamment de la probabilité mathématique, prise dans
les deux sens admis plus haut, il y a des probabilités non réductibles
à une énumération de chances, qui motivent pour nous une foule de
jugements, et même les jugements les plus importants; qui tiennent
principalement à l’idée que nous avons de la simplicité des lois de
la nature, de l’ordre et de l’enchâınement rationnel des phénomènes,
et qu’on pourrait à ce titre qualifier de probabilités philosophiques.
Le sentiment confus de ces probabilités existe chez tous les hommes
raisonnables; lorsqu’il devient distinct, ou qu’il s’applique à des su-
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jets délicats, il n’appartient qu’aux intelligences cultivées, ou même
il peut constituer un attribut du génie. Il fournit les bases d’un
système de critique philosophique entrevu dans les plus anciennes
écoles, qui réprime ou concilie le scepticisme et le dogmatisme, mais
qu’il ne faut pas, sous peine d’aberrations étranges, faire rentrer dans
le domaine des applications de la probabilité màthématique.

Cournot developed his understanding of probability and his broader phi-
losophy of science in a series of books, written during a career as a university
professor and administrator. His terminology for statistical inference (limite
de l’écart, for example) became standard in France and remained so at least
until the middle of the 20th century, but his philosophy of probability was less
appreciated. His work in economics became widely appreciated after it was dis-
covered by United States economists at the end of the 19th century. But his
philosophy of probability has never gained similar traction; as the philosopher
Fernand Faure noted in 1905 [73], it is too philosophical for mathematicians and
too mathematical for philosophers.

Nevertheless, Cournot’s collected works, edited by a team of French philoso-
phers and mathematicians, appeared in fifteen volumes beginning in 1973 [47].
Thierry Martin published an extensive bibliography of work by and about
Cournot in 2005 [133]. There are no recent appraisals of his work in English,
but relatively recent appraisals in French include those by Martin [129] and
Bertrand Saint-Sernin [159]. See also [130, 132, 178, 33, 8, 9].

2.28 Augustus De Morgan, 1806–1871
From page 396 of De Morgan’s entry “Theory of Probabilities”, on pages 393–490
of Volume II of Encylopædia Metropolitana, Griffin, London, 1849

Mathematical certainty (a thing perhaps impossible in the strictest
sense) is the terminus or limit towards which our impressions ap-
proach as our knowledge becomes greater and greater, and is never
attained as long as any doubt whatsoever remains. Practical cer-
tainty is that high degree of probability on which the mind acts at
once, without thinking the counter-probabilities sufficiently large to
be taken into account; and it depends upon the character of the
individual.

2.29 Jules Gavarret, 1809–1890
In his book on medical statistics [94], he adopts Poisson’s standard of 2g.

2.30 William Fishburn Donkin, 1814–1869
Donkin was a British mathematician and astronomer. Here his 1851 paper
on probability, [66], serves as an example where high subjective probability is
equated with practical certainty.
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On the first page of his article (p. 353), Donkin writes,

It will, I suppose, be generally admitted, and has often been more
or less explicitly stated, that the subject-matter of calculation in the
mathematical theory of probabilities is quantity of belief. A certain
number of hypotheses are presented to the mind, along with a certain
quantity of information relating to them: In what way ought belief
be distributed among them?

A few pages later, Donkin discusses the problem of deciding whether a very
regular arrangement of objects, say balls in a circle on a table, could have been
by purpose or by accident. He calculates a probability for it being by purpose
that involves unspecified constants but must be close to 1. His conclusion, on
p. 360:

Thus the mathematical investigation leads, equally with common
sense, to a moral certainty that the arrangement was designed.

2.31 Jean Baptiste Joseph Liagre, 1815–1891
Belgian statistician, military officer

2.32 Robert Leslie Ellis, 1817–1859
Ellis was an accomplished mathematician, but he identified probability with
frequency to the extent that he could make no sense of Bernoulli’s theorem. He
expressed this viewpoint eloquently in short paper that he read to the Cambridge
Philosophical Society in 1842 [72, pp. 1–2]:

. . . If the probability of a given event be correctly determined, the
event will on a long run of trials, tend to recur with frequency pro-
portional to this probability.

This is generally proved mathematically. It seems to me to be
true à priori.

When on a single trial we expect one event rather than another,
we necessarily believe that on a series of similar trials the former
event will occur more frequently than the latter. The connection
between these two things seems to me to be an ultimate fact, or
rather, for I would not be understood to deny the possibility of
further analysis—to be a fact, the evidence of which must rest upon
an appeal to consciousness. Let any one endeavour to frame a case
in which he may expect one event on a single trial, and yet believe
that on a series of trials another will occur more frequently; or a
case in which he may be able to divest himself of the belief that the
expected event will occur more frequently than any other.

For myself, after giving a painful degree of attention to the point,
I have been unable to sever the judgment that one event is more likely
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to happen than another, or that it is to be expected in preference to
it, from the belief that on the long run it will occur more frequently.

Chuprov cited Ellis as being the first to notice that Bernoulli’s theorem
conflicts with the identification of probability with frequency.

2.33 John Venn, 1834–1923
Twenty years after Ellis expressed his reservations about Bernoulli’s theorem,
they were echoed by John Venn, another Cambridge scholar who argued that
probability should be identified directly with probability. In the first edition of
Venn’s The Logic of Chance, which appeared in 1866, we find this passage [183,
pp. 35–36]:

The reader who is familiar with Probability is of course ac-
quainted with the celebrated theorem of Bernoulli. This theorem,
of which the examples just adduced are merely particular cases, is
generally expressed somewhat as follows :—that in the long run all
events will tend to occur with a frequency proportional to their ob-
jective probabilities. With the mathematical proof of this theorem
I have nothing to do here; nor, if there is any value in the foregoing
criticism, need we trouble ourselves about it, for in that case the ba-
sis on which the mathematics rest is faulty, owing to the fact of there
really being nothing which we can call the objective probability.

This theorem of Bernoulli seems to me one of the last remaining
relics of Realism, which after being banished elsewhere still manages
to linger in the remote province of Probability. It is an illustration
of the inveterate tendency to objectify our conceptions even in cases
where the conceptions had no right to exist at all. A uniformity is
observed ; sometimes, as in games of chance, it is found to be so
connected with the physical constitution of the bodies employed as
to be capable of being inferred beforehand, though even here the
connection is by no means so necessary as is commonly supposed;
this constitution is then converted into an "objective probability,"
supposed to develop somehow into the sequence which exhibits the
uniformity. Finally, this very questionable objective probability is
assumed to exist, with the same faculty of development, in all the
cases in which uniformity is observed, however little resemblance
there may be between these and games of chance.

The same passage appears, substantially unchanged, on pp. 91–92 of the book’s
third edition, which appeared in 1888.

The disinterest in Bernoulli’s theorem and the other limit theorems of math-
ematical probability that we see in the writing of Ellis and Venn was a more
enduring aspect of thought about probability at Cambridge than their equation
of probability with frequency. We find it in later scholars whose “interpreta-
tions of probability” were quite diverse: William Ernest Johnson, John Maynard
Keynes, Frank Ramsey, and Harold Jeffreys [2]
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2.34 Wilhelm Lexis, 1837–1914
Wilhelm Lexis used Fourier 3 moduli in his Einleitung in die Theorie der
Bevölkerungsstatistik [123, pp. 98, 100, 106, 144]. For Lexis, it was practically
certain (praktisch die Gewissheit or fast mit Gewissheit, etc.) that an error is
less than this quantity.

2.35 Hermann Laurent, 1841–1908
A French statistician with very wide ranging applied interests, including insur-
ance, agriculture, economics, and meteorology, Laurent used probability theory
but without appealing to the notion of moral certainty. Comment on [116, 117].

2.36 Ludwig Boltzmann, 1844–1906
In the second half of the nineteenth century, the principle that an event with a
vanishingly small probability will not happen took on a real role in physics, most
saliently in Ludwig Boltzmann’s statistical understanding of the second law of
thermodynamics. As Boltzmann explained in the 1870s, dissipative processes
are irreversible because the probability of a state with entropy far from the
maximum is vanishingly small (von Plato 1994[198], p. 80; Seneta 1997[107,
163]).

This comment by Boltzmann, in 1898 [20, §40, p. 120], is notable:

Of course, it should be remembered that these are just laws of
probability. The possibility of deviation from the same is practi-
cally out of the question; but their probability in case the number of
molecules is finite, though unimaginably small, is not zero; indeed,
it can even be numerically calculated according to the laws of prob-
ability in every given case, and disappears only for the limiting case
of an infinite number of molecules.

Natürlich ist aber zu bedenken, dass es eben Wahrscheinlichkeits-
gesetze sind. Die Möglichkeit der Abweichung von denselben kommt
praktisch nicht in Betracht; doch ist ihre Wahrscheinlichkeit im
Falle, dass die Zahl der Moleküle eine endliche ist, wenn auch un-
vorstellbar klein, so doch nicht Null; ja sie kann sogar in jedem
bestimmt gegebenen Falle nach den Wahrscheinlichkeitsgesetzen nu-
merisch berechnet werden und verschwindet nur für den Grenzfall
einer unendlichen Zahl der Moleküle.

The small probabilities discussed by Boltzmann were many orders of mag-
nitude smaller than those calculated in statistical testing by Laplace, Fourier,
Poisson, Cournot, Gavarret, Lexis, and Edgeworth. This fact, together with
the importance of the second law in physics, aroused new interest in Cournot’s
principle among mathematicians who found the statistical work unconvincing
or uninteresting. This was particularly true in France, where statistical testing
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was most practiced during the 19th century and most discredited by the end
of the century. In the early 20th century, the French mathematicians Jacques
Hadamard (§2.45), Émile Borel (§2.49), and Paul Lévy (§2.58) all became inter-
ested in probability and proponents of versions of Cournot’s principle because
of its success in statistical physics.

2.37 Paul Mansion, 1844–1919
On December 16, 1903, the Belgian mathematician Paul Mansion delivered a 60-
page discourse, in French, on the objective significance of the probability calculus
to the Royal Academy of Belgium [127]. In the conclusion of the discourse, we
find this passage:

The fundamental principle is this: Between two contrary proposi-
tions, one little probable, the other very probable, the human mind
chooses the second, freely, but almost irresistibly, and declares it
practically certain.

From this we deduce the logical legitimacy of the law of large
numbers and the principle of the accumulation of independent prob-
abilities.

The law of large numbers applies first to the question of the
gambler’s ruin and its consequences, then to statistics whenever it
encounters nearly constant ratios in the numbers it collects.

The principle of the accumulation of independent probabilities
is practically, if not metaphysically, the source of our certainties in
the natural and historical sciences, which in the last analysis rely on
testimony, every time we are not personally inventor or witness.

Le principe fondamental est celui-ci : Entre deux propositions
contraires, l’une peu probable, l’autre très probable, l’esprit hu-
main choisit la seconde, librement, mais presque invinciblement, et
la déclare pratiquement certaine.

On déduit de là la légitimité logique de la loi des grands nombres
et du principe de l’accumulation des probabilités indépendantes.

La loi des grands nombres s’applique d’abord à la question de
la ruine du joueur et à ses conséquences, ensuite à la statistique
chaque fois qu’elle rencontre des rapports à peu près constants dans
les nombres qu’elle rassemble.

Le principe de l’accumulation des probabilités indépendantes est
pratiquement, sinon mélaphysiquement, la source de nos certitudes
dans les sciences naturelles et historiques qui reposent en dernière
analyse sur le témoignage, chaque fois que nous ne sommes pas per-
sonnellement inventeur ou témoin.

Surely we can classify Mansion as a supporter of Cournot’s principle. Yet
perhaps he differs from Hume, whom I have classified as an opponent, only
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in tone. Hume emphasized the lack of justification of our mind’s irresistible
equation of high probability with practical certainty. Mansion does not refute
the claim that it is unjustified, but he applauds it.

Laurent Mazliak has reviewed Mansion’s career and his role in the history
of Belgian mathematics [138]. Mansion was a devout Roman Catholic. One
feature of his thought that is interesting for our investigation is his appreciation
of the relationship of the role of the Jesuits in the development of probability
and his corresponding low opinion of Pascal. He concludes his discourse by
equating Laplace’s superior intelligence, for whom “nothing is uncertain and the
future as well as the past is present to the eye”, with God.

2.38 Francis Edgeworth, 1845–1926
Translating Lexis’s account into his somewhat idiosyncratic English, Francis
Edgeworth called an observed difference significant of a real difference, as op-
posed to accidental, when it differs from zero by more than 3 moduli [71, §137].

Edgeworth apparently first used significant in this way in the paper he read
at the jubilee meeting of the statistical society of London in 1885 [70]. The
president of the session reported that when pressed by the Italian statistician
Luigi Perozzo on whether his paper contained anything new, Edgeworth had said
that “he did not know that he had offered any new remarks, but perhaps they
would be new to some readers. He had borrowed a great deal from Professor
Lexis.”

2.39 Emanuel Czuber, 1851–1925
Emanuel Czuber was an Austrian mathematician whose textbooks on probabil-
ity, error theory, and mathematical statistics were widely used at the beginning
of the 20th century. His general textbook on probability theory and its applica-
tions appeared in 1903, with a second edition in two volumes in 1908 and 1910,
and a third edition of the first volume in 1914 [51]. The following paragraph, in
which he explicitly rejects the concept of practical certainty appears in all three
editions with only minor variations, on pp. 14–15 in 1903, on pp. 16–17 in 1908
(first volume), and on pp. 18–19 in 1914. I have omitted the footnotes.

The relationship between different degrees probability can attain
and absolute necessity or certainty has not always been correctly
assessed. Jacob Bernoulli defines probability as degree of certainty,
assigning an event of probability 3/5 the corresponding fraction of
certainty. The same view was taken by the first German philoso-
pher who reviewed the principles of probability, J. J. Fries. There
is also a similar sounding passage in Laplace; to the remark that
probability turns into certainty and is represented by unity when
all cases are favorable to the event, he adjoins the comment that
certainty and probability are comparable from this point of view.
But by further adding that there is an essential difference between
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the two states of the mind, the one where a truth has been proven
to him rigorously, and the one where he still detects a small source
for error, he allows us to glimpse the correct position, which Con-
dorcet had already taken before him and that the new philosophy
asserts: probability and certainty (or necessity) are things of essen-
tially different natures, and there is no bridge that could be built
from one to the other. The same goes for the multifarious attempts
that have been made to use logical value to establish intermediate
elements or transitions from probability to certainty on one hand
and impossibility on the other. Thus Jacob Bernoulli already dis-
tinguishes between absolute and moral certainty and impossibility,
understanding by the latter very high or very low degrees of proba-
bility. Later, in D’Alembert, Buffon, De Morgan, under the names
practical certainty, physical impossibility, etc., we find similar con-
ceptions that conflict with the fundamental knowledge that an event
with probability ever so close to unity does not have to happen and
that an event with ever so small a probability can happen.

