DIE ELEKTROPHILE ZWEITSUBSTITUTION AM AROMATEN(S_E)

- 1. Lies den Text \rightarrow Zusammenfassung "Kapitel 9: Die elektrophile Substitution (S_E)" und "die Zweitsubstitution" genau durch.
- 2. Wenn ein Benzenring bereits einen Substituenten enthält, kann eine weitere elektrophile Substitution an drei verschiedenen Positionen erfolgen: "ortho, meta und para". Wo dieser Angriff erfolgt, bestimmt der "Erstsubstituent".

Wenn der Erstsubstituent einen +M-Effekt hat, erfolgt der Angriff in ortho und para-Position und schneller als bei reinem Benzen. +M bedeutet: Der Rest kann Elektronen in den Ring liefern. (M kommt von Mesomerie)

" +M-Reste sind ortho, para-dirigierend und aktivierend" Solche Reste sind z.B. Amino- oder Hydroxygruppen

Bei einem –M-Effekt erfolgt der Angriff in meta-Position und langsamer als bei reinem Benzen. -M bedeutet: Der Rest entzieht dem Ring Elektronen.

"—M-Reste sind meta-dirigierend und deaktivierend" Solche Reste sind z.B. Oxo- oder Carboxygruppen.

3. Vervollständige folgende Tabelle:

Edukte		Produkte
H + Br-Br	↓	+ H—Br
+ CI—	⇒	+ H-CI
		oder + H−CI
NH ₂ O + CI	\Leftrightarrow	+ H-CI
		oder + H−CI

4. Lösungsblatt in die Mappe einheften.