1 Stahlbaunormen DIN EN 1993-1-8: Bemessung von Anschlüssen

1

Prof. Dr.-Ing. Dieter Ungermann Dipl.-Ing. Stephan Schneider

Stahlbau-Kalender 2013: Eurocode 3 – Anwendungsnormen, Stahl im Anlagenbau. Herausgegeben von Ulrike Kuhlmann © 2013 Ernst & Sohn GmbH & Co. KG. Published 2013 by Ernst & Sohn GmbH & Co. KG.

Inhaltsverzeichnis

Anmerkung zum Abdruck von DIN EN 1993-1-8 5 Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-8: Bemessung von Anschlüssen 5 Nationales Vorwort 5 Hintergrund des Eurocode-Programms 5 Status und Gültigkeitsbereich der Eurocodes 6 Nationale Fassungen der Eurocodes 6 Verbindung zwischen den Eurocodes und den harmonisierten Technischen Spezifikationen für Bauprodukte (EN und ETAZ) 7 Nationaler Anhang zu EN 1993-1-8 7 1 Allaemeines 7 1.1 Anwendungsbereich 7 1.2 Normative Verweisungen 7 Bezugsnormengruppe 1: 1.2.1 Schweißgeeignete Baustähle 7 1.2.2 Bezugsnormengruppe 2: Toleranzen, Maße und technische Lieferbedingungen 8 1.2.3 Bezugsnormengruppe 3: Hohlprofile 8 1.2.4 Bezugsnormengruppe 4: Schrauben, Muttern und Unterlegscheiben 8 1.2.5 Bezugsnormengruppe 5: Schweißzusatzmittel und Schweißen 9 1.2.6 Bezugsnormengruppe 6: Niete 9 Bezugsnormengruppe 7: 1.2.7 Bauausführung von Stahlbauten 9 1.3 Unterscheidung nach Grundsätzen und Anwendungsregeln 9 1.4 Beariffe 9 Formelzeichen 11 1.5 2 Grundlagen der Tragwerksplanung 14 2.1 Annahmen 14 Allgemeine Anforderungen 14 2.2 2.3 Schnittgrößen 15 2.4 Beanspruchbarkeit von Verbindungen 15 2.5 Annahmen für die Berechnung 15 2.6 Schubbeanspruchte Anschlüsse mit Stoßbelastung, Belastung mit Schwingungen oder mit Lastumkehr 15 2.7 Exzentrizitäten in Knotenpunkten 15 3 Schrauben-, Niet- und Bolzenverbindungen 16 3.1 Schrauben, Muttern und Unterlegscheiben 16 3.1.1 Allgemeines 16 3.1.2 Vorgespannte Schrauben 17 Niete 17 3.2 3.3 Ankerschrauben 17 3.4 Kategorien von Schraubenverbindungen 17 3.4.1 Scherverbindungen 17 3.4.2 Zugverbindungen 19 3.5 Rand- und Lochabstände für Schrauben und Niete 19 3.6 Tragfähigkeiten einzelner Verbindungsmittel 21 3.6.1 Schrauben und Niete 21

- 3.6.2 Injektionsschrauben 25
- 3.7 Gruppen von Verbindungsmitteln 26
- 3.8 Lange Anschlüsse 27
- 3.9 Gleitfeste Verbindungen mit hochfesten 8.8 oder 10.9 Schrauben 27
- 3.9.1 Gleitwiderstand 27
- 3.9.2 Kombinierte Scher- und Zugbeanspruchung 27
- 3.9.3 Hybridverbindungen 28
- 3.10 Lochabminderungen 28
- 3.10.1 Allgemeines 28
- 3.10.2 Blockversagen von Schraubengruppen 28
- 3.10.3 Einseitig angeschlossene Winkel und andere unsymmetrisch angeschlossene Bauteile unter Zugbelastung 29
- 3.10.4 Anschlusswinkel für indirekten Anschluss 29
- 3.11 Abstützkräfte 30
- 3.12 Kräfteverteilung auf Verbindungsmittel im Grenzzustand der Tragfähigkeit 30
- 3.13 Bolzenverbindungen 30
- 3.13.1 Allgemeines 30
- 3.13.2 Bemessung der Bolzen 30

4 Schweißverbindungen 32

- 4.1 Allgemeines 32
- 4.2 Schweißzusätze 32
- 4.3 Geometrie und Abmessungen 33 4.3.1 Schweißnahtarten 33
- 4.3.1 Schweißnahtarten 33 4.3.2 Kehlnähte 33
- 4.3.2 Kehlnähte 33 4.3.3 Schlitznähte 34
- 4.3.4 Stumpfnähte 34
- 4.3.5 Lochschweißungen 34
- 4.3.6 Hohlkehlnähte 34
- 4.4 Schweißen mit Futterblechen 34
- 4.5 Beanspruchbarkeit von Kehlnähten 34
- 4.5.1 Schweißnahtlänge 34
- 4.5.2 Wirksame Nahtdicke 35
- 4.5.3 Tragfähigkeit von Kehlnähten 36
- 4.6 Tragfähigkeit von Schlitznähten 36
- 4.7 Tragfähigkeit von Stumpfnähten 38
- 4.7.1 Durchgeschweißte Stumpfnähte 38
- 4.7.2 Nicht durchgeschweißte Stumpfnähte 38
- 4.7.3 T-Stöße 38
- 4.8 Tragfähigkeit von Lochschweißungen 38
- 4.9 Verteilung der Kräfte 38
- 4.10 Steifenlose Anschlüsse an Flansche 39
- 4.11 Lange Anschlüsse 39
- 4.12 Exzentrisch belastete einseitige Kehlnähte oder einseitige nicht durchgeschweißte Stumpfnähte 40
- 4.13 Einschenkliger Anschluss von Winkelprofilen 40
- 4.14 Schweißen in kaltverformten Bereichen 40

5 Tragwerksberechnung, Klassifizierung und statische Modelle 41

- 5.1 Tragwerksberechnung 41
- 5.1.1 Allgemeines 41
- 5.1.2 Elastische Tragwerksberechnung 41

- 5.1.3 Starr-plastische Tragwerksberechnung 43
- 5.1.4 Elastisch-plastische Tragwerksberechnung 44
- 5.1.5 Berechnung von Fachwerkträgern 44
- 5.2 Klassifizierung von Anschlüssen 45
- 5.2.1 Allgemeines 45
- 5.2.2 Klassifizierung nach der Steifigkeit 45
- 5.2.3 Klassifizierung nach der Tragfähigkeit 47
- 5.3 Statisches Modell für Träger-Stützenanschlüsse 48

6 Anschlüsse mit H- oder I-Querschnitten 51

- 6.1 Allgemeines 51
- 6.1.1 Geltungsbereich 51
- 6.1.2 Kenngrößen 51
- 6.1.3 Grundkomponenten eines Anschlusses 51
- 6.2 Tragfähigkeit 52
- 6.2.1 Schnittgrößen 52
- 6.2.2 Querkräfte 56
- 6.2.3 Biegemomente 566.2.4 Äquivalenter T-Stummel mit Zugbeanspruchung 57
- 6.2.5 Äquivalenter T-Stummel mit Druckbeanspruchung 62
- 6.2.6 Tragfähigkeit der Grundkomponenten 63
- 6.2.7 Biegetragfähigkeit von Träger-Stützenanschlüssen und Stößen 74
- 6.2.8 Tragfähigkeit von Stützenfüßen mit Fußplatten 78
- 6.3 Rotationssteifigkeit 79
- 6.3.1 Grundmodell 79
- 6.3.2 Steifigkeitskoeffizienten für die Grundkomponenten eines Anschlusses 84
- 6.3.3 Stirnblechanschlüsse mit zwei oder mehr Schraubenreihen mit Zugbeanspruchung 84
- 6.3.4 Stützenfüße 85

- 6.4 Rotationskapazität 86
- 6.4.1 Allgemeines 86
- 6.4.2 Geschraubte Anschlüsse 86
 - 6.4.3 Geschweißte Anschlüsse 86

7 Anschlüsse mit Hohlprofilen 86

- 7.1 Allgemeines 86
- 7.1.1 Geltungsbereich 86
- 7.1.2 Anwendungsbereich 87
- 7.2 Berechnung und Bemessung 89
- 7.2.1 Allgemeines 89
- 7.2.2 Versagensformen von Anschlüssen mit Hohlprofilen 89
- 7.3 Schweißnähte 92
- 7.3.1 Tragfähigkeit 92
- 7.4 Geschweißte Anschlüsse von KHP-Bauteilen 93
- 7.4.1 Allgemeines 93
- 7.4.2 Ebene Anschlüsse 93
- 7.4.3 Räumliche Anschlüsse 99
- 7.5 Geschweißte Anschlüsse von KHP- oder RHP-Streben an RHP-Gurtstäbe 99
- 7.5.1 Allgemeines 99
- 7.5.2 Ebene Anschlüsse 100
- 7.5.3 Räumliche Anschlüsse 108
- 7.6 Geschweißte Anschlüsse von KHP- oder RHP-Streben an I- oder H-Profil Gurtstäbe 108
- 7.7 Geschweißte Anschlüsse von KHP- oder RHP-Streben an U-Profil Gurtstäbe 112

Anhang NA.A (normativ) 117

Ergänzende Vorspannverfahren zu DIN EN 1090-2 117

Anhang NA.B (normativ) 119 Gussteile, Schmiedeteile und Bauteile aus Vergütungsstählen 119

Literatur zu den Kommentaren 123

I.

Anmerkung zum Abdruck von DIN EN 1993-1-8

Auf den folgenden Seiten wird der Normentext von DIN EN 1993-1-8:2010-12 in zweispaltiger Darstellung wiedergegeben. Zusätzlich wird der Nationale Anhang DIN EN 1993-1-8/NA:2010-12 und die "Zusätzlichen Regeln zur Erweiterung von DIN EN 1993 auf Stahlgüten bis S700" nach DIN EN 1993-1-12:2010-12 mit dem zugehörigen Nationalen Anhang DIN EN 1993-1-12/NA:2010-10 an den jeweiligen Stellen im Normentext zitiert.

Um einen guten Lesefluss zu garantieren, wurde für die Darstellungsart Folgendes festgelegt. Der Normentext wird zweispaltig und durchgehend dargestellt. Auf eine besondere Kennzeichnung der Berichtigungen wird verzichtet. Textstellen aus dem Nationalen Anhang werden durch einen zur Blattmitte hin offenen, grauen Kasten gekennzeichnet. Links oben befindet sich dabei die Bezeichnung NDP (nationally determined parameters) für national festgelegte Parameter und NCI (non-contradictory complementary information) für ergänzende nicht widersprechende Angaben zur Anwendung von DIN EN 1993-1-8. Kommentare zum Normentext werden in einem grauen Kasten im unteren Bereich der rechten Spalte in serifenloser Schrift abgedruckt.

DIN EN 1993-1-8

Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-8: Bemessung von Anschlüssen

ICS 91.010.30; 91.080.10 Eurocode 3: Design of steel structures – Part 1-8: Design of joints Eurocode 3: Calcul des structures en acier – Partie 1-8: Calcul des assemblages

Diese Europäische Norm wurde vom CEN am 16. April 2004 angenommen.

Die Berichtigung tritt am 29. Juli 2009 in Kraft und wurde in EN 1993-1-8:2005 eingearbeitet.

Die CEN-Mitglieder sind gehalten, die CEN/CEN-ELEC-Geschäftsordnung zu erfüllen, in der die Bedingungen festgelegt sind, unter denen dieser Europäischen Norm ohne jede Änderung der Status einer nationalen Norm zu geben ist. Auf dem letzten Stand befindliche Listen dieser nationalen Normen mit ihren bibliographischen Angaben sind beim Management-Zentrum des CEN oder bei jedem CEN-Mitglied auf Anfrage erhältlich.

Diese Europäische Norm besteht in drei offiziellen Fassungen (Deutsch, Englisch, Französisch). Eine Fassung in einer anderen Sprache, die von einem CEN-Mitglied in eigener Verantwortung durch Übersetzung in seine Landessprache gemacht und dem Management-Zentrum mitgeteilt worden ist, hat den gleichen Status wie die offiziellen Fassungen.

CEN-Mitglieder sind die nationalen Normungsinstitute von Belgien, Bulgarien, Dänemark, Deutschland, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Lettland, Litauen, Luxemburg, Malta, den Niederlanden, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, der Schweiz, der Slowakei, Slowenien, Spanien, der Tschechischen Republik, Ungarn, dem Vereinigten Königreich und Zypern. Dieses Dokument ersetzt ENV 1993-1-1:1992.

Nationales Vorwort

Dieses Dokument (EN 1993-1-8:2005 +AC:2009) wurde vom Technischen Komitee CEN/TC 250 "Eurocodes für den konstruktiven Ingenieurbau" erarbeitet, dessen Sekretariat vom BSI (Vereinigtes Königreich) gehalten wird.

Die Arbeiten auf nationaler Ebene wurden durch die Experten des NABau-Spiegelausschusses NA 005-08-16 AA "Tragwerksbemessung (Sp CEN/TC 250/SC 3)" begleitet.

Die Norm ist Bestandteil einer Reihe von Einwirkungsund Bemessungsnormen, deren Anwendung nur im Paket sinnvoll ist. Dieser Tatsache wird durch das Leitpapier L der Kommission der Europäischen Gemeinschaft für die Anwendung der Eurocodes Rechnung getragen, indem Übergangsfristen für die verbindliche Umsetzung der Eurocodes in den Mitgliedstaaten vorgesehen sind. Die Übergangsfristen sind im Vorwort dieser Norm angegeben.

Die Anwendung dieser Norm gilt in Deutschland in Verbindung mit dem Nationalen Anhang.

Es wird auf die Möglichkeit hingewiesen, dass einige Texte dieses Dokuments Patentrechte berühren können. Das DIN [und/oder die DKE] sind nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

Hintergrund des Eurocode-Programms

1975 beschloss die Kommission der Europäischen Gemeinschaften, für das Bauwesen ein Programm auf der Grundlage des Artikels 95 der Römischen Verträge durchzuführen. Das Ziel des Programms war die Beseitigung technischer Handelshemmnisse und die Harmonisierung technischer Normen.

Im Rahmen dieses Programms leitete die Kommission die Bearbeitung von harmonisierten technischen Regelwerken für die Tragwerksplanung von Bauwerken ein, die im ersten Schritt als Alternative zu den in den Mitgliedsländern geltenden Regeln dienen und sie schließlich ersetzen sollten.

15 Jahre lang leitete die Kommission mit Hilfe eines Steuerkomitees mit Repräsentanten der Mitgliedsländer die Entwicklung des Eurocode-Programms, das zu der ersten Eurocode-Generation in den 80er Jahren führte. Im Jahre 1989 entschieden sich die Kommission und die Mitgliedsländer der Europäischen Union und der EFTA, die Entwicklung und Veröffentlichung der Eurocodes über eine Reihe von Mandaten an CEN zu übertragen, damit diese den Status von Europäischen Normen (EN) erhielten. Grundlage war eine Vereinbarung¹⁾ zwischen der Kommission und CEN. Dieser Schritt verknüpft die Eurocodes de facto mit den Regelungen der Ratsrichtlinien und Kommissionsentscheidungen, die die Europäischen Normen behandeln (z. B. die Ratsrichtlinie 89/106/EWG zu Bauprodukten, die Bauproduktenrichtlinie, die Ratsrichtlinien 93/37/EWG, 92/50/EWG und 89/440/EWG zur Vergabe öffentlicher Aufträge und Dienstleistungen und die entsprechenden EFTA-Richtlinien, die zur Einrichtung des Binnenmarktes eingeleitet wurden).

Das Eurocode-Programm umfasst die folgenden Normen, die in der Regel aus mehreren Teilen bestehen: EN 1990, *Eurocode 0: Grundlagen der*

Tragwerksplanung;

EN 1991, Eurocode 1: Einwirkung auf Tragwerke; EN 1992, Eurocode 2: Bemessung und

Konstruktion von Stahlbetonbauten;

EN 1993, Eurocode 3: Bemessung und

Konstruktion von Stahlbauten;

EN 1994, Eurocode 4: Bemessung und

Konstruktion von Stahl-Beton-Verbundbauten;

EN 1995, Eurocode 5: Bemessung und

Konstruktion von Holzbauten;

EN 1996, Eurocode 6: Bemessung und

Konstruktion von Mauerwerksbauten;

EN 1997, Eurocode 7: Entwurf,

Berechnung und Bemessung in der Geotechnik; EN 1998, Eurocode 8: Auslegung von

Bauwerken gegen Erdbeben;

EN 1999, Eurocode 9: Bemessung und

Konstruktion von Aluminiumkonstruktionen.

Die Europäischen Normen berücksichtigen die Verantwortlichkeit der Bauaufsichtsorgane in den Mitgliedsländern und haben deren Recht zur nationalen Festlegung sicherheitsbezogener Werte berücksichtigt, so dass diese Werte von Land zu Land unterschiedlich bleiben können.

Status und Gültigkeitsbereich der Eurocodes

Die Mitgliedsländer der EU und von EFTA betrachten die Eurocodes als Bezugsdokumente für folgende Zwecke:

 als Mittel zum Nachweis der Übereinstimmung der Hoch- und Ingenieurbauten mit den wesentlichen Anforderungen der Richtlinie 89/106/EWG, besonders mit der wesentlichen Anforderung Nr. 1: Mechanischer Festigkeit und Standsicherheit und der wesentlichen Anforderung Nr. 2: Brandschutz;

- als Grundlage f
 ür die Spezifizierung von Vertr
 ägen f
 ür die Ausf
 ührung von Bauwerken und dazu erforderlichen Ingenieurleistungen;
- als Rahmenbedingung f
 ür die Herstellung harmonisierter, technischer Spezifikationen f
 ür Bauprodukte (ENs und ETAs)

Die Eurocodes haben, da sie sich auf Bauwerke beziehen, eine direkte Verbindung zu den Grundlagendokumenten²⁾, auf die in Artikel 12 der Bauproduktenrichtlinie hingewiesen wird, wenn sie auch anderer Art sind als die harmonisierten Produktnormen³⁾. Daher sind die technischen Gesichtspunkte, die sich aus den Eurocodes ergeben, von den Technischen Komitees von CEN und den Arbeitsgruppen von EOTA, die an Produktnormen arbeiten, zu beachten, damit diese Produktnormen mit den Eurocodes vollständig kompatibel sind.

Die Eurocodes liefern Regelungen für den Entwurf, die Berechnung und Bemessung von kompletten Tragwerken und Baukomponenten, die sich für die tägliche Anwendung eignen. Sie gehen auf traditionelle Bauweisen und Aspekte innovativer Anwendungen ein, liefern aber keine vollständigen Regelungen für ungewöhnliche Baulösungen und Entwurfsbedingungen, wofür Spezialistenbeiträge erforderlich sein können.

Nationale Fassungen der Eurocodes

Die Nationale Fassung eines Eurocodes enthält den vollständigen Text des Eurocodes (einschließlich aller Anhänge), so wie von CEN veröffentlicht, mit möglicherweise einer nationalen Titelseite und einem nationalen Vorwort sowie einem Nationalen Anhang.

Vereinbarung zwischen der Kommission der Europäischen Gemeinschaft und dem Europäischen Komitee für Normung (CEN) zur Bearbeitung der Eurocodes für die Tragwerksplanung von Hochbauten und Ingenieurbauwerken (BC/CEN/03/89).

²⁾ Entsprechend Artikel 3.3 der Bauproduktenrichtlinie sind die wesentlichen Angaben in Grundlagendokumenten zu konkretisieren, um damit die notwendigen Verbindungen zwischen den wesentlichen Anforderungen und den Mandaten für die Erstellung harmonisierter Europäischer Normen und Richtlinien für die Europäische Zulassungen selbst zu schaffen.

³⁾ Nach Artikel 12 der Bauproduktenrichtlinie hat das Grundlagendokument

a) die wesentliche Anforderung zu konkretisieren, in dem die Begriffe und, soweit erforderlich, die technische Grundlage f
ür Klassen und Anforderungsh
öhen vereinheitlicht werden,

b) die Methode zur Verbindung dieser Klasse oder Anforderungshöhen mit technischen Spezifikationen anzugeben, z. B. rechnerische oder Testverfahren, Entwurfsregeln,

c) als Bezugsdokument f
ür die Erstellung harmonisierter Normen oder Richtlinien f
ür Europ
äische Technische Zulassungen zu dienen.

Die Eurocodes spielen de facto eine ähnliche Rolle für die wesentliche Anforderung Nr. 1 und einen Teil der wesentlichen Anforderung Nr. 2.

Der Nationale Anhang darf nur Hinweise zu den Parametern geben, die im Eurocode für nationale Entscheidungen offen gelassen wurden. Diese national festzulegenden Parameter (NDP) gelten für die Tragwerksplanung von Hochbauten und Ingenieurbauten in dem Land, in dem sie erstellt werden. Sie umfassen:

- Zahlenwerte f
 ür γ-Faktoren und/oder Klassen, wo die Eurocodes Alternativen eröffnen;
- Zahlenwerte, wo die Eurocodes nur Symbole angeben;
- landesspezifische, geographische und klimatische Daten, die nur f
 ür ein Mitgliedsland gelten, z.B. Schneekarten;
- Vorgehensweise, wenn die Eurocodes mehrere zur Wahl anbieten;
- Entscheidungen zur Anwendung informativer Anhänge;
- Verweise zur Anwendung des Eurocodes, soweit diese ergänzen und nicht widersprechen.

Verbindung zwischen den Eurocodes und den harmonisierten Technischen Spezifikationen für Bauprodukte (EN und ETAZ)

Die harmonisierten Technischen Spezifikationen für Bauprodukte und die technischen Regelungen für die Tragwerksplanung⁴⁾ müssen konsistent sein. Insbesondere sollten die Hinweise, die mit den CE-Zeichen an den Bauprodukten verbunden sind und die die Eurocodes in Bezug nehmen, klar erkennen lassen, welche national festzulegenden Parameter (NDP) zugrunde liegen.

Nationaler Anhang zu EN 1993-1-8

Diese Norm enthält alternative Methoden, Zahlenangaben und Empfehlungen in Verbindung mit Anmerkungen, die darauf hinweisen, wo Nationale Festlegungen getroffen werden können. EN 1993-1-8 wird bei der nationalen Einführung einen Nationalen Anhang enthalten, der alle national festzulegenden Parameter enthält, die für die Bemessung und Konstruktion von Stahlbauten im jeweiligen Land erforderlich sind.

Nationale Festlegungen sind bei folgenden Regelungen vorgesehen:

- 1.2.6 (Bezugsnormengruppe 6: Niete);
- 2.2(2);
- 3.1.1(3);
- 3.4.2(1);
- 5.2.1(2);
- 6.2.7.2(9).