Nicht immer richtig ist das Verhältnis zwischen der verschiedener
Grade fähigen Wahrscheinlichkeit und der absoluten Notwendigkeit
oder Gewißheit beurteilt worden. Jacob Bernoulli bezeichnet die
Wahrscheinlichkeit als einen Grad der Gewißheit und schreibt
einem Ereignis von der Wahrscheinlichkeit 3/5 den entsprechenden
Bruchteil der Gewißheit zu; den gleichen Standpunkt hat auch noch
der erste deutsche Philosoph, der sich mit der Kritik der Prinzipien
der Wahrscheinlichkeitsrechnung befaßte, J. J. Fries, eingenommen.
Auch bei Laplace findet sich eine Stelle, die hieran anklingt; an die
Bemerkung, daß die Wahrscheinlichkeit sich in Gewißheit verwandle
und ihr Ausdruck die Einheit werde, wenn alle Fälle dem Ereignis
günstig sind, knüpft er die Worte an, daß unter diesem Gesicht-
spunkte Gewißheit und Wahrscheinlichkeit vergleichbar seien; durch
den weiteren Zusatz aber, daß ein wesentlicher Unterschied zwischen
den beiden Zuständen des Geistes bestehe, wenn ihm eine Wahrheit
streng bewiesen ist, oder wenn er noch eine kleine Quelle des Irrtums
wahrnimmt, läßt er schon den richtigen Standpunkt durchblicken,
auf den vor ihm schon Condorcet sich gestellt hat und den die
neuere Philosophie behauptet: Wahrscheinlichkeit und Gewißheit
(oder Notwendigkeit) sind Dinge wesentlich verschiedener Natur,
und es gibt keine Brücke, die von der einen zur andern geschlagen
werden könnte. Damit sind auch die mannigfachen Versuche ihrem
logischen Werte nach gekennzeichnet, welche unternommen worden
sind, um Zwischenglieder·oder Übergänge zwischen Wahrschein-
lichkeit und Gewißheit einerseits und Unmöglilichkeit andererseits
herzustellen. So unterscheidet schon Jacob Bernoulli zwischen abso-
luter und moralischer Gewißheit und Unmöglichkeit, unter letzteren
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sehr hohe, beziehungsweise sehr niedrige Grade von Wahrschein-
lichkeit verstehend. Ähnliche Begriffsbildungen, welche gegen die
fundamentale Erkenntnis verstoßen, daß ein Ereignis von einer der
Einheit noch so nahen Wahrscheinlichkeit nicht eintreffen muß und
ein Ereignis von noch kleiner Wahrscheinlichkeit eintreffen kann,
finden sich später bei D’Alembert, Buffon, De Morgan unter den
Namen praktische Gewißheit, physische Unmöglichkeit u. dgl.

The “new philosophy” to which Czuber refers is the work of Jacob von Kries
(1853–1928; §2.40), whose theory of objective probability was popular in Ger-
man philosophy at the time, and also the work of Carl Stumpf (1848–1936)
on subjective probability. His footnote to his mention of Condorcet refers the
reader to Condorcet’s Essai. Czuber’s assertion that Condorcet insisted on an
essential difference between probability and certainty is confirmed by the pas-
sage from the Essai I quote in §2.21, but that same passage shows Condorcet
just as willing to bridge them as Bernoulli, d’Alembert, Buffon, and De Morgan.

In the 1914 edition, Czuber added a new footnote at the end of the passage
just quoted, citing Borel [23, p. 19]:

In his Élements de la théorie des probabilités (Paris 1909), p. 19,
E. Borel gives a nice example of how confounding large probability
with certainty can lead to absurd results.

E. Borel gibt in seinen Élements de la théorie des probabilités (Paris
1909) S. 19 ein hübsches Beispiel, wie die Verwechslung einer großen
Wahrscheinlichkeit mit der Gwißheit zu absurden Resultaten führen
kann.

As we know, Borel was actually a persistent advocate of confounding extremely
high probability with certainty. But he also noted counterexamples. I discuss in
§2.49 the counterexample Czuber cites here, which involves a simple martingale.

2.40 Johannes von Kries, 1853–1928
One of the most influential of the German philosophers who discussed probabil-
ity in the late nineteenth century was Johannes von Kries, whose Principien der
Wahrscheinlichkeitsrechnung first appeared in 1886. Von Kries rejected what
he called the orthodox philosophy of Laplace and the mathematicians who fol-
lowed him. As von Kries’s saw it, these mathematicians began with a subjective
concept of probability but then claimed to establish the existence of objective
probabilities by means of a so-called law of large numbers, which they erro-
neously derived by combining Bernoulli’s theorem with the belief that small
probabilities can be neglected. Having both subjective and objective probabili-
ties at their disposal, these mathematicians then used Bayes’s theorem to reason
about objective probabilities for almost any question where many observations
are available. All this, von Kries believed, was nonsense. The notion that an
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event with very small probability is impossible was, in von Kries’s eyes, simply
d’Alembert’s mistake.

Von Kries believed that objective probabilities sometimes exist, but only
under conditions where equally likely cases can legitimately be identified. Two
conditions, he thought, are needed:

• Each case is produced by equally many of the possible arrangements of the
circumstances, and this remains true when we look back in time to earlier
circumstances that led to the current ones. In this sense, the relative sizes
of the cases are natural.

• Nothing besides these circumstances affects our expectation about the
cases. In this sense, the Spielräume8 are insensitive.

Von Kries’s principle of the Spielräume was that objective probabilities can
be calculated from equally likely cases when these conditions are satisfied. He
considered this principle analogous to Kant’s principle that everything that
exists has a cause. Kant thought that we cannot reason at all without the
principle of cause and effect. Von Kries thought that we cannot reason about
objective probabilities without the principle of the Spielräume.

Even when an event has an objective probability, von Kries saw no legitimacy
in the law of large numbers. Bernoulli’s theorem is valid, he thought, but it tells
us only that a large deviation of an event’s frequency from its probability is just
as unlikely as some other unlikely event, say a long run of successes. What will
actually happen is another matter. This disagreement between Cournot and
von Kries can be seen as a quibble about words. Do we say that an event will
not happen (Cournot), or do we say merely that it is as unlikely as some other
event we do not expect to happen (von Kries)? Either way, we proceed as if it
will not happen. But the quibbling has its reasons. Cournot wanted to make
a definite prediction, because this provides a bridge from probability theory to
the world of phenomena—the real world, as those who have not studied Kant
would say. Von Kries thought he had a different way of connecting probability
theory with phenomena.

Von Kries’s critique of moral certainty and the law of large numbers was
widely accepted in Germany. For further discussion of his ideas and their influ-
ence, see [108] and the special issue on von Kries published by the Journal for
General Philosophy of Science in 2016, especially [202].

Von Kries’s principle of the Spielräume did not endure, for no one knew
how to use it. But his project of providing a Kantian justification for the
uniform distribution of probabilities remained alive in German philosophy in the
first decades of the twentieth century (Meinong 1915 [139]; Reichenbach 1916
[155]). John Maynard Keynes (1921)[109] brought it into the English literature.
When asked about the philosophical basis of the classical probability calculus,

8In German, Spiel means “game” or “play”, and Raum (plural Räume) means “room” or
“space”. In most contexts, Spielraum can be translated as “leeway” or “room for maneuver”.
For von Kries, the Spielraum for each case was the set of all arrangements of the circumstances
that produce it.
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many philosophers and mathematicians today will think about arguments for a
uniform distribution of probabilities before they think about Cournot’s principle.

2.41 Henri Poincaré, 1854–1912
Poincaré’s used a version of Cournot’s principle in his study of the three-body
problem[149, 198]. His recurrence theorem, published in 1890[149], says that an
isolated mechanical system confined to a bounded region of its phase space will
eventually return arbitrarily close to its initial state, provided only that this
initial state is not exceptional. Within any region of finite volume, the states
for which the recurrence does not hold are exceptional inasmuch as they are
contained in subregions whose total volume is arbitrarily small.

In 1902, in La science et l’hypothèse [150, Ch. XI], Poincaré argued that
probability is essential to science. How do we know that Newton’s law still be
true in the next generation? How do we know that some huge object will not
soon perturb the solar system? We can only say that these things have little
probability. To persuade his reader that this reliance on probability is more
than merely practical and subjective, he argued as follows:9

. . . A gambler wants to try a coup, and he asks my advice. If I give it
him, I use the calculus of probabilities; but I shall not guarantee suc-
cess. That is what I shall call subjective probability. . . . But assume
that an observer is present at the play, that he knows of the coup,
and that play goes on for a long time, and that he makes a summary
of his notes. He will find that events have taken place in confor-
mity with the laws of the calculus of probabilities. That is what I
shall call objective probability . . . . There are numerous Insurance
Societies which apply the rules of the calculus of probabilities, and
they distribute to their shareholders dividends, the objective reality
of which cannot be contested.

. . . Un joueur veut tenter un coup; il me demande conseil. Si je
lui donne, je m’inspirerai du calcul des probabilités mais je ne lui
garantirai pas le succès. C’est là ce que j’appellerai la probabilité
subjective. . . .Mais je suppose qu’un joueur assiste au jeu, qu’il en
note tous les coups et que le jeu se prolonge longtemps; quand il
fera le relevé de son carnet, il constatera que les évévements se sont
répartis conformément aux lois du calcul des probabilités. C’est là ce
que j’appellerai la probabilité objective . . . . Il existe de nombreuses
sociétés d’assurances qui appliquent les règles du calcul des proba-
bilités et elles distribuent à leurs actionnaires des dividendes dont la
réalité objective ne saurait être contestée.

In §2.49 I will quote Émile Borel’s comment on this passage. Both Borel and
Paul Lévy adopted Poincaré’s formulation concerning the difference between

9Here I use the translation by published by Walter Scott Publishing in 1905.
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subjective and objective probability. I have not found an author before Poincaré
writing in quite the same way, but the formulation echoes Buffon’s contention
that the difference between moral and physical certainty is one of degree (§2.17).

2.42 Andrei Markov, 1856–1922
Markov, Chuprov’s neighbor in Petersburg, learned about the growing field of
mathematical statistics from Chuprov [146], and we see an echo of Cournot’s
principle in Markov’s textbook, which appeared in Russian in 1900. (The pas-
sage is on p. 12 of the German edition, which appeared in 1912 [128], p. 12.)

The closer the probability of an event is to one, the more reason
we have to expect the event to happen and not to expect its opposite
to happen.

In practical questions, we are forced to regard as certain events
whose probability comes more or less close to one, and to regard as
impossible events whose probability is small.

Consequently, one of the most important tasks of probability
theory is to identify those events whose probabilities come close to
one or zero.

2.43 Karl Pearson, 1857–1936
Karl Pearson, in Mathematical Contributions to the Theory of Evolution.—III.
Regression, Heredity, and Panmixia. Philosophical Transactions of the Royal
Society of London, 1895, series A, vol. 186, pp. 252–318. With respect to
Galton’s “special data” on heights:

...Thus difference in height is nine times, and the difference in cor-
relation more than six times the corresponding probable error. It is
absolutely necessary therefore to conclude that the Essex contribu-
tion differs significantly from the remainder of the data.

2.44 Guido Castelnuovo, 1865–1952
Other authors, including Chuprov, enunciated Cournot’s principle in its weak
form, and this can lead in a different direction. The weak principle combines
with Bernoulli’s theorem to produce the conclusion that an event’s probability
will usually be approximated by its frequency in a sufficiently long sequence of
independent trials, a general principle that has the weak principle as a special
case.

This was pointed out by Castelnuovo in his 1919 textbook [40, p. 108].
Castelnuovo called the general principle the empirical law of chance (la legge
empirica del caso):

In a series of trials repeated a large number of times under iden-
tical conditions, each of the possible events happens with a (relative)
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frequency that gradually equals its probability. The approximation
usually improves with the number of trials. [40, p. 3]

Although the special case where the probability is close to one is sufficient to
imply the general principle, Castelnuovo preferred to begin his introduction to
the meaning of probability by enunciating the general principle, and so he can
be considered a frequentist. His approach was influential at the time. Maurice
Fréchet and Maurice Halbwachs adopted it in their textbook in 1924 [88]. It
brought Fréchet to the same understanding of objective probability as Lévy:
it is a physical constant that is measured by relative frequency [83, p. 5]; [85,
pp. 45–46].

The weak point of Castelnuovo and Fréchet’s position lies in the modesty of
their conclusion: they conclude only that an event’s probability is usually ap-
proximated by its frequency. When we estimate a probability from an observed
frequency, we are taking a further step: we are assuming that what usually hap-
pens has happened in the particular case. This step requires the strong form of
Cournot’s principle. According to Kolmogorov (1956),p. 240 of the 1965 English
edition), it is a reasonable step only if “we have some reason for assuming” that
the position of the particular case among other potential ones “is a regular one,
that is, that it has no special features”.

2.45 Jacques Hadamard, 1865–1963
Hadamard, the preeminent analyst who did pathbreaking work on Markov
chains in the 1920s (Bru 2003a)[34], made the point in a different way. Probabil-
ity theory, he said, is based on two basic notions: the notion of perfectly equiv-
alent (equally likely) events and the notion of a very unlikely event (Hadamard
1922, p. 289)[99]. Perfect equivalence is a mathematical assumption, which can-
not be verified. In practice, equivalence is not perfect—one of the grains in a
cup of sand may be more likely than another to hit the ground first when they
are thrown out of the cup. But this need not prevent us from applying the
principle of the very unlikely event. Even if the grains are not exactly the same,
the probability of any particular one hitting the ground first is negligibly small.
Hadamard cited Poincaré’s work on the three-body problem in this connection,
because Poincaré’s conclusion is insensitive to how one defines the probabilities
for the initial state. Hadamard was the teacher of both Fréchet and Lévy.

2.46 Ladislaus von Bortkiewicz, 1868–1931
Born to a Polish family in the Russian empire, Bortkiewicz studied mathematics
in St. Petersburg and then studied statistics with Lexis in Straßburg. He spent
most of his career as professor of statistics in Berlin.

In 1894, early in his career, Bortkiewicz made these comments [185, pp.
354–355]:

Was nun den ersten Punkt betrifft, so glaube ich, daß unter
den zahlreichen Quellen falscher Rückschlüsse der erwähnten Art
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die zu kleinen absoluten Zahlen keine bedeutende Rolle spielen.
Der erfahrene Statistiker — er mag in Wahrscheinlichkeitsrech-
nung gar nicht unterrichtet sein — wird in gesagter Beziehung von
einem gewissen “statistischen Sinne” (“unmethodical wisdom” nach
Edgeworth) in der Regel ziemlich sicher geleitet. Es ist freilich
vorzuziehen, wenn eine gewisse Uebung in Wahrscheinlichkeitsrech-
nung hinzutritt, die zur Schärfung des gesagten sinnes wesentlich
beitragen kann. Hingegen erscheint die Berechnung der Präcision
in jedem konkreten Fall als ein kaum zu rechtfertigender Luxus bei
der statistischen Produktion. Man bedenke nur, daß es hierbei viel
weniger auf den numerischen Wert derjenigen Wahrscheinlichkeit
ankommt, mit der auf das Verhalten der in Rede stehenden All-
gemeinbedingungen geschlossen werden darf, als vielmehr auf den
Umstand, ob jener numerische Wert der Einheit dermaßen nahe
kommt, daß man die erhaltene Wahrscheinlichkeit praktisch als
Gewißheit betrachten kann, oder aber die verlangte Höhe nicht er-
reicht. Es liegt daher entschieden eine Uebertreibung in der Ansicht
Westergaard’s vor, der geneigt ist, jede statistische Untersuchung
als dilettantenhaft anzusehen, bei der auf die Präcisionen keine
Rücksicht genommen worden ist.

Draft translation:

As far as the first point is concerned, I believe that among the
numerous sources of false inferences of the kind mentioned, too small
an absolute number does not play a significant role. The experienced
statistician - he may not be fully informed in probability theory - is
usually guided fairly well by a certain "statistical sense" (according
to Edgeworth). It is, of course, preferable to add a certain exercise
to probabilistic theory, which can substantially contribute to the
sharpening of the said sense. On the other hand, the calculation of
precision in each specific case appears as a barely justifiable luxury
in statistical production. It is only necessary to consider that the
numerical value of the probability with which the behavior of the
general conditions in question may be inferred is much less impor-
tant than the fact that the numerical value of the unity comes so
close to the probability that the numerical value of the unit is can
practically regard the probability obtained as certainty or does not
reach the required height. There is, therefore, a definite exaggera-
tion in Westergaard’s view, who is inclined to regard any statistical
investigation as dilettante, in which no consideration has been given
to the precision.

See also [186, p. 825] and [186, 187, 188].
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2.47 Georg Bohlmann, 1869–1928
Bohmann was a German mathematician who worked on Lie groups, meteorology
and eventually life insurance. In 1903, he became chief actuary for the Berlin
subsidiary of the New York Mutual Life Insurance Company. His contributions
are reviewed in [112].

In 1901, while working at Göttingen, Bohlmann contributed a 56-page en-
try on life insurance to the encyclopedia of mathematical sciences that the
Göttingen mathematicians were assembling at that time [19, p. 861]. Bohlmann
began the article by stating axioms for probability, principally the rule of total
probability (additivity) and the rule of compound probability. Then, in a sec-
tion entitled “Principien nach denen die Theorie auf die Erfahrung angewendet
wird” (“Principles by which the theory is applied to experience”), he stated this
postulate (p. 861):

Postulate. If we observe one single value of f , it does not
deviate from its expected value by more than v times its standard
deviation.

