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1 Boole, An Investigation of the Laws of Thought (1854), p. 8-11

[T]he requirements of a general method in Logic seem to be the following:–
1st. As the conclusion must express a relation among the whole or among a part of the ele-

ments involved in the premises, it is requisite that we should possess the means of eliminating
those elements which we desire not to appear in the conclusion, and of determining the whole
amount of relation implied by the premises among the elements which we wish to retain. Those5

elements which do not present themselves in the conclusion are, in the language of the com-
mon Logic, called middle terms; and the species of elimination exempli�ed in treatises on Logic
consists in deducing from two propositions, containing a common element or middle term, a con-
clusion connecting the two remaining terms. But the problem of elimination, as contemplated in
this work, possesses a much wider scope. It proposes not merely the elimination of one middle10

term from two propositions, but the elimination generally of middle terms from propositions,
without regard to the number of either of them, or to the nature of their connexion. To this
object neither the processes of Logic nor those of Algebra, in their actual state, present any strict
parallel. In the latter science the problem of elimination is known to be limited in the following
manner:–From two equations we can eliminate one symbol of quantity; from three equations15
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two symbols; and, generally, from n equations n − 1 symbols. But though this condition, neces-
sary in Algebra, seems to prevail in the existing Logic also, it has no essential place in Logic as a
science. There, no relation whatever can be proved to prevail between the number of terms to be
eliminated and the number of propositions from which the elimination is to be e�ected. From the
equation representing a single proposition, any number of symbols representing terms or ele-20

ments in Logic may be eliminated; and from any number of equations representing propositions,
one or any other number of symbols of this kind may be eliminated in a similar manner. For
such elimination there exists one general process applicable to all cases. This is one of the many
remarkable consequences of that distinguishing law of the symbols of Logic, to which attention
has been already directed.25

2ndly. It should be within the province of a general method in Logic to express the �nal
relation among the elements of the conclusion by any admissible kind of proposition, or in any
selected order of terms. Among varieties of kind we may reckon those which logicians have
designated by the terms categorical, hypothetical, disjunctive, &c. To a choice or selection in
the order of the terms, we may refer whatsoever is dependent upon the appearance of particular30

elements in the subject or in the predicate, in the antecedent or in the consequent, of that propo-
sition which forms the “conclusion.” But waiving the language of the schools, let us consider
what really distinct species of problems may present themselves to our notice. We have seen
that the elements of the �nal or inferred relation may either be things or propositions. Suppose
the former case; then it might be required to deduce from the premises a de�nition or description35

of some one thing, or class of things, constituting an element of the conclusion in terms of the
other things involved in it. Or we might form the conception of some thing or class of things,
involving more than one of the elements of the conclusion, and require its expression in terms
of the other elements. Again, suppose the elements retained in the conclusion to be proposi-
tions, we might desire to ascertain such points as the following, viz., Whether, in virtue of the40

premises, any of those propositions, taken singly, are true or false?–Whether particular combi-
nations of them are true or false?–Whether, assuming a particular proposition to be true, any
consequences will follow, and if so, what consequences, with respect to the other propositions?–
Whether any particular condition being assumed with reference to certain of the propositions,
any consequences, and what consequences, will follow with respect to the others? and so on. I45

say that these are general questions, which it should fall within the scope or province of a general
method in Logic to solve. Perhaps we might include them all under this one statement of the �nal
problem of practical Logic. Given a set of premises expressing relations among certain elements,
whether things or propositions: required explicitly the whole relation consequent among any of
those elements under any proposed conditions, and in any proposed form. That this problem,50

under all its aspects, is resolvable, will hereafter appear. But it is not for the sake of noticing this
fact, that the above inquiry into the nature and the functions of a general method in Logic has
been introduced. It is necessary that the reader should apprehend what are the speci�c ends of
the investigation upon which we are entering, as well as the principles which are to guide us to
the attainment of them.55

9. Possibly it may here be said that the Logic of Aristotle, in its rules of syllogism and conver-
sion, sets forth the elementary processes of which all reasoning consists, and that beyond these
there is neither scope nor occasion for a general method. I have no desire to point out the defects
of the common Logic, nor do I wish to refer to it any further than is necessary, in order to place in
its true light the nature of the present treatise. With this end alone in view, I would remark:–1st.60

That syllogism, conversion, &c., are not the ultimate processes of Logic. It will be shown in this
treatise that they are founded upon, and are resolvable into, ulterior and more simple processes
which constitute the real elements of method in Logic. Nor is it true in fact that all inference
is reducible to the particular forms of syllogism and conversion.–Vide Chap. xv. 2ndly. If all
inference were reducible to these two processes (and it has been maintained that it is reducible65

to syllogism alone), there would still exist the same necessity for a general method. For it would
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still be requisite to determine in what order the processes should succeed each other, as well
as their particular nature, in order that the desired relation should be obtained. By the desired
relation I mean that full relation which, in virtue of the premises, connects any elements selected
out of the premises at will, and which, moreover, expresses that relation in any desired form and70

order. If we may judge from the mathematical sciences, which are the most perfect examples
of method known, this directive function of Method constitutes its chief o�ce and distinction.
The fundamental processes of arithmetic, for instance, are in themselves but the elements of a
possible science. To assign their nature is the �rst business of its method, but to arrange their
succession is its subsequent and higher function. In the more complex examples of logical de-75

duction, and especially in those which form a basis for the solution of di�cult questions in the
theory of Probabilities, the aid of a directive method, such as a Calculus alone can supply, is
indispensable.

