Ternäre Natriumphasen mit Cadmium bzw. Ouecksilber und Zinn bzw. Blei

Ternary Sodium Phases with Cadmium or Mercury and Tin or Lead

Reinhard Matthes und Hans-Uwe Schuster*

Institut für Anorganische Chemie der Universität zu Köln, Greinstraße 6, D-5000 Köln 41

Z. Naturforsch. 35b, 778-780 (1980);

eingegangen am 8. Februar 1980

Ternary Intermetallic Phases, Sodium, Cadmium, Mercury, Tin, Lead, Crystal Structures

Four ternary sodium phases with the formula Na_2BX (B = Cd, Hg; X = Sn, Pb) were prepared and structurally investigated. The structures of the cubic phases Na_2HgSn , Na_2CdPb and Na_2HgPb (space group F43m) are closely related to Li₃Bi, that of Na_2CdSn (space group P6₃mmc) to the hexagonal structure of Na_3As .

Einleitung

Elektrovalente ternäre Lithium-Phasen der Zusammensetzung Li2BX mit 2B- und 4B-Elementen (als B- bzw. X-Element) sind durch zwei Strukturtypen zu beschreiben. Sie kristallisieren überwiegend in einer modifizierten Li3Bi-Struktur (Li2ZnGe u.a. [1]); ferner wird eine Variante des Na₃As-Typs (z. B. Li₂ZnSi [2]) gefunden. 2B- und 4B-Element bilden in den Strukturen gemeinsam charakteristische Teilstrukturen, in der Li₃Bi-Variante ein dreidimensionales BX-Netzwerk entsprechend dem Zinkblendetyp und mit den Lithiumatomen in den Tetraeder- und Oktaederlücken, in der Na₃As-Variante durch Lithiumdoppelschichten getrennte planare BX-Schichten. Eindimensionale BX-Verknüpfung fanden wir in analogen Kaliumverbindungen (K₂CdSn, K₂CdPb [3]) mit BX-Zickzackketten, die in Kanäle eines Kaliumteilgitters eingelagert sind.

In dieser Arbeit wird über die Darstellung und die Strukturen entsprechender Natriumverbindungen, nämlich Na₂CdSn, Na₂HgSn, Na₂CdPb und Na₂HgPb berichtet, die nach den Radienverhältnissen $r_A:r_B$ (A = Alkalimetall) ein strukturelles Zwischenglied zwischen den Lithium- und den Kaliumverbindungen bilden könnten.

Darstellung, Eigenschaften und Analysen

Die Darstellung der Phasen Na₂CdSn, Na₂CdPb und Na₂HgPb erfolgte aus Gemengen der Elemente, die in Tantalfingertiegeln unter Argon (Quarzglasampullen) unter den folgenden Bedingungen umgesetzt wurden:

0340-5087/80/0600-0778/\$ 01.00/0

Nach langsamem Abkühlen im Ofen fielen die Na₂CdSn-Präparate in Form blättriger, blaugrau glänzender Kristalle an, das Reaktionsgut der Blei-Phasen als hellsilbern glänzende Reguli, die leicht zu zerdrücken waren.

Na₂HgSn war röntgenhomogen nur durch Erhitzen mit einem 10-proz. Natrium-Überschuß auf 600 °C zu erhalten. Nach 2 h Reaktionszeit wurden die Ampullen in kaltem Wasser abgeschreckt. Der Natrium-Überschuß war, wie die Analysen zeigten, dann praktisch vollständig abgedampft. Na₂HgSn wurde als graues, matt glänzendes Pulver erhalten und ist, wie auch die anderen Phasen, sehr feuchtigkeitsempfindlich.

Die Aufarbeitung aller Proben erfolgte in einem Argon-Handschuhkasten. Na₂HgSn und Na₂CdPb zerfallen bei längerem Erhitzen über die Darstellungstemperatur, während Na₂CdSn und Na₂HgPb bei gleicher Behandlung stabil sind. Unter den genannten Darstellungsbedingungen wurden die beschriebenen Phasen röntgenrein erhalten, sie besitzen ein sehr enges Homogenitätsgebiet.

Zur Analyse wurden die Proben mit wenig Wasser übergossen, wobei die Substanzen schon heftig reagierten, und anschließend mit konzentrierter Salpetersäure gelöst. Bei den Zinn-Phasen fiel Zinn dabei als SnO_2 quantitativ aus; es wurde abfiltriert und ausgewogen. Die Blei-, Cadmium- und Quecksilbergehalte wurden durch komplexometrische Titration bestimmt [4], der Natriumgehalt wurde flammenphotometrisch ermittelt. Die Analysenergebnisse faßt Tab. I zusammen.