How large a value of ν we choose is arbitrary. If we choose ν = 3,
then we are identifying practical certainty with a probability that is
always greater than 1−1/ν2 = 8/9 and is equal to Θ

(
3√
2

)
= 0,9973

when the Gaussian error law holds.

Postulat. Beobachtet man einen einzelnen Wert von f , so weicht
dieser von seinem wahrscheinlichen Werte f0 um nicht mehr als das
ν-fache von M(f) ab.

Wie gross man ν wählt, ist willkürlich. Wählt man ν = 3, so
identificiert man die praktische Gewissheit mit einer Wahrschien-
lichkeit, die jedenfalls grösser als 1− 1

ν2 = 8
9 ist und gleich Θ

(
3√
2

)
=

0,9973 ist, wenn das Gauss’sche Fehlergesetz gilt.

In footnotes, Bohlmann noted that he was following Emanuel Czuber [50] in his
use of the term wahrschienlichen Werte and the symbol M(f), that Hermann
Laurent had called ν the coefficent de sécurité in 1873 in a French actuarial
journal [116, p. 162], and that the inequality giving 8/9 was due to Chebyshev.

Bohlmann’s standard for practical certainty was less demanding than the
3 moduli used by Fourier, Lexis, and Edgeworth and obviously more practical
for actuarial work. It is roughly comparable to Gavarret’s 2 moduli in the
case where the Gaussian law (normal distribution) applies but much much less
demanding if we can use only Chebyshev’s inequality.

2.48 Arthur Lyon Bowley, 1869–1957
As economist at the London School of Economics, Bowley learned about statis-
tical methods from Edgeworth. In the first edition of his Elements of Statistics,
published in 1901, he followed Edgeworth in taking 3 moduli as significant.
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2.49 Émile Borel, 1871–1956
[69]

In 1906, in the first volume of La Revue du Mois [21, p. 433], the journal
that Borel and his wife founded and edited, Borel elaborated as follows on the
passage from Poincaré’s La science et l’hypothèse quoted in §2.41:

The difference between objective and subjective probability is not
a difference in nature but a difference in degree. A result of the
probability calculus merits being called objective when its proba-
bility becomes large enough to be practically indistinguishable from
certainty. It then matters little whether it is a matter of predicting
future phenomena or of estimating past phenomena; in the one case
as much as in the other, we can affirm that the law will be or has
been verified.

Ce n’est pas une différence de nature qui sépare la probabilité ob-
jective de la probabilité subjective, mais seulement une différence de
degré. Un résultat du calcul des probabilités mérite d’être appelé ob-
jectif, lorsque sa probabilité devient assez grande pour se confondre
pratiquement avec la certitude. Il importe peu alors qu’ils s’agisse
de prévoir des phénomènes futurs ou de recenser des phénomènes
passés; on peut également affirmer que la loi sera ou a été vérifiée.

In 1909, in his first textbook on probability theory Eléments de la théorie
des probabilités, Borel wrote as follows [22, p. 19]:

L’une des principales sources de ces raissonnements paradoxaux sur
lesquels nous aurons á revenir (see no. 18) est la suivant: on considère
un évènement futur comme réalisé, sous prétext que l’expérience a
prouvé qu’il est extrémement probable. On commet ainsi une erreur,
sans doute très petite, mais l’accumulation répétée de telles erreurs
suffit pour conduire á des conséquences entièrement inexactes.

One of the main sources of these paradoxical arguments . . . is the fol-
lowing: we consider a future event as having happened, on the pretext
that experience has proven it to be very probable. We comment an
error when do this, a very small error no doubt, but the repeated
accumulation of such errors is enough to lead to consequences that
are completely inexact.

To illustrate this error, Borel imagined a gambler, Pierre, who plays a simple
martingale, one franc on heads, say, over and over. Eventually he will be ahead,
having won one more franc than he has lost; as Borel says, this is a practical
certainty (certitude pratique). We suppose that he pockets this one franc and
starts over, until he nets another franc. And so he continues, becoming as rich
as he wants.

In 1910, in the second edition of his Éléments, page 181:
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. . . we should greatly distrust our tendency to consider as remarkable
a circumstance that we have not specified before the observation, be-
cause the number of circumstances that can seem remarkable, from
different points of view, is very considerable.

. . . on doit se défier beaucoup de la tendance que l’on a à regarder
comme remarquable une circonstance que l’on n’avait pas précisée
avant l’expérience, car le nombre de circonstances qui peuvent ap-
parâitre comme remarquables, à divers points de vue, est très con-
sidérables.

In Le Hasard, the book he published in 1914 to popularize probability theory,
Borel wrote [24, p. 15]:

. . . the object of probability theory is to evaluate probabilities of com-
plex events by means of probabilities, which are assumed known, of
simpler events. Its purpose is to predict with an almost absolute cer-
tainty, humanly certain we may say, certain events whose probability
is such that it is indistinguishable from certainty.

. . . la thórie des probabilités a pour objet d’évaluer les probabilités
d’événements complexes au moyen des probabilités supposeées con-
nues d’autres événements plus simples. Son but, c’est arriver à
prévoir avec une certitude presque absolue, humainement absolue
peut-on dire, certains événements dont la probabilité est telle qu’elle
se confond avec la certitude.

In the 1933 paper where Neyman and Pearson proved their famous lemma
[144, p. 290], they quoted Borel saying that the event of small probability should
be “en quelque sorte remarquable” and cited the source as the 1920 edition of
Le Hasard. https://archive.org/details/lehasard00boreuoft/page/112/
mode/2up?q=remarquable Borel’s 1920 edition of Le hasard, cited by Neyman
in Neyman-Pearson 1933 as the source of “en quelque sorte remarquable” has
relevant passage on pages 112-113 and is available on archive.org.

Borel, however, in a later discussion, considered that the method
described could be applied with success provided that the character,
x, of the observed facts were properly chosen — were, in fact, a
character which he terms “en quelque sorte remarquable.”

Borel did not use exactly these words, but he makes the point around p. 112
using the word remarquable. The same passages were also in the first edition
(1914); the 1920 edition seems to be a reprinting.

Also, Borel discusses “valeur pratique” in Section VIII and asks how small is
small enough in §89. Reference Bru’s discussion and Constance Reid [156, pp.
80–81], where Le Cam and Neyman later could not find the wording Neyman
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had remembered. And E. S. Pearson’s later denial. The whole debate of memory
between Neyman and E. S. Pearson is discussed thoroughly by Eric Lehmann
in The Bertrand-Borel Debate and the Origins of the Neyman-Pearson Theory,
1993 [119].

Although he never attributed it to Cournot, Borel stated the principle many
times, often in a style more literary than mathematical or philosophical [21, 22,
24, 25]. According to Borel, a result of the probability calculus deserves to be
called objective when its probability becomes so great as to be practically the
same as certainty. He believed that what is negligible depends on the context;
in 1939, we wrote that a probability of 10−6, he decided, is negligible at the
human scale, a probability of 10−15 at the terrestrial scale, and a probability of
10−50 at the cosmic scale [26, pp. 6–7].

Borel, sharpened his statement of the principle in the 1940s. In earlier
years, he wrote frequently about the practical meaning of probabilities very
close to zero or one, but it is hard to discern in these writings the philosophical
principle, which we do find in Hadamard and Lévy, that interpreting a very small
probability as impossibility is the only way of bringing probability theory into
contact with the real world. But in the 1940s, we find the principle articulated
very clearly. In his 1941 book, Le jeu, la chance et les théories scientifiques
modernes[27], he calls it the “fundamental law of chance” (la loi fondamentale du
hasard). Then, in 1943, on the first page of the text of his “Que sais-je?” volume,
Les probabilités et la vie[28], he finally coined the name he used thereafter: “the
only law of chance” (la loi unique du hasard). This name appears again in
the 1948 edition of Le Hasard and the 1950 edition of Éléments de la théorie
des probabilités (see also Borel 1950[30]). It was also popularized by Robert
Fortet, in his essay in François Le Lionnais’s Les grands courants de la pensée
mathématique[118], first published in 1948[79, 118].

2.50 George Udny Yule, 1871–1951
Page 262–263 of the first edition of Yule’s statistics textbook, published in 1911
[201]:

We may now turn from these verifications of the theoretical re-
sults for various special cases, to the use of the formulae for checking
and controlling the interpretation of statistical results. If we observe,
in a statistical sample, a certain proportion of objects or individuals
possessing some given character—say A’s—this proportion differing
more or less from the proportion which for some reason we expected,
the question always arises whether the difference may be due to the
fluctuations of simple sampling only, or may be indicative of definite
differences between the conditions in the universe from which the
sample has been drawn and the assumed conditions on which we
based our expectation. Similarly, if we observe a different propor-
tion in one sample from that which we have observed in another, the
question again arises whether this difference may be due to fluctu-

52



ations of simple sampling alone, or whether it indicates a difference
between the conditions subsisting in the universes from which the
two samples were drawn: in the latter case the difference is often
said to be significant. These questions can be answered, though
only more or less roughly at present, by comparing the observed dif-
ference with the standard-deviation of simple sampling. We know
roughly that the great bulk at least of the fluctuations of sampling
lie within a range of ± three times the standard-deviation; and if an
observed difference from a theoretical result greatly exceeds these
limits it cannot be ascribed to a fluctuation of “simple sampling”
as defined in §8: it may therefore be significant. The “standard-
deviation of simple sampling” being the basis of all such work, it is
convenient to refer to it by a shorter name. The observed propor-
tions of A’s in given samples being regarded as differing by larger or
smaller errors from the true proportion in a very large sample from
the same material, the “standard-deviation of simple sampling” may
be regarded as a measure of the magnitude of such errors, and may
be called accordingly the standard error.

Page 263 of Yule 1911: The deviation observed is 5.1 times the standard
error, and, practically speaking, could not occur as a fluctuation of simple sam-
pling.

Page 265: If the observed difference is less than some three times ϵ12 it may
have arisen as a fluctuation of simple sampling only. [Here ϵ12 is the standard
error of the difference between two proportions.]

Page 266: As this difference is only slightly in excess of the standard error
of the difference, for samples of 34 observations drawn from identical material,
no definite significance could be attached to it—if it stood alone.

2.51 Aleksandr Chuprov, 1874–1926
Chuprov, who became professor of statistics in Petersburg in 1910, was the
champion of Cournot’s principle in Russia. Like the Scandinavians, Chuprov
wanted to bridge the gap between the British statisticians and the continental
mathematicians [173]. With some justice, he considered Cournot the founder of
the philosophy of modern statistics [173, p. 86]. He put Cournot’s principle—
which he called “Cournot’s lemma”—at the heart of this project; in a philosoph-
ical book he published in 1910 [41], he called it a basic principle of the logic of
the probable. See [173, pp. 95–96].

Kolmogorov included Lévy’s book and Slutsky’s article in his bibliography,
but not Chuprov’s book. An opponent of the Bolsheviks, Chuprov was abroad
when they seized power, and he never returned home. He remained active in
Sweden and Germany, but his health soon failed, and he died in 1926, at the
age of 52.
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2.52 Felix Bernstein, 1878–1956
By the end of the 19th century, it was commonplace in mathematics to interpret
a set having measure zero as meaning that it can be neglected. The German
mathematician Felix Bernstein gave this an interesting twist in 1912, p. 419 [16]:

Axiom. Bezieht man die Werte einer experimentell gemessenen
Größe auf die Skala der Werte aller reellen Zalhen, so kann man in
der letzteren von vorherein eine beliebige Nullmenge ausschalten und
darf nur solche Folgen der beobachtete Ereignisse erwarten, welche
bestehen bleiben, wenn der beobachtete Wert durch einen der übrig
bleibenden, innerhalb des Beobachtungsintervalles gelegenen Werte
reprasentiert wird.

2.53 Maurice Fréchet, 1878–1973
In 1949, the Swiss academic journal Dialectica published a special issue on
Warhscheinlichkeitstheorie und Wirklichkeit.10 Several of the contributors, in-
cluding Oskar Anderson, Émile Borel, and Paul Lévy, touched on the importance
of the impossibility or rarity of events of very small probability. This topic was
also discussed in the session on probability theory at the 18th international
congress on philosophy of science held in Paris later that year, by Borel and
Lévy and by Padrot Nolfi (1903-1973), who had co-edited the Dialectica special
issue.

Statistical physics probably played the largest role in Borel’s thinking about
Cournot’s principle. He had just completed the last of his many books on prob-
ability, Probabilité et Certitude [30], in which he insisted that a sufficiently tiny
probability, such as the probability for the second law of thermodynamics, must
be interpreted as absolute certainty. Lévy had also first seen the importance of
probability theory in its applications to statistical physics. Anderson, on the
other hand, was a statistician, a student of Chuprov’s, and he was content with
the weaker form of Cournot’s principle enunciated by Chuprov and Slutsky,
which says only that events with small probability happen rarely.

Fréchet, president of the session on probability at the congress, added his own
introduction to the section’s proceedings, in which he summarized the different
views on Cournot’s principle and undertook to reconcile them with his own
views about the relation between probability and frequency. These proceedings
appeared in 1951.11

10Volume 3, Numbers 1/2, pp. 1–172, edited by H. Jecklin and P. Nolfi.
11The proceedings of the congress, edited by Raymond Bayer, were published by Hermann

(Paris) in their series Actualités Scientifiques et Industrielles [11]. Part IV of the proceedings,
number 1146 in the series, was devoted to the session Calcul des Probabilités. Fréchet’s report,
“Rapport général sur les travaux du colloque de calcul des probabilités”, appeared on pp. 3–21
[86], and Nolfi’s report on the preceding issue of Dialectica appeared on pp. 23–47. Other
contributors were Robert Fortet, David van Dantzig, Bruno de Finetti, Jerzy Neyman, Émile
Borel, Jean Ville, George A. Barnard, Paul Lévy, and Georges Darmois.
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It was here that Fréchet suggested that what Oskar Anderson called
Cournot’s lemma or bridge (die Cournotsche Brücke) the should instead
be called le principe de Cournot, which translates into English as Cournot’s
principle. The following passages appear on pp. 6–8 of Fréchet’s introduction.

Le principe de Cournot. — La question soulevée par M. Borel,
d’abord dans Dialectica, pp. 24–27, puis dans un rapport à cette Sec-
tion, ne concerne en aucune façon la théorie axiomatique des Prob-
abilités, mais elle est fondamentale pour l’interprétation concrète à
donner à cette théorie et par suite pour les applications. C’est aninsi
qu’on la retrouve traitée indépendamment dans leurs rapports par
MM. de Finetti et Van Dantzig et dans Dialectica, par MM. Paul
Lévy et Anderson. Aussi allons-nous lui accorder une particulière
attention.

Laissant de coté la question des chiffres à adopter pour les prob-
abilités négligeables, il s’agit essentiellement du principe que nous
appellerons le principe12 de Cournot (bien qu’il semble avoir été
déjà plus ou moins nettement indiqué par d’Alembert).

Selon O. Anderson, on peut l’énocer ainsi:
A) un événement don la probabilité est très petite n’a lieu que

très rarement.
Paul Lévy écrit (Dialectica, p. 56): “Il semble que tout le monde

soit d’accord au moins sur un point: nous voulons que l’événement
don la probabilité est très petite soit très peu probable au sens vul-
gaire du mot” ; et plus loin : “Mais les phénomènes très peu prob-
ables sont des phénomènes rares”. En combinant ces deux opinions
de Paul Lévy, on retrouve la formulation de M. Anderson.

Il serait facile de multiplier les citations et de montrer que la
plupart des auteurs acceptent explicitement ou implicitement cette
formulation ou une autre très voisine.

Un grand nombre d’auteurs vont même un peu plus loin ; dans
la vie réelle, un événement extrêmement rare n’est guère discernable
d’un événement impossible, on pourra donc dire :

B) un événement de probabilité très petite est un événment “pra-
tiquement impossible” ; on refusera de croire à sa réalisation.

