

Datenblatt

LWL-Interface RS232 1Kanal

RS232 1Kanal / Pkt. zu Pkt. Verbindung

1 Allgemeine Beschreibung

Dieses Gerät ist ein kompaktes, robustes, für den Einsatz in industrieller Umgebung geeignetes Modem zur Übertragung von einem asynchronen RS232 Datenkanal im 'Voll-Duplex' Betrieb. Je nach verwendetem Lichtwellenleiter können zwischen zwei Teilnehmern Übertragungsstrecken bis zu 3000m realisiert werden.

In Verbindung mit RS232 Party-Line 1Kanal Modems läßt sich ein störsicheres RS232 Bussystem auf LWL-Basis realisieren.

2 Eigenschaften____

- 1Kanal RS232 LWL Transceiver
 - Voll-Duplex Datenübertragung
 - Unidirektionale RS232-Schnittstelle
 - -120 kBit Datenübertragungsrate
 - -Voll Protokoll-Transparent
 - 'Power-Good' Anzeige
 - 'Receive-Data' Anzeige
 - -25-pol. Sub-D RS232 Schnittstelle Buchse
 - -F-SMA, F-ST genormte optische Anschlüsse
 - -Aluminiumgehäuse (optional mit Rastclip für 35mm Hutprofilschiene)
 - -+5V oder 9 .. 30V DC Spannungsversorgung

Bild 1 F-ST / MMF / RS232 850nm Medienkonverter

3 Blockschaltbild

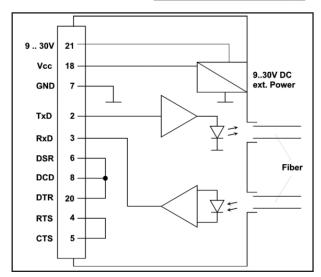


Bild 2 Schaltbild

4 Bestellinformation _____

Ausführung	Bestellnummer
660nm / F-SMA / POF	901RS2321K519
mit Rastclip	901RS2321KR19
660nm / F-ST / POF	901RS2321K520
mit Rastclip	901RS2321KR20
850nm / F-SMA / MMF	901RS2321K517
mit Rastclip	901RS2321KR17
850nm / F-ST / MMF	901RS2321K518
mit Rastclip	901RS2321KR18

02/14

Electronics | OptoElectronics Rev. A01

RS232 1Kanal / Pkt. zu Pkt. Verbindung

5 CE-Konformitätserklärung

Der RS232 1Kanal 660 / 850nm Medienkonverter erfüllt die grundlegenden Anforderungen gemäß Artikel 4 und Anhang III der Richtlinie 89/336/EWG: Elektromagnetische Verträglichkeit (EMV). Die Übereinstimmung dieses Produkts mit den Vorschriften o.g. Richtlinie wird nachgewiesen durch die vollständige Einhaltung folgender Normen:

- EN 55022 bzw. EN 50081-1
- EN 55024 bzw. EN 50082-1
- EN 50082-2 (Industriebereich)

6 Arbeitsweise

Das RS232 1Kanal LWL-Modem ist ein Codetransparenter elektro-optischer Wandler.
An der RS232-Schnittstelle ankommende Daten werden in optische Signale umgewandelt und vom angeschlossenen Lichtwellenleiter übertragen.
Der optische Empfänger generiert aus den ankommenden optischen Signalen das entsprechende RS232 Datenformat.

Das RS232-Format wird nach folgender Regel in optische Signale umgesetzt:

$$U_{IN} \ge +3V = '0' \implies opt. Out=Ein$$

 $U_{IN} \le -3V = '1' \implies opt. Out=Aus$

Für Anwendungen bei denen die Zuordnung der optischen Pegel zu den Zuständen der RS232 Pegel invertiert sein muß, stehen entsprechende RS232 Modems zur Verfügung (Option).

7 Spannungsversorgung

Das Modem bietet 3 Möglichkeiten der Spannungsversorgung:

A) +5V DC ±5% an Pin 18 Sub-D

Die Schraubklemme darf nicht belegt werden.

B) +9V...+30V DC (ungeregelt) an Pin 21 Sub-D

Ein Schaltregler erzeugt die +5V Versorgungsspannung für die Elektronik des Modems. Pin 18 ist ein +5V Ausgang, der mit max. 50mA belastet werden kann. Die Schraubklemme darf nicht belegt werden.

C) +9V...+30V DC (ungeregelt) an Schraubklemme

Ein Schaltregler erzeugt die +5V Versorgungsspannung für die Elektronik des Modems. Pin 18 ist ein +5V Ausgang, der mit max. 50mA belastet werden kann.

In Bild 3 ist die Stromaufnahme des Modems in Abhängigkeit von der Versorgungsspannung für B) und C) dargestellt.

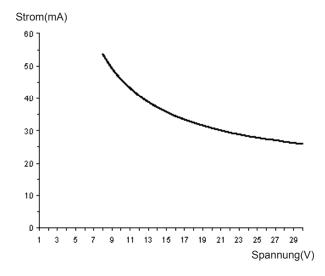


Bild 3 Stromaufnahme

RS232 1Kanal / Pkt. zu Pkt. Verbindung

8 Inbetriebnahme_

- -Stellen Sie die Geräte an geeigneter Stelle auf.
- -Verbinden Sie die Geräte mit den Teilnehmern.
- -Stellen Sie sicher das alle zu verbindenden Geräte spannungslos sind. Dies vermeidet mögliche Schäden während der Verdrahtung.
- -Verbinden Sie mit dem konfektionierten LWL-Kabel die optischen Schnittstellen der Geräte nach dem Anschlußschema in Bild 4.
- -Prüfen Sie alle Verbindungen auf ihre richtige Anschlußbelegung.
- -Schließen Sie die Geräte an ihre Spannungsversorgung an.