2 Boole, idem, p. 146-149 : un exemple de problème et sa solution

Ex. 5. Let the observation of a class of natural productions be supposed to have led to the
following general results.80

1st, That in whichsoever of these productions the properties A and C are missing, the pro-
perty E is found, together with one of the properties B and D, but not with both.

2nd, That wherever the properties A and D are found while E is missing, the properties B
and C will either both be found, or both be missing.

3rd, That wherever the property A is found in conjunction with either B or E, or both of85

them, there either the property C or the property D will be found, but not both of them. And
conversely, wherever the property C or D is found singly, there the property A will be found in
conjunction with either B or E, or both of them.

Let it then be required to ascertain, �rst, what in any particular instance may be concluded
from the ascertained presence of the property A, with reference to the properties B, C , and D ;90

also whether any relations exist independently among the properties B, C , and D. Secondly, what
may be concluded in like manner respecting the property B, and the properties A, C , and D.

It will be observed, that in each of the three data, the information conveyed respecting the
properties A, B, C , and D, is complicated with another element, E, about which we desire to say
nothing in our conclusion. It will hence be requisite to eliminate the symbol representing the95

property E from the system of equations, by which the given propositions will be expressed.
Let us represent the property A by x , B by y, C by z, D by w , E by v. The data are

x̄ z̄ = qv(yw̄ + wȳ); (1)
v̄xw = q(yz + ȳz̄); (2)

xy + xvȳ = wz̄ + zw̄; (3)100

x̄ standing for 1 − x , &c., and q being an inde�nite class symbol. Eliminating q separately
from the �rst and second equations, and adding the results to the third equation reduced by (5),
Chap.VIII., we get

x̄ z̄(1 − vyw̄ − vwȳ) + v̄xw(yz̄ + zȳ) + (xy + xvȳ)(wz + w̄z̄)
+ (wz̄ + zw̄)(1 − xy − xvȳ) = 0. (4)105

From this equation v must be eliminated, and the value of x determined from the result. For
e�ecting this object, it will be convenient to employ the method of Prop. 3 of the present chapter.

Let then the result of elimination be represented by the equation
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Ex + E′(l − x) = 0.
To �nd E make x = 1 in the �rst member of (4), we �nd110

v̄w(yz̄ + zȳ) + (y + vȳ)(wz + w̄z̄) + (wz̄ + zw̄)v̄ȳ.

Eliminating v, we have

(wz + w̄z̄) {w(yz̄ + zȳ) + y(wz + w̄z̄) + ȳ(wz̄ + zw̄)} ;
which, on actual multiplication, in accordance with the conditions ww̄ = 0, zz̄ = 0, &c., gives

E = wz + yw̄z̄115

Next, to �nd E′ make x = 0 in (4), we have

z(1 − vyw̄ − vȳw) + wz̄ + zw̄.
whence, eliminating v, and reducing the result by Propositions 1 and 2, we �nd

E′ = wz̄ + zw̄ + ȳw̄z̄;
and, therefore, �nally we have120

(wz + yw̄z̄)x + (wz̄ + zw̄ + ȳw̄z̄)x̄ = 0; (5)

from which

x = wz̄ + zw̄ + ȳw̄z̄
wz̄ + zw̄ + ȳw̄z̄ − wz − yw̄z̄

wherefore, by development,

x = 0yzw + yzw̄ + yz̄w + 0yz̄w̄125

+0ȳzw + ȳzw̄ + ȳz̄w + ȳz̄x̄ ;

or, collecting the terms in vertical columns,

x = zw̄ + z̄w + ȳz̄w̄; (6)

the interpretation of which is–
In whatever substances the property A is found, there will also be found either the property C or130

the property D, but not both, or else the properties B, C , and D, will all be wanting. And conversely,
where either the property C or the property D is found singly, or the properties B, C , and D, are
together missing, there the property A will be found.

It also appears that there is no independent relation among the properties B, C , and D.
Secondly, we are to �nd y . Now developing (5) with respect to that symbol,135

(xwz + xw̄z̄ + x̄wz̄ + x̄zw̄)y + (xwz + x̄wz̄ + x̄zw̄ + x̄z̄w̄)ȳ = 0;
whence, proceeding as before,

y = x̄w̄z̄ + 00(x̄wz + xwz̄ + xzw̄), (7)
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xzw = 0; (8)
x̄zz̄w = 0; (9)140

x̄zw̄ = 0; (10)

From (10) reduced by solution to the form

x̄z = 00w;

we have the independent relation,–If the property A is absent and C present, D is present.
Again, by addition and solution (8) and (9) give145

xz + x̄z̄ = 00w̄.