Par exemple, on tire, sans le remettre, sept boules d’une urne con-
tenant 25 boules portant respectivement les 25 lettres de l’alphabet
; si les sept boules tirées formaient, par example, le mot MIRA-
CLE, on referait de croire que l’opération ait été effectuée dans des
conditions régulières. Pourquoi ? Parce que, sans qu’on ait à faire
de calcul précis, notre expérience inconsciente quotidienne nous ap-
prend que la formation d’un mot français dans une telle opération,

12Fréchet’s footnote: Anderson lui donne (entre autres dans Dialectica, p. 69) le nom de
lemme ; comme il précise lui-même que ce “lemme” résulte directement de l’expérience, nous
préférons réserver l’usage du mot lemme à la théorie axiomatique.
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— formation qui nous apprâitra simplement comme un accident ad-
missible du hasard dans le cas où l’in tiereait seulement une, deux
ou trois boules —, nous semblerait tout à fait impossible quand on
en tire sept.

On soul̀’eve cependant l’objection suivante : considérons un
tirage quelconque de 7 boules. Il aura donné, par exemple,
CDATIPS. Personne n’en sera étonné ; pourtant la probabilité
de tirer CDATIPS était plus petite que celle de tirer un quelconque
mot français de 7 lettres ! Mais, il faut distinguer. Avant le tirage,
l’attention n’était fixée sur aucune permutation particulière de let-
teres. L’événement qui n’a pas provoqué de surprise, c’était de voir
sortir une permutation non distinguée d’avance pari limmensité

25× 24× 23× 22× 21× 20× 19 > 109

des permutations possibles.
Au contraire, dan cette immensité, le nombre des permutations

formant des mots français et qui se distinguent ainsi des autres per-
mutations, est — relativement — extrêment petit ; la probabilité d’en
tirer un est — absolument — très petite.

Supposez qu’on ait annoncé d’avance la formation CDATIPS ;
alors, aussi, la surprise aurait très grande — et l’objection tombe.

. . .
Cependant l’objection n’ètait pas pas inutile, car elle conduit

p̀réciser ce qui va sans dire — mais qui va encore mieux en le disant,
— que, considérant un événement comme pratiquement impossible
quand sa probabilité est extrêmement petite, nous entendons for-
muler une prédiction au suject d’un événement bien défini avant
qu’ait lieur l’épreuve où l’on constatera si l’éévenement s’est ou non
réalisé.

Fréchet also addresses the objection that when n is large, and events
E1, . . . , En each have probabilities so small that each is considered impossi-
ble, the event that at least one of them happens (i.e., their union E1 ∪ · · · ∪En)
might have a large probability and then be considered possible or even certain.
Along with Borel, Fréchet argues (p. 8) that when n is this large, it would not
be possible to carry out the verification:

In order to refute the principle, you must not only conceive of
trials permitting you to confirm whether at least one of the events
E1, . . . , En happens, but you must actually carry out one of these
trials and proceed effectively to these confirmations.

Il faudrait, pour mettre en défaut le principe, qu’on puisse
non seulement concevoir des épreuves permettant de constater la
réalisation de l’un au moins des événements E1, . . . , En, mais même
réaliser une de ces épreuves et procéder effectivement à ces constata-
tions. . . .
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Fréchet then offers a third formuation of the principle:

The two formulations A and B of Cournot’s principle have a pla-
tonic character. In many circumstances, the calculation of a prob-
ability is nevertheless not an end in itself but should serve to guide
our actions. Thus, taking inspiration from a remark by Mr. Divisia,
we can give it the following form:

C) When an event has an extremely small probability, it is ap-
propriate to act as if it will not happen.

This rule of action can be preferred, because in a sense it is less
categorical than formulations B), because it does not explicitly say
that the event will not happen, and also because it expresses, in my
opinion, a rule that we all follow, consciously or unconsciously.

Les deux formes A, B, du principe de Cournot ont un caractère
platonique. Dans bien des circonstances, le calcul d’une probabilité
n’est pourtant pas une fin en soi, mais doit servir à guider nos ac-
tions. Aussi, en s’inspirant d’une remarque de M. Divisia, on peut
lui donner la forme suivante :

C) Quand un événement est de probabilité extrêment petite, il
convient d’agir comme s’il ne devait pas se produire.

Cette règle d’action peut être préféfée, parce qu’en un sense elle
est moins catégorique que la forme B), puisqu’ellle ne dit pas ex-
pressément que l’événement ne se produira pas ; et d’autre part,
parce qu’elle exprime, croyons-nous, une règle que nous suivons tous
consciemment ou inconsciemment.

Fréchet had his own way of explaining how probability theory connects with
the world; he was fond of saying that probabilities are physical quantities that
are measured by frequencies. On p. 5 of the report I have been quoting, he
claimed that this follows from Cournot’s principle:

. . . we are led to consider a probability as a physical quantity attached
to an event and a category of trials, which is measured approximately
by the frequencies of that event in large number of trials.

. . . on est conduit à considérer la probabilité comme une grandeur
physique attachée à un événment et à une catégorie d’épreuves
et dont les fréquences de cet événement dans un grand nombre
d’épreuves sont des mesures approchées.

I think many mathematicians in the second half of the 20th century shared
this conception of probability, but I have not seen it defended in print very
often. The obvious difficulty is that that many probabilities (those in stochastic
processes, for example; see §2.77) relate to only a single trial, which can be
repeated only in the imagination.
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Following Fréchet’s suggestion, a fair number of mathematicians used the
terms “principe de Cournot”, “Cournot’s principle”, and “Cournotsche Princip”
in the 1950s [58, 189, 157, 158]. It was not unusual for Fréchet to legislate on
terminology; from 1944 to 1948 he had led the effort by the Association Française
de Normalisation to standardize probability terminology and notation, putting
in place appellations such as Borel-Cantelli and Kolmogorov-Smirnov [35, 147].
He had second thoughts about giving so much credit to Cournot; when he
reprinted his 1949 report as a section in a book in 1955 [87], he replaced “principe
de Cournot” with “principe de Buffon-Cournot”. But here no one else seems to
have followed his example.

2.54 Evgeny Slutsky, 1880–1948
The Russian statistician Evgeny Slutsky discussed Cournot’s “lemma” in the
following passage, translated from his lengthy and influential article on limit
theorems, published in German in 1925 [175, pp. 17–19].

. . . It would therefore be worthwhile to analyze the conception of
the law of large numbers proposed by Prof. Al. A. Chuprov and
traced back to A. Cournot’s views.13 Here the essential point comes
down to saying that the derivation of the law of large numbers is
based not only the well-known theorems of probability calculus (from
Bernoulli, Poisson, etc.), but also on a special lemma, by which it
first actually becomes possible “from the world of probabilities, either
large or small, to take ourselves over into the world of frequencies”.14
This premise posits “the fact of an existing connection between small
probability and rarity” by claiming that “events whose probabilities
are very small will not often happen”.15

If you want to consider this statement as a nomological one, you
again come into contradiction with probability theory. No matter
how small the probability of an event, it can still occur any number
of times in a row in a series of independent trials. The probability
of getting red ten thousand million times in a row in roulette, for
example, is not an impossibility, but an extremely small but non-
zero probability, and with a sufficiently large number of sequences
of 1010 spins each, a certain relative frequency of occurrences of se-
quences in which all 1010 spins produce red can be expected with
the greatest certainty. ”Even the smallest probability is still fun-
damentally different from impossibility; and we cannot bridge this
gap, no matter how much we let the numbers grow.” 16 Only this
much is true, that the probability that a very improbable event will
occur frequently is a very small quantity of far higher order than

13Slutsky’s footnote: Al. A. Tschuprow, Abhandlungen aus der Theorie der Statistik, 2 Aufl.
1910 (Russian), p. 227 ff.

14Slutsky’s footnote: Ibid., p. 230.
15Slutsky’s footnote: Ibid., p. 230, 227.
16Slutsky’s footnote: J. v. Kries, op. cit. p. 21.

58



the probability of its one-time occurrence. In my opinion, it should
not be claimed from A. Cournot’s viewpoint that such a conception
does not contain any statement about frequencies themselves, be-
cause his view is precisely that every statement about probabilities
of frequencies is a statement about the latter frequencies themselves.
17 To see this, you need not to get involved in any physical or onto-
logical speculations, but merely to clarify the simple meaning of the
corresponding propositions of the theory of probability. Then you
see that under the relevant assumptions (Bernoullian, Poissonian,
Markovian) there is almost full certainty that “events whose prob-
abilities are very small will not often happen”. If you remove the
little word “almost”, you obtain the Cournotian lemma, which dif-
fers from the first statement therefore not in the content but merely
in the modality of the declaration: what was asserted with only al-
most full certainty, the lemma wants to pass off as absolutely certain
knowledge. And given our assumptions, that is certainly wrong.

Now for another possible interpretation. The above lemma can
still be seen as an idiographic statement, as a statement about the
actual structure of the world, or of the part surrounding us.18 It
would then mean that although among all possible constellations of
the elements of the world there are also ones that would necessarily
present us with the very strangest events — so that for example all
games of chance would be distorted as if by a demonic force, warm
bodies would be heated by cold ones, human fate would seem to be
guided by a star, and so forth — yet our world is not one of these
exceptional worlds, but an ordinary world, so to speak.19 We may
consider this a possibly well-founded assumption, but this much is
true: facts about the past of a chaotic event cast no light on its
future. As a nomological statement the lemma was wrong, as an
idiographic one it is useless. It teaches us nothing about the future
fate of the world; it provides us no guarantee against the possibility
of jumping into the wonder world of exceptional stochastic states.

17Slutsky’s footnote: “The mathematical probability then becomes the measure of physical
probability. . . the advantage of this is to clearly indicate the existence of a ratio . . . found
between the things themselves: a ratio that nature maintains and that observation reveals
when trials are repeated enough”. A. Cournot, Essai sur les fondements de nos connaissances,
Nouvelle édition, Paris, 1912, p. 45 (sperrdruck des Verfassers). On the concept of “physical
impossibility” (or “impossibility in fact”), characteristic for his entire system yet farther from
being clarified in the end than from anything, see his Exposition de la théorie des chances et
des probabilités Paris, 1843, p. 79–80, 437–438. Compare J. v. Kries, Ueber den Begriff der
objektiven Möglichkeit, “Vierteljahrsschrift f. wiss. Philos.” 12 Jahrg, 1888.

18Slutsky’s footnote: Perhaps Al. A. Tschuprow’s standpoint can be understood in this
sense: Abhandlungen aus der Theorie der Statistik, 2 Aufl., s. 231, (Russian).

19Slutsky’s footnote: Compare Zilsel, Versuch einer neuen Grundlegung der statischen
Mechanik “Monatshefte für Math. und Physik” Wien, 1921, Bd. XXXI, p. 153-154. His
“verallgemeinerte Allagodenhypothese” is equivalent to the hypothesis of the ordinariness of
the world. But the author errs insofar as he believes that his construction makes a stochastic
standpoint dispensable.
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If we feel no great fear, the reason is simply that we are inclined to
grant this possibility an immeasurably small probability. So the hy-
pothesis of the stochastic ordinariness of the world does not justify
the law of large numbers; rather the law of large of large numbers
creates the logical possibility of believing the stochastic ordinariness
of the world for the future, since on the basis of all our stochastic-
nomological knowledge it acquires a probability practically equiva-
lent to absolute certainty.

Aehnliche Gedanken treten bisweilen in einem Gewand auf, in
dem man sie nicht so leicht erkennen kann. Es würde sich deshalb
lohnen die Auffassung des Gesetzes der grossen Zahlen zu analisieren,
die von Prof. Al. A. Tschuprow aufgestellt und auf A. Cournot’s An-
sichten zurürckgefürht worden ist.20 Das wesentliche hier gipfelt in
der Behauptung, dass die Ableitung des Gesetzes der grossen Zahlen
nicht lediglich auf den bekannten sätzen der Wahrscheinlichkeit-
srechnung (von Bernoulli, Poisson u. s. f.), sondern noch auf einem
besonderen Lemma sich begründet, kraft welchem es eigentlich erst
möglich wird “aus der Welt der Wahrscheinlichkeiten ob gross, oder
klein, sich in the Welt der Häufigkeiten hinüberzutragen”.21 Diese
Voraussetzung stellt “die Tatsache des zwischen kleiner Wahrschein-
lichkeit und Seltenheit obwaltenden Zusammenhanges” fest, indem
sie behauptet, dass “die Ereignisse, deren Wahrscheinlichkeiten sehr
klein sind, sich nicht oft wiederholen werden [Ibid., p. 230, 227].22

Will man diesen Satz als einen nomologischen betrachten, so
kommt man wieder zum Widerspruch mit der Wahrscheinlichkeits-
lehre. Es sei die Wahrscheinlichkeit eines Ereignisses so klein, wie
man will, in einer Reihe unabhängiger Versuch kann es dennoch
beliebig viele Mal hintereinander auftreten. So ist, z. B., die
Wahrscheinlichkeit, dass im Roulette zehntausend millionen Mal
hintereinander Rot fällt, nicht die Unmöglichkeit, sondern eine zwar
äusserst geringe doch von Null veschiedene Wahrscheinlichkeit,
und bei einer hinreichend grossen Anzahl von Reihen zu je 1010

Würfen darf das relativ so und so häufige Auftreten solcher Rei-
hen, in welchen alle 1010 Male Rot fällt, mit grösster Sicherheit
erwartet werden. ”Auch die minimalste Wahrscheinlichkeit ist von
der Unmöglichkeit noch fundamental unterschieden; und diese Kluft
können wir nicht überbrücken, mögen wir die Zahlen auch noch so
sehr anwachsen lassen.”23 Nur so viel ist wahr dass die Wahrschein-
lichkeit dafür, dass ein sehr wenig wahrscheinliches Ereigniss häufig
auftreten wird, eine sehr kleine Grösse weit höherer Ordnung ist, als

20Slutsky’s footnote: Al. A. Tschuprow, Abhandlungen aus der Theorie der Statistik, 2
Aufl. 1910 (russisch), p. 227 ff.

21Slutsky’s footnote: Ibid., p. 230.
22Slutsky’s footnote: Ibid., p. 230, 227.
23Slutsky’s footnote: J. v. Kries, op. cit. p. 21.
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die seines einmaligen Eintretens. Dass eine solche Auffassung keine
Aussage über Häufigkeiten selbst enthält, dürfte, m. E., gerade von
dem Standpunkt von A. Cournot aus nicht behauptet werden, denn
seine Ansichten gehen gerade darauf aus, dass jede Behauptung
über Wahrscheinlichkeiten von Häufigkeiten eine Behauptung über
dieses letzteren selbst ist.24 Um das einzusehen braucht man sich
in keine physikalischn, bzw., ontologischen Spekulationen einzu-
lassen, sondern nur den schlichten sinn der entsprechenden Sätze
der Wahrscheinlichkeitstheorie sich zur Klarheit zu bringen. Dann
sieht man, dass bei betreffenden Voraussetzungen (Bernoulli’schen,
Poisson’schen, Markoff’schen) eine fast volle Gewisheit besteht,
dass “die Ereignisse, deren Wahrscheinlichkeiten sehr klein sind, sich
nicht oft widerholen werden”. Steicht man hier das Wörschen “fast”,
so erhält man das Cournot’sche Lemma, deren Unterschied von
dem ersten Sätze nicht also in dem Inhalt, sondern lediglich in der
Modalität der Behauptung besteht: was dieser nur mit fast voller
Gewissheit behauptet, das will das Lemma für eine absolut sichere
Erkenntniss ausgeben. Und das ist bei unseren Voraussetzungen
sicher falsch.

