Prof. K. Bongartz H. Franzen BU Wuppertal Fachbereich C - Mathematik

Abgabe am 14. Juni 2012

Übungen zur Linearen Algebra I

Blatt 8

Aufgabe 1. Sei $f: \mathbb{R}^2 \to \mathbb{R}^3$ die lineare Abbildung mit

$$f(x,y) = (3x + 3y, 2x - y, -5x + 3y).$$

- (i) Bestimme $M_{\varphi,\psi}(f)$, wobei $\varphi=(e_1,e_2)$ und $\psi=(e_1,e_2,e_3)$ die kanonischen Basen von \mathbb{R}^2 bzw. \mathbb{R}^3 seien.
- (ii) Zeige, daß die Tupel

$$\varphi' = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right) \quad \text{und} \quad \psi' = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

geordnete Basen von \mathbb{R}^2 bzw. \mathbb{R}^3 sind und berechne die Darstellungsmatrix $M_{\varphi',\psi'}(f)$.

Hinweis: Auf http://wmaz.math.uni-wuppertal.de/franzen/tutorium.html findet ihr unter "Neues Material" ein Beispiel zur Bestimmung einer Darstellungsmatrix.

Aufgabe 2. In $k^{n\times n}$ sei, wie üblich, E_{ij} die Matrix, deren (p,q)-ter Eintrag $(E_{ij})_{pq} = \delta_{ip}\delta_{jq}$ ist.

(i) Zeige, daß nur die skalaren Vielfachen der Einheitsmatrix mit allen $n \times n$ -Matrizen kommutieren, sprich zeige, daß

$$\{A \in k^{n \times n} \mid AB = BA \text{ für alle } B \in k^{n \times n}\} = \{\lambda E_n \mid \lambda \in k\}$$

gilt. Hinweis: Es ist hilfreich, sich den Kommutanten von E_{ij} für $i \neq j$ anzusehen, also die Menge $\{A \mid AE_{ij} = E_{ij}A\}$.

- (ii) Sei V ein k Vektorraum der Dimension dim $V=n<\infty$ und sei $f\in \operatorname{End}_k(V)$. Zeige die Äquivalenz der folgenden Aussagen:
 - (a) Für alle Koordinatensysteme φ, ψ von V gilt $M_{\varphi}(f) = M_{\psi}(f)$.
 - (b) Es gibt ein $\lambda \in k$ mit $f = \lambda \operatorname{id}_V$.

Zeige ferner, daß in diesem Fall $M_{\varphi}(f) = \lambda E_n$ ist, wobei λ der Skalar aus (b) ist.