Whence we have for the general solution and the remaining independent relation :
1st. If the property B be present in one of the productions, either the properties A, C , and D, are

all absent, or some one alone of them is absent. And conversely, if they are all absent it may be
concluded that the property A is present (7).150

2nd. If A and C are both present or both absent, D will be absent, quite independently of the
presence or absence of B (8) and (9).

I have not attempted to verify these conclusions.

3 Frege, « Booles rechnende LogikunddieBegri�sschrift » (1880/1881,
publié à titre posthume) : solution du même problème

3.1 Version originale, in Nachgelassene Schri�en (1969), p. 44-51
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3.2 Trad. anglaise, in Posthumous Writings (1979), p. 39-45
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4 Aide à la lecture (éléments de commentaire des textes précé-
dents, issus d’un brouillon de DW et Dirk Schlimm)

4.1 Boole’s conception of the problem of logic [cf. texte n°1]

To understand the goal-directed nature of Boole’s logical method, we �rst need to explain
what the problems are that his method is intended to solve. As it happens, Boole believed that
there is a general form common to all logical problems. The easiest way to grasp this form is as
a broad generalization of syllogistic, which was Boole’s starting point. Accordingly, this section
builds up to his conception of logical problems through successive generalizations from a simple
syllogistic case.

Take two sentences in Aristotelian subject-predicate form, like ‘All horses are mammals’ and
‘All mammals are animals’, that have a term in common (here ‘mammals’). The standard problem
of syllogistic inference (as Boole construes it) 1 is to �nd what relation, if any, follows between
‘horses’ and ‘animals’, eliminating the term ‘mammals’ which is already present in both premises.
(In this instance, the conclusion sought is ‘All horses are animals’.) Importantly, this does not
amount to �nding all possible consequences of the initial sentences, of which there are many
others, like ‘Some mammals are horses’: we are only interested in ‘horses’ and ‘animals’. Nor
would just any consequence do as long as it relates ‘horses’ and ‘animals’: neither ‘Everything
that is a horse but not an animal does not exist’ nor ‘Some horses are animals’ would do, the �rst
because it lacks the expected Aristotelian form, the second because it is not as strong as possible.
Syllogistic inference, in short, comes with a constrained speci�cation of the expected solution.
Boole’s problems do likewise, but in a broader setting.

First, Boole’s propositions are more general than the Aristotelian subject-predicate forms,
and are expressed as symbolic equations rather than in natural language. This aspect of Boole’s
work is well-known, so we shall be quick. Let us start with an example Boole discusses repeat-
edly in his Investigation of the Laws of Thought, namely the de�nition of wealth o�ered by the
economist William Nassau Senior:

Wealth consists of things transferable, limited in supply, and either productive of
pleasure or preventive of pain. (Boole 1854, p. 59)

To express this de�nition symbolically, Boole introduces symbols that denote classes of things;
in our case, he writes w for wealth, t for things transferable, s for things limited in supply, p
for things productive of pleasure and r for things preventive of pain. He then uses operations
analogous to those of algebra. The juxtaposition of two class symbols, akin to algebraic multipli-
cation, denotes the class of things common to both (in contemporary terms, their intersection), so
that st denotes things both transferable and limited in supply. The addition of two class symbols
expresses the class formed by taking the elements of both together (today called their union),
except that Boole only allows this operation on classes that are disjoint, that is, have no elements
in common. Thus, if nothing is both ‘productive of pleasure’ and ‘preventive of pain’, p+r would
correspond to things that are either one or the other. The subtraction of two class symbols x − y
expresses the class of elements of x that are not elements of y , where it is assumed that y is
included in x . Finally, the symbol 1 denotes the universe of discourse, so that for instance 1 − p
denotes things not productive of pleasure. (Boole sometimes abbreviates 1 − p as p̄.) This allows
Boole to express Senior’s de�nition as:

w = st{p + r(1 − p)}

or in words: wealth is things that are at the same time limited in supply, transferable, and either
productive of pleasure, or preventive of pain and not productive of pleasure (the complexity

1. We are here glossing on Boole’s own account (see in particular chap. XV, pp. 226–242), and not aiming for a
historically accurate rendition of the goals of syllogistic.
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of this last clause being required by Boole’s restriction that addition can only be performed on
disjoint classes). One last device that Boole has to introduce is ‘inde�nite’ class symbols (which
he often writes v, but sometimes with other letters as well, such as q), that is symbols denoting
an unknown class. These allow him to represent inclusions like ‘All horses are mammals’ in the
form of equalities, such as ℎ = vm (where ℎ stands for the class of horses, m for that of mammals
and v for an inde�nite class); such equations can also be understood as ‘conditionals’ rather than
inclusions, e.g., as ‘If something is a horse, then it is a mammal’. 2

Second, Boole admits not just two premises involving three terms, as in syllogistic inference,
but any number of premises involving any number of terms. The problem analogous to syllogistic
inference then becomes that of �nding a relation – or more precisely, the strongest possible
relation – among any number of terms selected among those appearing in the premises. One
example Boole discusses is a piece of reasoning from Aristotle’s Nicomachean Ethics. 3 Aristotle
asks whether virtue is a passion, a faculty, or a habit. The six premises, as reconstructed by
Boole, express various properties of virtue as well as of passions, faculties, and habits, involving
several auxiliary properties, for instance ‘things according to which we are praised or blamed’
(according to Aristotle, we can be praised for our virtue, but not for our inborn faculties). The
goal here, in Boole’s terms, is to �nd the relation between virtue, passions, faculties, and habits,
eliminating all other terms – the conclusion, as it turns out, being that virtue is a habit, but not
a faculty nor a passion.