Nun zu einer anderen Interpretationsmöglichkeit. Obiges Lemma
kann noch als ein idographischer Satz angesehen werden, als eine
Behauptung über die tatsäschliche Struktur der Welt, bzw., ihres
uns umgebenden Teiles.25 Es würde dann besagen, dass obgleich
es swischen allen möglichen Konstellationen der Weltelemente auch
solche gibt, die uns allerseltsamste Ereignisse vorspielen müssten,
so dass, z. B., all Zufallspiele wie von einer dämonischen Kraft
verfälscht, warme Körper durch kalte erhitzt, Menschengeschicke
durch Stern geleitet eerscheinen würden u. s. f., — doch unsere
Welt ist kein von diesem Ausnahmewelten, sondern eine so zu
sagen ordinäre Welt.26 Man kann diese Voraussetzung für eine
viellecicht wohlbegründete halten, doch so viel ist wahr, dass von
den Tatsachen der Vergangenheit des chaotischen Geschehens auf

24Slutsky’s footnote: “La probabilité mathematique devient alors la mesure de la possibilite
physique. . . l’avantage de cellec-ci c’est d’indiquer nettement l’existance d’un rapport, . . . qui
subsiste entre les choses même: rapport, que la nature maintient et que l’observation man-
ifeste lorsque les épreuves se répètent assez”. A. Cournot, Essai sur les fondements de nos
connaissances, Nouvelle édition, Paris, 1912, p. 45 (sperrdruck des Verfassers). Ueber den für
sein ganzes system charakteristischen, doch nichts weniger als bis zum Ende geklärten Begriffe
“d’impossibilité physique” (oder “d’impossibilité de fait”) siehe seine Exposition de la théorie
des chances et des probabilités Paris, 1843, p. 79–80, 437–438. Vergleich J. v. Kries, Ueber
den Begriff der objektiven Möglichkeit, “Vierteljahrsschrift f. wiss. Philos.” 12 Jahrg, 1888.

25Slutsky’s footnote: Vielleicht kann Al. A. Tschuprow’s Standpunkt in diesem sinne ver-
standen werden: Abhandlungen aus der Theorie der Statistik, 2 Aufl., s. 231, (russisch).

26Slutsky’s footnote: Vergl. Zilsel, Versuch einer neuen Grundlegung der statischen
Mechanik “Monatshefte für Math. und Physik” Wien, 1921, Bd. XXXI, p. 153–154. Seine
“verallgemeinerte Allagodenhypothese” ist der Hypotehse der Ordinarität der Welt äquivalent.
Der Verfasser irrt sich aber, sofern er glaubt, dass seine Konstruktionen einen stochastischen
Standpunkt enbehrlich machen.
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seine Zukunft kein Licht fällt. Als ein nomologischer war der Satz
falsch, als ein idogrpahischer ist er nutzlos. Ueber die zuküngftigen
Geschicke der Welt belehrt er uns nicht, gegen die Möglichkeit
eines Sprunges in das Wunderreich der stochastischen Ausnah-
mezustände gewährt er uns keine Bürgschaft. Wenn wir doch davor
keine grosse Angst fühlen, so ist der Grund einfach der, dass wir
dieser Möglichkeit nur eine unermässlich kleine Wahrscheinlichkeit
anzuerkennen geneigt sind. Nicht die Hypothese der stochastischen
Ordinarität der Welt begründet also Gesetz der grossen Zahlen,
sondern letzteres schafft erst die logische Möglichkeit, der ersteren
für die Zukunft Glauben zu schenken, da auf der Grundlage alles
unseres stochastisch-nomologischen Wissens ihr eine Wahrschein-
lichkeit zukommt, die der absoluten Gewissheit praktisch äquivalent
ist.

Kolmogorov included this article in the bibliography of his 1933 Grundbe-
griffe [111].

2.55 Richard von Mises, 1883–1953
Von Mises introduced his mathematical foundation for probability in 1919 [190].
In his view, relative frequency was the true meaning of probability, and limiting
frequency in an infinite sequence — he called it a collective (Kollektiv) — was
its proper mathematical representation. He saw this use of infinity as an ide-
alization, just as Euclid’s idea of an infinitely precise point is an idealization,
and he thought it similarly appropriate for mathematical reasoning. He thought
statistical inference, when it was appropriate, should use Bayes’s theorem rather
than Bernoulli’s theorem. When no frequencies are available to use as the prior
probabilities in Bayes’s theorem, statistical inference would not be appropriate.

When von Mises began his work on probability theory, there was no alter-
native consensus about its mathematical foundation. Kolmogorov’s axiomatic
treatment using measure theory was a dozen years in the future. Most intro-
ductions to mathematical probability still began, as Bernoulli had begun, with
the “classical” notion of equally possible cases, which von Mises considered con-
fusing and circular. He considered the interpretation of Bernoulli’s theorem
that equates high probability with practical certainty an unjustified attempt to
connect equally possible cases with frequency. He made this point at length
in 1928, in the first edition of his Wahrscheinlichkeit, Statistik und Wahrheit
(Probability, Statistics and Truth) [191]. Here is a passage from p. 89:

It is even more groundless to declare, concerning the hypothesis
that the relative frequency has a limit, that one sees as “certain”
what can only qualify as “highly probable” according to Poisson’s
or Bernoulli’s theorem (H. Weyl). As a recent oddity, we can also
cite the attempt to concoct a new concept of “stochastic passage to
the limit” from the existence of the limit and the existence of the

62



Bernoulli-Poisson theorem (E. Slutsky). All these confusions arise
from starting with the classical definition of probability, which has
nothing to do with the course of events, and afterwards using an
way of speaking that refers to this course of events (“one can expect
with certainty that . . . ”).

Noch unbegründeter ist es, zu behaupten, mit der Annahme, daß
die relative Häufigkeit einen Grenzwert besitzt, sehe man das
als“sicher” an, was nach dem Poissonschen oder Bernoullischen
Satz nur als “höchst wahrscheinlich” gelten kann (H. Weyl). Als
eine Sonderbarkeit neueren Datums sei auch noch der Versuch
angeführt, aus der Existenz des Grenzwertes und dem Bestehen des
Bernoulli-Poissonschen Satzes einen neuen Begriff des “stochastis-
chen Grenzüberganges” zusammenzubrauen (E. Slutsky). Alle
diese Verirrungen entstehen daraus, daß man von der klassischen
Wahrscheinlichkeitsdefinition ausgeht, die nichts mit dem Erschein-
ungsablauf zu tun hat, und sich nachträglich einer Ausdrucksweise
bedient, die auf diesen Ablauf Bezug nimmt (“es ist mit Sicherheit
zu erwarten, daß . . . .”).

For the formulations by Weyl and Slutsky to which von Mises objected, see
§2.57 and §2.54, respectively.

In 1931, von Mises published a textbook on probability and its applica-
tions to statistics and theoretical physics [192]. It included a section (§1.5)
entitled “Das Verhältnis der Theorie zur Erfahrungswelt” (“The theory’s rela-
tionship with the world of experience”).27. Here he emphasized the analogy with
geometry and mechanics. The theory intersects with reality twice; first one ob-
tains initial data from reality (initial conditions in the case of mechanics, initial
probabilities in the case of probability), then after calculation one obtains pre-
dictions about reality. He distinguished three applications of probability, games
of chance, statistics, and statistical physics, which differ in how the initial prob-
abilities are obtained. In games of chance great effort goes into making these
simple, in statistics they are obtained from data, and in statistical physics they
are hypothetical.

Von Mises counted himself as a positivist. In 1939, he published a book
explaining his positivist philosophy [193]; an English translation appeared in
1951. In the following passage, from the English translation [195, p. 183], he
enlarges on how probability is used in statistical physics, in a way that could be
characterized as a version of Cournot’s principle.

In classical physical statistics one starts by making certain plau-
sible assumptions, according to the methods of probability calculus,

27In 1933, Kolmogorov cited this section of von Mises’s 1931 book as the model for his
explanation of how his own axiomatic theory of probability related to the empirical world; see
§2.70
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about initial probabilities as well as transition probabilities, and de-
rives from them statements about the course of events to be expected
with very high probability. The value of this “high” probability is
so near to 1 that the statements are practically indistinguishable
from those which are called “deterministic”. In all cases that can
be checked the agreement between observation and calculation proves
to be excellent.

In later editions of his Wahrscheinlichkeit, Statistik und Wahrheit, von Mises
toned down his criticism of Cournot’s principle only a bit. Here is two passages
from the final English edition, published in 1957 [196, p. 116]:

If the probability of an attribute within a given collective has a
value near to unity, we may express this fact by saying that ‘there is
great certainty’ or ‘we are almost certain’ that this event will occur
on one specific trial. This way of expressing ourselves is not too
reprehensible so long as we realize that it is only an abbreviation,
and that its real meaning is that the event occurs almost always in
an infinitely long sequence of observations.

. . .
Those who think that probability can be defined independently

of the frequency of occurrence of an attribute in a sequence of ex-
periments believe that the . . . proposition, whereby probability and
frequency roughly coincide in a long run of observations, constitutes
a ‘bridge’ between what actually happens and the concept of prob-
ability introduced by them. However, we know that this is a delu-
sion. From the definition of probability as the ratio of favourable
to equally likely cases, no logical reasoning will lead to the propo-
sitions discussed above — neither to the original Bernoulli-Poisson
statement nor to Bayes’s converse of it. All that we can logically
deduce from this premise is propositions concerning such ratios. A
gap remains: the manner in which it is to be crossed is arbitrary
and logically not justifiable.

Following a tumultuous debate with Joseph L. Doob at Dartmouth in 1941,
von Mises had conceded that there was “no contradiction or irreconcilable con-
trast” between Doob’s theory (considered by Doob and others an elaboration of
Kolmogorov’s) and his own [197, p. ]:

. . . both theories are essentially statistical or frequency theories,
equally far from the classical conception based on “equally likely
cases.” In both theories, probabilities are, of course, measures of
sets.

Yet as the quotation from 1957 shows, von Mises still, in the last years of his
life, saw the “classical” conception based on equally likely cases, not Kolmogorov-
Doob, as his competitor. On p. 99 of the 1957 book, he wrote that Kolmogorov’s
mathematical investigations “do not . . . constitute the foundations of probability
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but rather the foundations of the mathematical theory of distributions, a theory
which is also used in other branches of science.” I have not found any discussion
by von Mises of Kolmogorov’s own use of a version of Cournot’s principle.

We might summarize by saying that for von Mises, probability theory’s job in
the world was to predict frequencies in long sequences from calculations about
limiting frequencies in infinite sequences. He did not explain how this was
consistent with his understanding of statistical physics, and so far as I know he
did not consider the similar problem in the case of stochastic processes in other
fields, such as economics, where there is also only a single observation; see §2.77.

2.56 James V. Uspensky, 1883–1947
Uspensky was trained at the University of St. Petersburg and was a member
of the Russian Academy of Scientists before emigrating to the United States.
He became a professor at Stanford University. We find this passage in his
Introduction to Mathematical Probability, published in 1937 [180, p. 8]:

From our experience, we know that events with small probability
seldom happen. . . . the probability 999,999/1,000,000 may be con-
sidered, from a practical standpoint, as an indication of certainty.
What limit for smallness of probability is to be set as an indication of
practical impossibility? Evidently there is no general answer to this
question. Everything depends on the risk we can face if, contrary to
expectation, an event with a small probability should occur. Hence,
the main problem of the theory of probability consists in finding
cases in which the probability is very small or very near 1. . . .

2.57 Hermann Weyl, 1885–1955
Weyl was a physicist who also wrote on the philosophy of science. In his Philoso-
phie der Mathematik and Naturwissenschaft, which appeared in 1927, he dis-
cussed Bernoulli’s law of large numbers. Here is an excerpt from an English
translation [200]:

In his [Bernoulli’s] calculation the individual trials are treated as sta-
tistically independent events. This theorem belongs to pure math-
ematics. It acquires a relation to reality only by the fact that the
occurrence of an event is considered practically certain if its proba-
bility deviates from absolute certainty by, say, less than one millionth
. . .

2.58 Paul Lévy, 1886–1971
It was Lévy, perhaps, who had the strongest sense of probability’s being pure
mathematics (he devoted most of his career as a mathematician to probability),
and it was he who expressed most clearly in the 1920s the thesis that Cournot’s
principle is probability’s only bridge to reality. In his Calcul des probabilités[120]
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Lévy emphasized the different roles of Hadamard’s two basic notions. The
notion of equally likely events, Lévy explained, suffices as a foundation for the
mathematics of probability, but so long as we base our reasoning only on this
notion, our probabilities are merely subjective. It is the notion of a very unlikely
event that permits the results of the mathematical theory to take on practical
significance ([120], pp. 21, 34; see also [121], p. 3). Combining the notion of
a very unlikely event with Bernoulli’s theorem, we obtain the notion of the
objective probability of an event, a physical constant that is measured by relative
frequency. Objective probability, in Lévy’s view, is entirely analogous to length
and weight, other physical constants whose empirical meaning is also defined by
methods established for measuring them to a reasonable approximation ([120],
pp. 29–30).

In his 1925 book [120], Lévy developed Jacques Hadamard’s idea that prob-
ability theory is based on two fundamental notions:

1. equally probable events (événements également probables), and

2. event of very small probability (événement très peu probable).28

Whereas the notion of equally probable events expresses probability’s subjec-
tive starting point, the notion of an event of very small probability allows us
to connect probability to objective reality: we predict that the event will not
happen. As Lévy further explained in his 1937 book [121, p. 3],

We can only discuss the objective value of the notion of proba-
bility when we know the theory’s verifiable consequences. They all
flow from this principle: a sufficiently small probability can be ne-
glected. In other words: a sufficiently unlikely event can in practice
be considered impossible.

Nous ne pouvons discuter la valeur objective de la notion de
probabilité que quand nous saurons quelles sont les conséquences
vérifiables de la théorie. Elles découlent toutes de ce principe: une
probabilité suffisamment petite peut être négligée; en autre termes:
un événement suffisamment peu probable peut être pratiquement con-
sidéré comme impossible.

2.59 Oskar Anderson, 1887–1960
Chuprov’s enthusiasm for Cournot and the principle was brought from Russian
into German by Chuprov’s student, Oskar Anderson, who spent the 1930s in
Sofia and then moved to Munich in 1942. Anderson called the principle the
“Cournotsche Lemma” or the “Cournotsche Brücke”—a bridge between math-
ematics and the world. We find both phrases already in Anderson’s 1935

28Lévy devotes Section 1 to the first principle and Section 2 to the second. In the preface
(p. viii), he cites a 1922 article [99] in which Hadamard stated the two principles.
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book[5, 4], but the book may have been less influential than an article An-
derson contributed to a special issue of the Swiss philosophy journal Dialec-
tica[6, 29, 122] in 1949, alongside articles by Borel and Lévy revisiting their
versions of Cournot’s principle.

Both Anderson and the Dutch mathematical statistician David Van Dantzig
argued for using Cournot’s principle as the foundation for statistical testing: An-
derson in Dialectica (Anderson 1949[6]), and Van Dantzig at the meeting in Paris
(Van Dantzig 1951[181]). Neyman found this view of statistical testing incom-
prehensible; at the same meeting in Paris he said Anderson was the “only con-
temporary author I know who seems to believe that the inversion of the theorem
of Bernoulli is possible” (Neyman 1951, p. 90)[142]. The German mathematical
statistician Hans Richter, also in Munich, emphasized Cournot’s principle in his
own contributions to Dialectica (Richter 1954; von Hirsch 1954)[157, 189] and in
his probability textbook (Richter 1956)[158], which helped bring Kolmogorov’s
axioms to students in postwar Germany. As a result of Richter’s book, the name
“Cournotsche Prinzip” is fairly widely known among probabilists in Germany.

2.60 Charlie Dunbar Broad, 1887–1971
Note Broad’s review in 1913 of the reprinting of Cournot’s 1851 book [32].

2.61 R. A. Fisher, 1890–1962
Laplace and Poisson were accustomed to explaining probability in terms of sam-
pling from an urn with infinitely many balls or tickets of different colors. In the
1920s, Fisher similarly used the metaphor of a “hypothetical infinite popula-
tion"; see for example his celebrated 1922 article on theoretical statistics [76].
What did Fisher mean when he wrote about frequencies in such a population?
This question was raised in 1925 by the British mathematician William Burnside
[38, 39]. As Burnside pointed out, we can define limiting relative frequencies
if we order the elements of a countably infinite set, but the limit depends on
the ordering. The limiting relative frequency of natural numbers divisible by 7
among all the natural numbers is 1/7 if we consider the numbers in their natural
ordering, but other orderings give other limits. Fisher responded to Burnside’s
question in the following “prefatory note” to an article he published in 1925 [77];
see [1].