1 Allgemeines

1.1 Anwendungsbereich

(1) EN 1993-1-8 enthält Regeln für den Entwurf, die Berechnung und die Bemessung von Anschlüssen aus Stahl mit Stahlsorten S235, S275, S355, S420, S450 und S460 unter vorwiegend ruhender Belastung.

1.2 Normative Verweisungen

(1) Die folgenden zitierten Dokumente sind für die Anwendung dieses Dokuments erforderlich. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen).

1.2.1 Bezugsnormengruppe 1: Schweißgeeignete Baustähle

EN 10025-1:2004, Warmgewalzte Erzeugnisse aus Baustählen – Teil 1: Allgemeine Lieferbedingungen

EN 10025-2:2004, Warmgewalzte Erzeugnisse aus Baustählen – Teil 2: Allgemeine Lieferbedingungen für unlegierte Baustähle

EN 10025-3:2004, Warmgewalzte Erzeugnisse aus Baustählen – Teil 3: Technische Lieferbedingungen für normalgeglühte/normalisierend gewalzte schweißgeeignete Feinkornstähle

Zu 1.1(1)

Mit der Einführung der DIN EN 1993-1-12 [K10] und der Veröffentlichung des zugehörigen Nationalen Anhangs im August 2011 [K12] wird der Anwendungsbereich der DIN EN 1993-1-8 auf Stahlsorten bis einschließlich S700 erweitert. Sofern die zusätzlichen Regeln der DIN EN 1993-1-12 zu berücksichtigen sind, wird hierauf an entsprechender Stelle im Dokument hingewiesen. Für einzelne Anwendungen wie z. B. den Einsatz in als verformbar einzustufenden Anschlüssen oder bei einseitig angeschlossen Winkeln dürfen die Regeln von DIN EN 1993-1-8 nicht auf Stahlsorten über S460 bis S700 übertragen werden. Auch auf diese Einschränkungen wird an entsprechender Stelle hingewiesen.

Für die Anwendung der DIN EN 1993-1-8 werden Anforderungen an die Mindestblechdicken gestellt, auf die zu Beginn der jeweiligen Abschnitte im Normentext hingewiesen wird. Die wesentlichen Anforderungen sind nachfolgend zusammengestellt: Schraubenverbindungen (Abschnitt 3): $t \ge 3,0$ mm

Schweißverbindungen (Abschnitt 4): allgemein $t \ge 4,0$ mm Hohlprofile $t \ge 2,5$ mm Hohlprofilknoten (Abschnitt 7): 2,5 mm $\le t \le 25$ mm Werden die Mindestblechdicken unterschritten, kann z. B. für Schraub- und Schweißverbindungen auf DIN EN 1993-1-3 [K13] zurückgegriffen werden.

siehe Artikel 3.3 und Art. 12 der Bauproduktenrichtlinie, ebenso wie 4.2, 4.3.1, 4.3.2 und 5.2 des Grundlagendokumentes Nr. 1

EN 10025-4:2004, Warmgewalzte Erzeugnisse aus Baustählen – Teil 4: Technische Lieferbedingungen für thermomechanisch gewalzte schweißgeeignete Feinkornstähle

EN 10025-5:2004, Warmgewalzte Erzeugnisse aus Baustählen – Teil 5: Technische Lieferbedingungen für wetterfeste Baustähle

EN 10025-6:2004, Warmgewalzte Erzeugnisse aus Baustählen – Teil 6: Technische Lieferbedingungen für Flacherzeugnisse aus Stählen mit höherer Streckgrenze im vergüteten Zustand

1.2.2 Bezugsnormengruppe 2: Toleranzen, Maße und technische Lieferbedingungen

EN 10029:1991, Warmgewalztes Stahlblech von 3 mm Dicke an – Grenzabmaße, Formtoleranzen, zulässige Gewichtsabweichungen

EN 10034:1993, I- und H-Profile aus Baustahl – Grenzabmaße und Formtoleranzen

EN 10051:1991, Kontinuierlich warmgewalztes Blech und Band ohne Überzug aus unlegierten und legierten Stählen – Grenzabmaße und Formtoleranzen (enthält Änderung A1:1997)

EN 10055:1995, Warmgewalzter gleichschenkliger T-Stahl mit gerundeten Kanten und Übergängen – Maße, Grenzabmaße und Formtoleranzen

EN 10056-1:1998, Gleichschenklige und ungleichschenklige Winkel aus Stahl – Teil 1: Maβe

EN 10056-2:1993, Gleichschenklige und ungleichschenklige Winkel aus Stahl – Teil 2: Grenzabmaße und Formtoleranzen

EN 10164:1993, Stahlerzeugnisse mit verbesserten Verformungseigenschaften senkrecht zur Erzeugnisoberfläche – Technische Lieferbedingungen

1.2.3 Bezugsnormengruppe 3: Hohlprofile

EN 10219-1:1997, Kaltgefertigte geschweißte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen – Teil 1: Technische Lieferbedingungen

EN 10219-2:1997, Kaltgefertigte geschweißte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen – Teil 2: Grenzabmaße, Maße und statische Werte

EN 10210-1:1994, Warmgefertigte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen – Teil 1: Technische Lieferbedingungen

EN 10210-2:1997, Warmgefertigte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen – Teil 2: Grenzabmaße, Maße und statische Werte

1.2.4 Bezugsnormengruppe 4: Schrauben, Muttern und Unterlegscheiben

EN 14399-1:2002, Hochfeste planmäßig vorgespannte Schraubenverbindungen für den Stahlbau – Teil 1: Allgemeine Anforderungen.

EN 14399-2:2002, Hochfeste planmäßig vorgespannte Schraubenverbindungen für den Stahlbau – Teil 2: Prüfung der Eignung zum Vorspannen

EN 14399-3:2002, Hochfeste planmäßig vorgespannte Schraubenverbindungen für den Stahlbau – Teil 3: System HR; Garnituren aus Sechskantschrauben und -muttern

EN 14399-4:2002, Hochfeste planmäßig vorgespannte Schraubenverbindungen für den Stahlbau – Teil 4: System HV; Garnituren aus Sechskantschrauben und -muttern

EN 14399-5:2002, Hochfeste planmäßig vorgespannte Schraubenverbindungen für den Stahlbau – Teil 5: Flache Scheiben für System HR

EN 14399-6:2002, Hochfeste planmäßig vorgespannte Schraubenverbindungen für den Stahlbau – Teil 6: Flache Scheiben mit Fase für die Systeme HR und HV

EN ISO 898-1:1999, Mechanische Eigenschaften von Verbindungselementen aus Kohlenstoffstahl und legiertem Stahl – Teil 1: Schrauben (ISO 898-1:1999)

EN 20898-2:1993, Mechanische Eigenschaften von Verbindungselementen – Teil 2: Muttern mit festgelegten Prüfkräften – Regelgewinde (ISO 898-2:1992)

EN ISO 2320:1997, Sechskantmuttern aus Stahl mit Klemmteil – Mechanische und funktionelle Eigenschaften (ISO 2320:1997)

EN ISO 4014:2000, Sechskantschrauben mit Schaft – Produktklassen A und B (ISO 4014:1999)

EN ISO 4016:2000, Sechskantschrauben mit Schaft – Produktklasse C (ISO 4016:1999)

EN ISO 4017:2000, Sechskantschrauben mit Gewinde bis Kopf – Produktklassen A und B (ISO 4017:1999)

EN ISO 4018:2000, Sechskantschrauben mit Gewinde bis Kopf – Produktklasse C (ISO 4018:1999)

EN ISO 4032:2000, Sechskantmuttern, Typ 1 – Produktklassen A und B (ISO 4032:1999)

EN ISO 4033:2000, Sechskantmuttern, Typ 2 – Produktklassen A und B (ISO 4033:1999)

EN ISO 4034:2000, Sechskantmuttern – Produktklasse C (ISO 4034:1999)

EN ISO 7040:1997, Sechskantmuttern mit Klemmteil (mit nichtmetallischem Einsatz), Typ 1 – Festigkeitsklassen 5, 8 und 10 (ISO 7040:1997)

EN ISO 7042:1997, Sechskantmuttern mit Klemmteil (Ganzmetallmuttern), Typ 2 – Festigkeitsklassen 5, 8, 10 und 12 (ISO 7042:1997) EN ISO 7719:1997, Sechskantmuttern mit Klemmteil (Ganzmetallmuttern), Typ 1 – Festigkeitsklassen 5, 8 und 10 (ISO 7719:1997)

ISO 286-2:1988, ISO-System für Grenzmaße und Passungen – Tabellen der Grundtoleranzgrade und Grenzabmaße für Bohrungen und Wellen

ISO 1891:1979, Mechanische Verbindungselemente; Schrauben, Muttern und Zubehör, Benennungen

EN ISO 7089:2000, Flache Scheiben – Normale Reihe, Produktklasse A (ISO 7089:2000)

EN ISO 7090:2000, Flache Scheiben mit Fase – Normale Reihe, Produktklasse A (ISO 7090:2000)

EN ISO 7091:2000, Flache Scheiben – Normale Reihe, Produktklasse C (ISO 7091:2000)

EN ISO 10511:1997, Sechskantmuttern mit Klemmteil – Niedrige Form (mit nichtmetallischem Einsatz) (ISO 10511:1997)

EN ISO 10512:1997, Sechskantmuttern mit Klemmteil (mit nichtmetallischem Einsatz), Typ 1, mit metrischem Feingewinde – Festigkeitsklassen 6, 8 und 10 (ISO 10512:1997)

EN ISO 10513:1997, Sechskantmuttern mit Klemmteil (Ganzmetallmuttern), Typ 2, mit metrischem Feingewinde – Festigkeitsklassen 8, 10 und 12 (ISO 10513:1997)

1.2.5 Bezugsnormengruppe 5: Schweißzusatzmittel und Schweißen

EN 12345:1998, Schweißen – Mehrsprachige Benennungen für Schweißverbindungen mit bildlichen Darstellungen

EN ISO 14555:1998, Schweißen – Lichtbogenbolzenschweißen von metallischen Werkstoffen (ISO 14555:1998)

EN ISO 13918:1998, Schweißen – Bolzen und Keramikringe zum Lichtbogenbolzenschweißen (ISO 13918:1998)

EN 288-3:1992, Anforderung und Anerkennung von Schweißverfahren für metallische Werkstoffe – Teil 3: Schweißverfahrensprüfungen für das Lichtbogenschweißen von Stählen (enthält Änderung A1:1997)

EN ISO 5817:2003, Schweißen – Schmelzschweißverbindungen an Stahl, Nickel, Titan und deren Legierungen (ohne Strahlschweißen) – Bewertungsgruppen von Unregelmäßigkeiten (ISO/DIS 5817:2000)

1.2.6 Bezugsnormengruppe 6: Niete

Anmerkung: Der Nationale Anhang gibt Hinweise zu Bezugsnormen.

NDP

NCI

DIN EN 1993-1-8/NA

zu 1.2.6 (Bezugsnormengruppe 6: Niete) Anmerkung Bis zum Erscheinen einer entsprechenden EN-Norm gelten für die geometrischen Abmessungen DIN 124 und DIN 302. Der Werkstoff für Niete ist im Einzelfall festzulegen.

1.2.7 Bezugsnormengruppe 7: Bauausführung von Stahlbauten

EN 1090-2, Anforderungen an die Bauausführung von Stahlbauten

DIN EN 1993-1-8/NA

zu 1.2 Normative Verweisungen

- NA DIN 124, Halbrundniete; Nenndurchmesser 10 bis 36 mm
- NA DIN 302, Senkniete; Nenndurchmesser 10 bis 36 mm
- NA DIN EN 1090-2-2008-12, Ausführung von Stahltragwerken und Aluminiumtragwerken – Teil 2: Technische Anforderungen an die Ausführung von Tragwerken aus Stahl

1.3 Unterscheidung nach Grundsätzen und Anwendungsregeln

(1) Es gelten die Regeln der EN 1990, 1.4.

1.4 Begriffe

(1) Nachstehende Begriffe werden in dieser Norm mit folgender Bedeutung verwendet:

1.4.1 Grundkomponente (eines Anschlusses)

Teil eines Anschlusses, der zu einem oder mehreren Kennwerten des Anschlusses beiträgt

1.4.2 Verbindung

konstruktiver Punkt, an dem sich zwei oder mehrere Bauteile treffen; für die Berechnung und Bemessung besteht die Verbindung aus einer Anordnung von Grundkomponenten, die für die Bestimmung der Kennwerte der Verbindung für die Übertragung der Schnittgrößen notwendig sind

1.4.3 angeschlossenes Bauteil

Bauteil, das in einem Anschluss mit anderen Bauteilen verbunden ist

Rechter Anschluss = Schubbeanspruchtes Stegfeld + rechte Verbindung

Anschluss = Schubbeanspruchtes Steafeld + Verbinduna

a) Einseitige Anschlusskonfiguration

b) Zweiseitige Anschlusskonfiguration Bild 1.1. Teile einer Träger-Stützenanschlusskonfiguration

1.4.4 Anschluss

Bereich, in dem zwei oder mehrere Bauteile miteinander verbunden sind; für die Berechnung und Bemessung besteht der Anschluss aus der Anordnung aller Grundkomponenten, die für die Bestimmung der Kennwerte des Anschlusses bei der Übertragung der Schnittgrößen zwischen den angeschlossenen Bauteilen notwendig sind; ein Träger-Stützenanschluss besteht z. B. aus einem Stegfeld mit entweder einer Ver-

a) Anschlusskonfigurationen (starke Achse)

Zweiseitige Träger-Stützen-Anschlusskonfiguration

Zweiseitige Träger-Träger-Anschlusskonfiguration

b) Anschlusskonfigurationen (schwache Achse, nur für ausgeglichene Momente $M_{b1,Ed} = M_{b2,Ed}$)

Legende

- 1 Einseitige Träger-Stützenanschlusskonfiguration
- 2 Zweiseitige Träger-Stützenanschlusskonfiguration
- 3 Trägerstoß
- 4 Stützenstoß
- 5 Fußplatte

Bild 1.2. Anschlusskonfigurationen

bindung (einseitige Anschlusskonfiguration) oder zwei Verbindungen (zweiseitige Anschlusskonfiguration), siehe Bild 1.1

1.4.5 Anschlusskonfiguration

Gestaltung eines Anschlusses oder mehrerer Anschlüsse an einem Knoten, an dem die Achsen von zwei oder mehreren angeschlossenen Bauteilen zusammenlaufen, siehe Bild 1.2

1.4.6 Rotationskapazität

Winkel, um den sich der Anschluss bei vorgegebenem Moment ohne Versagen verformen kann

Rotationssteifigkeit 1.4.7

Moment, um in einem Anschluss die Winkelverformung $\phi = 1$ zu erzeugen

Kennwerte (eines Anschlusses) 1.4.8

Tragfähigkeit, bezogen auf die Schnittgrößen der angeschlossenen Bauteile, die Rotationssteifigkeit und die Rotationskapazität des Anschlusses

1.4.9 ebener Anschluss

in einer Fachwerk-Konstruktion erfasst der ebene Anschluss die Bauteile, die in der gleichen Ebene liegen

Zu 1.4.6 bis 1.4.8

Mit der DIN EN 1993-1-8 ist die "Komponentenmethode" zur Berechnung von geschraubten oder geschweißten Anschlüssen eingeführt worden, die die Ermittlung der charakteristischen Anschlusskennwerte: "Beanspruchbarkeit", "Rotationssteifigkeit" und "Rotationskapazität" ermöglicht. Anhand der Anschlusskennwerte erfolgt eine Klassifizierung der Anschlüsse für die Trag- und Verformungsnachweise, auf die im Abschnitt 5 noch näher eingegangen wird.

15 Formelzeichen

(1) Folgende Formelzeichen werden im Sinne dieser Norm verwandt:

- d Nennwert des Schraubendurchmessers, des Bolzendurchmessers oder des Durchmessers des Verbindungsmittels;
- Lochdurchmesser für eine Schraube, einen d_0 Niet oder einen Bolzen:
- Lochgröße im Zugquerschnitt, im Allgemei $d_{o,t}$ nen der Lochdurchmesser, außer bei senkrecht zur Zugbeanspruchung angeordneten Langlöchern, dort sollte die Längsabmessung verwendet werden;
- $d_{o,v}$ Lochgröße im schubbeanspruchten Ouerschnitt, im Allgemeinen der Lochdurchmesser, außer bei schubparallelen Langlöchern, dort sollte die Längsabmessung verwendet werden;
- Höhe des Stützenstegs zwischen den Aus $d_{\rm c}$ rundungen (Höhe des geraden Stegteils);
- Mittelwert aus Eckmaß und Schlüsselweite $d_{\rm m}$ des Schraubenkopfes oder der Schraubenmutter (maßgebend ist der kleinere Wert);
- Bemessungswert der Hertz'schen Pressung; $f_{\rm H,Rd}$
- Zugfestigkeit des Nietwerkstoffs; $f_{\rm ur}$
- e_1 Randabstand in Kraftrichtung, gemessen von der Lochachse zum Blechrand, siehe Bild 3.1;
- Randabstand quer zur Kraftrichtung, gemes e_2 sen von der Lochachse zum Blechrand, siehe Bild 3.1:
- Randabstand eines Langlochs zum parallelen e_3 Blechrand, gemessen von der Mittelachse des Langlochs, siehe Bild 3.1;
- Randabstand eines Langlochs zum Blechrand, e_4 gemessen vom Mittelpunkt des Endradius in der Achse des Langlochs, siehe Bild 3.1;
- $\ell_{\rm eff}$ wirksame Länge einer Kehlnaht:
- Anzahl der Reibflächen bei reibfesten Vern bindungen oder Anzahl der Löcher für Verbindungsmittel im schubbeanspruchten Querschnitt;
- Lochabstand von Verbindungsmitteln in Kraft p_1 richtung, gemessen von Achse zu Achse der Verbindungsmittel, siehe Bild 3.1;
- Lochabstand von Verbindungsmitteln in $p_{1.0}$ Kraftrichtung in einer Außenreihe am Blechrand, gemessen von Achse zu Achse der Verbindungsmittel, siehe Bild 3.1:
- Lochabstand von Verbindungsmitteln in Kraft $p_{1,i}$ richtung in einer inneren Reihe, gemessen von Achse zu Achse der Verbindungsmittel, siehe Bild 3.1;
- Lochabstand von Verbindungsmitteln quer zur p_2 Kraftrichtung, gemessen von Achse zu Achse der Verbindungsmittel, siehe Bild 3.1;
- Nummer einer Schraubenreihe; r Anmerkung: Bei einer biegebeanspruchten Schraubenverbindung mit mehr als einer Schraubenreihe im Zugbereich erfolgt die

Nummerierung der Schraubenreihen beginnend mit der Schraubenreihe, die am weitesten von dem Druckpunkt entfernt liegt. Länge der steifen Auflagerung:

Blechdicke des Flanschwinkels;

S_s

ta

 $t_{\rm fc}$

- Blechdicke des Stützenflansches:
- Blechdicke der Unterlegscheibe (unter der tp Schraube oder der Mutter);
- t_w Blechdicke des Steges;
- Blechdicke des Stützensteges; $t_{\rm wc}$
- Brutto-Ouerschnittsfläche einer Schraube (Schaft); Α
- Querschnittsfläche des Nietlochs; A_0
- Schubfläche einer Stütze, siehe EN 1993-1-1; $A_{\rm vc}$ Spannungsquerschnittsfläche einer Schraube $A_{\rm s}$
 - oder einer Ankerschraube:
- wirksame Schubfläche: $A_{\rm v.eff}$
- Bemessungswert des Durchstanzwiderstandes $B_{p,Rd}$ des Schraubenkopfes und der Schraubenmutter;
- Ε Elastizitätsmodul:
- Bemessungswert der Vorspannkraft; $F_{p,Cd}$
- $\bar{F}_{t,Ed}$ Bemessungswert der einwirkenden Zugkraft auf eine Schraube im Grenzzustand der Tragfähigkeit:
- $F_{t,Rd}$ Bemessungswert der Zugtragfähigkeit einer Schraube;
- $F_{\rm T,Rd}$ Bemessungswert der Zugtragfähigkeit des Flansches eines äquivalenten T-Stummels;
- Bemessungswert der Abschertragfähigkeit $F_{v,Rd}$ einer Schraube;
- $F_{b,Rd}$ Bemessungswert der Lochleibungstragfähigkeit einer Schraube:
- Bemessungswert des Gleitwiderstandes einer F_{s.Rd.ser} Schraube im Grenzzustand der Gebrauchstauglichkeit;
- $F_{s,Rd}$ Bemessungswert des Gleitwiderstandes einer Schraube im Grenzzustand der Tragfähigkeit;
- Bemessungswert der einwirkenden Abscher-F_{v.Ed.ser} kraft auf eine Schraube im Grenzzustand der Gebrauchstauglichkeit;
- $F_{\rm v.Ed}$ Bemessungswert der einwirkenden Abscherkraft auf eine Schraube im Grenzzustand der Tragfähigkeit;
- $M_{i.Rd}$ Bemessungswert der Momententragfähigkeit eines Anschlusses;
- Rotationssteifigkeit eines Anschlusses;
- S_j $S_{j,ini}$ Anfangs-Rotationssteifigkeit eines Anschlusses;
- $\dot{V}_{wp,Rd}$ Plastische Schubtragfähigkeit des Stegfeldes einer Stütze:
- Hebelarm; z
- Reibbeiwert; μ
- ϕ Rotationswinkel eines Anschlusses.

(2) In Abschnitt 7 werden die folgenden Abkürzungen für Hohlprofile verwendet:

- KHP für ein rundes Hohlprofil "Kreis-Hohlprofil";
- RHP für ein rechteckiges Hohlprofil "Rechteck-Hohlprofil", hier einschließlich quadratischer Hohlprofile.