Tab. I. Analysenergebnisse

Ver- bindung	Na berec	Cd/H	g Sn/Pb	Na gefur	Cd/Hg iden	g Sn/Pb
Na ₂ CdSn	16,6	40,6	42,1	16,3	40,1	43,0
Na_2HgSn	12,6	54,9	32,5	12,8	54,0	33,0
Na ₂ CdPb	12,6	30,7	56,7	12,3	30,7	57,0
Na_2HgPb	10,1	44,2	45,7	9,8	43,1	45,8

Röntgenographische Untersuchung und Strukturbestimmung

Die Pulverdiagramme der Verbindungen Na₂HgSn, Na₂CdPb und Na₂HgPb ließen sich kubisch indizieren, das von Na₂CdSn hexagonal. Abb. 1 zeigt die Strichdiagramme.

Mit Ausnahme von Na₂HgSn wurden von allen Phasen Einkristallaufnahmen angefertigt. Sie bestätigten die hexagonale Elementarzelle von Na₂CdSn und den kubisch-flächenzentrierten Aufbau der anderen Phasen. Die Abmessungen der Elementarzellen wurden aus Straumanis-Aufnahmen bestimmt und sind, zusammen mit den pyknometrisch ermittelten Dichten und den Einkristalldaten, in Tab. II aufgeführt.

Für die Strukturbestimmung wurden je ein Kristall von Na₂CdSn und Na₂CdPb isoliert und auf einem automatischen Vierkreisdiffraktometer

^{*} Sonderdruckanforderungen an Prof. Dr. H.-U. Schuster.

	Na_2CdSn	Na_2HgSn	Na_2CdPb	Na_2HgPb
Kristallsystem	hexagonal	kubisch	kubisch	kubisch
Gitterkonstanten	$egin{array}{rcl} a &=& 499,0 \ { m pm} \ c &=& 1011,1 \ { m pm} \ c/a &=& 2,026 \end{array}$	$a = 722,7 \mathrm{pm}$	$a = 739,0 \mathrm{pm}$	$a=736,2\mathrm{pm}$
Zellvolumen ($\times 10^6 \text{ pm}^3$)	218,013	377,46	403,58	399,01
Dichte D ₄ ²⁵	4,25	6,36	5,91	7,34
Röntgendichte (g/cm ³)	4,22	6,44	5,99	7,34
Zellbesetzung	2	4	4	4
Auslöschungssymbol	6/mmm Pc		m3m F	m 3m F

Tab. II. Kristallographische Daten der Phasen Na₂CdSn, Na₂HgSn, Na₂CdPb und Na₂HgPb.

Abb. 1. Strichdiagramme von Na₂CdSn, Na₂HgSn, Na₂CdPb und Na₂HgPb.

(CAD 4 der Fa. ENRAF-NONIUS, MoK_{α}-Strahlung, Graphitmonochromator) im Bereich $\vartheta \leq 40^{\circ}$ vermessen. Es wurden nur Reflexe mit $I \geq 2\sigma(I)$ für die Strukturrechnung verwendet.

Die Auswertung der 3 D-Patterson-Synthese von Na₂CdSn ließ die Vermutung zu, daß Na₃As Modellsubstanz zur Beschreibung der Kristallstruktur sein könnte. Dies wurde durch Rechnung in der zentrischen der zur Verfügung stehenden Raumgruppen, P6₃mmc, bestätigt. Cadmium und Zinn besetzen danach die zweizähligen Punktlagen 0, 0, 1/4 und 2/3, 1/3, 1/4. Für die Auslenkung dieser Atome aus z = 1/4 gab es keine Anzeichen. Die Natrium-Atome besetzen die vierzählige Punktlage 1/3, 2/3, z. Zinn und Cadmium bilden also – anstelle von Arsen und $\frac{1/3}{3} \text{ der Natrium-Atome der Modellsubstanz Na_3As} - eine hexagonale Schicht wie Bor und Stickstoff im hexagonalen Bornitrid. Oberhalb und unterhalb jeder Sechseckmitte der CdSn-Schicht befinden sich die Natrium-Atome (Abb. 2). Die Strukturdaten von Na_2CdSn sind in Tab. III zusammengestellt.$

Abb. 2. Struktur von Na₂CdSn.