Third, the broader range of possible propositional forms in Boole’s system allows him to put
further constraints on the conclusion that is sought. In the syllogistic case, it is simply expected
that the conclusion will be in one of the Aristotelian forms (‘All A is B’, ‘Some A is B’ or their
negations). 4 Boole is able to be more speci�c. In the example of virtue, what is expected – and
can be provided by Boole’s method – is not just any equation linking virtue (denoted by v) with
passions (p), faculties (f ), and habits (ℎ), but rather an equation of the form v = … (in which the
right-hand side only contains p, f and ℎ). This is the simplest and most common case, but other
forms can also be requested (and obtained). Returning to Senior’s de�nition of wealth, one could
for instance ask about what can be concluded about ‘wealth that is preventive of pain’ in terms
of ‘things transferrable’ and ‘things limited in supply’ – in other words, ask for a conclusion of
the form wr = …, where the right-hand side only contains s and t . 5 In Boole’s words, the relation
sought is ‘that full relation which, in virtue of the premises, connects any elements selected out
of the premises at will, and which, moreover, expresses that relation in any desired form and
order’. 6

2. In fact, Boole uses inde�nite class symbols ambiguously, a di�culty that we shall point out here but ignore in
the sequel, as it does not bear on our main points. In most settings, he takes such symbols to be absolutely inde�nite,
that is, to denote a class that can be empty, equal to the full universe of discourse or anything in between. But Boole
also translates the Aristotelian form ‘Some A is B’ as ‘va = vb’, in which – if the traditional interpretation of such
forms is to be preserved – v has to be interpreted as an inde�nite non-empty class. For a careful discussion written
from a Boolean perspective, see Venn (1881, chap. VI–VII).

3. Boole (1854, pp. 134–137). We follow Boole’s rendition of Aristotle; the passage in question is Nicomachean
Ethics II.5 (1105b20–1106a15).

4. In traditional tables of the canonical syllogistic forms, there are other restrictions, which Boole neglects (it is
expected that the major term will come �rst, for instance). The discrepancy arises because Boole does not fully do
justice to traditional logic: he takes syllogistic’s classi�cation of inference forms as a full-�edged theory of reasoning,
whereas traditional textbooks would also contain a broader theory exploring how non-canonical pieces of reasoning
are to be brought into one of the standard forms. This need not detain us further, as we are only concerned with
Boole’s own portrayal of syllogistic.

5. There is yet another form that can be requested of the conclusion: one may want the list of those combinations
of the selected terms that are excluded by the premises, that is, which correspond to classes that the premises force to
be empty (for more on this, see Section ?? below). In Boole’s system, this amount to seeking an equation of the form
V = 0, in which V is a sum of combinations of class symbols or their negations; such an equation is equivalent to
having each of the members of the sum be separately equal to 0. This form is the most exhaustive, being equivalent to
the premises (or to the premises once elimination has been performed, if some terms have been eliminated), whereas
equations of the form x = … will usually be weaker.

6. Boole (1854, p. 10).
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We have focused so far on what Boole calls ‘primary propositions’, in which symbols de-
note classes. His system can also treat ‘secondary propositions’, in which the symbols already
denote propositions; it is this ‘secondary’ part of his system that is closest to our contemporary
propositional calculus. Boole derives his secondary propositions from his primary class-based
ones by introducing, for a given proposition X, a class symbol x denoting ‘that portion of time
for which the proposition X is true’. 7 This extensional account of propositions allows treating
relations between propositions just like relations between classes. The only di�erences lie in the
interpretation of equations: in this new context, x = 0 and x = 1 mean that the proposition X
is (always) true and (always) false, respectively; equations containing an inde�nite class symbol,
such as x = vy, are interpreted as implications (‘If X, then Y’). As far as the general formulation
of logical problems is concerned, however, the move to ‘secondary’ propositions changes very
little: premises are still expressed by equations, and the goal is again to obtain an equation of a
speci�ed form relating a subset of the symbols appearing in the premises. 8

4.2 A sample problem [cf. texte n°2]

Let us now turn to the sample problem that will be discussed in more details below. Among
the examples discussed by Boole in his Investigation of the Laws of Thought, it is of particular
interest, not just because it is one of the most intricate, but also because – for this very reason – it
was repeatedly addressed by later authors, including Schröder, MacColl, and Frege, 9 to show that
their system was able to do as much as Boole’s. Its formulation is quite abstract. It is about a class
of ‘natural productions’ (which, in this particular case, will serve as the universe of discourse)
whose members can display �ve properties A, B, C, D and E, with three relations between them
which will serve as premises.