(3) In Abschnitt 7 werden die folgenden Formelzeichen verwandt:

A_i	Querschnittsfläche eines Bauteils <i>i</i>
	(i = 0, 1, 2 oder 3);
$A_{\rm v}$	Schubfläche des Gurtstabes;
$A_{\rm v.eff}$	wirksame Schubfläche des Gurtstabes
L	Systemlänge eines Bauteils;

- $M_{\mathrm{ip},i,\mathrm{Rd}}$ Bemessungswert der Momententragfähigkeit des Anschlusses bei Biegung in der Tragwerksebene für das Bauteil i (i = 0, 1, 2oder 3):
- $M_{\mathrm{ip},i,\mathrm{Ed}}$ Bemessungswert des einwirkenden Momentes in der Tragwerksebene für das Bauteil i (i = 0, 1, 2 oder 3);
- Bemessungswert der Momententragfähigkeit $M_{\rm op, i, Rd}$ des Anschlusses bei Biegung aus der Tragwerksebene für das Bauteil i (i = 0, 1, 2oder 3);
- $M_{{\rm op},i,{\rm Ed}}$ Bemessungswert des einwirkenden Momentes aus der Tragwerksebene für das Bauteil i (i = 0, 1, 2 oder 3);
- Bemessungswert der Normalkrafttragfähig- $N_{i,Rd}$ keit des Anschlusses für das Bauteil i (i = 0, 1, 2 oder 3):

 $N_{i,Ed}$ Bemessungswert der einwirkenden Normalkraft für das Bauteil i (i = 0, 1, 2 oder 3);

- $W_{e\ell,i}$ elastisches Widerstandsmoment des Bauteils i (i = 0, 1, 2 oder 3);
- $W_{p\ell,i}$ plastisches Widerstandsmoment des Bauteils i (i = 0, 1, 2 oder 3);
- Gesamtbreite eines RHP-Bauteils i (i = 0, 1, 2 b_i oder 3), quer zur Tragwerksebene;

wirksame (effektive) Breite einer Strebe, die $b_{\rm eff}$ auf den Gurtstab aufgesetzt ist;

- $b_{\rm e,ov}$ wirksame (effektive) Breite einer Strebe, die in einem Überlappungsstoß auf eine andere Strebe aufgesetzt ist;
- $b_{e,p}$ wirksame (effektive) Breite bei Durchstanzen;
- $b_{\rm p}$ Blechbreite;
- $b_{\rm w}$ wirksame (effektive) Breite des Stegblechs eines Gurtstabes:
- Gesamtdurchmesser bei KHP-Bauteilen i d_i (i = 0, 1, 2 oder 3);
- Stegblechhöhe von Gurtstäben mit I- oder $d_{\rm w}$ H-Querschnitt;
- e Ausmittigkeit eines Anschlusses;
- Festigkeitsgrenze für das Stegblech des fь Gurtstabes infolge lokalen Beulens;
- Streckgrenze des Werkstoffs von Bauteilen i f_{vi} (i = 0, 1, 2 oder 3);
- Streckgrenze des Werkstoffs eines Gurt f_{y0} stabes;
- Spaltweite zwischen den Streben eines Kg oder N-Anschlusses (negative Werte für g entsprechen einer Überlappung q); der Abstand g wird an der Oberfläche des Gurtstabes zwischen den Kanten der angeschlossenen Bauteile gemessen, siehe Bild 1.3(a);

a) Bezeichnung für Spalt

k

l

р

q

r

 $t_{\rm f}$

t_i

tp

i

b) Bezeichnungen für Überlappung

Bild 1.3. Knotenanschlüsse mit Spalt und mit Überlappung

- Gesamthöhe des Querschnitts eines Bauteils i h_i (i = 0, 1, 2 oder 3) in der Tragwerksebene;
- h, Abstand zwischen den Gleichgewichtspunkten der wirksamen (effektiven) Breite der Teile eines Trägers mit rechteckigem Querschnitt, der mit einer Stütze mit I- oder H-Querschnitt verbunden ist Beiwert mit Indizes g, m, n oder p, wie in Tabelle erklärt;
 - Knicklänge eines Bauteils;
 - Projektion der Anschlusslänge einer Strebe auf die Oberfläche des Gurtstabes, ohne Berücksichtigung der Überlappung, siehe Bild 1.3(b);
 - Länge der Überlappung, gemessen an der Oberfläche des Gurtstabes zwischen den Streben-Achsen eines K- oder N-Anschlusses, siehe Bild 1.3(b);
 - Ausrundungsradius von I- oder H-Profilen oder Eckradius von rechteckigen Hohlprofilen;
 - Flanschdicke von I- oder H-Profilen;
 - Wanddicke eines Bauteils i (i = 0, 1, 2 oder 3); Blechdicke;
- Stegdicke von I- oder H-Profilen; $t_{\rm w}$
- Beiwert, wie in Tabelle erklärt; α
- eingeschlossener Winkel zwischen Strebe i θ_i und Gurtstab (i = 1, 2 oder 3);
- Beiwert, wie im Text erklärt; κ
- Beiwert, wie in Tabelle erklärt; μ
- Winkel zwischen Tragwerksebenen bei räumφ lichen Anschlüssen.

(4) In Abschnitt 7 werden die folgenden Zahlenindizes verwandt:

Zahlenindex zur Bestimmung von Bauteilen eines Anschlusses, wobei i = 0 für die Bezeichnung des Gurtstabes und i = 1, 2 oder 3 für die Bezeichnung der Streben gelten. Bei Anschlüssen mit zwei Streben bezeichnet i = 1 im Allgemeinen die Druckstrebe und i =2 die Zugstrebe, siehe Bild 1.4(b). Bei einer

Bild 1.4. Abmessungen und weitere Parameter eines Fachwerk-Knotenanschlusses mit Hohlprofilen

einzelnen Strebe wird i = 1 verwendet, unabhängig ob druck- oder zugbelastet, siehe Bild 1.4(a);

i und *j* Zahlenindex bei überlappenden Anschlüssen, *i* bezeichnet die überlappende Strebe und *j* die überlappte Strebe, siehe Bild 1.4(c).

(5) Im Abschnitt 7 werden die folgenden Spannungsverhältnisse verwandt:

n Verhältnis
$$(\sigma_{0,Ed}/f_{y0})/\gamma_{M5}$$
 (für RHP-Gurtstäbe);

 $n_{\rm p}$ Verhältnis $(\sigma_{\rm p,Ed}/f_{y0})/\gamma_{\rm M5}$ (für KHP-Gurtstäbe);

 $\sigma_{0,\text{Ed}}$ maximale einwirkende Druckspannung im Gurtstab am Anschluss;

 $\sigma_{\rm p,Ed}$ ist der Wert von $\sigma_{\rm 0,Ed}$ ohne die Spannungen infolge der Komponenten der Strebenkräfte am Anschluss parallel zum Gurt, siehe Bild 1.4.

Zu 1.5(5)

Mithilfe der Gurtauslastungen *n* und *n*_p für RHP- bzw. KHP-Gurtstäbe werden die Reduktionsfaktoren für die Knotentragfähigkeit in Abschnitt 7 bestimmt. Auch wenn der empfohlene Teilsicherheitsbeiwert $\gamma_{M5} = 1,00$ im Nationalen Anhang zur DIN EN 1993-1-8 [K11] bestätigt worden ist, sei an dieser Stelle darauf hingewiesen, dass die Gurtauslastung ohne Ansatz eines Teilsicherheitsbeiwertes zu bestimmen ist (vgl. auch [K45]). (6) Im Abschnitt 7 werden die folgenden geometrischen Verhältnisse verwandt:

- β Verhältnis der mittleren Durchmesser oder mittleren Breiten von Strebe und Gurtstab
 – für T-, Y- und X-Anschlüsse:
 - $\frac{d_{1}}{d_{0}}; \frac{d_{1}}{b_{0}} \text{ oder } \frac{b_{1}}{b_{0}}$ für K- und N-Anschlüsse: $\frac{d_{1} + d_{2}}{2d_{0}}; \frac{d_{1} + d_{2}}{2b_{0}} \text{ oder } \frac{b_{1} + b_{2} + h_{1} + h_{2}}{4b_{0}}$ für KT-Anschlüsse: $\frac{d_{1} + d_{2} + d_{3}}{3d_{0}}; \frac{d_{1} + d_{2} + d_{3}}{3b_{0}} \text{ oder }$ $\frac{b_{1} + b_{2} + b_{3} + h_{1} + h_{2} + h_{3}}{6b_{0}}$

 $\beta_{\rm p}$ Verhältnis $b_i/b_{\rm p}$;

 γ Verhältnis der Breite oder des Durchmessers des Gurtstabes zum zweifachen seiner Wanddicke: $d_0 \ b_0 \ b_0$

$$\frac{u_0}{2t_0}$$
; $\frac{v_0}{2t_0}$ oder $\frac{v_0}{2t_f}$

 η Verhältnis der Höhe der Strebe zu Durchmesser oder Breite des Gurtstabes: h_i oder h_i

$$\frac{1}{d_0}$$
 oder $\frac{1}{b_0}$

- $\begin{array}{ll} \eta_{\rm p} & \mbox{Verhältnis } h_i/b_{\rm p}; \\ \lambda_{\rm ov} & \mbox{Überlappungsverhältnis in Prozent} \\ & (\lambda_{\rm ov} = (q/p) \times 100 \,\%), \, \mbox{wie in Bild 1.3(b) angegeben.} \end{array}$
- λ_{ov,lim} Überlappung, bei der der Schub zwischen den Streben und der Oberfläche eines Gurtstabes kritisch werden kann

(7) Weitere Formelzeichen werden im Text erklärt.

Anmerkung: Formelzeichen für Kreisprofile sind in Tabelle 7.2 angegeben.

2 Grundlagen der Tragwerksplanung

2.1 Annahmen

(1) Die Regelungen dieses Teils von EN 1993 setzen voraus, dass die Ausführung den in 1.2 angegebenen Herstell- und Liefernormen entspricht und die verwendeten Baustoffe und Bauprodukte den Anforderungen in EN 1993 oder den maßgebenden Baustoff- und Bauproduktspezifikationen entsprechen.

2.2 Allgemeine Anforderungen

(1)P Die Anschlüsse müssen so bemessen werden, dass das Tragwerk die grundlegenden Anforderungen dieser Norm und von EN 1993-1-1 erfüllt.

(2) Die Teilsicherheitsbeiwerte $\gamma_{\rm M}$ für Anschlüsse sind in Tabelle 2.1 angegeben.

 Tabelle 2.1.
 Teilsicherheitsbeiwerte für Anschlüsse

Beanspruchbarkeit von Bauteilen und Querschnitten	γ _{M0} , γ _{M1} und γ _{M2} siehe EN 1993-1-1
Beanspruchbarkeit von Schrauben	
Beanspruchbarkeit von Nieten	
Beanspruchbarkeit von Bolzen	γм2
Beanspruchbarkeit von Schweißnähten	
Beanspruchbarkeit von Blechen auf Lochleibung	
Gleitfestigkeit – im Grenzzustand der Tragfähigkeit (Kategorie C) – im Grenzzustand der Gebrauchstauglichkeit (Kategorie B)	Ύмз Ύмз,ser
Lochleibungsbeanspruchbarkeit von Injektions- schrauben	γм4
Beanspruchbarkeit von Knotenanschlüssen in Fachwerken mit Hohlprofilen	Ϋм5
Beanspruchbarkeit von Bolzen im Grenzzustand der Gebrauchstauglichkeit	$\gamma_{ m M6,ser}$
Vorspannung hochfester Schrauben	γм7
Beanspruchbarkeit von Beton	γ_{c} siehe EN 1992

Anmerkung: Der Nationale Anhang gibt Hinweise zu Zahlenwerten für γ_{M} . Folgende Zahlenwerte werden empfohlen: $\gamma_{M2} = 1,25$; $\gamma_{M3} = 1,25$ und $\gamma_{M3,ser} = 1,1$; $\gamma_{M4} = 1,0$; $\gamma_{M5} = 1,0$; $\gamma_{M6,ser} = 1,0$; $\gamma_{M7} = 1,1$.

NDP

zu 2.2(2) Anmerkung

Es gelten die Empfehlungen unter Beachtung der folgenden Ergänzungen.

DIN EN 1993-1-8/NA

- $\gamma_{M2,S420} = 1,25$, unter Verwendung von $\beta_w = 0,88$ statt $\beta_w = 1,0$ aus DIN EN 1993-1-8:2010-12, Tabelle 4.1.
- $\gamma_{M2,S460} = 1,25$, unter Verwendung von $\beta_w = 0,85$ statt $\beta_w = 1,0$ aus DIN EN 1993-1-8:2010-12, Tabelle 4.1.

Für Injektionsschrauben ist ein bauaufsichtlicher Verwendbarkeitsnachweis erforderlich.

Anmerkung: Als bauaufsichtliche Verwendbarkeitsnachweise gelten:

- europäische technische Zulassungen,
- allgemeine bauaufsichtliche Zulassungen,
- die Zustimmung im Einzelfall.

(3)P Für ermüdungsbeanspruchte Anschlüsse müssen zusätzlich die Grundsätze in EN 1993-1-9 gelten.

2.3 Schnittgrößen

(1)P Die für den Tragsicherheitsnachweis von Verbindungen erforderlichen Schnittgrößen müssen nach den Grundsätzen in EN 1993-1-1 ermittelt werden.

2.4 Beanspruchbarkeit von Verbindungen

(1) Die Beanspruchbarkeit einer Verbindung ist in der Regel anhand der Beanspruchbarkeiten ihrer Grundkomponenten zu bestimmen.

(2) Für die Bemessung von Anschlüssen können linearelastische oder elastisch-plastische Berechnungsverfahren angewendet werden.

(3) Werden zur Aufnahme von Scherbeanspruchungen verschiedene Verbindungsmittel mit unterschiedlichen Steifigkeiten verwendet, so ist in der Regel dem Verbindungsmittel mit der höchsten Steifigkeit die gesamte Belastung zuzuordnen. Eine Ausnahme von dieser Regel ist in 3.9.3 angegeben.

2.5 Annahmen für die Berechnung

(1)P Bei der Berechnung von Anschlüssen muss eine wirklichkeitsnahe Verteilung der Schnittgrößen angenommen werden. Für die Verteilung der Kräfte und Momente müssen die folgenden Annahmen getroffen werden:

- a) die angenommene Verteilung der Kräfte und Momente steht im Gleichgewicht mit den im Anschluss angreifenden Schnittgrößen,
- b) jedes Element des Anschlusses kann die ihm zugewiesenen Kräfte und Momente übertragen,
- c) die Verformungen, welche durch diese Verteilung hervorgerufen werden, überschreiten nicht das Verformungsvermögen der Verbindungsmittel oder der Schweißnähte und der angeschlossenen Bauteile,
- d) die angenommene Verteilung der Kräfte und Momente muss den Steifigkeitsverhältnissen im Anschluss entsprechen,
- e) die Verformungen, die bei elastisch-plastischen Berechnungsmodellen aus Starrkörperverdrehungen und/oder Verformungen in der Tragwerksebene herrühren, sind physikalisch möglich,
- f) das verwendete Berechnungsmodell steht nicht im Widerspruch zu Versuchsergebnissen, siehe EN 1990.

(2) Die Anwendungsregeln in dieser Norm erfüllen die Annahmen in 2.5(1).

2.6 Schubbeanspruchte Anschlüsse mit Stoßbelastung, Belastung mit Schwingungen oder mit Lastumkehr

(1) Bei schubbeanspruchten Anschlüssen, die Stoßbelastungen oder erheblichen Belastungen aus Schwingungen ausgesetzt sind, sollten nur folgende Anschlussmittel verwendet werden:

Legende

- 1 Schwerpunktachsen
- 2 Verbindungsmittel
- 3 Bezugsachsen

Bild 2.1. Bezugsachsen

- Schweißnähte;
- Schrauben mit Sicherung gegen unbeabsichtigtes Lösen der Muttern;
- vorgespannte Schrauben;
- Injektionsschrauben;
- andere Schrauben, die Verschiebungen der angeschlossenen Bauteile wirksam verhindern;
- Niete.

(2) Darf in einem Anschluss kein Schlupf auftreten (z. B. wegen Lastumkehr), sind in der Regel entweder gleitfeste Schraubverbindungen der Kategorie B oder C, siehe 3.4, Passschrauben, siehe 3.6.1, Niete oder Schweißnähte zu verwenden.

(3) In Windverbänden und/oder Stabilisierungsverbänden dürfen Schrauben der Kategorie A, siehe 3.4, benutzt werden.

2.7 Exzentrizitäten in Knotenpunkten

(1) Treten in Knotenpunkten Exzentrizitäten auf, so sind in der Regel die Anschlüsse und die angeschlossenen Bauteile für die daraus resultierenden Schnittgrößen zu bemessen. Davon ausgenommen sind Konstruktionen, für die nachgewiesen wurde, dass dies nicht erforderlich ist, siehe 5.1.5.

(2) Bei Anschlüssen von Winkel- oder T-Profilen mit einer oder zwei Schraubenreihen sind in der Regel die Exzentrizitäten nach 2.7(1) zu berücksichtigen. Exzentrizitäten in der Anschlussebene und aus der Anschlussebene heraus sind unter Berücksichtigung der Schwerpunktachsen der Bauteile und der Bezugsachsen der Verbindung zu ermitteln, siehe Bild 2.1. Für den einschenkligen Schraubenanschluss zugbeanspruchter Winkel kann das vereinfachte Bemessungsverfahren nach 3.10.3 angewendet werden.

Zu 2.4(3)

Die in 3.9.3 aufgeführte Ausnahme betrifft Hybridverbindungen von Schweißnähten und gleitfest vorgespannten Schrauben der Kategorie C (gleitfeste Verbindung im Grenzzustand der Tragfähigkeit), sofern das endgültige Anziehen der Schrauben nach der vollständigen Ausführung der Schweißarbeiten erfolgt.

Schrauben- festigkeits- klasse	4.6	4.8	5.6	5.8	6.8	8.8	10.9
$f_{\rm yb}$ (N/mm ²)	240	320	300	400	480	640	900
$f_{\rm ub}~({\rm N/mm^2})$	400	400	500	500	600	800	1000

Tabelle 3.1. Nennwerte der Streckgrenze f_{yb} und der Zugfestigkeit f_{ub} von Schrauben

Anmerkung: Der Einfluss der Exzentrizität auf druckbeanspruchte Winkelprofile in Gitterstäben ist in EN 1993-1-1, Anhang BB 1.2 geregelt.

3 Schrauben-, Niet- und Bolzenverbindungen

3.1 Schrauben, Muttern und Unterlegscheiben

3.1.1 Allgemeines

(1) Alle Schrauben, Muttern und Unterlegscheiben müssen in der Regel die Anforderungen der Bezugsnormengruppe 4 in 1.2.4 erfüllen.

(2) Die Regelungen dieses Teils gelten für Schrauben der in Tabelle 3.1 angegebenen Festigkeitsklassen.

(3) Die Streckgrenzen f_{yb} und die Zugfestigkeiten f_{ub} sind für Schrauben der Festigkeitsklassen 4.6, 4.8, 5.6, 5.8, 6.8, 8.8 und 10.9 in Tabelle 3.1 angegeben. Für die Bemessung sind in der Regel diese Werte als charakteristische Werte anzusetzen.

Anmerkung: Im Nationalen Anhang darf die Anwendung bestimmter Schraubenklassen ausgeschlossen werden.

NDP

DIN EN 1993-1-8/NA

zu 3.1.1(3) Anmerkung

Die Verwendung von Schrauben der Festigkeitsklassen 4.8, 5.8 und 6.8 sind für die Anwendung im Stahlbau nicht zulässig.

NCI

DIN EN 1993-1-8/NA

zu 3.13.1 Schraubverbindungen

Es sind Kopf- und Gewindebolzen nach Tabelle NA.1 zu verwenden. Für Kopf- und Gewindebolzen, die nicht in Tabelle NA.1 aufgeführt sind, sind die Nachweise nach DIN EN 1090-2:2008-12, 5.6.12 zu erbringen.

Bei der Ermittlung der Beanspruchbarkeiten von Verbindungen mit Kopf- und Gewindebolzen sind für die Bolzenwerkstoffe die in Tabelle NA.1 angegebenen charakteristischen Werte zu verwenden.

Tabelle NA.1.	Als charakteristische	Werte	für	Werkstoffe	von
Kopf- und Gew	indebolzen festgelegt	e Wert	e		

Bolzen	nach	Streck- grenze f _{y,b,k} N/mm ²	Zug- festigkeit f _{u,b,k} N/mm ²
Festigkeitsklasse 4.8	DIN EN ISO 13918	340	420
S235J2+C450	DIN EN ISO 13918	350	450
S235JR, S235J0, S235J2, S355J0, S355J2	DIN EN ISO 10025-2	Werte nach DIN EN 1993-1-1-2010-12, Tabelle 3.1	

DIN EN 1993-1-8/NA

zu Abschnitt 3.1.1 Verzinkte Schrauben

NCI

Es sind nur komplette Garnituren (Schrauben, Muttern und Scheiben) eines Herstellers zu verwenden.

Feuerverzinkte Schrauben der Festigkeitsklasse 8.8 und 10.9 sowie zugehörige Muttern und Scheiben dürfen nur verwendet werden, wenn sie vom Schraubenhersteller im Eigenbetrieb oder unter seiner Verantwortung im Fremdbetrieb verzinkt wurden.

Andere metallische Korrosionsschutzüberzüge dürfen verwendet werden, wenn

- die Verträglichkeit mit dem Stahl gesichert ist und
- eine wasserstoffinduzierte Versprödung vermieden wird und

– ein adäquates Anziehverhalten nachgewiesen wird.
 Galvanisch verzinkte Schrauben der Festigkeitsklasse
 8.8 und 10.9 dürfen nicht verwendet werden.

Anmerkung 1: Ein anderer metallischer Korrosionsschutzüberzug ist z. B. die galvanische Verzinkung. Die galvanische Verzinkung bei Schrauben reicht als Korrosionsschutz alleine nur in trockenen Innenräumen (Korrosionskategorie C1 nach DIN EN ISO 12944-2) aus.

Anmerkung 2: Zur Vermeidung wasserstoffinduzierter Versprödung siehe auch DIN 267-9.

Zu NCI zu 3.13.1 Schraubenverbindungen

In Tabelle NA.1 werden die Festigkeiten von Kopf- und Gewindebolzen geregelt. Da für aufgeschweißte Gewindebolzen prinzipiell die gleichen Bemessungsregeln wie für Schrauben gelten, sind die zusätzlichen Informationen aus dem Nationalen Anhang an dieser Stelle aufgenommen worden und nicht in Abschnitt 3.13.1 bei den Bolzenverbindungen angegeben. Für aufgeschweißte Kopfbolzen gilt im Übrigen DIN EN 1994-1-1: Verbundtragwerke aus Stahl und Beton.

3.1.2 Vorgespannte Schrauben

(1) Schraubengarnituren der Festigkeitsklassen 8.8 und 10.9, welche den Anforderungen der Bezugsnormengruppe 4 in 1.2.4 entsprechen, dürfen als vorgespannte Schrauben eingesetzt werden, sofern eine kontrollierte Vorspannung nach Bezugsnormengruppe 7 in 1.2.7 durchgeführt wird.

3.2 Niete

(1) Die Werkstoffkenngrößen, Abmessungen und Toleranzen von Stahl-Nieten müssen in der Regel die Anforderungen der Bezugsnormengruppe 6 in 1.2.6 erfüllen.

3.3 Ankerschrauben

(1) Für Ankerschrauben dürfen die folgenden Werkstoffe verwendet werden:

- Stahlsorten, welche den Anforderungen der Bezugsnormengruppe 1 in 1.2.1 entsprechen;
- Stahlsorten, welche den Anforderungen der Bezugsnormengruppe 4 in 1.2.4 entsprechen;
- Stahlsorten von Bewehrungsstählen, welche den Anforderungen nach EN 10080 entsprechen,

vorausgesetzt, dass der Nennwert der Streckgrenze bei scherbeanspruchten Ankerschrauben den Wert 640 N/mm² nicht überschreitet. Ohne Scherbeanspruchung liegt die obere Grenze bei 900 N/mm².