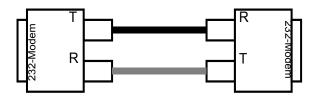


Bild 4 LWL-Verbindung

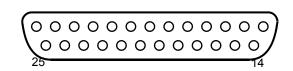
Beispiel 2: Pinbelegung 25pol. Sub-D

Pin	Name	DCE	DTE
1	CG	Erde	Erde
2	TxD	Eingang	Ausgang
3	RxD	Ausgang	Eingang
4	RTS	Eingang	Ausgang
5	CTS	Ausgang	Eingang
6	DSR	Ausgang	Eingang
7	GND	Masse	Masse
8	DCD	Ausgang	Eingang
12	DCD2	Ausgang	Eingang
13	CTS2	Ausgang	Eingang
14	TXD2	Eingang	Ausgang
15	TxC	Ausgang	Eingang
16	RxD2	Ausgang	Eingang
17	RxC	Ausgang	Eingang
19	RTS2	Eingang	Ausgang
20	DTR	Eingang	Ausgang
22	RI	Ausgang	Eingang
23	DRS	A/E	A/E
24	TxC	Eingang	Ausgang
25	BUSY	Ausgang	Eingang

9 RS232

Die vollständige Pinbelegung der RS232 Schnittstelle und die Bedeutung der Signale sind in der EIA RS232-C Norm beschrieben.

Vereinbarungsgemäß gibt es Geräte die als DTE (Data Terminal Equipment z.B. Computer) und DCE (Data Communication Equipment z.B. Modem) bezeichnet werden.


In der Norm ist der 25pol. Sub-D festgelegt, wobei sich auch die 9pol. Sub-D Ausführung etabliert hat.

DCE	=	Sub-D Buchse
DTE	=	Sub-D Stift

Beispiel 1: Pinbelegung 9pol. Sub-D

Pin	Name	DCE	DTE
1	DCD	Ausgang	Eingang
2	RxD	Ausgang	Eingang
3	TxD	Eingang	Ausgang
4	DTR	Eingang	Ausgang
5	GND	Masse	Masse
6	DSR	Ausgang	Eingang
7	RTS	Eingang	Ausgang
8	CTS	Ausgang	Eingang
9	RI	Ausgang	Eingang

10 Sub-D Pinbelegung _

PIN Nr.	Name	Funktion
2	TxD	Data IN
3	RxD	Data OUT
4	RTS	Brücke auf CTS
5	CTS	Brücke auf RTS
6	DSR	Brücke auf DCD, DTR
7	GND	Bezugspotenzial
8	DCD	Brücke auf DSR, DTR
18	Vcc	+5V DC Input/Output
20	DTR	Brücke auf DSR, DCD
21	V+	9 30V DC IN

! Nicht aufgeführte Pins sind ohne Funktion und sollten nicht belegt werden. !

Rev. A01 T01RS2321K517 Electronics | OptoElectronics

RS232 1Kanal Pkt. zu Pkt. Verbindung

11 Grenzwerte _____ +35V DC Spannungsversorgung +V Spannungsversorgung 5V DC _____ +5,5V DC Lagertemperatur ______-55..+125°C Betriebstemperatur _____-40..+85°C

Belastungen die über die als 'Grenzwerte' angegebenen hinausgehen können das Modem dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Modems dar. Der dauerhafte Betrieb des Modems mit diesen Werten wird nicht Empfohlen, da die Zuverlässigkeit des Gerätes darunter leiden kann.

12 Technische Daten___

Datenrate: 0 .. 120 kBit/s Bitverzerrung: ± 200ns

Wellenlänge:850nm

30μW / 50/125μm MM-Faser max. opt. P_{out}:

ca. -15dBm

min. opt. P_{IN}: 1μW / 50/125μm MM-Faser

ca. -30dBm

min. Power Budget: 15dB

Wellenlänge:660nm

max. opt. P_{out}: 700μW / 980/1000μm POF

ca. -1,5dBm

min. opt. P_{IN}: 3µW / 980/1000µm POF

ca. -25dBm

min. Power Budget: 23dB

opt. Anschluß: F-ST, F-SMA max. Reichweite: 3000m

GI-Faser 2000m **HCS-Faser**

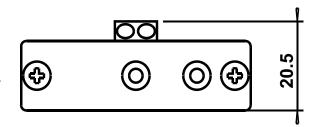
70m PO-Faser

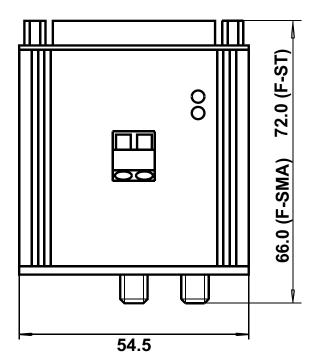
Datenformat el.: RS232-C / V24

25-pol. Sub-D Buchse el. Anschluß: +5V DC ±5% über Sub-D Betriebsspannung:

oder 9 .. 30V DC über Schraubklemmen

Stromaufnahme: 70mA (±10%) / 5V


LED Anzeigen: grün = Vcc


gelb = RxD (Datenempfang)

Gehäuse: Aluminiumstrangpressprofil Abmessungen: ca. 72x55x20mm (LxBxH)

IP40 Schutzart: Gewicht: ca. 100g Temperaturbereich: -40 .. +80°C

13 Maßzeichnung ____

Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.