Before turning to the premises, a caveat is in order. Symbolically, Boole writes x for the
property A, y for B, and so on. Strictly speaking, his method only requires referring back to the
meaning of the symbols in the �rst and last steps (when initially translating the premises into
symbols, and when interpreting the �nal equation), so the discrepancy between the names of the
properties and the corresponding symbols is tolerable. Moreover, this discrepancy is justi�ed
by Boole’s algebraic model, in which it is customary, since Descartes, to write the unknowns
using letters from the end of the alphabet and the known (such as coe�cients) using letters from
the beginning. Nevertheless, as later authors – in particular Schröder and through him Frege,
which we shall discuss at length – revert to the more straightforward convention of writing
a for property A, etc., keeping Boole’s notation would make the discussion below exceedingly
confusing. In breach of the spirit of our paper, which strives to be faithful to the algebraic spirit
of Boole’s method, we therefore altered his choice of symbols. We also chose to e�ect a minor
change in Schröder’s notation: in this problem, Boole writes the negation of a symbol a as as
ā, while Schröder writes it a1, and we chose to write ā throughout. All other notations are
unchanged.

The three premises of Boole’s problem, then, are the following: 10

i. ‘That in whichsoever of these productions the properties A and C are missing, the property
E is found, together with one of the properties B and D, but not with both.’ In symbols,

āc̄ = qe(bd̄ + db̄)

where q is an inde�nite class symbol, which can be read equivalently as an inclusion (‘the

7. Boole (1854, p. 165).
8. Boole (1854, pp. 178–179).
9. Schröder (1877, pp. 25–28), Lotze (1884, pp. 219–221) = Lotze ([1880] 1912, pp. 265–267), Wundt (1880, vol. 1,

pp. 356–357), Frege (1979, pp. 39–45) = Frege (1969, pp. 45–51), Venn (1881, pp. 280–281), and McColl (1878, pp. 23–
25). That this single problem has been solved by logicians of various outlooks whose solutions would repay further
comparison has already been noted by Gabriel (1989, p. XXIII).

10. See Boole (1854), 146–147.
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class of productions without properties A and C is a certain part of the class of productions
with property E etc.’) or as a conditional (‘if a production lacks properties A and C, then it
has property E etc.’).

ii. ‘That wherever the properties A and D are found while E is missing, the properties B and
C will either both be found, or both be missing.’ In symbols,

ēad = q(bc + b̄c̄).

iii. ‘That wherever the property A is found in conjunction with either B or E, or both of them,
there either the property C or the property D will be found, but not both of them. And
conversely, wherever the property C or D is found singly, there the property A will be
found in conjunction with either B or E, or both of them.’ This premise is formulated as an
equivalence (double implication); Boole thus translates it as an equality without inde�nite
class symbols:

ab + aeb̄ = dc̄ + cd̄.
It may seem more straightforward to write this as Schröder later does:

a(b + e) = dc̄ + cd̄

The reason for the di�erence is that Boole’s ‘+’ only allows for the addition of disjoint
classes: writing aeb̄ guarantees that it is disjoint from ab. Schröder, who adopts an inclu-
sive interpretation of ‘+’, can accordingly dispense with this extra factor.

Now, Boole asks for the relation between the properties A, B, C , and D, – thus eliminating
E 11 – and this in two di�erent forms. First, with interest for ‘what may be concluded from
the ascertained presence of the property A, with reference to the properties B, C , and D’, the
relation is sought in the form a = …; second, looking for ‘what may be concluded in like manner
respecting the property B, and the properties A, C , and D’, the relation is sought in the form
b = ….

Additionally, Boole asks for ‘whether any relations exist independently among the properties
B, C , and D’ (which are used to express A in the �rst half of the problem) and likewise among the
propertiesA, C , andD. While these two questions can be seen as instances of the general problem
of logic (the �rst amounts to eliminating both A and E from the premises, the second both B and
E, but with no particular form prescribed for the relation sought between the remaining terms),
their presence here is somewhat peculiar. They can be read as asking for what information has
had to be discarded about the relation between – taking the �rst case as an example – A, B, C and
D in order to express it under the particular form a = …. The main reason why they appear here,
however, may just be that Boole’s method for obtaining the solution a = … gives this further
relation for free, as we shall see.

4.3 Boole’s solution [cf. texte n°2]

In order to bring to the fore the goal-directedness of Boole’s method, we brie�y describe how
he applies it to the foregoing problem. As Frege used Schröder’s modi�ed treatment as well, we
brie�y discuss it, too. Before delving into technicalities, we start with synopsis of the solution,
broken down into four steps – assuming each premise has already been translated into symbols,
as done above. This should be enough to drive home our main point, and readers in a hurry may
then skip the details.

11. As Boole puts it, ‘It will be observed, that in each of the three data, the information conveyed respecting the
properties A, B, C , and D, is complicated with another element, E, about which we desire to say nothing in our
conclusion. It will hence be requisite to eliminate the symbol representing the property E [. . .]’ (Boole 1854, p. 146).
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1. Transform and bring together the premises, so as to obtain a single equation of the form
E = 0.