3.4 Kategorien von Schraubenverbindungen

3.4.1 Scherverbindungen

(1) Schraubenverbindungen mit Scherbeanspruchung werden in der Regel für die Bemessung in folgende Kategorien unterteilt:

a) *Kategorie A: Scher-/Lochleibungsverbindung* Zu dieser Kategorie gehören Schrauben der Festigkeitsklassen 4.6 bis 10.9. Vorspannung und besondere Oberflächenbehandlungen sind in der Regel nicht erforderlich. Der Bemessungswert der einwirkenden Scherkraft darf weder den Bemessungswert der Schertragfähigkeit nach 3.6 noch den Bemessungswert des Lochleibungswiderstandes nach 3.6 und 3.7 überschreiten.

b) Kategorie B: Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit

Zu dieser Kategorie gehören hochfeste vorgespannte Schrauben, welche die Anforderungen nach 3.1.2(1) erfüllen. Im Grenzzustand der Gebrauchstauglichkeit darf in der Regel kein Gleiten auftreten. Der Bemessungswert der einwirkenden Scherkraft im Grenzzustand der Gebrauchstauglichkeit darf in der Regel den Bemessungswert des Gleitwiderstandes nach 3.9 nicht überschreiten. Der Bemessungswert der einwirkenden Abscherkraft im Grenzzustand der Tragfähigkeit darf in der Regel den Bemessungswert der Schertragfähigkeit nach 3.6 und des Lochleibungswiderstandes nach 3.6 und 3.7 nicht überschreiten.

Zu NCI zu 3.1.1 Verzinkte Schrauben

Mit den Festlegungen im Nationalen Anhang gelten für die Verwendung verzinkter Schrauben die gleichen Anforderungen und Einschränkungen wie schon nach DIN 18800-1 [K6], Element (407).

Im Wesentlichen soll mit den Festlegungen der gerade bei höherfesten Schrauben ab Festigkeitsklasse 8.8 bestehenden Gefahr einer Wasserstoffversprödung begegnet werden. In DIN EN 1090-2 [K8] wird daher auch für feuerverzinkte Verbindungsmittel eine Ausführung der Verzinkung in Übereinstimmung mit DIN EN ISO 10684 [K15] gefordert, in der auch Vorsichtsmaßnahmen zur Vermeidung einer Wasserstoffversprödung genannt werden. Insbesondere sind möglichst kurze Verweilzeiten in der Beize anzustreben, da in der Beize prozessbedingt atomarer Wasserstoff vorhanden ist und in den Schraubenwerkstoff diffundieren kann. Werden die Schrauben nach der Verzinkung einer mindestens zweistündigen Wärmebehandlung bei Temperaturen von bis zu 200 °C unterzogen, lässt sich der Wasserstoff bei Schrauben bis 1000 N/mm² Zugfestigkeit weitestgehend austreiben und die Gefahr der Wasserstoffversprödung minimieren. Für Schrauben mit höheren Festigkeiten - also auch für Schrauben der Festigkeitsklasse 10.9 mit Überfestigkeiten – kann die Wasserstoffversprödung nicht sicher ausgeschlossen werden.

Bei der galvanischen Verzinkung entsteht zusätzlich während des Abscheideprozesses im galvanischen Bad atomarer Wasserstoff, so dass die Gefahr der Wasserstoffversprödung besonders hoch ist. Aus diesem Grund wird der Einsatz galvanisch verzinkter Schrauben der Festigkeitsklassen 8.8 und 10.9 ausgeschlossen.

Zu 3.1.2(1)

Die Vorspannverfahren zur Aufbringung einer kontrollierten Vorspannung werden in Abschnitt 8.5 der DIN EN 1090-2 und im Anhang A des Nationalen Anhangs zur DIN EN 1993-1-8 geregelt und werden ausführlich im Kapitel 4 des Beitrags von *Prof. Schmidt* und *Prof. Stranghöner* im Stahlbaukalender 2011 behandelt [K34].

Zu 3.4

Die Kategorisierung von Schraubverbindungen erfolgt nach DIN EN 1993-1-8 wie auch schon in DIN 18800-1 in Abhängigkeit von der Ausführung und den Beanspruchungen. Neu ist im Vergleich zur DIN 18800-1 die Kategorie C "Gleitfeste Verbindung im Grenzzustand der Tragfähigkeit". Anders als bei Verbindungen der Kategorie B "Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit" (DIN 18800: GV/GVP-Verbindung) muss bei Verbindungen der Kategorie C sichergestellt werden, dass der Gleitwiderstand $F_{\rm s,Rd}$ auch unter Bemessungslasten nicht überwunden wird.

Die zur DIN EN 1993 gehörende Ausführungsnorm DIN EN 1090-2 bietet für die Ermittlung des Gleitwiderstandes auch Haftreibungszahlen $\mu \ge 0,20$ für unbehandelte, oder lediglich durch Drahtbürsten oder durch Flammstrahlen gereinigte Oberflächen an, so dass auf die nach DIN 18800-7 [K7] noch zwingend erforderliche Vorbehandlung der Kontaktflächen verzichtet werden kann, wenn die erforderlichen Nachweise für die gleitfest vorgespannten Verbindungen mit den reduzierten Haftreibungszahlen geführt werden können. Auf die Haftreibungszahlen sowie die erforderlichen Oberflächenbehandlungen wird in Abschnitt 3.9 noch eingegangen.

Kategorie	Nachweiskriterium	Anmerkungen
Scherverbindungen		
A Scher-/Lochleibungsverbindung	$\begin{array}{rcl} F_{\rm v,Ed} & \leq & F_{\rm v,Rd} \\ F_{\rm v,Ed} & \leq & F_{\rm b,Rd} \end{array}$	Keine Vorspannung erforderlich. Schrauben der Festigkeitsklassen 4.6 bis 10.9 dürfen verwendet werden.
B Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit	$\begin{array}{lll} F_{\rm v,Ed,ser} \leq & F_{\rm s,Rd,ser} \\ F_{\rm v,Ed} & \leq & F_{\rm v,Rd} \\ F_{\rm v,Ed} & \leq & F_{\rm b,Rd} \end{array}$	In der Regel sind hochfeste Schrauben der Festigkeitsklassen 8.8 oder 10.9 zu verwenden. Gleitwiderstand für Gebrauchstauglichkeit siehe 3.9.
C Gleitfeste Verbindung im Grenzzustand der Tragfähigkeit	$\begin{array}{ll} F_{\rm v,Ed} &\leq F_{\rm s,Rd} \\ F_{\rm v,Ed} &\leq F_{\rm b,Rd} \\ \Sigma F_{\rm v,Ed} &\leq N_{\rm net,Rd} \end{array}$	In der Regel sind hochfeste Schrauben der Festigkeitsklassen 8.8 oder 10.9 zu verwenden. Gleitwiderstand für Tragfähigkeit siehe 3.9. $N_{\rm net,Rd}$ siehe 3.4.1(1)c).
Zugverbindungen		
D Nicht vorgespannt	$F_{t,Ed} \leq F_{t,Rd}$ $F_{t,Ed} \leq B_{p,Rd}$	Keine Vorspannung erforderlich. Schrauben der Festigkeitsklassen 4.6 bis 10.9 dürfen verwendet werden. B _{p,Rd} siehe Tabelle 3.4.
E Vorgespannt	$F_{t,Ed} \leq F_{t,Rd}$ $F_{t,Ed} \leq B_{p,Rd}$	In der Regel sind hochfeste Schrauben der Festigkeitsklassen 8.8 oder 10.9 zu verwenden. $B_{p,Rd}$ siehe Tabelle 3.4.
Der Bemessungswert der einwirkenden Zugkra Schrauben unter Scher- und Zugbeanspruchur	ft F _{t,Ed} sollte Beiträge aus Abstü a gelten in der Regel die Kriterie	itzkräften berücksichtigen, siehe 3.11. en, die in Tabelle 3.4 angegeben sind.

Tabelle 3.2. Kategorien von Schraubenverbindungen

Zu Tabelle 3.2

Die Gleichungen zur Ermittlung der Beanspruchbarkeiten von einzelnen Schrauben und Nieten sind in Tabelle 3.4 zusammengestellt. Neu ist im Vergleich zur DIN 18800-1 der für zugbeanspruchte Schrauben geforderte Nachweis gegen Durchstanzen ($B_{p,Rd} \ge F_{t,Ed}$), der aber in der Regel bei sinnvoll aufeinander abgestimmten Blechdicken und Schraubendurchmessern nicht maßgebend wird. Das Durchstanzen kann als Schubversagen der Bleche interpretiert werden, wobei der Durchmesser d_m des "kritischen Rundschnittes" mit dem Mittelwert aus Eckmaß und Schlüsselweite der Schraube angesetzt wird.

Zusätzlich ist für die verbundenen Bauteile in Scherverbindungen der Kategorien A und B nach DIN EN 1993-1-1 nachzuweisen, dass die plastische Beanspruchbarkeit des Bruttoquerschnitts und die Zugbeanspruchbarkeit des Nettoquerschnitts längs der kritischen Risslinie größer ist als der Bemessungswert der einwirkenden Normalkraft. Für Stahlsorten bis S460 ist die Zugbeanspruchbarkeit nach DIN EN 1993-1-1 [K14] Gleichung (6.6) und (6.7) zu bestimmen. Kommen Stahlsorten über S460 bis S700 zum Einsatz, muss nach DIN EN 1993-1-12 der Teilsicherheitsbeiwert γ_{M2} in Gleichung (6.7) durch γ_{M12} ersetzt werden. Empfohlen wird in DIN EN 1993-1-12: $\gamma_{M12} = \gamma_{M2} = 1,25$. Die Empfehlung ist im Nationalen Anhang bestätigt worden.

Wenn für Bauwerke in Erdbebengebieten eine Kapazitätsbemessung gefordert wird, ist sicherzustellen, dass die plastische Zugbeanspruchbarkeit des Bruttoquerschnitts maßgebend wird, vgl. [K42]. Auf den Einsatz von Stahlsorten über S460 sollte dann jedoch verzichtet werden.

Bei Schraubverbindungen der *Kategorie C* ist die Zugbeanspruchbarkeit ausschließlich mit dem maßgebenden Nettoquerschnitt nach DIN EN 1993-1-1 Gleichung (6.8) zu bestimmen. Für unsymmetrisch angeschlossene Bauteile wie z. B. an nur einem Schenkel angeschlossene Winkel und bei indirekten Anschlüssen gelten die Gleichungen (6.6) bis (6.8) der DIN EN 1993-1-1 nicht. Die Zugbeanspruchbarkeit ist hier nach DIN EN 1993-1-8, Absatz 3.10.3 bzw. 3.10.4, zu bestimmen. Die dort angegebenen Regeln gelten nur für Stahlsorten bis S460 und sind nicht auf höherfeste Stahlsorten übertragbar. c) Kategorie C: Gleitfeste Verbindung im Grenzzustand der Tragfähigkeit

Zu dieser Kategorie gehören hochfeste vorgespannte Schrauben, welche die Anforderungen nach 3.1.2(1) erfüllen. Im Grenzzustand der Tragfähigkeit darf kein Gleiten auftreten. Der Bemessungswert der einwirkenden Scherkraft im Grenzzustand der Tragfähigkeit darf den Bemessungswert des Gleitwiderstandes nach 3.9 und des Lochleibungswiderstandes nach 3.6 und 3.7 nicht überschreiten.

Zusätzlich darf bei Zugverbindungen der Bemessungswert des plastischen Widerstands des Nettoquerschnitts im kritischen Schnitt durch die Schraubenlöcher $N_{\text{net,Rd}}$ (siehe EN 1993-1-1, 6.2) nicht überschritten werden.

In Tabelle 3.2 sind die Bemessungsnachweise für diese Verbindungskategorien zusammengefasst.

3.4.2 Zugverbindungen

(1) Zugbeanspruchte Schraubenverbindungen werden in der Regel für die Bemessung in folgende Kategorien unterteilt:

a) Kategorie D: nicht vorgespannt

Zu dieser Kategorie gehören Schrauben der Festigkeitsklassen 4.6 bis 10.9. Vorspannung ist nicht erforderlich. Diese Kategorie darf bei Verbindungen, die häufig veränderlichen Zugbeanspruchungen ausgesetzt sind, nicht verwendet werden. Der Einsatz in Verbindungen, die durch normale Windlasten beansprucht werden, ist dagegen erlaubt.

b) Kategorie E: vorgespannt

Zu dieser Kategorie gehören hochfeste vorgespannte Schrauben der Festigkeitsklassen 8.8 oder 10.9, die nach Bezugsnormengruppe 7 in 1.2.7 kontrolliert vorgespannt werden.

In Tabelle 3.2 sind die Bemessungsregeln für diese Verbindungskategorien zusammengefasst.

Anmerkung: Wird die Vorspannung nicht für den Gleitwiderstand eingesetzt, sondern aus anderen Gründen für die Ausführung oder als Qualitätsmaßnahme (z. B. für die Dauerhaftigkeit) gefordert, dann kann die Höhe der Vorspannung im Nationalen Anhang festgelegt werden.

NDP

DIN EN 1993-1-8/NA

zu 3.4.2(1) Anmerkung

Für die Vorspannanforderung für die Kategorien B und C mit der Vorspannkraft $F_{p,C} = 0.7 f_{ub} A_s$ und für die Kategorie E mit der vollen Vorspannkraft ist das kombinierte Vorspannverfahren nach DIN EN 1090-2 anzuwenden.

Für die Vorspannung als Qualitätssicherungsmaßnahme und für nicht voll vorgespannte Verbindungen der Kategorie E darf eine Vorspannkraft von bis zu

 $F_{\rm p,C}^* = 0.7 f_{\rm yb} A_{\rm s}$ angesetzt werden. Diese kann mit den Vorspannverfahren nach Anhang A aufgebracht werden.

Für die Sicherung der Garnitur gegenüber Lockern reicht in der Regel eine Vorspannung von 50 % von $F_{p,C}^*$ aus.

3.5 Rand- und Lochabstände für Schrauben und Niete

 Die Grenzwerte für Rand- und Lochabstände für Schrauben und Niete sind in Tabelle 3.3 angegeben.
 Zu Grenzwerten für Rand- und Lochabstände für Konstruktionen unter Ermüdungsbelastung, siehe EN 1993-1-9.

Zu 3.5(2)

Wird bei dem Ermüdungsnachweis nach DIN EN 1993-1-9 auf das Nennspannungskonzept zurückgegriffen, müssen die Anschlüsse folgende Mindestrand- und Lochabstände aufweisen:

$$e_1 \ge 1,5d_0;$$
 $e_2 \ge 1,5d_0$
 $p_1 \ge 2,5d_0;$ $p_2 \ge 2,5d_0$

Werden kleinere Rand- und Lochabstände ausgeführt, fehlen entsprechende Kerbfälle in DIN EN 1993-1-9 und es muss der Ermüdungsnachweis auf anderem Wege (z. B. über das Konzept der Strukturspannungen) erbracht werden.

a) Bezeichnungen der Lochabstände

 $p_1 \le 14 \ t \text{ und} \le 200 \text{ mm}$ $p_2 \le 14 \ t \text{ und} \le 200 \text{ mm}$

c) Versetzte Lochanordnung bei druckbeanspruchten Bauteilen

 $p_{1,0} \le 14 \ t \text{ und} \le 200 \ \text{mm}$ $p_{1,i} \le 28 \ t \text{ und} \le 400 \ \text{mm}$

d) Versetzte Lochanordnung bei zugbeanspruchten Bauteilen (Legende: 1 äußere Lochreihe, 2 innere Lochreihe)

e) Randabstände bei Langlöchern

Bild 3.1. Loch- und Randabstände von Verbindungsmitteln

NCI

DIN EN 1993-1-8/NA

zu 3.5 Schraubverbindungen mit Sackloch

Die folgenden Regelungen gelten für Gewindeteile $\leq M100.$

Bei Schraubverbindungen – z. B. Gewindestangen und Sacklochverbindungen – reicht die Einschraubtiefe aus, wenn das Verhältnis ξ der Einschraubtiefe zum Durchmesser des Außengewindes mindestens folgenden Wert erreicht

$$\xi = (600/f_{u,k}) \cdot (0,3 + 0,4f_{u,b,k}/500)$$
 und wenn $f_{u,k} \le f_{u,b,k}$

erfüllt ist.

Dabei ist

- $f_{u,k}$ der charakteristische Wert der Zugfestigkeit des Bauteils mit Innengewinde in N/mm²;
- $f_{u,b,k}$ der charakteristische Wert der Zugfestigkeit des Bauteils mit Außengewinde in N/mm².

Anmerkung 1: Eine genauere Ermittlung der Einschraubtiefe bei Sacklochverbindungen (z. B. Einschraubtiefe für Rundstäbe mit Gewinde) erfolgt nach der VDI-Richtlinie 2230. Anmerkung 2: Sacklochverbindungen dürfen nur mit speziellem Nachweis (Verfahrensprüfung) planmäßig vorgespannt werden.

Bei Schraubverbindungen mit Sackloch gelten die Regeln für Schraubenverbindungen im Übrigen sinngemäß.

Zu NCI zu 3.5 Schraubverbindungen mit Sackloch

Die Formel zur Bestimmung der erforderlichen Einschraubtiefe wurde aus den Zulassungs-Festlegungen der Einschraubtiefe bei Knotenstücken von Raumtragwerken abgeleitet und führt z. T. zu deutlich auf der sicheren Seite liegenden Ergebnissen. Eine genauere Berechnung der erforderlichen Einschraubtiefe kann nach VDI 2230 [K43] erfolgen, siehe Anmerkung 1.

Tabelle 3.3. Grenzwerte fü	r Rand- und Lochabstände
----------------------------	--------------------------

		Maximum ^{1), 2), 3)}				
Rand- und Lochabstände,	Minimum	Stahlkonstruktionen u Stahlsorten nach EN Stahlsorten na	Stahlkonstruktionen unter Verwendung von Stahlsorten nach EN 10025-5			
siene Bild 3.1		Stahl, der dem Wetter oder anderen korrosiven Einflüssen ausgesetzt ist	Stahl, der nicht dem Wetter oder anderen korrosiven Einflüssen ausgesetzt ist	Ungeschützter Stahl		
Randabstand e ₁	1,2 <i>d</i> ₀	4 <i>t</i> + 40 mm		Der größte Wert von: 8 <i>t</i> oder 125 mm		
Randabstand e ₂	1,2 <i>d</i> ₀	4 <i>t</i> + 40 mm		Der größte Wert von: 8 <i>t</i> oder 125 mm		
Randabstand e ₃ bei Langlöchern	1,5 <i>d</i> ₀ ⁴⁾					
Randabstand <i>e</i> 4 bei Langlöchern	1,5 <i>d</i> ⁰ ⁴⁾					
Lochabstand p ₁	2,2 <i>d</i> ₀	Der kleinste Wert von: 14 <i>t</i> oder 200 mm	Der kleinste Wert von: 14 <i>t</i> oder 200 mm	Der kleinste Wert von: 14 <i>t</i> _{min} oder 175 mm		
Lochabstand $p_{1,0}$		Der kleinste Wert von: 14 <i>t</i> oder 200 mm				
Lochabstand $p_{1,i}$		Der kleinste Wert von: 28 <i>t</i> oder 400 mm				
Lochabstand $p_2^{5)}$	2,4 <i>d</i> ₀	Der kleinste Wert von: 14 <i>t</i> oder 200 mm	Der kleinste Wert von: 14 <i>t</i> oder 200 mm	Der kleinste Wert von: 14 <i>t</i> _{min} oder 175 mm		

1) Keine Beschränkung der Maximalwerte f
ür Rand- und Lochabst
ände, au
ßer:

 bei druckbeanspruchten Bauteilen zur Verhinderung des lokalen Beulens und zur Vermeidung von Korrosion von Bauteilen (die Grenzwerte sind in der Tabelle angegeben), die dem Wetter oder anderen korrosiven Einflüssen ausgesetzt sind;
 bei zugbeanspruchten Bauteilen zur Vermeidung von Korrosion (die Grenzwerte sind in der Tabelle angegeben).

²⁾ Der Widerstand druckbeanspruchter Bleche gegen lokales Beulen zwischen den Verbindungsmitteln ist in der Regel nach EN 1993-1-1 unter Verwendung der Knicklänge 0,6 p₁ zu berechnen. Lokales Beulen braucht nicht nachgewiesen werden, wenn p₁/t kleiner als 9*c* ist. Der Randabstand quer zur Kraftrichtung darf in der Regel die Anforderungen gegen lokales Beulen von druckbeanspruchten einseitig gestützten Flanschen nicht überschreiten, siehe EN 1993-1-1. Der Randabstand in Kraftrichtung wird von dieser Anforderung nicht betroffen.

- 3) *t* ist die Dicke des dünnsten außen liegenden Blechs.
- 4) Die Grenzwerte für Langlochabmessungen sind in Bezugsnormengruppe 7 in 1.2.7 angegeben.

⁵⁾ Bei versetzt angeordneten Schraubenreihen darf der minimale Lochabstand auf $p_2 = 1, 2d_0$ reduziert werden, sofern der Minimalabstand *L* zwischen zwei Verbindungsmitteln größer oder gleich als $2, 4d_0$ ist, siehe Bild 3.1b).

3.6 Tragfähigkeiten einzelner Verbindungsmittel

3.6.1 Schrauben und Niete

(1) Die Bemessungswerte der Tragfähigkeit einzelner Verbindungsmittel unter Scher- und/oder Zugbeanspruchung sind in Tabelle 3.4 angegeben.

(2) Bei vorgespannten Schrauben, welche den Anforderungen nach 3.1.2(1) entsprechen, ist in der Regel der Bemessungswert der Vorspannkraft, $F_{p,Cd}$, wie folgt anzusetzen:

$$F_{\rm p,Cd} = 0.7 f_{\rm ub} A_{\rm s} / \gamma_{\rm M7} \tag{3.1}$$

Zu 3.6

In DIN EN 1993-1-8 werden grundsätzlich alle Nachweise sowohl für die Verbindungsmittel als auch für die verbundenen Querschnittsteile im Anschlussbereich auf $f_{\rm u}$ -Niveau mit einem Teilsicherheitsbeiwert $\gamma_{\rm M2}$ = 1,25 geführt.

Die Regeln zur Ermittlung der Abscher- und Zugtragfähigkeit von Schrauben können auch auf andere Gewindeteile und runde Stäbe aus Vollmaterial übertragen werden. Nach DIN EN 1090-2, Abschnitt 8.2.2 ist der kleinste zulässige Nenndurchmesser für Stahlbauverschraubungen M12.