It has been pointed out to me that some of the statistical ideas
employed in the following investigation have never received a strictly
logical definition and analysis. The idea of a frequency curve, for
example, evidently implies an infinite hypothetical population dis-
tributed in a definite manner; but equally evidently the idea of an
infinite hypothetical population requires a more precise logical spec-
ification than is contained in that phrase. The same may be said of
the intimately connected idea of random sampling. These ideas have
grown up in the minds of practical statisticians and lie at the basis
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especially of recent work; there can be no question of their pragmatic
value. It was no part of my original intention to deal with the logi-
cal bases of these ideas, but some comments which Dr Burnside has
kindly made have convinced me that it may be desirable to set out
for criticism the manner in which I believe the logical foundations
of these ideas may be established.

The idea of an infinite hypothetical population is, I believe, im-
plicit in all statements involving mathematical probability. If, in a
Mendelian experiment, we say that the probability is one half that
a mouse born of a certain mating shall be white, we must conceive
of our mouse as one of an infinite population of mice which might
have been produced by that mating. The population must be infi-
nite for in sampling from a finite population the fact of one mouse
being white would affect the probability of others being white, and
this is not the hypothesis which we wish to consider; moreover, the
probability may not always be a rational number. Being infinite
the population is clearly hypothetical, for not only must the actual
number produced by any parents be finite, but we might wish to
consider the possibility that the probability should depend on the
age of the parents, or their nutritional conditions. We can, however,
imagine an unlimited number of mice produced upon the conditions
of our experiment, that is, by similar parents, of the same age, in the
same environment. The proportion of white mice in this imaginary
population appears to be the actual meaning to be assigned to our
statement of probability. Briefly, the hypothetical population is the
conceptual resultant of the conditions which we are studying. The
probability, like other statistical parameters, is a numerical charac-
teristic of that population.

We only need the conception of an infinite hypothetical popu-
lation, in connection with random sampling. The ultimate logical
elucidation of the one idea implies that of the other. Also, the word
infinite is to be taken in its proper mathematical sense as denoting
the limiting conditions approached by increasing a finite number in-
definitely. I imagine that an exact meaning can be given to all the
ideas required by some process such as the following.

Imagine a population of N individuals belonging to s classes, the
number in class k being pkN . This population can be arranged in
order in N ! ways. Let it be so arranged and let us call the first n
individuals in each arrangement a sample of n. Neglecting the order
within the sample, these samples can be classified into the several
possible types of sample according to the number of individuals of
each class which appear. Let this be done, and denote the proportion
of samples which belong to type j by qj , the number of types being
t. Consider the following proposition.

Given any series of proper fractions P1, P2, . . . , Ps, such that∑
Pk = 1, and any series of positive numbers η1, η2, . . . , ηk, however
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small, it is possible to find a series of proper fractions Q1, Q2, . . . , Qt,
and a series of positive numbers ϵ1, ϵ2, . . . , ϵs, and an integerN0, such
that, if

N > N0

and
|pk − Pk| < ϵk for all values of k,

then will
|qj −Qj | < ηj for all values of j.

I imagine it possible to provide a rigorous proof of this proposi-
tion, but I do not propose to do so. If it be true, we may evidently
speak without ambiguity or lack of precision of an infinite population
characterised by the proper fractions, P , in relation to the random
sampling distribution of samples of a finite size n.

It will be noticed that I provide no definition of a random sample,
and it is not necessary to do so. What we have to deal with in all
cases is a random sampling distribution of samples, and it is only
as a typical member of such a distribution that a random sample is
ever considered.

Note the word “typical” in the last sentence. The note can be interpreted
as conceding that the notion of an infinite hypothetical population is not really
needed. All that is needed is the notion that a sample is typical with respect to a
particular sampling distribution. In practice, Fisher made typicality operational
by means of significance testing. This reduces the picture to Cournot’s principle
— the principle that a probability model is connected to observed or observable
phenomena by the assumption that an event of small probability, selected in
advance, has not happened or will not happen.

2.62 Harold Jeffreys, 1891–1989
In his Theory of Probability, Jeffreys uses Bayes’s theorem to explain “how an
inductive inference can approach certainty”. Under certain assumptions, he
writes [106, 3rd ed., p. 43]:

. . . repeated verifications of consequences of a fact will make it prac-
tically certain that the next consequence of it will be verified. This
accounts for the confidence that we actually have in inductive infer-
ences.

2.63 Thornton Fry, 1892–1991
Fry’s 1928 textbook, Probability and its Engineering Uses [92], grew out his
teaching at Bell Telephone Laboratories and at MIT.

To illustrate the relation between certainty and high probability, Fry imag-
ined a sequence of urns, the mth one containing one white ball and m black
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balls. The greater m, the greater the probability that a ball draw from the urn
is black. But this probability is never one. As Fry wrote on p. 88, “The limiting
condition is certainty, but that limit cannot be reached.”

On p. 100, Fry stated and discussed Bernoulli’s theorem as follows.

Bernoulli’s Theorem: If the chance of an event
occurring upon a single trial is p, and if a number of inde-
pendent trials are made, the probability that the ratio of the
number of successes to the number of trials differs from p
by less than any preassigned quantity, however small, can
be made as near certainty as may be desired by taking the
number of trials sufficiently large.

Sometimes the content of a theorem such as this is made clearer
by throwing mathematical discretion to the winds and stating it in
the form of every-day language. The present appears to be a case of
this sort, and therefore we restate the theorem as follows:

If the probability of an event is p, and if an infinity of trials are
made, the proportion of successes is sure to be p.

. . . the statement is as certainly “true” in one sense of the word, as
it is not “true” in another. . . . it fails to stand the test of mathemat-
ical rigor, . . . It is therefore not a fit foundation for a mathematical
theory. but our every-day life is not conducted on such rigorous re-
quirements as to “truth.” You say, “Are you sure that he is coming
tomorrow?” and receive the answer, “Yes.” Both you and your in-
formant understand what you mean: the event is contingent upon
his not dying, for example, and perhaps on many other unforeseen
circumstances. It is, in fact, not sure at all; it is merely very proba-
ble: so probable that the residual doubt is not work expression. Our
statement is in the same class. In fact, the residual doubts are even
vastly smaller, and may quite properly remain unexpressed.

2.64 Harald Cramér, 1893–1985
Harald Cramér, who felt fully in tune with Kolmogorov’s frequentism, repeated
the key elements of his philosophy in his 1946 book [49, 148–150]. Cramér
expressed Kolmogorov’s caution that the theory of probability applies only under
certain conditions by saying that only certain experiments are random. In the
context of a random experiment E, Cramér stated Kolmogorov’s Principle A in
this way:

Whenever we say that the probability of an event E with respect to
an experiment E is equal to P , the concrete meaning of this assertion
will thus simply be the following: In a long series of repetitions of E,
it is practically certain that the frequency of E will be approximately
equal to P . — This statement will be referred to as the frequency
interpretation of the probability P .
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He stated Kolmogorov’s Principle B as a principle applying to an event whose
probability is very small or zero:

If E is an event of this type, and if the experiment E is performed
one single time, it can thus be considered as practically certain that E
will not occur. — This particular case of the frequency interpretation
of a probability will often be applied in the sequel.

The final sentence of this passage suggests that Cramér was a less careful philoso-
pher than Kolmogorov, for its claim that Principle B is a particular case of
Principle A is not strictly true. As we noted when discussing Castelnuovo’s
views, the weak form of Cournot’s principle is indeed a special case of Principle
A. But Principle B is the strong form of Cournot’s principle, and this is not
merely a special case of Principle A.

2.65 Jerzy Neyman, 1894–1981
Cite his writings on stochastic processes and frequentism. Look at his two books
on Hathi.

[143], p. 625

The fourth period in the history of indeterminism, currently in full
swing, the period of “dynamic indeterminism,” is characterized by
the search for evolutionary chance mechanisms capable of explain-
ing the various frequencies observed in the development of the phe-
nomena studied. The chance mechanism of carcinogenesis and the
chance mechanism behind the varying properties of the comets in
the Solar System exemplify the subjects of dynamic indeterministic
studies. One might hazard the assertion that every serious con-
temporary study is a study of the chance mechanism behind some
phenomena. The statistical and probabilistic tool in such studies
is the theory of stochastic processes, now involving many unsolved
problems. In order that the applied statistician be in a position
to cooperate effectively with the modern experimental scientist, the
theoretical equipment of the statistician must include familiarity and
capability of dealing with stochastic processes.

2.66 David van Dantzig, 1900–1959
Both Anderson and the Dutch mathematical statistician David Van Dantzig ar-
gued for using Cournot’s principle as the foundation for statistical testing: An-
derson in Dialectica (Anderson 1949[6]), and Van Dantzig at the meeting in Paris
(Van Dantzig 1951[181]). Neyman found this view of statistical testing incom-
prehensible; at the same meeting in Paris he said Anderson was the “only con-
temporary author I know who seems to believe that the inversion of the theorem
of Bernoulli is possible” (Neyman 1951, p. 90)[142]. The German mathematical
statistician Hans Richter, also in Munich, emphasized Cournot’s principle in his
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own contributions to Dialectica (Richter 1954; von Hirsch 1954)[157, 189] and in
his probability textbook (Richter 1956)[158], which helped bring Kolmogorov’s
axioms to students in postwar Germany. As a result of Richter’s book, the name
“Cournotsche Prinzip” is fairly widely known among probabilists in Germany.

2.67 Karl Popper, 1902–1994
Popper adopted a form of Cournot’s principle in his Logik der Forschung, first
published in 1935 [153]. On p. 191 of the English version, published in 1958, we
find this passage:

. . . a physicist is usually quite well able to decide whether he may
for the time being accept some particular probability hypothesis as
‘empirically confirmed’, or whether he ought to reject it as ‘practi-
cally falsified’, i.e., as useless for purposes of prediction. It is fairly
clear that this ‘practical falsificatio’ can be obtained only through a
methodological decision to regard highly improbable events as ruled
out—as prohibited. But with what right can they be so regarded?
Where are we to draw the line? Where does this ‘high improbability’
begin?

Since there can be no doubt, from a purely logical point of view,
about the fact that probability statements cannot be falsified, the
equally indubitable fact that we use them empirically must appear
as a fatal blow to my basic ideas on method which depend crucially
upon my criterion of demarcation. Nevertheless I shall try to an-
swer the questions I have raised—which constitute the problem of
decidability—by a resolute application of these very ideas. . .

In the following pages, discusses at length how he proposes to qualify Cournot’s
principle.

On page 150 of the English edition, he writes in a footnote:

. . . I now believe that Bernoulli’s theorem may serve as a ‘bridge’
within an objective theory—as a bridge from propensities to statis-
tics. See also appendix *ix and sections *55 to *57 of my Postscript.

2.68 Abraham Wald, 1902–1950
Wald became a mathematician working with Karl Menger in Vienna and par-
ticipating in his seminar. Both Menger and Wald fled to the United States as
Hitler seized Austria. Menger became a professor at Notre Dame in Indiana;
Wald became a professor at Columbia in New York. In February 1941, Wald
gave a series of lectures at Notre Dame entitled, “On the principles of statis-
tical inference”. He began with this introduction ([199], pages 1–2, references
omitted):

The purpose of statistics, like that of geometry or physics, is to
describe certain real phenomena. The objects of the real world can
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never be described in such a complete and exact way that they could
form the basis of an exact theory. We have to replace them by some
idealized objects, defined explicitly or implicitly by a system of ax-
ioms. For instance, in geometry we define the basic notions “point,”
“straight line,” and “plane” implicitly by a system of axioms. They
take the place of empirical points, straight lines, and planes which
are not capable of definition. In order to apply the theory to real
phenomena, we need some rules for establishing the correspondence
between the idealized objects of the theory and those of the real
world. These rules will always be somewhat vague and can never
form part of the theory itself.

The purpose of statistics is to describe certain aspects of mass
phenomena and repetitive events. The fundamental notion used is
that of “probability.” In the theory it is defined either explicitly or
implicitly by a system of axioms. For instance, Mises defines the
probability of of an event as the limit of the relative frequency of
this event in an infinite sequence of trials satisfying certain condi-
tions. This is an explicit definition of probability. Kolmogoroff de-
fines probability as a set function which satisfies a certain system of
axioms. These idealized mathematical definitions are related to the
applications of the theory by translating the statement “the event
E has the probability p” into the statement “the relative frequency
of the event E in a long sequence of trials is approximately equal
to p.” This translation of a theoretical statement into an empirical
statement is necessarily somewhat vague, for we have said nothing
about the meanings of the words “long” or “approximately.” But
such vagueness is always associated with the application of theory
to real phenomena.

It should be remarked that instead of the above translation of
the word “probability” it is satisfactory to use the following some-
what simpler one: “The event E has a probability near to one” is
translated into “it is practically certain that the event E will occur
in a single trial.” In fact, if an event E has the probability p then,
according to a theorem of Bernoulli, the probability that the relative
frequency of E in a sequence of trials will be in a small neighborhood
of p is arbitrarily near to 1 for a sufficiently long sequence of trials.
If we translate the expression “probability near 1” into “practical
certainty,” we obtain the statement “it is practically certain that the
relative frequency of E in a long sequence of trials will be in a small
neighborhood of p.”

2.69 Marshall Stone, 1903–1989
As recognition for his accomplishments in mathematics, Stone was asked to
deliver the Josiah Willard Gibbs Lecture at the meeting of the American Math-
ematical Society in December 1956. In this wide-ranging lecture, he made the
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following comments on mathematical statistics [177, p. 71].

Because of the tremendous scope of its applications, ranging all the
way from theoretical physics to the social sciences, mathematical
statistics has undergone a rapid and extensive development so that
it now enjoys the status of an independent discipline. Mathemati-
cally we now know that it is a branch of measure theory, which is
linked with the real world through a few simple principles embody-
ing the essence of inductive reasoning. There is, of course, some
disagreement as to how these principles should be formulated. It
has always seemed to me that they all have to be based on a single
rule of thumb, “A sufficiently improbable event may be ignored.” In
making decisions according to this rule, the role of mathematics is to
provide the measure-theoretic calculations of interrelated probabili-
ties and the role of practical insight is to determine for each concrete
situation which probabilities are sufficiently small. Why the real
world should be amenable to such a rule is, I think, a philosophical
question no more—and no less—mysterious than the problem of why
it should be amenable to logic.

2.70 Andrei Kolmogorov, 1903–1987
Cournot’s principle was emphasized by many of the Russian and French math-
ematicians from whom Kolmogorov learned about probability theory, including
Markov, Chuprov, Slutsky, Borel, Lévy, and Fréchet [171]. But in the Soviet
context, it was also mandatory to highlight the primacy of mass phenomena.
So perhaps it is not surprising that he mentions both frequency and Cournot’s
principle in 1933 in his Grundbegriffe der Wahrscheinlichkeitsrechnung [111], his
celebrated monograph on axiomatic foundations for probability.

Kolmogorov entitled the two-page section where he discussed how probability
theory is used outside mathematics “Das Verhältnis zur Erfahrungswelt” (Rela-
tion to the World of Experience). This echoed Bohlmann’s section title “Prin-
cipien nach denen die Theorie auf die Erfahrung angewendet wird” (“Principles
by which the theory is applied to experience”) in his 1900 encyclopedia article,
and von Mises’s section title “Das Verhältnis der Theorie zur Erfahrungswelt”
(“The theory’s relationship with the world of experience”) in his 1931 textbook.
In a footnote, Kolmogorov referred to the section in von Mises as a model:

In presenting the conditions required for applying the probability
calculus to the world of real events, the author has largely followed
Mr. von Mises’s model (see particularly [1] p. 21—27: ‘The theory’s
relationship with the world of experience”),

In der Darstellung der notwendigen Voraussetzungen für die An-
wendbarkeit der Wahrscheinlichkeitsrechnung auf die Welt der
reellen Geschehnisse folgt der verfasser im hohem Maße den
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Ausführungen von Herrn von Mises (vgl. insbesondere [1] S.
21-27: “Das Verhältnis der Theorie zur Erfahrungswelt”).