2. Eliminate the terms that should not appear in the solution (in our case e). This leads to a
new equation E′ = 0, where E′ does not contain e.

3. If the desired solution is of the form a = … (say), �rst factor the preceding equation by a
and ā, yielding in our case

(dc + bd̄c̄)a + (dc̄ + cd̄ + b̄d̄ c̄)ā = 0, (11)

then expand ā as 1 − a and proceed as if algebraically solving for a:

a = dc̄ + cd̄ + b̄d̄ c̄
dc̄ + cd̄ + b̄d̄ c̄ − dc − bd̄c̄ .

As is the case here, this typically results in division signs of rather unclear meaning on the
right-hand side. Schröder, whose solution follows Boole’s up to this point (in broad outline
at least), avoids this murky division and stops at equation (11) above.

4. At this stage, Boole and Schröder split ways. Boole performs a process he calls ‘develop-
ment’ to get rid of the fraction he has just introduced; generically, this gets the right-hand
side into the strange-looking form

U + 11V + 10W ,

where U , V and W are sums of terms: for our problem,

a = cd̄ + c̄d + b̄c̄d̄ (i.e., V = W = 0), (12)

b = ād̄ c̄ + 00(ādc + adc̄ + acd̄) +
1
0(acd + āc̄d + ācd̄). (13)

Equation (12) has no unusual symbols, hence straightforwardly answers the question (in
words, property A is to be found exactly when one but not both of properties C and D are
found, or when none of B, C and D are found). When, as in equation (13), V and W do
not vanish, Boole does two things: he interprets 1

1 as an indeterminate class symbol and
splits o� the term 1

0W into a separate equation W = 0. His interpretation of (13), then, is
that B has the same extension as the class expressed by U plus part of the class expressed
by V (remember that indeterminate class symbols are used for inclusions), and that the
equation W = 0 expresses the independent relations between A, C and D (asked for in the
statement of the problem, above).
Schröder, for his part, avoids Boole’s perplexing symbolic manipulations by way of a gen-
eral theorem, which allows jumping straight from equations like (11) to solutions equiva-
lent to Boole’s. In essence (taking for instance the �rst question, aiming at a = …), from
an equation of the form

Sa + T ā = 0,
Schröder directly expresses our U , V and W above in terms of S and T :

U = T , V = S̄, W = ST

so that one gets the full solution a = T + uS̄ (with u an indeterminate class symbol) and
the indendent relation ST = 0.

For simplicity, we described Boole’s method in the context of a particular problem, but its
outline is general, with minor variants to cover special cases. 12 Now, the two features of Boole’s

12. For instance, as discussed in the previous section, one might ask for the expression of ab in terms of c and
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approach we want to highlight is that it is systematic and goal-directed. As shown in the previous
system, Boole delineates a well-de�ned class of problems, and the method we just sketched allows
for the systematic solution of any of them, guided by the particular problem to be solved. In the
sketch above, steps 2 and 3 are where this goal-dependence appears: the elimination of unwanted
terms depends on the particular relation sought, as do the algebraic manipulations of step 3,
where our mastery of �rst-degree equations points us to the transformations needed to solve for
a particular variable.

4.4 Frege’s solution [cf. texte n°3]

At the end of a manuscript comparing his Begri�sschrift with Boole’s system, Frege tackles
the very problem discussed above in order to show that ‘if in fact science were to require the
solution of such problems, the concept-script would be able to cope with them without any
di�culty’. 13 Yet as we shall see, his solution is rather haphazard, and is much more akin to an
exhaustive (though intelligent) search through the space of all possible proofs from the premises
than to Boole’s algebraic method.

As a preliminary, we need to dispose of two slight complications. First, Frege changes nota-
tions a little: he uses the Greek capital lettersA, B, Γ, Δ, E to refer to the presence of the properties
A, B, C , D, E respectively. To avoid needlessly complicating the comparison, we have decided
to revert to Roman capitals. Second, as pointed out by the editors of Frege’s manuscript, some
mistakes in his premises – partly due to his following Schröder, whose initial phrasing of the
problem contains a minor misprint – appear to put his solution in jeopardy, even though he gets
to the right conclusions (unsurprisingly, given that he had the correct answer at hand). This,
however, is inessential: Frege’s solution can be corrected and carried through with only minor
changes, and we shall proceed assuming such amendments (spelled out in footnotes below).