Zu Tabelle 3.3

Nach DIN EN 1993-1-8 gelten die gleichen unteren Grenzwerte für die Rand- und Lochabstände wie nach DIN 18800-1. Bei den oberen Grenzwerten ist zu differenzieren zwischen wetterfesten Baustählen nach DIN EN 10025-5 und den weiteren in DIN EN 10025 geregelten Stahlsorten, bei denen zusätzlich zu berücksichtigen ist, ob die Stahlkonstruktion der Witterung oder anderen korrosiven Einflüssen ausgesetzt ist. Die oberen Grenzwerte der Rand- und Lochabstände werden nach DIN EN 1993-1-8 generell in Abhängigkeit von der Dicke *t* des dünnsten außen liegenden Bleches unter Berücksichtigung absoluter Grenzwerte formuliert. Der Durchmesser der verwendeten Schrauben bzw. der zugehörige Lochdurchmesser bleiben unberücksichtigt. Verglichen mit DIN 18800-1 fallen die maximalen Rand- und Lochabstände nach DIN EN 1993-1-8 in der Regel etwas kleiner aus.

Neu sind in DIN EN 1993-1-8 die konstruktiven Regeln für versetzte Lochreihen und für Langlöcher, siehe Bild 3.1. Die Abmessungen der Langlöcher müssen den Anforderungen der DIN EN 1090-2, Tabelle 11 genügen. Hiernach ist zu differenzieren zwischen kurzen Langlöchern (Längen gestaffelt von 16 mm bei M12 bis 37 mm bei M27) und langen Langlöchern (Länge gleich dem 1,5fachen Nenndurchmesser), für die in Querrichtung die gleichen Anforderungen gelten wie für normale runde Löcher.

Anforderungen an die oberen Grenzwerte für Rand- und Lochabstände sind nur zu berücksichtigen, wenn die Stahlkonstruktion korrosiven Einflüssen ausgesetzt ist oder wenn bei Druckbeanspruchungen ein lokales Beulen ausgeschlossen werden muss. Auf den Nachweis gegen lokales Beulen darf verzichtet werden, wenn die Lochabstände p_1 folgender Bedingung genügen: $p_1 \ge 9 \cdot \varepsilon \cdot t = 9 \cdot \sqrt{235/f_y} \cdot t$. Andernfalls ist der Nachweis nach DIN EN 1993-1-1 entsprechend der Fußnote 2) zur Tabelle 3.3 zu führen.

Die größten Lochleibungstragfähigkeiten werden bei folgenden Rand- und Lochabständen erreicht:

$$e_1 \ge 3,0 d_0; \qquad e_2 \ge 1,5 d_0$$

$$p_1 \ge 3,75 d_0; \quad p_2 \ge 3,0 d_0$$

Dies entspricht mit Ausnahme des erforderlichen Lochabstandes in Kraftrichtung den konstruktiven Anforderungen der DIN 18800-1 (dort: $p_1 \ge 3,50 d_0$) um die höchstmögliche Lochleibungstragfähigkeit zu erreichen.

Zu Tabelle 3.4

In Tabelle 3.4 sind die Gleichungen zur Bestimmung der Beanspruchbarkeit einzelner Schrauben und Nieten mit Scher- und / oder Zugbeanspruchungen zusammengefasst. Diese unterscheiden sich im Wesentlichen nicht von der DIN 18800-1, nur bei kombinierten Scher- und Zugbeanspruchungen ist von der bekannten Kreisgleichung abgewichen und eine lineare Interaktionsbeziehung eingeführt worden. Die lineare Interaktionsbeziehung geht auf experimentelle Untersuchungen an der TU Delft und der University of Manchester zurück, die in der Background Dokumentation zur DIN EN 1993-1-8 [K36] statistisch ausgewertet wurden. Die lineare Interaktionsbeziehung definiert eine untere Grenzkurve für kombinierte Scher- und Zugbeanspruchungen, bei der im Gegensatz zu der Kreisgleichung nach DIN 18800-1 alle Versuchsergebnisse auf der sicheren Seite liegen, vgl. Bild 4 in [K40]. Bei der statistischen Auswertung wurde die Beanspruchbarkeit der Schrauben auf Zug immer auf Basis der Spannungsquerschnittsfläche As bestimmt, unabhängig davon, ob der Schaft oder das Gewinde in der Scherfuge lag. Dies ist auch bei der Nachweisführung für kombinierte Scher- und Zugbeanspruchungen nach DIN EN 1993-1-8 zu berücksichtigen und es darf im Interaktionsnachweis nicht mehr wie nach Element (810) der DIN 18800-1 die ggf. höhere Zugtragfähigkeit für den Schaftguerschnitt zugrunde gelegt werden, selbst wenn dieser in der Scherfuge liegt.

Geringfügige Änderungen im Vergleich zur DIN 18800-1 wurden bei dem Beiwert α_v eingeführt, mit dem das Verhältnis von Scher- zu Zugfestigkeit erfasst wird. Dieser darf für die nach dem Nationalen Anhang zugelassenen Schraubenfestigkeitsklassen 4.6, 5.6, 8.8 und 10.9 mit $\alpha_v = 0,6$ angesetzt werden. Die einzige Ausnahme bilden 10.9er Schrauben, wenn das Gewinde in der Scherfuge liegt, dann ist mit $\alpha_v = 0,5$ zu rechnen. Bei der Ermittlung der Lochleibungstragfähigkeit $F_{\rm b,Rd}$ ist entsprechend der Fußnote a zur Tabelle 3.4 eine Abminderung zu berücksichtigen, wenn statt normalem Lochspiel (siehe Autorenhinweis zu 3.6.1 (9)) ein großes Lochspiel vorliegt ($\beta = 0,80$) oder wenn die Schrauben in Langlöcher quer zur Kraftrichtung eingesetzt werden ($\beta = 0,60$).

Für das Zusammenwirken von Verbindungsmitteln in einem Anschluss sind weitere Regeln in DIN EN 1993-1-8 formuliert, die zusätzlich zu berücksichtigen sind (siehe u. a. 3.8 und 3.12).

Versagenskriterium	Schrauben	Niete
Abscheren je Scherfuge	$F_{v,Rd} = \frac{\alpha_v f_{ub} A}{\gamma_{M2}}$ - wenn das Gewinde der Schraube in der Scherfuge liegt (A ist die Spannungsquerschnittsfläche A _s der Schraube): - für Festigkeitsklassen 4.6, 5.6 und 8.8: $\alpha_v = 0,6$ - für Festigkeitsklassen 4.8, 5.8, 6.8 und 10.9: $\alpha_v = 0,5$ - wenn der Schaft der Schraube in der Scherfuge liegt (A ist die Schaftquerschnittsfläche der Schraube): $\alpha_v = 0,6$	$F_{\rm v,Rd} = \frac{0.6f_{\rm ur}A_0}{\gamma_{\rm M2}}$
Lochleibung ^{1), 2), 3)}	$F_{b,Rd} = \frac{k_1 \alpha_b f_u dt}{\gamma_{M2}}$ wobei α_b der kleinste Wert ist von α_d ; $\frac{f_{ub}}{f_u}$ oder 1,0; in Kraftrichtung: - für am Rand liegende Schrauben: $\alpha_d = \frac{e_1}{3d_0}$, - für innen liegende Schrauben: $\alpha_d = \frac{p_1}{3d_0} - \frac{1}{4}$ quer zur Kraftrichtung: - für am Rand liegende Schrauben: k_1 ist der kleinste Wert von 2,8 $\frac{e_2}{d_0}$ - 1,7; 1,4 $\frac{p_2}{d_0}$ - 1,7 und 2,5 - für innen liegende Schrauben: k_1 ist der kleinste Wert von 1,4 $\frac{p_2}{d_0}$ - 1,7 oder 2,5	
Zug ²⁾	$F_{t,Rd} = \frac{k_2 f_{ub} A_s}{\frac{\gamma_{M2}}{\gamma_{M2}}}$ wobei $k_2 = 0,63$ für Senkschrauben, sonst $k_2 = 0,9.$	$F_{t,Rd} = \frac{0.6f_{ur}A_0}{\gamma_{M2}}$
Durchstanzen	$B_{\mathrm{p,Rd}}=0.6\pid_{\mathrm{m}}t_{\mathrm{p}}f_{\mathrm{u}}/\gamma_{\mathrm{M2}}$	kein Nachweis erforderlich
Kombination von Scher-/Lochleibung und Zug	$\frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1.4F_{t,Rd}} \le 1.0$	
 ¹⁾ Die Lochleibungstragfä - bei großem Lochspie - bei Langlöchern mit ²⁾ Bei Senkschrauben 	ihigkeit F _{b,Rd} wird el statt normalem Lochspiel mit dem Beiwert 0,8 abgemindert; Längsachse quer zur Kraftrichtung mit dem Beiwert 0,6 gegenüber normalen	n Lochspiel abgemindert.

Tabelle 3.4. Beanspruchbarkeit einzelner Verbindungsmittel mit Scher- und/oder Zugbeanspruchung

- wird bei der Bestimmung der Lochleibungstragfähigkeit $F_{b,Rd}$ die Blechdicke t als Dicke des maßgebenden Verbindungsbleches abzüglich der Hälfte der Senkung, angesetzt;

– gelten bei der Bestimmung der Zugtragfähigkeit $F_{t,Rd}$ die Regeln der Bezugsnormengruppe 4 in 1.2.4; andernfalls sollte eine entsprechende Anpassung der Zugtragfähigkeit $F_{t,Rd}$ erfolgen.

³⁾ Bei schräg angreifenden Schraubenkräften darf die Lochleibungstragfähigkeit getrennt für die Kraftkomponenten parallel und senkrecht zum Rand nachgewiesen werden.

Anmerkung: Wird die Vorspannung bei der Bemessung nicht angesetzt, siehe Anmerkung zu Tabelle 3.2.

(3) Die Tragfähigkeit für Zug- oder Scherbeanspruchung im Gewindequerschnitt darf in der Regel nur dann mit dem vollen Wert nach Tabelle 3.4 angesetzt werden, wenn die Schrauben Bezugsnormengruppe 4 in 1.2.4 entsprechen. Für Schrauben mit geschnittenem Gewinde, z. B. Ankerschrauben oder Zugstangen, die aus Rundstahl gefertigt werden, dürfen die Werte aus Tabelle 3.4 verwendet werden, sofern die Ausführung EN 1090 entspricht. Für Schrauben mit geschnittenem Gewinde, für welche die Anforderungen nach EN 1090 nicht erfüllt werden, sind die Werte aus Tabelle 3.4 in der Regel mit dem Faktor 0,85 abzumindern.

(4) Die Abschertragfähigkeit $F_{v,Rd}$ in Tabelle 3.4 ist in der Regel nur anzusetzen, wenn die Schraubenlöcher ein normales Lochspiel entsprechend Bezugsnormengruppe 7 in 1.2.7 haben.

(5) M12 und M14 Schrauben dürfen auch mit einem Lochspiel von 2 mm eingesetzt werden, sofern der Bemessungswert der Abschertragfähigkeit kleiner oder gleich dem Bemessungswert der Lochleibungstragfähigkeit ist und wenn zusätzlich für Schrauben der Festigkeitsklassen 4.8, 5.8, 6.8, 8.8 und 10.9 die Abschertragfähigkeit $F_{v,Rd}$ nach Tabelle 3.4 mit dem Faktor 0,85 abgemindert wird.

(6) Passschrauben sind in der Regel wie Schrauben mit normalem Lochspiel zu bemessen.

(7) In der Regel darf bei Passschrauben das Gewinde nicht in der Scherfuge liegen.

(8) Bei Passschrauben sollte die Länge des Gewindes im auf Lochleibung beanspruchten Blech nicht mehr als 1/3 der Blechdicke betragen, siehe Bild 3.2.

(9) Für das Lochspiel bei Passschrauben gilt in der Regel Bezugsnormengruppe 7 in 1.2.7.

(10) In einschnittigen Anschlüssen mit nur einer Schraubenreihe, siehe Bild 3.3, sollten Unterlegschei-

Bild 3.2. In ein Schraubenloch hineinragendes Gewinde von Passschrauben

Bild 3.3. Einschnittige Verbindung mit einer Schraubenreihe

ben sowohl unter dem Schraubenkopf als auch unter der Mutter eingesetzt werden. Die Lochleibungstragfähigkeit $F_{\rm b,Rd}$ der Schrauben ist zu begrenzen auf:

$$F_{\rm b,Rd} \le 1.5 f_{\rm u} \, d \, t / \gamma_{\rm M2}$$
 (3.2)

Anmerkung: Verbindungen mit nur einem Niet sollten bei einschnittigen Anschlüssen nicht verwendet werden.

(11) Bei Schrauben der Festigkeitsklassen 8.8 oder 10.9 in einschnittigen Anschlüssen mit nur einer Schraube oder nur einer Schraubenreihe sind in der Regel gehärtete Unterlegscheiben zu verwenden.

(12) Übertragen Schrauben oder Niete Scher- und Lochleibungskräfte über Futterbleche mit einer Dicke t_p größer als ein Drittel des Durchmessers *d*, siehe Bild 3.4, so ist in der Regel die Schertragfähigkeit $F_{v,Rd}$ nach Tabelle 3.4 mit einem Beiwert β_p abzumindern:

$$\beta_{\rm p} = \frac{9d}{8d + 3t_{\rm p}} \quad \text{jedoch } \beta_{\rm p} \le 1 \tag{3.3}$$

Zu 3.6.1(4)

Das Nennlochspiel von normalen runden Löchern ist nach DIN EN 1090-2, Tabelle 11 abhängig vom Nenndurchmesser *d* der Schraube wie folgt festgelegt:

M12 und M14: $\Delta d = 1 \text{ mm}$ M16 bis M24: $\Delta d = 2 \text{ mm}$ ab M27: $\Delta d = 3 \text{ mm}$

$$\Delta u = 3 \lim_{n \to \infty} 1$$

Auf übergroße runde Löcher sind die Regeln der DIN EN 1993-1-8 zur Bestimmung der Abschertragfähigkeit nicht anwendbar. In zugbeanspruchten Verbindungen sollte von dem vergrößerten Lochspiel von $\Delta d = 2$ mm kein Gebrauch gemacht werden, da die Kontaktfläche zwischen der Scheibe und den verschraubten Blechen sehr klein ausfällt.

Im Zusammenhang mit dem Lochspiel in Schraubverbindungen wird an dieser Stelle auf die Vorgabe nach Absatz 5.2.1 (6) der DIN EN 1993-1-1 hingewiesen, nach der Verformungen infolge Schlupf bei der Tragwerksberechnung zu berücksichtigen sind, sofern maßgebend. Explizite Hinweise, wann Schlupf nicht maßgebend ist, wie z. B. nach Element (733) der DIN 18800-1 im Allgemeinen bei Fachwerkträgern, sind in der DIN EN 1993-1-1 nicht aufgenommen worden. Es obliegt also der Verantwortung des planenden Ingenieures, zu beurteilen, ob der Schlupf zu berücksichtigen ist oder nicht. Hierbei ist neben dem Grenzzustand der Tragfähigkeit auch der Einfluss des Schlupfes auf die Verformungen im Grenzzustand der Gebrauchstauglichkeit zu berücksichtigen.

Zu 3.6.1(9)

Das Lochspiel bei Passschrauben und Passbolzen muss der Klasse H11 nach DIN ISO 286-2 entsprechen. Abhängig vom Nenndurchmesser der Schrauben liegt das zulässige Lochspiel bei:

M12: $\Delta d \leq 110 \ \mu m = 0.11 \ mm$

M36: $\Delta d \leq 160 \ \mu m = 0.16 \ mm$

Im Vergleich zu dem nach DIN 18800-1 zulässigen Lochspiel von $\Delta d \leq$ 0,3 mm für Passschrauben sind die Anforderungen deutlich höher.

Bild 3.4. Verbindungsmittel durch Futterbleche

(13) Bei zweischnittigen Verbindungen mit Futterblechen auf beiden Seiten des Stoßes ist in der Regel für den Wert t_p die Dicke des dickeren Futterblechs anzusetzen.

(14) Verbindungen mit Nieten sind in der Regel für die Übertragung von Scher- und Lochleibungskräften zu bemessen. Bei Zugbeanspruchung darf der Bemessungswert der einwirkenden Zugkraft $F_{t,Ed}$ den Bemessungswert der Tragfähigkeit $F_{t,Rd}$ nach Tabelle 3.4 nicht überschreiten.

(15) Bei Einsatz der Stahlsorte S235 darf die Zugfestigkeit des Nietwerkstoffs f_{ur} "nach dem Schlagen" mit 400 N/mm² angesetzt werden.

(16) Im Allgemeinen sollte die Klemmlänge der Niete bei Schlagen mit Niethammer den Wert 4,5d und bei hydraulischem Nieten den Wert 6,5d nicht überschreiten.

3.6.2 Injektionsschrauben

3.6.2.1 Allgemeines

(1) Injektionsschrauben können bei Verbindungen der Kategorie A, B und C, siehe 3.4, als Alternative zu normalen Schrauben und Nieten verwendet werden.

(2) Herstellung und Einbau von Injektionsschrauben erfolgt nach Bezugsnormengruppe 7 in 1.2.7.

3.6.2.2 Beanspruchbarkeiten

(1) Die Bemessungsregeln in 3.6.2.2(2) bis 3.6.2.2(6) gelten für Injektionsschrauben der Festigkeitsklassen 8.8 oder 10.9. Schraubengruppen sollten den Anforderungen in Bezugsnormengruppe 4 in 1.2.4 genügen, bei Vorspannung der Schrauben siehe jedoch auch 3.6.2.2(3).

(2) Der Bemessungswert der einwirkenden Abscherkraft einer Schraube der Kategorie A im Grenzzustand der Tragfähigkeit darf in der Regel weder den Bemessungswert der Schertragfähigkeit der Schraube oder einer Schraubengruppe nach 3.6 und 3.7, noch der Lochleibungstragfähigkeit des Injektionsharzes nach 3.6.2.2(5) überschreiten.

(3) Für Verbindungen der Kategorie B und C sind in der Regel vorgespannte Injektionsschrauben einzusetzen; dabei sind Schraubengarnituren nach 3.1.2(1) zu verwenden. (4) Die Bemessungswerte der einwirkenden Scherkraft in Verbindungen der Kategorie B im Grenzzustand der Gebrauchstauglichkeit und der einwirkenden Scherkraft in Verbindungen der Kategorie C im Grenzzustand der Tragfähigkeit dürfen in der Regel die Bemessungswerte des Gleitwiderstandes der Verbindung nach 3.9 sowie der Lochleibungstragfähigkeit des Injektionsharzes nach 3.6.2.2(5), die für die jeweiligen Grenzzustände gelten, nicht überschreiten. Zusätzlich darf, als wäre keine Injektion vorhanden, in der Regel der Bemessungswert der einwirkenden Scherkraft in Verbindungen der Kategorie B und C im Grenzzustand der Tragfähigkeit weder den Bemessungswert der Schertragfähigkeit der Schraube nach 3.6 noch den Bemessungswert der Lochleibungstragfähigkeit der Stahlbleche nach 3.6 und 3.7 überschreiten.

(5) Die Lochleibungstragfähigkeit des Injektionsharzes, $F_{\rm b,Rd,resin}$, kann wie folgt ermittelt werden:

$$F_{\rm b,Rd,resin} = \frac{k_{\rm t} k_{\rm s} d t_{\rm b,resin} \beta f_{\rm b,resin}}{\gamma_{\rm M4}}$$
(3.4)

Dabei ist

*F*_{b,Rd,resin} der Bemessungswert der Lochleibungstragfähigkeit des Injektionsharzes;

- β der Beiwert abhängig vom Verhältnis der Blechdicken der verbundenen Bleche, siehe Tabelle 3.5 und Bild 3.5;
- $f_{\rm b,resin}$ die Festigkeit des Injektionsharzes bei Lochleibungsbeanspruchung, ermittelt nach Bezugsnormengruppe 7 in 1.2.7;
- $t_{b,resin}$ die effektive Lochleibungsdicke bei Injektionsschrauben entsprechend Tabelle 3.5;
- *k*_t 1,0 im Grenzzustand der Gebrauchstauglichkeit (lange Einwirkungsdauer);
 - 1,2 im Grenzzustand der Tragfähigkeit;
- $k_{\rm s}$ 1,0 bei Löchern mit normalem Lochspiel oder (1,0 - 0,1 m) bei übergroßen Löchern;
- *m* die Differenz, in mm, zwischen normalem Lochspiel und übergroßem Lochspiel. Bei kurzen Langlöchern nach Bezugsnormengruppe 7 in 1.2.7, m = 0.5 x (Differenz, in mm, zwischen Lochlänge und Lochweite).

(6) Bei Schrauben mit einer größeren Klemmlänge als 3d sollte die effektive Lochleibungsdicke $t_{b,resin}$ der Injektionsschrauben den Wert 3d nicht überschreiten, siehe Bild 3.6.

Zu 3.6.2

Injektionsschrauben sind insbesondere bei der Instandsetzung von Stahltragwerken als kosteneffiziente Alternative zu Nietoder Passverbindungen einsetzbar, vgl. [K18] und [K35]. Allerdings sind Injektionsschrauben nach DIN EN 1090-2, Absatz 5.6.12 als besondere, d. h. nicht durch internationale oder europäische Normen geregelte Verbindungsmittel einzustufen und ihr Einsatz erfordert einen bauaufsichtlichen Verwendbarkeitsnachweis z. B. durch eine allgemeine bauaufsichtliche Zulassung durch das DIBt (vgl. auch NDP zu Absatz 2.2(2)).

Tabelle 3.5. Werte für β und $t_{\text{b resin}}$

t_{1}/t_{2}	β	t _{b,resin}
≥ 2,0	1,0	2 $t_2 \le 1,5 \ d$
$1,0 < t_1/t_2 < 2,0$	$1,66 - 0,33 (t_1/t_2)$	t ₁ ≤ 1,5 <i>d</i>
≤ 1,0	1,33	$t_1 \le 1,5 d$

3.7 Gruppen von Verbindungsmitteln

(1) Die Beanspruchbarkeit von Gruppen von Verbindungsmitteln darf als Summe der Lochleibungstragfähigkeiten $F_{b,Rd}$ der einzelnen Verbindungsmittel angenommen werden, sofern die jeweilige Abschertragfähigkeit $F_{v,Rd}$ der einzelnen Verbindungsmittel mindestens so groß ist wie der Bemessungswert der

Zu 3.7

Für schubbeanspruchte Verbindungen, bei denen die jeweilige Abschertragfähigkeit $F_{\rm v Rd}$ größer ist als die Lochleibungstragfähigkeit F_{b.Rd}, darf nach DIN EN 1993-1-8 im Grenzzustand der Tragfähigkeit von einer plastischen Schraubenkraftverteilung ausgegangen werden, wenn nur Verbindungsmittel der gleichen Größe und Klassifizierung verwendet werden (siehe auch 3.12 (3)). Hierfür ist ein ausreichendes Verformungsvermögen im Anschluss erforderlich, das bei üblichen Baustählen mit Streckgrenzen bis 355 N/mm² durch die Ovalisierung der Löcher infolge der Lochleibungspressungen sowie durch Scherversätze der Schrauben bereitgestellt wird. Für hochfeste Baustähle mit Streckgrenzen bis 700 N/mm² gibt DIN EN 1993-1-12 hierzu keine zusätzlichen Regeln an und erlaubt ebenfalls den Ansatz einer plastischen Schraubenkraftverteilung, obwohl hochfeste Baustähle im Vergleich zu herkömmlichen Baustählen in der Regel eine geringere Duktilität aufweisen.