Here is how Kolmogorov then gives frequency and Cournot’s principle their
place:

Under certain conditions, that we will not go into further here,
we may assume that an event A that does or does not occur un-
der conditions S is assigned a real number P(A) with the following
properties:

A. One can be practically certain that if the system of conditions S
is repeated a large number of times, n, and the event A occurs
m times, then the ratio m/n will differ only slightly from P(A).

B. If P(A) is very small, then one can be practically certain that
the event A will not occur on a single realization of the condi-
tions S.

Unter gewissen Bedingungen, auf die wir hier nicht näher einge-
hen wollen, kann man voraussetzen, daß einem Ereignis A, welches
infolge der Bedingungen s auftritt oder nicht, eine gewisse reelle Zahl
P(A) zugeordnet ist, welche folgende Eigenschaften besitzt:

A. Man kann praktisch sicher sein, daß, wenn man den Komplex
der Bedingungen S eine große Anzahl von n Malen wiederholt
und dabei durch m die Anzahl der Fälle bezeichnet, bei denen
das Ereignis A stattgefunden hat, das Verhältnis m/n sich von
P(A) nur wenig unterscheidet.

B. Ist P(A) sehr klein, so kann man praktisch sicher sein, daß bei
einer einmaligen Realisation der Bedingungen S das Ereignis
A nicht stattfindet.

If you read what von Mises wrote in 1931 (I summarize it in §2.55), you
may have difficulty seeing it as a model for the passage from Kolmogorov just
quoted. Apparently Kolmogorov was thinking about the distinction von Mises
drew between ordinary statistical work and statistical physics. Condition A
tells us how to interpret probabilities as frequencies in ordinary statistical work
without using von Mises’s cumbersome concept of collectives, while Condition
B, even though it is undeniably a statement of Cournot’s principle, summarizes
how von Mises thought about very small probabilities in statistical physics.

In a letter to Fréchet in 1939 [17], Kolmogorov wrote that he thought the
only theory of probability that could reflect experience truthfully was an infor-
mal, not mathematically rigorous theory of finite but very large collectives with
approximately stable frequencies. The practical value of his axiomatic theory
could be derived from this informal theory. He later decided that a mathemati-
cally rigorous theory of finite collectives was possible after all, and this led him
to his theory of algorithmic complexity [18].
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As Cournot emphasized, many events do not have objective mathematical
probabilities; we can give them only non-mathematical “philosophical” prob-
abilities. Perhaps not even a superior intelligence could give them objective
mathematical probabilities. Today many people think differently; many think,
or assume without thinking, that all events have objective mathematical prob-
abilities. So it is worth noting that Kolmogorov, von Mises, and most other
mathematicians of their time who worked with the concept of objective proba-
bility agreed with Cournot that only some events have objective probabilities.
Kolmogorov put the matter this way in 1951 in in the Great Soviet Encyclopedia:

Certainly not every event whose occurrence is not uniquely deter-
mined under given conditions has a definite probability under these
conditions. The assumption that a definite probability (i.e. a com-
pletely defined fraction of the number of occurrences of an event if
the conditions are repeated a large number of times) in fact exists
for a given event under given conditions is a hypothesis which must
be verified or justified in each individual case.

2.71 Carl Hempel, 1905–1997
In 1965, in his Aspects of Scientific Explanation [101, p. 387], Hempel quotes
Harald Cramér’s formulation, quoted here in §2.64, in which Cournot’s principle
is a special case of Kolmogorov’s principle A.

2.72 Hans Freudenthal, 1905–1990
In an expository article on probability published in 1960 in Synthese [90, pp.
205–206], Freudenthal explained Cournot’s principle this way:

Arbuthnot’s statistical inference with its appeal to a model com-
prising a stochastic device has become exemplary. In the same way
D. Bernoulli and Laplace proved that it cannot be by chance that
the inclinations of the planetary orbits against the zodiac are as
small as they are found by astronomical evidence. Laplace used
this as an argument for his cosmogonic theory. The common aim
of those statisticians is a statistical reliability of their judgements
of nearly 100%. (At the same time the judgements themselves are
rather crude, mostly decisions between some ‘yes’ or ‘no’.) Though
in modern statistics, we are acquainted with more refined meth-
ods, there are still many opportunities to use Arbuthnot’s reasoning.
Philosophers call it Cournot’s principle: if something is proved to be
extremely improbable, we are allowed to state that it is impossible.
The statement of its impossibility is nearly always stressed by an
appeal to something like the urn model. The event to be disproved
appears to be as improbable as a large sequence of heads or sixes,
when tossing a coin or throwing a dice, and so it is impossible.

Additional quotations from [89, 91].
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2.73 Bruno de Finetti, 1906–1985
De Finetti participated in the 1949 Paris conference where Fréchet coined the
phrase in French: principe de Cournot. Shortly afterwards, he brought the name
into English, ridiculing it in 1951[57] as “the so-called principle of Cournot”.

But while he had no use for Cournot’s notion that predicting events of high
probability is the only way of connecting a system of probabilities with phenom-
ena, de Finetti had his own way of making sense of the idea that we do predict
events when they have high probability. As he explained in a note written in
1951 [58, p. 235] that Fréchet published in 1955 in his Les mathématiques et le
concret, he did not really disagree with the statement that one should act as if
an event with a very small probability should not happen. Rather he took the
principle as a tautology, a consequence of the subjective definition of probabil-
ity, not a principle standing outside probability theory and relating it to the
real world; see also Dawid 2004 [54].

2.74 William Feller, 1906–1970
If you repeatedly toss a fair coin, can you count on the number of heads and the
number of tails becoming equal at some point? In his section on the random
walk in the third edition of volume I of his textbook on probability (1968), Feller
derived a formula for the probability f2n for the event that the first equalization
happens on the 2nth toss. Then he made this comment [74, p. 78]:

It follows . . . that f2 + f4 + · · · = 1. In the coin-tossing terminol-
ogy this means that an ultimate equalization . . . becomes practically
certain if the game is prolonged sufficiently long. This was to be an-
ticipated on intuitive grounds, except that the great number of trials
necessary to achieve practical certainty comes as a surprise. For ex-
ample, the probability that no equalization occurs in 100 tosses is
about 0.08.

2.75 Joseph Doob, 1910–2004
Doob’s most explicit statement of Cournot’s principle comes in a historical essay
he published in 1976 [68, p. 201–202]. There he asks “what principle should be
used to translate mathematical probability theorems into real life” and answers
thus:

If one starts with mathematical probability theory the obvious
general operational translation principle is that one should ignore
real events that have small probabilities. How small is “small” de-
pends on the context, for example, the demands of a client on a
statistician. Somewhat more precisely, one first makes a judgment
on the possibility of the application of probability in a given context;
if so, one then sets up a model and comes to operational decisions
based on the principle that hypotheses must be reexamined if they
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ascribe small probability to a key event that actually happens. (This
is, of course a great oversimplification.) . . .

In [67], which derives from his discussion with von Mises at Dartmouth in
1940, Doob does not state Cournot’s principle directly, but it is suggested by his
explanation that practice depends on various forms of the law of large numbers.

2.76 Jean Ville, 1910–1989
Ville was a student of Maurice Fréchet and Émile Borel in Paris. In the path-
breaking doctoral thesis that he defended in 1939 he showed that events of
probability zero for a sequence of random variables can be identified game-
theoretically: an event A has measure zero if and only if there is a strategy for
betting on the variables (step-by-step as they are observed) that multiplies the
capital it risks by an infinite factor when A happens.

In addition to the official version of the thesis, Ville had written two philo-
sophical sections, an introduction and a conclusion. Borel quickly arranged for
the expanded version to be be published as a book [184]. On pp. 9–10 of the
introductory section, Ville states a version of Cournot’s principle. The passage,
quoted here in loose translation from the French, begins with a reference to
the standard practice of introducing probability theory by stating axioms for
probabilities.

. . . The theory thus constructed is logically correct, but the co-
efficients thus introduced must be interpreted. For this, we use
the subjective value of large probabilities, already highlighted by
Laplace. In this way we can take the basis of the axiomatic the-
ory to be the following: Given a collection of random events, we
can associate coefficients between 0 and 1 with them, such that if
we compose these coefficients according to the rules laid down as ax-
ioms, the events having probabilities very close to 1 are practically
certain (and therefore those whose probabilities are very small are
practically impossible).

We can therefore say, with Mr. Fréchet: The probability of an
event in a specified category of trials is a physical constant, depending
on the event and the category of trials, for which one obtains an
empirical value by conducting a large number of independent trials
and noting the frequency of the event.

Empirical value means a value that has little chance of being far
from the true value. So in the interpretation, we constantly come
back to the notion of “practical certainty” interpreting the probabil-
ity close to 1. So the axiomatic theory can be verified indirectly.

In this way, we deal with two kinds of probabilities in the ax-
iomatic theory: those that are close to 0 or to 1, which have a subjec-
tive meaning, quasi-impossibility or quasi-certainty, and those that
are close neither to zero nor to 1, which have no subjective mean-
ing when taken in isolation. It is precisely this lack of meaning for
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“middle” probabilities that is bothersome in the axiomatic theory: a
proposition like “the probability of heads is 1

2 ” has no value in isola-
tion and is not directly verifiable. If the experiment is repeated, we
deduce a verifiable proposition from unverifiable propositions. This
seems to be a defect here; we are tempted to consider only suffi-
ciently extended sequences of experiments, because no proposition
is usable except in combination with a large number of other propo-
sitions: this leads to statistical theory and the negation not only
of subjective value but even existence of probability for an isolated
event.

Ville may have been the first to state so clearly that only probabilities close
to zero or one have meaning. This idea was later repeated, with less hesitation,
by Kolmogorov’s students. It has also been stated in the context of statistical
mechanics by philosophers of physics; see [137].

4. La methode axiomatique et les grandes probabilités.
Dans les traités modernes, la notion de cas également probable n’est
employée que pour familiariser le lecteur avec l’idée de probabilité.
Après quelques exercices utilisant cette notion primitive, on passe
en general à la théorie axiomatique, qui consiste à considérer des
événements aléatoires, sans s’occuper des modes d’apparition, et à
leur associer des coefficients compris entre 0 et 1, que l’on appelle
probabilités. On donne des règles de composition de ces coefficients
quand on compose les événements; ces règles etant calquées sur
celles relatives aux probabilités définies par la méthode de Laplace
ne sont pas introduites artificiellement. La théorie ainsi constru-
ite est logiquement correcte, mais il faut interpreter les coefficients
ainsi introduits. On utilise pour cela la valeur subjective des grandes
probabilités, déjà mise en évidence dans Laplace. De sorte que la
base de la théorie axiomatique peut être considerée comme étant
la suivante : Étant donné des événements aléatoires, on peut leur
associer des coeflicients compris entre 0 et 1, tels que si on les com-
pose d’après les règles posées comme axiomes, les événements ayant
des probabilités très voisines de 1 soient pratiquement certains (par
consèquent, ceux dont les probabilités sont très petites sont pratique-
ment impossibles).

De sorte que nous pouvons dire, avec M. Fréchet : La proba-
bilité d’un événement, dans une catégorie d’épreuves déterminée, est
une constante physique, dependant de l’événement et de la catégorie
d’epreuves, dont on obtient une valeur empirique en procédant à un
grand nombre d’épreuves independantes et en notant la fréquence de
l’événement.

Valeur empirique signifie valeur qui a peu de chance de s’écarter
beaucoup de la valeur vraie. Nous voyons donc revenir constam-
ment, dans l’interpretation, cette notion de “certitude pratique” in-
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terprétant la prohabilité voisine de 1. La théorie axiomatique est
done susceptible de vérifications indirectes.

Nous avons ainsi affaire, dans la théorie axiomatique, à deux
sortes de probabilités : celles qui sont voisines de 0 ou de 1, qui ont
une signification subjective, quasi-impossibilité ou quasi-certitude,
et celles qui ne sont voisines ni de zero ni de 1, qui, prises isolément,
n’ont aucune signification subjective. C’est justement ce manque
de signification des probabilités “moyennes” qui est gènant dans la
théorie axiomatique : une proposition telle que “la probabilité de
pile est 1

2 ” n’a pas de valeur, prise isolément, et est invérifiable di-
rectement. Si l’on répète l’experience, on deduit de propositions
invérifiables une proposition vérifiable. Il semble y avoir là un défaut;
on est tenté de ne jamais considérer que des suites assez étendues
d’expériences, puisque chaque proposition n’est utilisable qu’en com-
binaison avec un grand nombre d’autres propositions : cela mène a
la théorie statistique et à la négation non seulement de la valeur sub-
jective, mais encore de l’existence de la probabilité d’un événemenlt
isolé.

2.77 Trygve Haavelmo, 1911–1999
Haavelmo’s article, “The probability approach to econometrics” [98], is often
seen as the founding charter of modern econometrics [141]. The article’s most
fundamental point was Cournot’s principle.

As Haavelmo explained, econometricians had been reluctant to adopt prob-
ability as a foundation for their work because they incorrectly assumed that
probability is applicable only in situations like those studied by the British
school of statistics, where a large sample is drawn from a stable population. He
made the point as follows (pages 477–478):

The reluctance among economists to accept probability models
as a basis for economic research has, it seems, been founded upon
a very narrow concept of probability and random variables. Proba-
bility schemes, it is held, apply only to such phenomena as lottery
drawings, or, at best, to those series of observations where each ob-
servation may be considered as an independent drawing from one
and the same ‘population’. From this point of view it has been ar-
gued, e.g., that most economic time series do not conform well to any
probability model, ‘because the successive observations are not inde-
pendent’. But it is not necessary that the observations should be in-
dependent and that they should all follow the same one-dimensional
probability law. It is sufficient to assume that the whole set of, say
n, observations may be considered as one observation of n variables
(or a ‘sample point’) following an n-dimensional joint probability
law, the ‘existence’ of which may be purely hypothetical. Then, one
can test hypotheses regarding this joint probability law, and draw
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inferences as to its possible form, by means of one sample point (in n
dimensions). Modern statistical theory has made progress in solving
such problems of statistical inference.

In fact, if we consider actual economic research — even that car-
ried on by people who oppose the use of probability schemes — we
find that it rests, ultimately, upon some, perhaps very vague, notion
of probability and random variables. For whenever we apply a the-
ory to facts we do not — and we do not expect to – obtain exact
agreement. Certain discrepancies are classified as ‘admissible’, oth-
ers as ‘practically impossible’ under the assumptions of the theory.
And the principle of such classification is itself a theoretical scheme,
namely one in which the vague expressions ‘practically impossible’
or ‘almost certain’ are replaced by ‘the probability is near to zero’,
or ‘the probability is near to one’.

This is nothing but a convenient way of expressing opinions about
real phenomena. But the probability concept has the advantage that
it is ‘analytic’, we can derive new statements from it by the rules of
logic. Thus, starting from a purely formal probability model involv-
ing certain probabilities which themselves may not have any counter-
parts in real life, we may derive such statements as ‘The probability
of A is almost equal to 1’. Substituting some real phenomenon for
A, and transforming the statement ‘a probability near to 1’ into ‘we
are almost sure that A will occur’, we have a statement about a real
phenomenon, the truth of which can be tested.

The class of scientific statements that can be expressed in prob-
ability terms is enormous. In fact, this class contains all the ‘laws’
that have, so far, been formulated. For such ‘laws’ say no more and
no less than this: The probability is almost 1 that a certain event
will occur.

Haavelmo went on to explain that a probability law can be tested based on one
observation because it makes predictions with very high probability about that
one observation, and such predictions are the only kind of prediction science
can ever make:

The class of scientific statements that can be expressed in prob-
ability terms is enormous. In fact, this class contains all the ‘laws’
that have, so far, been formulated. For such ‘laws’ say no more and
no less than this: The probability is almost 1 that a certain event
will occur.