Frege starts his solution by decomposing Boole’s three premises into as many as thirteen; 14

as he puts it, ‘whereas the dominant procedure in Boole is the uni�cation of di�erent judgements
into a single expression, I analyse the data into simple judgements’ 15. To understand what Frege’s
‘simple’ judgements are, we need to brie�y review his notation, which we shall do through a few
examples. 16

In Frege’s Begri�sschrift notation, the formulas below stand for, respectively, (a) the propo-
sition A; (b) the negation of A; (c) the material conditional we would write as B → A, which is
Frege’s only device for combining di�erent propositions into more complex ones (conjunction
and disjunction being obtained using the conditional together with negation). 17

(a) A (b) A (c) A
B

(d) A
B

Frege explicates the conditional (c) as the proposition that one cannot have that B is asserted and
A denied; this parallels the truth-conditional analysis of the conditional as excluding a single one
of the four possible combinations of truth-values for A and B (but phrased in terms of ‘assertion’
and ‘denial’ rather than of truth and falsity). 18 In fact, in his manuscript on Boole, Frege argues

d , that is, seek a relation of the form ab = … instead of the simpler a = … or b = …. Boole would then introduce
an auxiliary term t with an additional premise t = ab, then eliminate a and b as well as other unwanted terms and
proceed as above, seeking a solution of the form t = …, where t can ultimately be replaced by ab again. (Boole 1854,
pp. 140–142.)

13. Frege (1979, p. 45) = Frege (1969, p. 51).
14. This is assuming his solution is corrected as per footnote 21 below; his own version only has twelve premises.
15. Frege (1979, p. 45) = Frege (1969, p. 51).
16. For a quick introduction to Frege’s Begri�sschrift notation, see for instance Plato (2017, chap. 4) or Schlimm

(2018, pp. 54–65).
17. Frege (1993, pp. 11–12) = Frege (1972, pp. 121–122); see also Schlimm (2018).
18. Frege (1993, p. 5) = Frege (1972, pp. 114–115).
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that it is precisely because the conditional only excludes one out of four such combinations that
it is ‘simpler’ than Boole’s equality sign (indeed, a Boolean equality a = b, which in today’s
notation corresponds to two conditionals A → B and B → A, excludes not just one but two
possible combinations). 19 Finally, a thick vertical stroke to the left of a proposition, as in (d),
turns it into a judgement, that is, means that the proposition is asserted. Putting everything
together, (d) thus stands for the judgement that ‘A and B cannot both be denied’. 20

What Frege calls ‘simple’ judgements in the context of our problem are formed from con-
ditionals like in (c) or (d), but stacked. Take for example Boole’s premise (ii), that ‘wherever
the properties A and D are found while E is missing, the properties B and C will either both be
found, or both be missing’, which he wrote ēad = q(bc + b̄c̄). The inde�nite class symbol on the
right-hand side allows translating this as a conditional, namely, in contemporary notation,

(¬E ∧ A ∧ D) → ((B ∧ C) ∨ (¬B ∧ ¬C)).

To understand Frege’s translation, notice, �rst, that that the consequent states that B and C
always go together, and so is equivalent to the conjunction of B → C and ¬B → ¬C . Splitting
this consequent, this leads to the two formulas

(¬E ∧ A ∧ D) → (B → C) and (¬E ∧ A ∧ D) → (¬B → ¬C).

Finally, a conjunctive antecedent like ¬E∧A∧D can be replaced by nested conditionals (the order
of nesting being indi�erent); hence Frege’s translations:

(4) C
B
A
D
E

(5) C
B
A
D
E

.

Let us take a more intricate example, namely Boole’s premise (iii), which he wrote ab +aeb̄ =
dc̄ + cd̄ . First, it has the form of an equation without inde�nite class symbols, so that in modern
terms, it is an equivalence and needs to be split into two implications. The �rst one can be
translated as

((A ∧ B) ∨ (A ∧ E ∧ ¬B)) → ((D ∧ ¬C) ∨ (C ∧ ¬D)).
As above, the consequent may be broken down into D → ¬C and ¬D → C . But in this case,
the disjunction in the antecedent also requires splitting up, namely into the judgements that the
consequent holds given A and B, and that it holds given A and E. All in all, the �rst implication
of Boole’s (iii) yields four di�erent judgements:

(6) C
D
A
B

(7) C
D
A
B

(8) C
D
A
E

(9) C
D
A
E

The second implication of (iii) – Frege’s mistakes aside – also yields four judgements, which
makes eight in total for a single Boolean equation.

In what sense does Frege see his version of the premises as ‘simple’? Remember that he
dubbed the conditional ‘simple’ because it excluded a single combination of assertions and denials

19. Frege (1979, p. 36) = Frege (1969, p. 40).
20. Frege (1993, pp. 10–11) = Frege (1972, p. 121).
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of the terms involved. The same can be said here, only with more propositions. For instance, (7)
excludes that B, A, D be asserted and the negation of C denied, that is, excludes that B, A, D,
and C all be asserted together. In this sense, Frege’s premises are similar to the ‘atomic denials’
into which the ‘combinatorial’ solutions discussed above broke down the data of the problem.
The main di�erence is that Frege’s simple judgements do not always contain all �ve of the terms
involved, as shown by formulas (6)–(9); still, they can easily be used to generate the full list of
combinations excluded by the premises. Frege, however, uses the data in a strikingly di�erent
way: as will appear presently, his approach could be described as an inferential recasting of the
combinatorial solutions.