Für Anschlüsse mit drei Schrauben in Kraftrichtung hintereinander konnte in [K39] gezeigt werden, dass auch bei Verwendung hochfester Baustähle (S690) und hochfester Schrauben (10.9 / 12.9) ein ausreichendes Verformungsvermögen gegeben ist und eine plastische Schraubenkraftverteilung im Grenzzustand der Tragfähigkeit erreicht wird. Es zeigte sich in [K39] des Weiteren, dass die Bemessungsregeln der DIN EN 1993-1-8 zur Ermittlung der Lochleibungstragfähigkeit gerade bei kleinen Rand- und Lochabständen konservativ sind. Dies wurde auch schon bei schubbeanspruchten Verbindungen mit nur einer Schraube in [K3] beobachtet. In beiden Arbeiten sind auf Basis der durchge-

Bild 3.6. Begrenzung der effektiven Länge von langen Injektionsschrauben

führten Untersuchungen modifizierte Ansätze für die Lochleibungsbeiwerte entwickelt worden, mit denen unter Beibehaltung des gleichen Sicherheitsniveaus die Tragfähigkeiten hochfester Baustähle mit Streckgrenzen bis 700 N/mm² ausgenutzt werden können.

In [K39] wurde neben der Lochleibungstragfähigkeit auch die Abschertragfähigkeit sowie in Einzelversuchen die Nettoquerschnittstragfähigkeit von Schraubverbindungen mit hochfestem Baustahl untersucht. Auch hier zeigte sich, dass trotz der geringeren Duktilität der hochfesten Baustähle eine plastische Schraubenkraftverteilung im Grenzzustand der Tragfähigkeit erreicht wird und auch die Nettoquerschnittstragfähigkeit in guter Übereinstimmung nach DIN EN 1993-1-12 ermittelt werden kann. Bei den Versuchen zur Abschertragfähigkeit zeigte sich, dass das erforderliche Verformungsvermögen der Anschlüsse im Wesentlichen nur durch die Scherversätze der hochfesten Schrauben (10.9/12.9) bereitgestellt wurde.

Nach Auffassung der Autoren können die Regeln für Gruppen von Verbindungsmitteln auch auf hochfeste Baustähle übertragen werden, sofern die Anzahl der Schrauben in Kraftrichtung hintereinander auf drei beschränkt wird. Vorsicht ist jedoch geboten, wenn "unausgewogene" Schraubenbilder z. B. mit kleinen Randabständen e_1 und großen Lochabständen p_1 geplant werden. Hier besteht die Gefahr, dass die Schraube mit der geringsten Lochleibungstragfähigkeit versagt, ohne dass im Grenzzustand der Tragfähigkeit eine plastische Schraubenkraftverteilung erreicht wird. Die Anschlusstragfähigkeit würde überschätzt. Lochleibungstragfähigkeit $F_{b,Rd}$. Andernfalls ist die Beanspruchbarkeit der Gruppe von Verbindungsmitteln in der Regel durch Multiplikation der Anzahl an Verbindungsmitteln mit der kleinsten vorhanden Abschertragfähigkeit bzw. Lochleibungstragfähigkeit zu ermitteln.

3.8 Lange Anschlüsse

(1) Wenn der Abstand L_j zwischen den Achsen des ersten und des letzten Verbindungsmittels in einem langen Anschluss, gemessen in Richtung der Kraftübertragung, siehe Bild 3.7, mehr als 15 *d* beträgt, so ist in der Regel der Bemessungswert der Abschertragfähigkeit $F_{v,Rd}$ aller Verbindungsmittel, berechnet nach Tabelle 3.4, mit einem Abminderungsbeiwert ergibt sich zu:

$$\beta_{\rm Lf} = 1 - \frac{L_{\rm j} - 15d}{200d} \tag{3.5}$$

jedoch $\beta_{\rm Lf} \leq 1,0$ und $\beta_{\rm Lf} \geq 0,75$

(2) Die Regelung in 3.8(1) gilt nicht, wenn eine gleichmäßige Verteilung der Kraftübertragung über die Länge des Anschlusses erfolgt, z. B. bei der Übertragung der Schubkraft zwischen Stegblech und Flansch eines Querschnitts.

3.9 Gleitfeste Verbindungen mit hochfesten 8.8 oder 10.9 Schrauben

3.9.1 Gleitwiderstand

(1) Der Bemessungswert des Gleitwiderstandes vorgespannter hochfester Schrauben der Festigkeitsklasse 8.8 oder 10.9 ist in der Regel wie folgt zu ermitteln:

$$F_{\rm s,Rd} = \frac{k_{\rm s} n \,\mu}{\gamma_{\rm M3}} F_{\rm p,C} \tag{3.6a}$$

$$F_{\rm s,Rd,ser} = \frac{k_{\rm s} \ n \ \mu}{\gamma_{\rm M3,ser}} F_{\rm p,C}$$
(3.6b)

Tabelle 3.6. Zahlenwerte k.

Beschreibung	k s
Schrauben in Löchern mit normalem Lochspiel	1,0
Schrauben in übergroßen Löchern oder in kurzen Langlöchern, deren Längsachse quer zur Kraftrichtung liegt	0,85
Schrauben in großen Langlöchern, deren Längsachse quer zur Kraftrichtung liegt	0,7
Schrauben in kurzen Langlöchern, deren Längsachse parallel zur Kraftrichtung liegt	0,76
Schrauben in großen Langlöchern, deren Längsachse parallel zur Kraftrichtung liegt	0,63

Bild 3.7. Lange Anschlüsse

Dabei ist

- $k_{\rm s}$ der Beiwert, siehe Tabelle 3.6;
- n die Anzahl der Reiboberflächen;
- μ die Reibungszahl, entweder durch Versuche nach Bezugsnormengruppe 7 in 1.2.7 für die jeweilige Reiboberfläche zu ermitteln oder der Tabelle 3.7 zu entnehmen.

(2) Bei Schrauben der Festigkeitsklassen 8.8 und 10.9 nach Bezugsnormengruppe 4 in 1.2.4 mit kontrollierter Vorspannung nach Bezugsnormengruppe 7 in 1.2.7 ist in der Regel die Vorspannkraft $F_{p,C}$ in Gleichung (3.6) wie folgt anzunehmen:

$$F_{\rm p,C} = 0.7 f_{\rm ub} A_{\rm s}$$
 (3.7)

3.9.2 Kombinierte Scher- und Zugbeanspruchung

(1) Wenn eine gleitfeste Verbindung zusätzlich zur einwirkenden Abscherkraft $F_{v,Ed}$ oder $F_{v,Ed,ser}$ durch eine einwirkende Zugkraft $F_{t,Ed}$ oder $F_{t,Ed,ser}$ beansprucht wird, ist in der Regel der Gleitwiderstand je Schraube wie folgt anzunehmen:

bei Kategorie B Verbindungen:

$$F_{\rm s,Rd,ser} = \frac{k_{\rm s} \ n \ \mu \left(F_{\rm p,C} - 0.8F_{\rm t,Ed,ser}\right)}{\gamma_{\rm M3,ser}} \tag{3.8a}$$

bei Kategorie C Verbindungen:

$$F_{\rm s,Rd} = \frac{k_{\rm s} n \,\mu (F_{\rm p,C} - 0.8F_{\rm t,Ed})}{\gamma_{\rm M3}} \tag{3.8b}$$

(2) Stehen in einer biegebeanspruchten Verbindung die Zugkräfte in den Schrauben mit der über Kontakt übertragenden Druckkraft im Gleichgewicht, so ist eine Abminderung des Gleitwiderstandes nicht erforderlich.

Zu 3.8

Auf eine Begrenzung der in einem Anschluss in Kraftrichtung hintereinander liegenden wirksamen Schrauben oder Niete, wie in Element (803) der DIN 18800-1 oder auch VDI 2230 5.5.6.2 festgelegt, wird in DIN EN 1993-1-8 verzichtet. Bei der Ermittlung der Anschlusstragfähigkeit ist nur die Abschertragfähigkeit $F_{\rm v,Rd}$ mit dem Beiwert $\beta_{\rm Lf}$ nach Gleichung (3.5) abzumindern. Es darf, sofern maßgebend, die volle Lochleibungstragfähigkeit der jeweiligen Verbindungsmittel in Ansatz gebracht werden.

Bild 3.8. Blockversagen von Schraubengruppen

3.9.3 Hybridverbindungen

(1) Als Ausnahme zu 2.4(3) darf der Gleitwiderstand von Verbindungen der Kategorie C in 3.4 mit vorgespannten Schrauben der Festigkeitsklassen 8.8 und 10.9 mit der Tragfähigkeit von Schweißnähten überlagert werden, vorausgesetzt, dass das endgültige Anziehen der Schrauben nach der vollständigen Ausführung der Schweißarbeiten erfolgt.

Tabelle 3.7. Reibungsza	ahl μ	für vo	orges	pannte	Schrau	ber
-------------------------	-----------	--------	-------	--------	--------	-----

Gleitflächenklassen (siehe Bezugs- normengruppe 7 in 1.2.7)	Reibungszahl μ
А	0,5
В	0,4
С	0,3
D	0,2

Anmerkung 1: Anforderungen an Versuche und deren Bewertung sind in Bezugsnormengruppe 7 in 1.2.7 angegeben.

Anmerkung 2: Die Einstufung von anderen Vorbehandlungen in Gleitflächenklassen sollte auf der Grundlage von Versuchen und mit Proben vorgenommen werden, deren Oberflächen der Vorbehandlung im wirklichen Bauwerk nach Bezugsnormengruppe 7 in 1.2.7 entsprechen.

Anmerkung 3: Die Definition der Gleitflächenklassen ist in Bezugsnormengruppe 7 in 1.2.7 enthalten.

Anmerkung 4: Bei beschichteten Oberflächen besteht die Möglichkeit eines zeitabhängigen Verlustes der Vorspannung.

3.10 Lochabminderungen

3.10.1 Allgemeines

(1) Lochabminderungen bei der Bemessung von Bauteilen sind in der Regel entsprechend EN 1993-1-1 vorzunehmen.

3.10.2 Blockversagen von Schraubengruppen

(1) Das Blockversagen einer Schraubengruppe wird durch das Schubversagen des Blechs entlang der schubbeanspruchten Schraubenreihe verursacht. Dies geschieht in Kombination mit dem Zugversagen des Blechs entlang der zugbeanspruchten Schraubenreihe am Kopf der Schraubengruppe. Bild 3.8 stellt das Blockversagen dar.

Zu Tabelle 3.7

Eine Auswahl möglicher Oberflächenvorbehandlungen, die geeignet sind die entsprechenden Haftreibungszahlen der Oberflächenklassen A bis D zu erreichen, sind in der Tabelle 18 der DIN EN 1090-2 zusammengestellt. Die Bandbreite reicht von Oberflächen im Walzzustand (Klasse D), für die mit einer Haftreibungszahl $\mu = 0,20$ zu rechnen ist, bis hin zu Kugel- oder sandgestrahlten Oberflächen (Klasse A), für die $\mu = 0,50$ angesetzt werden darf. Haftreibungszahlen $\mu > 0,50$ dürfen angesetzt werden, wenn sie in Verfahrensprüfungen nachgewiesen werden können.

Unabhängig von der Gleitflächenklasse müssen die Kontaktflächen weiterhin vollständig von Verunreinigungen (z. B. Öl oder Farbreste) und Graten befreit werden, die einen festen Sitz der zu verbindenden Teile verhindern würden. (2) Für eine symmetrisch angeordnete Schraubengruppe unter zentrischer Belastung ergibt sich der Widerstand gegen Blockversagen $V_{\text{eff,I,Rd}}$ zu:

$$V_{\rm eff,1,Rd} = f_{\rm u} A_{\rm nt} / \gamma_{\rm M2} + \frac{f_{\rm y}}{\sqrt{3}} A_{\rm nv} / \gamma_{\rm M0}$$
(3.9)

Dabei ist

 $A_{\rm nt}$ die zugbeanspruchte Netto-Querschnittsfläche; $A_{\rm nv}$ die schubbeanspruchte Netto-Querschnittsfläche.

(3) Für eine Schraubengruppe unter exzentrischer Belastung ergibt sich der Widerstand gegen Blockversagen $V_{\text{eff}2,\text{Rd}}$ zu:

$$V_{\rm eff,2,Rd} = 0.5 f_{\rm u} A_{\rm nt} / \gamma_{\rm M2} + \frac{f_{\rm y}}{\sqrt{3}} A_{\rm nv} / \gamma_{\rm M0}$$
(3.10)

3.10.3 Einseitig angeschlossene Winkel und andere unsymmetrisch angeschlossene Bauteile unter Zugbelastung

(1) Die Exzentrizität von Anschlüssen, siehe 2.7(1), sowie die Einflüsse von Loch- und Randabständen der Schrauben sind in der Regel bei der Bestimmung der Tragfähigkeiten von:

- unsymmetrischen Bauteilen;
- symmetrischen Bauteilen, deren Anschluss unsymmetrisch erfolgt, z. B. bei einseitig angeschlossenen Winkeln,

zu berücksichtigen.

(2) Einseitig mit einer Schraubenreihe angeschlossene Winkel, siehe Bild 3.9, dürfen wie zentrisch belastete Winkel bemessen werden, wenn die Tragfähigkeit $N_{u,Rd}$ mit einem effektiven Nettoquerschnitt wie folgt bestimmt wird:

mit 1 Schraube:

$$N_{\rm u,Rd} = \frac{2,0(e_2 - 0.5d_0)t\,f_{\rm u}}{\gamma_{\rm M2}} \tag{3.11}$$

mit 2 Schrauben:

$$N_{\rm u,Rd} = \frac{\beta_2 A_{\rm net} f_{\rm u}}{\gamma_{\rm M2}} \tag{3.12}$$

Bild 3.9. Einseitig angeschlossene Winkel; a) 1 Schraube; b) 2 Schrauben; c) 3 Schrauben

Tabelle 3.8. Abminderungsbeiwerte β_2 und β_3

Lochabstand	p ₁	\leq 2,5 d_0	\geq 5,0 d_0
2 Schrauben	$\beta_{\rm 2}$	0,4	0,7
3 Schrauben oder mehr	β_3	0,5	0,7

mit 3 oder mehr Schrauben:

$$N_{\rm u,Rd} = \frac{\beta_3 A_{\rm net} f_{\rm u}}{\gamma_{\rm M2}} \tag{3.13}$$

Dabei ist

- β_2 und β_3 die Abminderungsbeiwerte in Abhängigkeit vom Lochabstand p_1 , siehe Tabelle 3.8. Für Zwischenwerte von p_1 darf der Wert β interpoliert werden;
- A_{net} die Nettoquerschnittsfläche des Winkels. Wird ein ungleichschenkliger Winkel am kleineren Schenkel angeschlossen, so ist A_{net} in der Regel für einen äquivalenten gleichschenkligen Winkel mit den kleineren Schenkelabmessungen zu berechnen.

3.10.4 Anschlusswinkel für indirekten Anschluss

(1) Anschlusswinkel für indirekten Anschluss, wie z.B. in Bild 3.10 dargestellt, verbinden z.B. abstehende Schenkel von Winkelprofilen mit den Knotenblechen und sind in der Regel für das 1,2fache der Kraft in dem abstehenden Schenkel des angeschlossenen Winkels zu bemessen.

(2) Die Verbindungsmittel zwischen dem Anschlusswinkel und dem abstehenden Schenkel des angeschlossenen Winkelprofils sind in der Regel für das 1,4fache der Kraft in dem abstehenden Schenkel des angeschlossenen Winkels zu bemessen.

(3) Anschlusswinkel zur Verbindung von U-Profilen oder ähnlichen Bauteilen sind in der Regel für das 1,1fache der Kraft in dem abstehenden Flansch des U-Profils zu bemessen.

(4) Die Verbindungsmittel zwischen Anschlusswinkel und U-Profil oder ähnlichen Bauteilen sind in der Regel für das 1,2fache der Kraft, die in dem angeschlossenen U-Profil-Flansch vorliegt, zu bemessen.

Bild 3.10. Anschlusswinkel für indirekten Anschluss

(5) Auf keinen Fall sollten weniger als zwei Schrauben oder Niete zur Verbindung eines Anschlusswinkels für indirekten Anschluss mit einem Knotenblech oder einer ähnlichen Komponente verwendet werden.

(6) Die Verbindung des Anschlusswinkels an ein Knotenblech oder eine ähnliche Komponente sollte bis an das Ende des angeschlossenen Bauteils durchgeführt werden. Die Verbindung des Anschlusswinkels an das angeschlossene Bauteil sollte vom Ende des angeschlossenen Bauteils über das Ende des Knotenblechs hinausgeführt werden.

3.11 Abstützkräfte

(1) Werden Verbindungsmittel auf Zug belastet, so sind bei der Bemessung zusätzliche Abstützkräfte zu berücksichtigen, sofern diese infolge von Hebelwirkungen aus Blechkontakten auftreten können.

Anmerkung: Die Regelungen in 6.2.4 berücksichtigen implizit solche Abstützkräfte.

3.12 Kräfteverteilung auf Verbindungsmittel im Grenzzustand der Tragfähigkeit

(1) Tritt in einem Anschluss ein äußeres Moment auf, so darf die Verteilung der einwirkenden Kräfte auf die Verbindungsmittel entweder linear (d. h. proportional zum Abstand vom Rotationszentrum) oder plastisch (d. h. jede Verteilung, die das Gleichgewicht erfüllt, ist möglich, vorausgesetzt, dass die Tragfähigkeiten der Komponenten nicht überschritten werden und die Duktilitäten der Komponenten ausreichend sind) ermittelt werden.

(2) Die lineare Verteilung der einwirkenden Kräfte ist in der Regel in folgenden Fällen zu verwenden:

- Schrauben in gleitfesten Verbindungen der Kategorie C,
- Scher-/Lochleibungsverbindungen, bei denen die Abschertragfähigkeit F_{v,Rd} kleiner ist als die Lochleibungstragfähigkeit F_{b,Rd},
- Verbindungen unter Stoßbelastung, Schwingbelastung oder mit Lastumkehr (außer Windlasten).

(3) Für einen nur durch zentrische Schubkraft beanspruchten Anschluss darf für die Verbindungsmittel eine gleichmäßige Lastverteilung angenommen werden, wenn nur Verbindungsmittel der gleichen Größe und Klassifizierung verwendet werden.

3.13 Bolzenverbindungen

3.13.1 Allgemeines

(1) Bolzen sind in der Regel gegen Lösen zu sichern.
(2) Bolzenverbindungen, in denen keine Verdrehung in den Augen erforderlich ist, dürfen wie Einschraubenverbindungen bemessen werden, wenn die Bolzenlänge kleiner als das Dreifache des Bolzendurchmessers ist, siehe 3.6.1. Anderenfalls gelten die Regelungen in 3.13.2. (3) Für Augenstäbe sind in der Regel die Anforderungen in Tabelle 3.9 einzuhalten.

(4) Bauteile mit Bolzenverbindungen sind in der Regel so zu konstruieren, dass Exzentrizitäten vermieden werden; auf ausreichende Dimensionierung des Übergangs von Augenstab zu Bauteil ist zu achten.

3.13.2 Bemessung der Bolzen

(1) Die Bemessungsregeln für massive Rundbolzen sind in Tabelle 3.10 angegeben.

(2) Die einwirkenden Biegemomente in einem Bolzen sind in der Regel unter der Annahme zu berechnen,

Zu 3.11

Abstützkräfte können zum Beispiel in einem T-Stoß von Zugstäben auftreten (Bild K1).

Die Abstützkräfte vergrößern die Zugbeanspruchungen der Schauben und müssen bei der Bemessung berücksichtigt werden. Ob sich Abstützkräfte einstellen, hängt von den Vorverformungen und Abmessungen der Stirnplatte und der Schrauben ab. Bei Vorverformungen, wie im rechten Teilbild skizziert, stellen sich keine Abstützkräfte ein.

In dem T-Stummel-Modell nach Abschnitt 6.2.4, mit dem in der Komponentenmethode die Tragfähigkeit von auf Biegung beanspruchten Komponenten wie Stirnplatten oder Stützenflansch bestimmt wird, sind die Abstützkräfte implizit berücksichtigt.

Beispiel für einen zugbeanspruchten T-Stoß (a) mit Abstützkräften K (b) ohne Abstützkräfte

Bild K1. Zusätzliche Beanspruchungen infolge von Abstützkräften

Zu 3.13.2

Die Bemessung von Bolzen nach DIN EN 1993-1-8 entspricht bis auf geringfügige Änderungen bei den Geometrievorgaben für Augenstäbe (Tabelle 3.9, Möglichkeit B), den aus DIN 18800-1 bekannten Regeln. Neu sind die zusätzlichen Regeln für austauschbare Bolzen. Hier fordert DIN EN 1993-1-8 die Begrenzung der Lochleibungsspannung $\sigma_{\rm h,Ed}$ nach Gleichung (3.14) und, wie in Tabelle 3.10 aufgeführt, die Begrenzung der Lochleibungskraft und der Bolzenbiegung im Grenzzustand der Gebrauchstauglichkeit. Werden die zusätzlichen Anforderungen an austauschbare Bolzen erfüllt, bleiben die Bolzen und auch die Augenstäbe unter Gebrauchslasten im elastischen Bereich.

Möglichkeit B:

Geometrie vorgegeben

Zu Tabelle 3.9

Die in der Tabelle 3.9 aufgeführten Möglichkeiten zur Festlegung der Geometrie von Augenstäben gehen im Wesentlichen auf die konstruktiven Empfehlungen $a = \frac{b}{2} + \frac{2}{3}d_0$ und $c = \frac{b}{2} + \frac{1}{3}d_0$ von *Winkler* zurück [K29]. Unter der Voraussetzung gleicher Tragfähigkeiten im Stab und Auge ergeben sich hieraus direkt die bei Möglichkeit A angegebenen Bestimmungsgleichungen für *a* und *c*.