2.78 Hans Richter, 1912–1978
The German mathematical statistician Hans Richter, who taught in Munich,
emphasized Cournot’s principle in his contributions to Dialectica in 1954 [157,
189].
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We find this passage in his 1956 probability textbook [158], which helped
bring Kolmogorov’s axioms to students in postwar Germany.

Die praktische GewiBheit, die wir im Leben dauernd annehmen
und auch annehmen müssen, wird bei dieser Auffassung zu einer
Wahrscheinlichkeit, die eben nur so nahe bei 1 liegt, daB wir
gewöhnlich darauf verzichten, überhaupt noch von dem Unterschied
zu sprechen. Der Begriff der unkontrollierbaren Störung, der in
der klassischen Physik eigentlich ein Fremdkörper ist, erhält so eine
einleuchtende Beschreibung: Die Störung entspricht dem Defekt
ϵ > 0 der Wahrscheinlichkeit eines praktisch sicheren Ergebnisses
gegenüber dem Idealwert 1, der klassisch angenommen werden
müßte. Bei astronomischen Untersuchungen ist dieser Defekt so
klein, daB er gar keine Rolle mehr spielt; bei unseren Beispielen
aus dem täglichen Leben hat ϵ aber einen wesentlich höheren Wert,
wie die Existenz von Unglücksfallen zeigt. Und doch sind wir
gezwungen, auch ein solches ϵ noch praktisch zu vernachlässigen.
Wir kommen so zu der folgenden Formulierung, die Cournotsches
Prinzip genannt wird.

Zu vorgegebenem S0 mit den möglichen Folgesituationen Snu. sei
ein ϵ > o gewählt. Hat ein Sν , etwa S1, eine Wahrscheinlichkeit von
mindestens 1− ϵ, so sollen wir so handeln, als ob das Eintreten von
S1 gewiss wäre. Das Eintreten von S1 heißt dann praktisch sicher.

As a result of Richter’s textbook, the name Cournotsche Prinzip became
fairly widely known among probabilists in Germany.

2.79 Charles Stein, 1920–2016
The following is excerpted from an interview by Morris H. DeGroot, conducted
in 1983 and published in Statistical Science in 1986 [60, pp. 459–460].

From interview by DeGroot DeGroot: Let’s talk about probability for a
moment. You say that the notion of subjective probability is unacceptable to
you. What definition of probability do you use?
Stein: Essentially Kolmogorov’s. That it is a mathematical system.
DeGroot: simply any set of numbers that satisfies the axioms of the calculus
of probabilities.
Stein: Yes.
DeGroot: But what do these numbers represent in the real world?
Stein: Well, there is no unique interpretation. And of course I’m talking about
Kolmogorov’s old interpretation of probability and not the complexity interpre-
tation. In his book he mentions briefly two aspects of the interpretation. The
first is the traditional relative frequency of occurrence in the long run. And
the second is that when one puts forward a probabilistic model that is to be
taken completely seriously for a real world phenomenon, then one is asserting
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in principle that any single specified event having very small probability will
not occur. This, of course, combined with the law of large numbers, weak or
strong, really is a broader interpretation than the frequency notion. So, in fact,
the frequency interpretation in that sense is redundant. This doesn’t answer
the question, “When I say the probability is 1/6 that this die will come up 6 on
the next toss, what does that statement mean?” But then in no serious work in
any science do we answer the question, “What does this statement mean?” It is
an erroneous philosophical point of view that leads to this sort of question.

2.80 Yuri Prokhorov, 1929–2013, and Boris Sevast’yanov,
1923—2013

Yuri Vasilevich Prokhorov and Boris Aleksandrovich Sevast’yanov were both
mentored in mathematical probability by Andrei Kolmogorov at Moscow State
University in the 1950s.

In their article on probability in the Soviet Mathematical Encyclopedia in
the 1970s [154], Prokhorov and Sevast’yanov echoed Jean Ville’s statement that
only probabilities close to 0 or 1 have direct meaning.

2.81 David R. Cox, 1924–2022, and David V. Hinkley,
1944–2019

The term repeated sampling principle was coined by Cox and Hinkley in their
1974 textbook [48, p. 45]:

According to the strong repeated sampling principle, statistical
procedures are to be assessed by their behavior in hypothetical rep-
etitions under the same conditions. This has two facets. Measures
of uncertainty are to be interpreted as hypothetical frequencies in
long run repetitions; criteria of optimality are to be formulated in
terms of sensitive behaviour in hypothetical repetitions.

The argument for this is that it ensures a physical meaning for
the quantities that we calculate and that it ensures a close relation
between the analysis we make and the underlying model which is
regarded as representing the “true” state of affairs.

2.82 John Stewart Bell, 1928–1990
Page 122 of [13], reprinting [12]:

. . . the typical track, if long enough, will serve to test predictions. . . .
The relevance of this remark is that later we are concerned with
theories of the universe as a whole. Then there is no opportunity
to repeat the experiment; history is given to us once only. We are
in the position of having a single track, and it is important that the
theory has still something to say—provided that this single track is
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not a freak, but a typical member of the hypothetical ensemble of
universes that would exhibit the complete quantum distribution of
tracks.

. . . In the same way as for the α particle track it follows from the
theory that the ‘typical’ world will approximately realize quantum
mechanical distributions over such approximately independent com-
ponents. The role of the hypothetical ensemble is precisely to permit
definition of the word ‘typical’.

2.83 Henry Kyburg, Jr., 1928–2007
Kyburg, a professor of philosophy and computer of science at the University of
Rochester, developed his own concept of practical certainty at length in his 1990
book Science & Reason [113]. As he explained on pp. 65–68, he distinguished
between practical certainty and evidential certainty, with corresponding bodies
of knowledge, or sets of propositions:

• an evidential corpus, consisting of the propositions “acceptable as evidence
in a certain context”, and

• and a larger practical corpus, consisting of propositions that may be only
practically certain.

“The level of practical certainty,” he wrote, “is indeed arbitrary, though no more
arbitrary than the corresponding values α = .10, .05, and .01 so popular in
applied statistics.”

Kyburg’s practical corpus was not closed under conjunction. As he ex-
plained,

. . . the set of practical certainties is weakly deductively closed: it
contains the deductive consequences of every statement it contains.
It is subject to the lottery “paradox” insofar as it may contain each
of a set of statements that are jointly inconsistent. But it does not
uselessly contain all statements, because it contains no explicitly
contradictory statement. Nor does it contain both a statement and
its denial, so long as the level of acceptance is chosen to be greater
than .5. . .

2.84 Hugh Everett III, 1930–1982
Quotation from Everett’s 1957 thesis: Pages 70–71 of [63]

In the language of subjective experience, the observer which is
described by a typical element, ψ′

ij...k, of the superposition has per-
ceived an apparently random sequence of definite results for the
observations. It is furthermore true, since in each element the
system has been left in an eigenstate of the measurement, that
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if at this stage a redetermination of an earlier system observation
(Sl) takes place, every element of the resulting final superposition
will describe the observer with a memory configuration of the form
[. . . , a1i , . . . , a

l
j , . . . , a

r
k, . . . , a

l
j ] in which the earlier memory coincides

with the later—i.e., the memory states are correlated. It will thus
appear to the observer which is described by a typical element of
the superposition that each initial observation on a system caused
the system to “jump” into an eigenstate in a random fashion and
thereafter remain there for subsequent measurements on the same
system. Therefore, qualitatively, at least, the probabilistic assertions
of Process 1 appear to be valid to the observer described by a typical
element of the final superposition.

In order to establish quantitative results, we must put some sort
of measure (weighting) on the elements of a final superposition. This
is necessary to be able to make assertions which will hold for almost
all of the observers described by elements of a superposition. In
order to make quantitative statements about the relative frequencies
of the different possible results of observation which are recorded in
the memory of a typical observer we must have a method of selecting
a typical observer.

. . .
The situation here is fully analogous to that of classical statisti-

cal mechanics, where one puts a measure on trajectories of systems
in the phase space by placing a measure on the phase space itself,
and then making assertions which hold for "almost all" trajectories
(such as ergodicity, quasi-ergodicity, etc). This notion of “almost all”
depends here also upon the choice of measure, which is in this case
taken to be Lebesgue measure on the phase space. One could, of
course, contradict the statements of classical statistical mechanics
by choosing a measure for which only the exceptional trajectories
had nonzero measure. Nevertheless the choice of Lebesgue measure
on the phase space can be justified by the fact that it is the only
choice for which the "conservation of probability" holds, (Liouville’s
theorem) and hence the only choice which makes possible any rea-
sonable statistical deductions at all.

In our case, we wish to make statements about "trajectories"
of observers. However, for us a trajectory is constantly branching
(transforming from state to superposition) with each successive mea-
surement. To have a requirement analogous to the "conservation of
probability" in the classical case, we demand that the measure as-
signed to a trajectory at one time shall equal the sum of the measures
of its separate branches at a later time. This is precisely the addi-
tivity requirement which we imposed and which leads uniquely to
the choice of square-amplitude measure. Our procedure is therefore
quite as justified as that of classical statistical mechanics.
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2.85 Terrence Fine, 1939–2021
Discuss the relevance of Fine’s suggestion, in 1976 [75], that randomness is what
remains when we have made the best predictions we can. This viewpoint has
been strengthened by Vovk’s work on defensive forecasting [172, Ch. 12] and
related work by other authors.

2.86 Per Martin-Löf, born 1942
In Martin-Löf’s pathbreaking article on the definition of random sequences,
published in 1966, we find this passage [136, p. 616]:

The interpretation of a probability is currently (e.g., in the Grundla-
gen by Kolmogorov) governed not only by the clause that the relative
frequency in a large number of repetitions of the experiment should
be close to it, but also by the following somewhat obscure additional
clause. If the probability is very small, we should be practically sure
that the event does not occur in a single trial.

Per Martin-Löf has said that he learned Cournot’s principle from Borel rather
than from Kolmogorov. See also [18, 135].

2.87 Donald Gillies, born 1944
In a 1973 book entitled An Objective Theory of Probability [96], the British
author Donald Gillies proposed a philosophical account of significance testing.
According to Gillies, the distribution of a random variable ξ is falsifiable distri-
bution if ξ’s possible values can be partitioned into sets A and C such that

1. ξ’s probability of being in C is smaller than some suitably small constant,

2. for each x ∈ C, the ratio f(x)/fmax, where f is ξ’s probability density
and fmax is f ’s maximum value, is smaller than some other suitably small
constant,

3. fmax “is in some sense representative” of f ’s values for points in A.

Gillies wrote that when a falsifiable distribution follows from a hypothesis H,
and “we test H by means of ξ we can be said to be predicting ξ ∈ A, and are
regarding our prediction as falsified if if ξ ̸∈ A”.

Gillies’s proposal did not prove appealing to statisticians, at least in part
because the ratio f(x)/fmax depends on ξ’s scale of measurement. In the contin-
uous case, this ratio will change if ξ is transformed non-linearly. In the discrete
case, it will usually change if categories are subdivided. The extent to which
Gillies was out of step with statisticians is revealed by his use of “likelihood”
to name the ratio f(x)/fmax. Statisticians invariably follow Fisher by using
“likelihood” for a quantity that is not sensitive to ξ’s scale of measurement.

Gillies presented his proposal as a way of squaring statistical testing with
Karl Popper’s philosophy of falsification. He reviewed the thinking of a number
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of authors whom I have quoted in this paper. He did not quote Cournot, but
he quoted Kolmogorov’s conditions A and B. He took as his starting point ”the
rule of d’Alembert and Buffon”, “which stated roughly that we will regard a
hypothesis H as falsified if the observed event has a low probability given H
(p. 167).”

2.88 Persi Diaconis, born 1945, and Brian Skyrms, born
1938

In their 2018 book, Ten Great Ideas About Chance [64], Diaconis and Skyrms
dismiss Jacob Bernoulli’s theorem as a basis for finding a probability from re-
peated trials, calling the notion that it can provide such a basis “Bernoulli’s
swindle”. They then say this about Cournot’s principle:

. . . it is a remarkably persistent fallacy, easy to swallow in the
absence of rigorous thinking. We find it in the French mathematician
and philosopher Cournot (1843), who holds that small-probability
events should be taken to be physically impossible. He also held
that this principle (Fréchet named it Cournot’s principle) is the one
that connects probabilistic theories to the real world. It is taken,
as in Bernoulli, as showing that we should identify probability with
relative frequency in a large number of (independent? identically
distributed?) trials.

This mantra was repeated in the twentieth century by very dis-
tinguished probability theorists, including Émile Borel, Paul Lévy,
Andrey Markov, and Andrey Kolmogorov. We cannot help but won-
der whether this was to some extent a strategy for brushing off philo-
sophical interpretational problems, rather than a serious attempt to
confront them.

Cournot’s principle, taken seriously, is absurd. Throw a dart
at a target. The chance that it hits any specific point is very small.
Then are we supposed to conclude that for any point, it is physically
impossible that the dart hits that point? Later statements tend to
try to get around this by modifying the principle as saying that an
event of very small probability, singled out in advance, is physically
impossible. So you have to pick out a point in advance. Why should
picking it out in advance make it physically impossible?

2.89 Colin Howson, 1945–2020, and Peter Urbach
In the third edition of their book advocating “the Bayesian approach to scientific
reasoning”, which appeared in 2006 [102, p. 49], the British philosophers Colin
Howson and Peter Urbach say this about Cournot’s principle:

. . . without some qualification Cournot’s Principle is false, for
events with almost infinitesimal probabilities occur all the time with-
out casting any suspicion upon the theories which assign them those
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probabilities: the exact configuration of air molecules in a room at
any given time has a microscopic probability; so does any long se-
quence of outcomes of tosses of a fair coin (even with so small a
number as twenty the probability of each possible sequence is al-
ready around one in a million). Can the Principle be qualified in
such a way as to make it tenable? This is just what the well-known
and widely-used theories of bivalent statistical tests of R. A. Fisher
and Neyman and Pearson (all believers in a long-run frequency ac-
count of statistical probabilities), attempt to do in their different
ways. Unfortunately . . . these attempts also fail.

2.90 A. Philip Dawid, born 1946
Dawid has always advocated a subjectivist interpretation of probability and
often calls himself a Bayesian. He is unusual and among Bayesians, however,
by his forthright advocacy of Cournot’s principle. In the Rutgers Foundations
of Probability Seminar in February 2022, for example, he explained that the
meaning of a probability model is simply that it asserts events to which it gives
high probability.

In 1985, Dawid stated Cournot’s principle and mentioned its relevance to
the frequency interpretation of probability as follows [55, p. 116]:

Now consider the following rule of interpretation of probability
statements (Cournot’s Principle, or Borel’s ‘Single Law of Probabil-
ity’ [1943]).

Rule of Interpretation. If an event A is assigned prob-
ability 1 by a distribution P , then P asserts that A is
‘morally certain’.

such a rule would probably be acceptable to most frequentist statis-
ticians, even though it is of a subjectivist nature. As pointed out
by de Finetti [1936], only with such a rule can we avoid an infinite
regress in a frequency theory of probability. We therefore take the
rule as basic in all that follows.

The citations are to [28] (Borel) and [56] (de Finetti). Dawid developed his
viewpoint further in [54].
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arithmétiques. Rendiconti del Circolo Matematico di Palermo, 27:247–
270, 1909. Reprinted in [31], Volume 2, pp. 1055–1079. 43

[24] Émile Borel. Le Hasard. Alcan, Paris, 1914. The first and second editions
both appeared in 1914, with later editions in 1920, 1928, 1932, 1938, and
1948. 51, 52
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Lévy, Paul, 1886–1971, 40, 65, 67
Laplace, Pierre Simon, 1749–1827,

25
Laurent, Hermann, 1841–1908, 39,

49
Leibniz, Gottfried Wilhelm,

1646–1716, 19
Lexis, Wilhelm, 1837–1914, 39
Liagre, Jean Baptiste Joseph,

1815–1891, 37
Locke, John, 1632–1704, 18
Lugo y Quiroga, Juan de,

1583–1660, 14

Mansion, Paul, 1844–1919, 40
Markov, Andrei, 1856–1922, 46
Martin, Thierry, born 1950, 36
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