To solve the problem from his list of ‘simple judgements’, Frege needs two kinds of transfor-
mations, which we may call contraposition and modus ponens. First, contraposition: in a stacked
conditional, the consequent (written on the top line) may be switched with any antecedent (writ-
ten on any of the other lines) while negating both. For instance, Frege transforms formula (5)
above into (15) (the numbering is still his):

(5) C
B
A
D
E

 (15) E
C
B
A
D

(As mentioned already, the order of antecedents does not matter in such formulas: lines other
than the top one can be reordered freely.) Second, modus ponens: two conditionals can be com-
bined when the consequent of one is among the antecedents of the other, as E (shown in green)
is (9) and (15) above:

(9) C
D
A
E

, (15) E
C
B
A
D

 C
D
A
C
B
A
D

Here, the antecedents of E in (15), shown in red, have been plugged into (9) at the place of E. The
result can then be simpli�ed, using contraposition to switch the consequent C with B and
eliminating redundant antecedents; hence, still using Frege’s own numbering,

(16) B
C
A
D

.

With these tools in hand, we can tackle Boole’s �rst question, namely to �nd what follows
fromA regarding B, C andD. Frege’s strategy is to search for every possible judgement inferrable
from the premises that has A as antecedent and does not contain E. Two such judgements (to
wit, (6) and (7) above) are already found among the premises. For the rest, as Frege’s system
has a single inference rule to combine di�erent judgements – the one we called modus ponens –,
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the problem boils down to surveying every possible application of it. This is exactly what Frege
does: he looks for every possible applications of modus ponens that would eliminate E from some
premises. In order to do this e�ciently, Frege �rst uses the rule we called contraposition to
rewrite the premises so that E never appears negated – he thus transforms (5) into (15), as shown
above, and proceeds similarly for (4).

At this stage, the premises can be sorted into three groups, according to the occurence of
E: those that have E as an antecedent, those that have it as consequent, and those in which
it does not occur at all. Members of the third group are either already part of the solution, if
they contain A, like (6) and (7), or are of no use if they do not. As for the rest, modus ponens
allows combining every premise of the �rst group with every premise of the second group. Most
of these combinations yield judgements which, in Frege’s words, hold ‘independently of the
contents’ – that is, tautologies (this can happen either because the consequent is already among
the antecedents, or because two of the antecedents contradict each other, like B and B). As
it happens, in our case, ten combinations have to be surveyed, 21 and the only fruitful one is the
combination of (9) and (15) shown above, which yields (16). In the end, the full solution is given
by (6), (7), and (16). 22 (In passing, note that Frege’s solution is, in fact, weaker than Boole’s: in
contemporary terms, the latter – being an equation with no inde�nite class terms – corresponds
to a biconditional of which the former is only the �rst half.)

The nature of Frege’s solution should be clear by now: it is, essentially, a systematic search
through a space of possible proofs. Despite the super�cial similarities, noted above, of his ‘simple
judgements’ with combinations of terms excluded by Boole’s premises, the spirit of his solution
is inferential rather than combinatorial: his goal is, essentially, to show that Boole’s problem
can be solved through simple logical inferences, with no tailor-made method and, as he puts it,
‘practically no theoretical preparation at all’. 23

Admittedly, approaching the Begri�sschrift through the lens of Boole’s problem may seem
unfair. After all, before he o�ers his own solution Frege writes that ‘it would not be surprising,
and I would have no reluctance to concede the point, if Boolean logic were better suited than
my concept-script to solve the kind of problems it was speci�cally designed for, or that were
invented for it’ (though he adds that ‘perhaps not even this is the case’). 24 Among the points
he makes in his comparison with Boole, he also describes the fact that his system can handle
such problems just as well as Boole’s as ‘the point to which I attach least importance’ 25 (since
in his eyes they are of little use anyway). Yet approaching Frege’s system on its own terms only
con�rms that it contains nothing comparable to Boole’s conception of what a logical problem is.

21. This is assuming that Frege’s mistakes are corrected. For the record, here is how this should be done. The
editors (see Frege 1979, note 1 p. 41) suggest adding a premise (10)’ and replacing Frege’s premise (12) by their (12)’
(shown below). Additionally, the following amendments are required. First, one should introduce equivalent variants
of (10)’ and (12)’, namely (10)” and (12)”:

(10)’ B
E
C
D

(10)” E
B
C
D

(12)’ B
E
C
D

(12)” E
B
C
D

.

Second, in Frege’s solution of the �rst question, one should check that combining either of (10)” or (12)” with either
of (8) or (9) only produces tautologies. Third, in the list at the top of p. 44, all occurences of ‘(17)’ should be replaced
by ‘(19)’.

22. In fact, Frege notices that a further simpli�cation is possible: B can be eliminated by modus ponens from (7) and
(16), yielding

(17) C
D
A

,

so that (6) and (17) are enough to give the full solution to Boole’s �rst question.
23. Frege (1979, p. 44) = Frege (1969, p. 49).
24. Frege (1979, 39, tr. alt.) = Frege (1969, p. 44).
25. Frege (1979, p. 46) = Frege (1969, p. 52).
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In fact, as the rest of the piece on Boole makes abundantly clear, the Begri�sschrift is not meant
to solve problems at all: it is a visual tool to scrutinize concepts and inferences, as we shall see
below.
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