Bei der Möglichkeit B sind weitergehende Überlegungen zur Ermüdungsfestigkeit mit berücksichtigt worden. *Petersen* leitet in [K29] für einen Augenstab mit gleicher Wangen- und Scheiteltragfähigkeit und unter Ansatz eines experimentell abgesicherten Kerbfaktors folgende im Hinblick auf die Ermüdungsfestigkeit besonders geeignete geometrische Vorgaben ab:

$$\frac{c}{d} = 0,73;$$
 $\frac{a}{d} = 1,06;$ $\frac{c}{a} = 0,67$

Diese sind mit geringfügigen Modifikationen in DIN EN 1993-1-8 als Möglichkeit B übernommen worden. Die Mindestblechdicke hängt bei Ermüdungsbeanspruchungen von dem Durchmesser d_0 des Loches und der damit verbundenen Kerbwirkung ab. Unter der Voraussetzung, dass die einwirkende Kraft F_{Ed} der Grenzzugtragfähigkeit des Stabquerschnitts entspricht und der Lochdurchmesser $d_0 = 2,5 t$ beträgt, ergibt sich die in Tabelle 3.9 aufgeführte Gleichung: $t \ge 0.7 \sqrt{F_{Ed}/f_{yd}}$. Werden kleinere Lochdurchmesser als $d_0 < 2,5 t$ bei dynamisch beanspruchten Konstruktionen ausgeführt, kann nach [K29] diese Gleichung korrigiert werden.

Tabelle 3.10. Bemessungsregeln für Bolzenverbindungen

Versagenskriterium	Bemessungsregeln	
Abscheren des Bolzens	$F_{\rm v,Rd}$ = 0,6 $A f_{\rm up} / \gamma_{\rm M2} \ge F_{\rm v,Ed}$	
Lochleibung von Augenblech und Bolzen	$F_{b,Rd}$ = 1,5 t d $f_y / \gamma_{M0} \ge F_{b,Ed}$	
Bei austauschbaren Bolzen zusätzlich	$F_{b,Rd,ser} = 0.6 t d f_y / \gamma_{M6,ser} \ge F_{b,Ed,ser}$	
Biegung des Bolzens	$M_{\rm Rd}$ = 1,5 $W_{\rm e\ell} f_{\rm yp} / \gamma_{\rm M0} \ge M_{\rm Ed}$	
Bei austauschbaren Bolzen zusätzlich	$M_{\rm Rd,ser}$ = 0,8 $W_{\rm e\ell} f_{\rm yp} / \gamma_{\rm M6,ser} \ge M_{\rm Ed,ser}$	
Kombination von Abscheren und Biegung des Bolzens	Abscheren und Biegung des Bolzens $\left[\frac{M_{\rm Ed}}{M_{\rm Rd}}\right]^2 + \left[\frac{F_{\rm v,Ed}}{F_{\rm v,Rd}}\right]^2 \le 1$	
d Bolzendurchmesser;		
$f_{ m y}$ kleinerer Wert der Streckgrenze $f_{ m yb}$ des Bolzenwerkstoffs und des Werkstoffs des Augenstabs;		

fup Bruchfestigkeit des Bolzens;

fyp Streckgrenze des Bolzens;

Dicke des Augenstabblechs;

A Querschnittsfläche des Bolzens.

Bild 3.11. Biegemoment in einem Bolzen

dass die Augenstabbleche gelenkige Auflager bilden. Dabei ist anzunehmen, dass die Lochleibungspressung zwischen dem Bolzen und den Augenstabblechen gleichmäßig über die jeweilige Kontaktfläche verteilt ist, siehe Bild 3.11.

(3) Soll der Bolzen austauschbar sein, ist neben den Anforderungen in 3.13.1 und 3.13.2 die Lochleibungsspannung wie folgt zu beschränken:

$$\sigma_{\rm h,Ed} \le f_{\rm h,Rd} \tag{3.14}$$

Dabei ist

$$\sigma_{\rm h,Ed} = 0.591 \sqrt{\frac{E \ F_{\rm b,Ed,ser}(d_0 - d)}{d^2 \ t}}$$
(3.15)

$$f_{\rm h,Rd} = 2.5 f_{\rm y} / \gamma_{\rm M6,ser}$$
 (3.16)

Dabei ist

d der Bolzendurchmesser;

 d_0 der Bolzenlochdurchmesser;

*F*_{b,Ed,ser} der Bemessungswert der einwirkenden Lochleibungskraft im Grenzzustand der Gebrauchstauglichkeit.

4 Schweißverbindungen

4.1 Allgemeines

(1) Die Bestimmungen dieses Abschnittes beziehen sich auf schweißbare Baustähle, die den Anforderungen nach EN 1993-1-1 entsprechen und Erzeugnisdicken von 4 mm oder mehr aufweisen. Weiterhin beschränkt sich die Gültigkeit auf Anschlüsse, in denen das Schweißgut mit dem Grundwerkstoff hinsichtlich der mechanischen Kenngrößen verträglich ist, siehe 4.2. Für Schweißnähte bei dünneren Erzeugnisdicken gilt EN 1993-1-3; zu Schweißnähten von Hohlprofilen mit Blechdicken von 2,5 mm und mehr siehe Abschnitt 7. Für das Schweißen von Kopfbolzendübeln ist EN 1994-1-1 zu beachten.

Anmerkung: Zu weiteren Bestimmungen für das Schweißen von Kopfbolzendübeln siehe auch EN ISO 14555 und EN ISO 13918.

(2)P Für Schweißnähte, die auf Ermüdung beansprucht werden, müssen auch die Grundsätze in EN 1993-1-9 gelten.

(3) Im Allgemeinen ist, sofern nicht anderweitig festgelegt, Qualitätsstandard C nach EN ISO 25817 erforderlich. Der Umfang der Schweißnahtprüfung ist in der Regel unter Verwendung der Bezugsnormengruppe 7 in 1.2.7 festzulegen. Die Qualitätsanforderungen an Schweißnähte sollten nach EN ISO 25817 gewählt werden. Zu Qualitätsanforderungen an ermüdungsbeanspruchte Schweißnähte, siehe EN 1993-1-9.

(4) Die Terrassenbruchgefahr ist in der Regel zu beachten.

(5) Hinweise zum Terrassenbruch gibt EN 1993-1-10.

4.2 Schweißzusätze

(1) Für die Schweißzusätze gelten in der Regel die Normen der Bezugsnormengruppe 5 in 1.2.5.

(2) Die für das Schweißgut spezifizierten Werte der Streckgrenze, Bruchfestigkeit, Bruchdehnung und Mindestkerbschlagarbeit müssen in der Regel mindestens den spezifizierten Werten für den verschweißten Grundwerkstoff entsprechen.

Anmerkung: Grundsätzlich liegt die Wahl von Elektroden mit höherer Güte als die für die verwendeten Stahlsorten auf der sicheren Seite.

Zu 4.2(1)

Für Stahlsorten über S460 bis S700 legt der Nationale Anhang zur DIN EN 1993-1-12 fest, dass nur Schweißzusatzwerkstoffe verwendet werden dürfen, deren Festigkeit mindestens gleich oder größer ist als die Festigkeiten der Grundwerkstoffe. Der Korrelationsbeiwert ist für die Stahlsorten S460 bis S700 mit $\beta_w = 1,20$ festgelegt, vgl. auch Tabelle 4.1.

Einen neuen Ansatz haben *Rasche* und *Kuhlmann* in [K32] vorgestellt, auf den im Kommentar zu Absatz 4.5.3.2 noch genauer eingegangen wird.

4.3 Geometrie und Abmessungen

4.3.1 Schweißnahtarten

(1) Diese Norm gilt für die Bemessung von Kehlnähten, Schlitznähten, Stumpfnähten, Lochschweißungen und Hohlkehlnähten. Stumpfnähte können entweder durchgeschweißt oder nicht durchgeschweißt sein. Schlitznähte sowie Lochschweißungen können sowohl an Kreislöchern als auch an Langlöchern verwendet werden.

(2) Die üblichen Schweißnahtarten und Anschlussformen sind in EN 12345 dargestellt.

4.3.2 Kehlnähte

4.3.2.1 Allgemeines

(1) Kehlnähte dürfen für die Verbindung von Bauteilen verwendet werden, wenn die Flanken einen Öffnungswinkel von 60° bis 120° bilden.

(2) Kleinere Winkel als 60° sind ebenfalls zulässig. In diesen Fällen sollte die Schweißnaht allerdings als eine nicht durchgeschweißte Stumpfnaht behandelt werden. (3) Bei Öffnungswinkeln über 120° ist in der Regel die Beanspruchbarkeit der Kehlnähte durch Versuche nach EN 1990, Anhang D nachzuweisen.

(4) An den Enden von Bauteilen sollten Kehlnähte durchgehend mit voller Abmessung und einer Mindestlänge gleich der doppelten Schenkellänge der Naht um die Ecken der Bauteile herumgeführt werden, wo immer eine solche Umschweißung möglich ist.

Anmerkung: Bei unterbrochen geschweißten Kehlnähten gilt diese Regelung nur für den letzten Schweißnahtabschnitt am Bauteilende.

(5) Umschweißungen an den Bauteilenden sollten in den Zeichnungen angegeben werden.

(6) Zur Exzentrizität von einseitigen Kehlnähten siehe 4.12.

4.3.2.2 Unterbrochen geschweißte Kehlnähte

(1) Unterbrochen geschweißte Kehlnähte sind bei Korrosionsgefährdung in der Regel nicht anzuwenden.

(2) Für die unverschweißten Spaltlängen $(L_1 \text{ oder } L_2)$ zwischen den einzelnen Schweißabschnitten Lw einer unterbrochen geschweißten Kehlnaht gelten die Anforderungen in Bild 4.1.

(3) Die unverschweißte Spaltlänge (L_1 oder L_2) einer unterbrochen geschweißten Kehlnaht sollte an der gegenüberliegenden Seite oder an derselben Seite bestimmt werden, je nach dem, welche kürzer ist.

 $L_{\rm we} \ge 0,75 \ b \ {\rm und} \ 0,75 \ b_1$ Für zusammengesetzte zugbeanspruchte Bauteile: Der kleinste Wert von $L_1 \leq 16 t$ und 16 *t*₁ und 200 mm Für zusammengesetzte druck- oder schubbeanspruchte Bauteile: Der kleinste Wert von $L_2 \leq 12 t$ und 12 t1 und 0,25 b und 200 mm

Bild 4.1. Unterbrochen geschweißte Kehlnähte

(4) Bei Bauteilen, die mit unterbrochen geschweißten Kehlnähten verbunden werden, sollten am Ende stets Schweißabschnitte L_{we} vorgesehen werden.

(5) Bei einem mit unterbrochen geschweißten Kehlnähten zusammengesetzten Bauteil sollte an jedem Blechende beidseitig ein Schweißabschnitt mit einer Länge von mindesten 3/4 der Breite des schmaleren Bleches vorgesehen werden, siehe Bild 4.1.

4.3.3 Schlitznähte

(1) Schlitznähte, einschließlich Kehlnähte in Kreisoder Langlöchern, dürfen nur verwendet werden, um Schub zu übertragen oder um Beulen oder Klaffen von überlappten Teilen zu verhindern.

(2) Für eine Schlitznaht sollte der Durchmesser eines Kreisloches oder die Breite eines Langloches nicht kleiner sein als die vierfache Blechdicke.

(3) Die Enden von Langlöchern sollten halbkreisförmig ausgeführt werden, außer wenn die Langlöcher über den Rand des betreffenden Teiles hinaus gehen.

(4) Die Abstände der Mittelpunkte von Schlitznähten sollten die Grenzwerte zur Vermeidung lokalen Beulens nicht überschreiten, siehe Tabelle 3.3.

4.3.4 Stumpfnähte

 (1) Eine durchgeschweißte Stumpfnaht ist eine Schweißnaht mit vollständigem Einbrand und vollständiger Verschmelzung des Schweißwerkstoffes mit dem Grundmaterial über die gesamte Dicke der Verbindung.
 (2) Bei einer nicht durchgeschweißten Stumpfnaht ist die Durchschweißung kleiner als die volle Dicke des Grundmaterials.

(3) Unterbrochen geschweißte Stumpfnähte sind in der Regel zu vermeiden.

(4) Bezüglich der Exzentrizität von einseitigen nicht durchgeschweißten Stumpfnähten siehe 4.12.

4.3.5 Lochschweißungen

(1) Lochschweißungen können verwendet werden, um:

- Schub zu übertragen,
- Beulen oder das Klaffen von überlappten Teilen zu verhindern, und
- Komponenten von mehrteiligen Bauteilen zu verbinden.

Sie sollten jedoch nicht in zugbeanspruchten Verbindungen verwendet werden.

(2) Für eine Lochschweißung sollte der Durchmesser eines Kreisloches oder die Breite eines Langloches mindestens 8 mm größer sein als die Blechdicke.

(3) Die Enden von Langlöchern sollten entweder halbkreisförmig sein, oder es sollten ausgerundete Ecken mit einem Radius vorgesehen werden, der mindestens der Blechdicke entspricht, außer wenn die Langlöcher über den Rand des betreffenden Teiles hinausgehen.

(4) Die Dicke einer Lochschweißung sollte bei Blechdicken bis zu 16 mm der Blechdicke entsprechen. Bei

Bild 4.2. Wirksame Nahtdicke von Hohlkehlnähten an Vollguerschnitten

Blechdicken über 16 mm sollte die Dicke der Lochschweißung mindestens der Hälfte der Blechdicke entsprechen, jedoch nicht kleiner als 16 mm sein.

(5) Die Abstände der Mittelpunkte von Lochschweißungen sollten die Grenzwerte zur Vermeidung lokalen Beulens nicht überschreiten, siehe Tabelle 3.3.

4.3.6 Hohlkehlnähte

(1) Die wirksame Nahtdicke von Hohlkehlnähten, die bündig zur Oberfläche von Bauteilen mit Vollquerschnitt verlaufen, ist in Bild 4.2 definiert. Zur Bestimmung der wirksamen Nahtdicke von Hohlkehlnähten bei Rechteckhohlprofilen siehe 7.3.1(7).

4.4 Schweißen mit Futterblechen

(1) Wird mit Futterblechen geschweißt, so sollte das Futterblech bündig zum Rand des zu verschweißenden Bauteils angepasst werden.

(2) Liegt zwischen zwei zu verschweißenden Bauteilen ein Futterblech mit einer kleineren Dicke als der zur Übertragung der Kraft erforderlichen Schenkellänge der Schweißnaht, so ist in der Regel die erforderliche Schenkellänge der Schweißnaht um den Betrag der Futterblechdicke zu vergrößern.

(3) Liegt zwischen zwei zu verschweißenden Bauteilen ein Futterblech mit einer gleichgroßen oder größeren Dicke als der zur Übertragung der Kraft erforderlichen Schenkellänge der Schweißnaht, sollten die Bauteile jeweils mit dem Futterblech mit einer separaten Schweißnaht verbunden werden, die zur Übertragung der Kräfte ausreicht.

4.5 Beanspruchbarkeit von Kehlnähten

4.5.1 Schweißnahtlänge

(1) Als wirksame Länge ℓ_{eff} einer Kehlnaht ist die Gesamtlänge mit voller Nahtdicke anzusetzen. Diese kann als die tatsächliche Länge der Schweißnaht abzüglich des zweifachen Betrages der wirksamen Kehlnahtdicke *a* angesetzt werden. Ist die Kehlnaht über die gesamte Länge einschließlich der Nahtenden voll ausgeführt, braucht keine Abminderung der wirksamen Länge um die Nahtenden durchgeführt werden.

(2) Kehlnähte, deren wirksame Länge weniger als 30 mm oder das 6fache der Nahtdicke beträgt, je

Bild 4.4. Kehlnahtdicke bei tiefem Einbrand

Bild 4.3. Kehlnahtdicke

nach dem welcher Wert größer ist, sollten für die Übertragung von Kräften nicht in Betracht gezogen werden.

4.5.2 Wirksame Nahtdicke

(1) Die wirksame Nahtdicke *a* einer Kehlnaht ist in der Regel als die bis zum theoretischen Wurzelpunkt gemessene Höhe des einschreibbaren (gleichschenkligen oder nicht gleichschenkligen) Dreiecks anzunehmen, siehe Bild 4.3.

(2) Die wirksame Nahtdicke einer Kehlnaht sollte mindestens 3 mm betragen.

(3) Bei der Bestimmung der Beanspruchbarkeit einer Kehlnaht mit tiefem Einbrand darf eine vergrößerte Nahtdicke berücksichtigt werden, siehe Bild 4.4, wenn der über den theoretischen Wurzelpunkt hinausgehende Einbrand durch eine Verfahrensprüfung nachgewiesen wird.

NCI

DIN EN 1993-1-8/NA

zu 4.5.2 Grenzwert für Kehlnahtdicken

Bei Flacherzeugnissen und offenen Profilen mit Querschnittsteilen $t \ge 3 \text{ mm}$ muss folgender Grenzwert für die Schweißnahtdicke *a* von Kehlnähten zusätzlich eingehalten werden:

$$a \ge \sqrt{\max t} - 0.5 \tag{NA.1}$$

mit a und t in mm.

In Abhängigkeit von den gewählten Schweißbedingungen darf auf die Einhaltung von Bedingung (NA.1) verzichtet werden, jedoch sollte für Blechdicken $t \ge 30$ mm die Schweißnahtdicke mit $a \ge 5$ mm gewählt werden.

Anmerkung: Der Richtwert nach Bedingung (NA.1) vermeidet ein Missverhältnis von Nahtquerschnitt und verbundenen Querschnittsteilen, siehe auch [1] und [4].

Zu 4.5.1 und 4.5.2

Die in DIN EN 1993-1-8 geforderten Mindestlängen von Kehlnähten entsprechen den aus DIN 18800-1, Element (820) bekannten Regeln. Blechdickenabhängige Nahtdickenempfehlungen sind in DIN EN 1993-1-8 nicht direkt aufgenommen worden. Für Kehlnähte gilt aber entsprechend Gleichung (NA.1) des Nationalen Anhangs die aus Element (519) der DIN 18800-1 bekannte Mindestnahtdicke. Als untere Grenze fordert DIN EN 1993-1-8 für Kehlnähte $a \ge 3$ mm und liegt damit etwas über den Vorgaben der DIN 18800-1.

Zu 4.5.2(3) und Bild 4.4

Wenn die Kehlnaht mit einem automatischen Unter-Pulver-Schweißverfahren hergestellt wird, darf im Allgemeinen unter Bezugnahme auf den DIN-Fachbericht 103 [K16], Absatz II-6.6.5.2(4) ohne eine Verfahrensprüfung die rechnerische Nahtdicke *a* um 20 % oder 2 mm vergrößert werden. Maßgebend ist der kleinere der beiden Werte.

Bei Eisenbahnbrücken wird eine Verfahrensprüfung gefordert, wenn die vergrößerten Nahtdicke bei der Ermittlung der Beanspruchbarkeit angesetzt werden soll.

Zu NCI zu 4.5.2 Grenzwert für Kehlnahtdicken

Durch die geforderte Mindestnahtdicke nach Gleichung (NA.1) wird sichergestellt, dass die zu verschweißenden Bauteile im Bereich der Schweißnaht ausreichend aufgeschmolzen werden und eine kraftschlüssige Verbindung der Bauteile durch die Schweißnaht gegeben ist. Kann dies auch durch die Wahl geeigneter Schweißparameter sichergestellt werden, kann von der geforderten Mindestnahtdicke abgewichen werden. Die in 4.5.2 (2) geregelte Mindestnahtdicke für Kehlnähte darf dabei nicht unterschritten werden.

4.5.3 Tragfähigkeit von Kehlnähten

4.5.3.1 Allgemeines

(1) Die Tragfähigkeit von Kehlnähten ist in der Regel mit Hilfe des richtungsbezogenen Verfahrens, siehe 4.5.3.2, oder des vereinfachten Verfahrens, siehe 4.5.3.3, zu ermitteln.

4.5.3.2 Richtungsbezogenes Verfahren

(1) Bei diesem Verfahren werden die Kräfte, die je Längeneinheit übertragen werden können, aufgeteilt in Anteile parallel und rechtwinklig zur Längsachse der Schweißnaht und normal und rechtwinklig zur Lage der wirksamen Kehlnahtfläche.

(2) Die wirksame Kehlnahtfläche A_w ist mit $A_w = \sum a \ell_{eff}$ zu ermitteln.

(3) Die Lage der wirksamen Kehlnahtfläche wird im Wurzelpunkt konzentriert angenommen.

(4) Die einwirkende Spannung wird gleichmäßig über den Nahtquerschnitt verteilt angenommen und führt, wie in Bild 4.5 dargestellt, zu folgenden Normalund Schubspannungen:

- $-\sigma_{\perp}$ Normalspannung senkrecht zur Schweißnahtachse
- $\begin{array}{ll} & \sigma_{\parallel} & Normal spannung \ parallel \ zur \\ Schweißnaht ach se \end{array}$
- $-\tau_{\perp}$ Schubspannung (in der Ebene der Kehlnahtfläche) senkrecht zur Schweißnahtachse
- $-\tau_{\parallel}$ Schubspannung (in der Ebene der Kehlnahtfläche) parallel zur Schweißnahtachse.

(5) Bei der Bestimmung der Beanspruchbarkeit der Kehlnaht werden die Normalspannungen σ_{\parallel} parallel zur Schweißnahtachse vernachlässigt.

(6) Die Tragfähigkeit einer Kehlnaht ist ausreichend, wenn die folgenden beiden Bedingungen erfüllt sind:

$$\left[\sigma_{\perp}^2 + 3 \left(\tau_{\perp}^2 + \tau_{\parallel}^2 \right) \right]^{0.5} \leq f_{\rm u} / (\beta_{\rm w} \gamma_{\rm M2})$$
und

 $\sigma_{\perp} \leq 0.9 f_{\rm u}/\gamma_{\rm M2}$

Dabei ist

- *f*_u die Zugfestigkeit des schwächeren der angeschlossenen Bauteile;
- $\beta_{\rm w}$ der Korrelationsbeiwert, siehe Tabelle 4.1.

Bild 4.5. Spannungen im wirksamen Kehlnahtquerschnitt

NCI

zu 4.5.3.2(6)

Für Schweißnähte an Bauteilen mit Erzeugnisdicken über 40 mm gilt für die Zugfestigkeit f_u jeweils der Wert für Erzeugnisdicken bis 40 mm.

(7) Bei der Bemessung von Kehlnähten zwischen Bauteilen mit unterschiedlichen Stahlsorten sind in der Regel die Werkstoffkenngrößen des Bauteils mit der geringeren Festigkeit zu verwenden.

4.5.3.3 Vereinfachtes Verfahren

(1) Als alternatives Verfahren zu 4.5.3.2 darf die Tragfähigkeit einer Kehlnaht als ausreichend angenommen werden, wenn an jedem Punkt längs der Naht die Resultierende aller auf die wirksame Kehlnahtfläche einwirkenden Kräfte je Längeneinheit folgende Bedingung erfüllt:

$$F_{\rm w,Ed} \le F_{\rm w,Rd} \tag{4.2}$$

Dabei ist

- F_{w,Ed} der Bemessungswert der auf die wirksame Kehlnahtfläche einwirkenden Kräfte je Längeneinheit;
- $F_{w,Rd}$ der Bemessungswert der Tragfähigkeit der Schweißnaht je Längeneinheit.