Na 🔿 Cd 🗣 Sn 🔴

Tab. III. Strukturdaten von Na₂CdSn. Strukturrechnung in Raumgruppe Nr. 194, P6₃mmc

Atomlagen:

2 Sn auf 2d (2/3, 1/3, 1/4)	2 Cd auf 2 b (0, 0, 1/4)			
$\begin{array}{l} U_{11} = U_{22} = 0,01241(4) \\ U_{33} = 0,02201(2) \\ U_{12} = 0,00621(4) \\ U_{13} = U_{23} = 0 \end{array}$	$\begin{array}{l} U_{11} = U_{22} = 0,01544(5) \\ U_{33} = 0,03826(13) \\ U_{12} = 0,00772(5) \\ U_{13} = U_{23} = 0 \end{array}$			
4 Na auf 4f (1/3, 2/3, z)				
$\begin{array}{l} z &= 0,4184(4) \\ U_{11} &= U_{22} &= 0,02406(6) \\ U_{33} &= 0,03355(12) \\ U_{12} &= 0,01203(6) \\ U_{13} &= U_{23} &= 0 \end{array}$	U in [104 pm2]			
R_f -Wert: 0,073 (213 unabhän	igige Reflexe)			
Atomabstände (bis 500 pm):				
$\operatorname{Sn-Cd}$ 3× 288,8(1) Sn No 8× 225 2(1)				

Als Modellsubstanz für die Beschreibung der kubischen Phasen eignet sich Li₃Bi. Die Strukturrechnung ergab, daß die Blei-Atome ein kubischflächenzentriertes Gitter bilden, dessen Oktaederlücken von der einen Hälfte der Natrium-Atome, dessen Tetraederlücken von der anderen Hälfte und den Cadmium-Atomen besetzt werden. Es konnte nicht vollkommen eindeutig geklärt werden, ob die Besetzung der Tetraederlücken mit Natrium und Cadmium statistisch oder geordnet erfolgt. Für eine geordnete Verteilung beider Atomsorten (Raumgruppe F43m) spricht der geringfügig bessere R_{f} -Wert. Dann ist die Struktur von Na₂CdPb und seiner hier genannten Homologen als Zinkblende-Struktur aus Blei- und Cadmium-Atomen aufzufassen, deren Lücken von Natrium besetzt werden. In Tab. IV sind die Ergebnisse der Strukturrechnung an Na₂CdPb zusammengefaßt.

Nach den vorliegenden Untersuchungen findet man bei ternären Natrium-Phasen mit 2B- und 4B-Elementen Strukturen, die von homologen Lithium-Phasen bereits bekannt sind. Andererseits sind in jüngster Zeit auch Na₂BX-Phasen bekannt geworden [5-8], deren Strukturen mit der der eingangs erwähnten Kalium-Phasen isotyp sind. Weiteres Tab. IV. Ergebnisse der Strukturrechnung an Na₂CdPb.

a) Strukturrechnung in Raumgruppe Nr. 216, F43m Atomlagen:

4 Pb auf 4a (0, 0, 0) U = 0,01451(5)[10⁴pm²] 4 Na 1 auf 4b (1/2, 1/2, 1/2) U = 0,060 4 Na 2 auf 4c (3/4, 3/4, 3/4) U = 0,038 4 Cd auf 4d (1/4, 1/4, 1/4) U = 0,03465(24) R_{f} -Wert: 0,053 (98 unabhängige Reflexe) gewichteter R-Wert: 0,058 b) Strukturrechnung in Raumgruppe Nr. 225, Fm 3m

b) Struktureennung in Raungruppe Nr. 225, Fm 3m R_{f} -Wert: 0,059 (98 unabhängige Reflexe) gewichteter R-Wert: 0,068

Atomabstände (bis 500 pm):

Pb -Cd(Na2)	319,4(1)	Pb-Na1	368,9(1)
Na 1-Cd(Na 2)	319,4(1)	Cd-Na2	368,9(1)

experimentelles Material ist notwendig, um dieses Verhalten näher zu erklären.

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie für die Förderung unserer Arbeiten.

- H.-U. Schuster, Z. Anorg. Allg. Chem. 370, 149 (1969).
- [2] H. Schönemann, H. Jacobs u. H.-U. Schuster, Z. Anorg. Allg. Chem. 382, 40 (1971).
 [3] R. Matthes u. H.-U. Schuster, Z. Naturforsch.
- [3] R. Matthes u. H.-U. Schuster, Z. Naturforsch. 34b, 541 (1979).
- [4] Komplexometrische Bestimmungsmethoden mit Titriplex, E. Merck AG, Darmstadt, 3. Auflage.
- [5] B. Eisenmann, G. Savelsberg u. H. Schäfer, Z. Naturforsch. 31b, 1344 (1976).
- [6] G. Savelsberg u. H. Schäfer, Z. Naturforsch. 32b, 745 (1977).
- [7] G. Savelsberg u. H. Schäfer, Z. Naturforsch. 33b, 711 (1978).
- [8] H.-U. Schuster, C. Mues u. W. Jung, Z. Naturforsch. 34b, 354 (1979).