(2) Die Tragfähigkeit $F_{w,Rd}$ der Schweißnaht je Längeneinheit ist unabhängig von der Orientierung der wirksamen Kehlnahtfläche zur einwirkenden Kraft wie folgt zu ermitteln:

$$F_{\rm w,Rd} = f_{\rm vw,d} a \tag{4.3}$$

Dabei ist

 $f_{\rm vw,d}$ der Bemessungswert der Scherfestigkeit der Schweißnaht.

(3) Die Scherfestigkeit der Schweißnaht $f_{vw,d}$ ist wie folgt zu ermitteln:

$$f_{\rm vw,d} = \frac{f_{\rm u}/\sqrt{3}}{\beta_{\rm w} \gamma_{\rm M2}} \tag{4.4}$$

Dabei sind

(4.1)

 $f_{\rm u}$ und $\beta_{\rm w}$ nach Definitionen in 4.5.3.2(6).

4.6 Tragfähigkeit von Schlitznähten

(1) Die Tragfähigkeit einer Schlitznaht ist in der Regel nach einem der in 4.5 angegebenen Verfahren zu ermitteln.
	Norm und Stahlsorte				
EN 10025	EN 10025 EN 10210 EN 10219				
S 235 S 235 W	S 235 H	S 235 H	0,8		
S 275 S 275 N/NL S 275 M/ML	S 275 H S 275 NH/NLH	S 275 H S 275 NH/NLH S 275 MH/MLH	0,85		
S 355 S 355 N/NL S 355 M/ML S 355 W	S 355 H S 355 NH/NLH	S 355 H S 355 NH/NLH S 355 MH/MLH	0,9		
S 420 N/NL S 420 M/ML		S 420 MH/MLH	1,0		
S 460 N/NL S 460 M/ML S 460 Q/QL/QL1	S 460 NH/NLH	S 460 NH/NLH S 460 MH/MLH	1,0		

Tabelle 4.1.	Korre	lationsbeiwert	β_w	für	Kehlr	ıäht	tε
--------------	-------	----------------	-----------	-----	-------	------	----

Zu 4.5.3

Für die Ermittlung der Beanspruchbarkeit von Kehlnähten bietet DIN EN 1993-1-8 zwei alternativ einsetzbare Verfahren an. Bei dem richtungsbezogenen Verfahren nach Abschnitt 4.5.3.2 erfolgt der Nachweis über die in der wirksamen Kehlnahtfläche vorhandenen Spannungen, wobei neben dem Vergleichsspannungsnachweis (Mieses-Fließbedingung) zusätzlich nachzuweisen ist, dass die Normalspannung senkrecht zur Schweißnahtachse σ_{\perp} kleiner ist als die durch den Teilsicherheitsbeiwert γ_{M2} dividierte Zugfestigkeit. Normalspannungen parallel zur Schweißnahtachse (σ_{II}) dürfen vernachlässigt werden. Bei dem vereinfachten Verfahren nach Abschnitt 4.5.3.3 erfolgt der Nachweis über die Resultierende aller auf die wirksame Kehlnahtfläche einwirkenden Kräfte je Längeneinheit, die an jeder Stelle der Schweißnaht kleiner sein muss als die nach Gleichung (4.3) ermittelte Beanspruchbarkeit. Bei der Ermittlung der Beanspruchbarkeit der Schweißnähte ist unabhängig vom gewählten Nachweisverfahren mit den Korrelationsbeiwerten β_{w} nach Tabelle 4.1 zu rechnen. Der Nationale Anhang erlaubt hier abweichend zur DIN EN 1993-1-8 für Stahlsorten S420 und S460 Korrelationsbeiwerte $\beta_{\rm w} \leq$ 1,0, siehe NDP zu Absatz 2.2 (2).

In beiden Verfahren wird – wie auch schon bei den Schraubverbindungen – der Nachweis einheitlich auf $f_{\rm u}$ -Niveau geführt. In der Handhabung ist das richtungsbezogene Verfahren aufwendiger, in der Regel führt es aber zu wirtschaftlicheren Kehlnahtdicken.

Zu 4.5.3.2 Richtungsbezogenes Verfahren

Das richtungsbezogene Verfahren darf nach DIN EN 1993-1-12 [K10] für Stahlsorten bis S700 verwendet werden. Abweichend von [K10] schreibt der Nationale Anhang zur DIN EN 1993-1-12 [K12] dabei einen Korrelationsbeiwert von $\beta_w = 1,20$ und die Verwendung von Schweißzusatzwerkstoffen mit höheren Festigkeiten als die der zu verschweißenden Grundwerkstoffe vor. Für normalfeste Baustähle ergeben sich nach dem richtungsbezogenen Verfahren in der Regel wirtschaftliche Schweißnahtdicken und auch die Forderung nach Schweißzusatzwerkstoffen mit höheren Festigkeiten als die der Grundwerkstoffe ist sinnvoll und hat sich in der Vergangenheit bewährt. Für höherfeste Baustähle mit Streckgrenzen über $f_{\gamma} > 460 \text{ N/mm}^2$ kann der im Nationalen Anhang zur DIN EN 1993-1-12 vorgegebenen Korrelationsbeiwert β_w = 1,20 zu einer konservativen Auslegung von Kehlnähten beitragen, wie die Ergebnisse von zwei Forschungsvorhaben zeigen (vgl. [K24] und [K25]). Basierend auf den Ergebnissen der experimentellen Untersuchungen aus [K24] und [K25] hat Rasche in ihrer Dissertation (vgl. [K31]) einen Bemessungsansatz entwickelt, der eine wirtschaftlichere Auslegung von Kehlnähten bei höherfesten Baustählen erlaubt. Da in den zugrunde liegenden experimentellen Untersuchungen auch die Festigkeit der verwendeten Schweißzusatzwerkstoffe variiert wurde, konnte Rasche den Einfluss unterschiedlicher Festigkeiten von Grund- und Schweißzusatzwerkstoff in ihren Bemessungsansatz implementieren. Dies geschieht über eine Wichtung der unterschiedlichen Festigkeiten. So ist bei der Ermittlung der Grenzspannungen der Kehlnähte die Zugfestigkeit des Grundwerkstoffs mit 25 % und die des Schweißzusatzwerkstoffs mit 75 % zu berücksichtigen. Auf Basis von statistischen Auswertungen der Versuchsergebnisse konnten des Weiteren Korrelationsbeiwerte $\beta_w < 1,20$ in Abhängigkeit vom eingesetzten Schweißzusatzwerkstoff bestimmt werden, die ebenfalls zu einer wirtschaftlicheren Dimensionierung von Kehlnähten bei höherfesten Baustählen beitragen. Eine Zusammenfassung des von Rasche vorgeschlagenen Bemessungsansatzes findet sich in [K32].

4.7 Tragfähigkeit von Stumpfnähten

4.7.1 Durchgeschweißte Stumpfnähte

(1) Die Tragfähigkeit von durchgeschweißten Stumpfnähten ist in der Regel mit der Tragfähigkeit des schwächeren der verbundenen Bauteile gleichzusetzen. Das trifft zu, wenn die Schweißnaht mit Schweißzusätzen ausgeführt wird, die entsprechend Schweißgutprüfungen Mindestwerte der Streckgrenze und der Zugfestigkeit aufweisen, die nicht geringer sind als die für den Grundwerkstoff.

4.7.2 Nicht durchgeschweißte Stumpfnähte

(1) Die Tragfähigkeit von nicht durchgeschweißten Stumpfnähten ist in der Regel wie für Kehlnähte mit tiefem Einbrand zu ermitteln, siehe 4.5.2(3).

(2) Die Nahtdicke einer nicht durchgeschweißten Stumpfnaht sollte nicht größer sein als die mit dem Schweißverfahren erreichbare Tiefe des Einbrandes, siehe 4.5.2(3).

4.7.3 T-Stöße

(1) Die Tragfähigkeit eines T-Stoßes mit beidseitig angeordneten nicht durchgeschweißten Stumpfnähten, die durch darüber gelegte Kehlnähte verstärkt sind, kann wie bei einer durchgeschweißten Stumpfnaht (siehe 4.7.1) ermittelt werden, wenn die gesamte Nahtdicke, abgesehen von dem unverschweißten Spalt, mindestens der Dicke t des Stegblechteils entspricht und der ungeschweißte Spalt nicht größer als t/5 oder 3 mm ist (der kleinere Wert ist maßgebend), siehe Bild 4.6.

(2) Die Tragfähigkeit eines T-Stoßes, der die in 4.7.3(1) angegebenen Anforderungen nicht erfüllt, ist in der Regel, je nach Tiefe des Einbrandes, wie für eine Kehlnaht oder eine Kehlnaht mit tiefem Einbrand zu ermitteln, siehe 4.5. Die Nahtdicke ist in der Regel nach den Bestimmungen für Kehlnähte, siehe 4.5.2, oder nicht durchgeschweißten Stumpfnähten, siehe 4.7.2, zu ermitteln.

(1) Die Tragfähigkeit $F_{w,Rd}$ einer Lochschweißung, siehe 4.3.3, ist in der Regel wie folgt zu ermitteln:

$$F_{\rm w,Rd} = f_{\rm vw,d} A_{\rm w} \tag{4.5}$$

Dabei ist

- $f_{vw,d}$ der Bemessungswert der Scherfestigkeit der Schweißnaht, siehe 4.5.3.3(3);
- $A_{\rm w}$ die wirksame Schweißnahtfläche, in diesem Falle die Fläche des Loches.

4.9 Verteilung der Kräfte

(1) Die Verteilung der einwirkenden Kräfte in einer geschweißten Verbindung darf entweder mit der Annahme elastischen oder plastischen Verhaltens nach 2.4 und 2.5 berechnet werden.

(2) Eine vereinfachte Verteilung der einwirkenden Kräfte auf die Schweißnähte eines Anschlusses darf angenommen werden.

(3) Eigenspannungen und Spannungen, die nicht aus der Kräfteübertragung durch die Schweißnähte herrühren, brauchen nicht in den Schweißnahtnachweis einbezogen zu werden. Dies gilt insbesondere für Normalspannungen parallel zur Schweißnahtachse.

(4) Schweißanschlüsse sind in der Regel so zu konstruieren, dass sie ein ausreichendes Verformungsvermögen aufweisen. Allerdings sollte die Duktilität von Schweißnähten nicht von vornherein in Ansatz gebracht werden.

(5) Wenn sich in den Anschlüssen plastische Gelenke bilden können, sind in der Regel die Schweißnähte so zu bemessen, dass sie mindestens dieselbe Tragfähigkeit aufweisen wie das schwächste angeschlossene Bauteil.

(6) Wenn in Anschlüssen auf Grund von Gelenkrotationen plastische Rotationskapazität gefordert wird, sind die Schweißnähte für eine Tragfähigkeit auszulegen, mit der ein Bruch der Nähte vor dem Fließen des angrenzenden Bauteils verhindert wird.

(7) Bei der Ermittlung der Tragfähigkeit unterbrochen geschweißter Schweißnähte unter Verwendung der Gesamtlänge ℓ_{tot} , ist die Scherkraft für die Schweißnaht je Längeneinheit $F_{w,Ed}$ mit dem Beiwert $(e + \ell)/\ell$ zu vergrößern, siehe Bild 4.7.

Der kleinere Wert: $c_{nom} \leq t/5$ und 3 mm

Bild 4.6. Wirksam durchgeschweißter T-Stoß

Zu 4.7.3(1)

Im Hinblick auf die Ermüdungsfestigkeit darf ein wirksam durchgeschweißter T-Stoß nach Bild 4.6 nicht wie eine durchgeschweißte Stumpfnaht behandelt werden. Hier ist nach DIN EN 1993-1-9, Tabelle 8.5 der Kerbfall 36 anzusetzen.

Bild 4.7. Berechnung der Scherkräfte auf unterbrochen geschweißte Schweißnähte

4.10 Steifenlose Anschlüsse an Flansche

(1) Wird ein Blech (oder Trägerflansch) quer an den Flansch eines I-, H- oder anderen Querschnitts ohne Steifen angeschweißt, siehe Bild 4.8, und ist die Anforderung in 4.10(3) erfüllt, so ist in der Regel für die einwirkende Kraft senkrecht zu dem Flansch der folgende Nachweis zu führen:

- f
 ür Stege von I- oder H-Querschnitten, nach 6.2.6.2 oder nach 6.2.6.3;
- für Flansche nach Gleichung (6.20) in 6.2.6.4.3(1), wobei die einwirkende Kraft über eine wirksame Breite b_{eff} , nach 4.10(2) oder 4.10(4) verteilt, angenommen werden darf.

(2) Bei einem unausgesteiften I- oder H-Querschnitt ist in der Regel die wirksame Breite b_{eff} wie folgt zu ermitteln:

$$b_{\rm eff} = t_{\rm w} + 2s + 7k t_{\rm f}$$
 (4.6a)

Dabei gilt

$$k = (t_{\rm f}/t_{\rm p})(f_{\rm y,f}/f_{\rm y,p}) \text{ jedoch } k \le 1$$
(4.6b)

Dabei ist

- $f_{y,f}$ die Streckgrenze des Flansches des I- oder H-Querschnitts;
- $f_{y,p}$ die Streckgrenze des angeschweißten Blechs.

Die Abmessung *s* sollte wie folgt bestimmt werden: – für gewalzte I- oder H-Querschnitte:

$$s = r$$

$$s = \sqrt{2}a \tag{4.6d}$$

(3) Bei einem unausgesteiften I- oder H-Querschnitt sollte die wirksame Breite b_{eff} folgende Bedingung erfüllen:

$$b_{\rm eff} \ge (f_{\rm y,p}/f_{\rm u,p})b_{\rm p} \tag{4.7}$$

Dabei ist

 $f_{u,p}$ die Zugfestigkeit des angeschweißten Blechs;

 $b_{\rm p}$ die Breite des angeschweißten Blechs.

Wird die Bedingung (4.7) nicht erfüllt, ist der Anschluss auszusteifen.

(4) Bei anderen Querschnitten, z. B. Kasten- oder U-Querschnitte, bei denen die Breite des angeschweißten Blechs der Breite des Flansches entspricht, ist in der Regel die wirksame Breite b_{eff} wie folgt zu ermitteln:

$$b_{\rm eff} = 2t_{\rm w} + 5t_{\rm f} \text{ jedoch } b_{\rm eff} \le 2t_{\rm w} + 5kt_{\rm f}$$

$$(4.8)$$

Anmerkung: Für Hohlprofile siehe Tabelle 7.13.

(5) In jedem Fall, auch für $b_{\text{eff}} \leq b_p$, sind die Schweißnähte des an den Flansch angeschlossenen Blechs so zu bemessen, dass sie die Kraft $b_p t_p f_{y,p} / \gamma_{M0}$, die der Fließbeanspruchbarkeit des Blechs bei Annahme gleichmäßiger Spannungsverteilung entspricht, übertragen können.

4.11 Lange Anschlüsse

(1) Bei überlappten Stößen ist in der Regel die Tragfähigkeit einer Kehlnaht mit einem Abminderungsbeiwert β_{Lw} abzumindern, um die Auswirkungen ungleichmäßiger Spannungsverteilungen über die Länge zu berücksichtigen.

(2) Die Regelungen in 4.11 gelten nicht, wenn die Spannungsverteilung in der Schweißnaht durch die Spannungsverteilung im angrenzenden Grundmaterial erzeugt wird, wie z. B. im Fall einer Halsnaht zwischen Flansch und Stegblech eines Blechträgers.

(4.6c)

Bild 4.8. Wirksame Breite bei steifenlosen T-Stößen

(3) Bei überlappten Stößen, die länger als 150a sind, ist der Abminderungsbeiwert β_{Lw} , hier als $\beta_{Lw,1}$ bezeichnet, wie folgt anzunehmen:

$$\beta_{\text{Lw},1} = 1,2 - 0,2L_{\text{j}}/(150a) \text{ jedoch } \beta_{\text{Lw},1} \le 1,0$$
 (4.9)

Dabei ist

L_j die Gesamtlänge der Überlappung in Richtung der Kraftübertragung.

(4) Bei Kehlnähten, die Quersteifen in Blechträgern anschließen und länger als 1,7 m sind, darf der Abminderungsbeiwert β_{Lw} , hier als $\beta_{Lw,2}$ bezeichnet, wie folgt angesetzt werden:

$$\beta_{Lw,2} = 1,1 - L_w/17 \text{ jedoch } \beta_{Lw,2} \le 1,0$$

und $\beta_{Lw,2} \ge 0,6$ (4.10)

Dabei ist

L_w die Länge der Schweißnaht, in m.

4.12 Exzentrisch belastete einseitige Kehlnähte oder einseitige nicht durchgeschweißte Stumpfnähte

(1) Lokale Exzentrizitäten sollten möglichst vermieden werden.

(2) Lokale Exzentrizitäten (relativ zur Wirkungslinie der einwirkenden Kraft) sind in der Regel in folgenden Fällen zu berücksichtigen:

- wenn ein Biegemoment um die Längsachse der Schweißnaht Zug in der Schweißnahtwurzel erzeugt, siehe Bild 4.9(a);
- wenn eine Zugkraft senkrecht zur Längsachse der Schweißnaht ein Biegemoment und damit Zug in der Schweißnahtwurzel erzeugt, siehe Bild 4.9(b).

(3) Lokale Exzentrizitäten an einer Schweißnaht brauchen nicht berücksichtigt zu werden, wenn diese Teil einer Schweißnahtgruppe um den Umfang eines Hohlprofils sind.

4.13 Einschenkliger Anschluss von Winkelprofilen

(1) Bei einschenkligen Anschlüssen von Winkelprofilen darf die Exzentrizität der überlappten Endverbindungen vernachlässigt und das Bauteil wie unter zentrisch angreifender Kraft bemessen werden, wenn eine wirksame Querschnittsfläche verwendet wird.

(2) Bei gleichschenkligen Winkeln oder ungleichschenkligen Winkeln, die am größeren Schenkel angeschlossen sind, darf die wirksame Querschnittsfläche gleich der Bruttoquerschnittsfläche angesetzt werden.
(3) Bei ungleichschenkligen Winkeln, die an dem kleineren Schenkel angeschlossen sind, ist als wirksame Querschnittsfläche die Bruttoquerschnittsfläche eines gleichschenkligen Winkels mit der Schenkellänge gleich dem kleineren Schenkel anzusetzen. Zur Bestimmung der Beanspruchbarkeit des Querschnitts siehe EN 1993-1-1. Bei der Bestimmung der Knickbeanspruchbarkeit eines ungleichschenkligen Winkels unter Druck ist EN 1993-1-1 zu beachten und die tatsächliche Bruttoquerschnittsfläche zu verwenden.

4.14 Schweißen in kaltverformten Bereichen

(1) Im Bereich von 5t beidseits kaltverformter Bereiche, siehe Tabelle 4.2, darf geschweißt werden, wenn eine der beiden folgenden Bedingungen erfüllt ist:

- die kaltverformten Bereiche wurden nach dem Kaltverformen und vor dem Schweißen normalisiert;
- Das Verhältnis *r/t* erfüllt die Grenzwerte in Tabelle 4.2.

a) Biegemoment erzeugt Zug in der Schweißnahtwurzel

b) Zugkraft erzeugt Zug in der Schweißnahtwurzel

Bild 4.9. Einseitige Kehlnähte und einseitige nicht durchgeschweißte Stumpfnähte

Zu 4.14

Werden normalisierte/normalgeglühte Stähle (Lieferzustand +N) eingesetzt, können nach Tabelle II-6.6.0 des DIN-Fachberichtes 103 für $r / t \ge 2$ etwas größere maximale Blechdicken zugelassen werden als nach Tabelle 4.2.

r/t	Dehnungen infolge	e Maximale Dicke (mm)				
	der Kaltverformung (%)	Allger	neines			
		Überwiegend statische Lasten	Überwiegend ermüdungs- beansprucht	Durch Aluminium vollberuhigter Stahl (Al ≥ 0,02 %)		
≥ 25	≤ 2	jede	jede	jede		
≥ 10	≤ 5	jede	16	jede		
≥ 3,0	≤ 1 4	24	12	24		
≥ 2,0	≤ 20	12	10	12		
≥ 1,5	≤ 25	8	8	10		
≥ 1,0	≤ 3 3	4	4	6		

Tabelle 4.2.	Bedingungen f	ür das	Schweißen in	ı kaltverformten	Bereichen ı	und Uma	gebung

Anmerkung: Bei kaltgeformten Hohlprofilen nach EN 10219, die nicht die in Tabelle 4.2 festgelegten Grenzen erfüllen, kann vorausgesetzt werden, dass sie diese Grenzen erfüllen, sofern diese Profile eine Dicke aufweisen, die nicht größer als 12,5 mm und Al-beruhigt sind mit einer Qualität von J2H, K2H, MH, MLH, NH oder NLH und ferner C \leq 0,18 %, P \leq 0,020 % und S \leq 0,012 % erfüllen.

In anderen Fällen ist Schweißen nur innerhalb eines Abstandes von 5 t von den Kanten zulässig, wenn durch Prüfungen bewiesen werden kann, dass Schweißen für diese besondere Anwendung zulässig ist.

5 Tragwerksberechnung, Klassifizierung und statische Modelle

5.1 Tragwerksberechnung

5.1.1 Allgemeines

 (1) Die Auswirkung der Momenten-Rotations-Charakteristika der Anschlüsse auf die Verteilung der Schnittgrößen in einem Tragwerk und auf die Tragwerksverformungen ist in der Regel zu berücksichtigen, außer wenn die Auswirkungen vernachlässigbar klein sind.
 (2) Zur Überprüfung, ob die Momenten-Rotations-Charakteristika der Anschlüsse zu berücksichtigen sind, dürfen die drei folgenden vereinfachten Modelle für die Anschlüsse verwendet werden:

- gelenkig, bei dem angenommen wird, dass keine Biegemomente übertragen werden;
- biegesteif, bei dem angenommen wird, dass die Momenten-Rotations-Charakteristik eines Anschlusses bei der Tragwerksberechnung nicht berücksichtigt werden muss;

 nachgiebig, bei dem die Momenten-Rotations-Charakteristik eines Anschlusses bei der Tragwerksberechnung zu berücksichtigen ist.

(3) Das zutreffende Anschlussmodell kann nach Tabelle 5.1 in Verbindung mit der Klassifizierung des Anschlusses und dem verwendeten Berechnungsverfahren bestimmt werden.

(4) Die Momenten-Rotations-Charakteristik eines Anschlusses darf für Berechnungen durch vereinfachte Kurvenverläufe angenähert werden. Dazu gehören einfache lineare Abschätzungen (z. B. bi-linear oder trilinear), vorausgesetzt, der angenommene Kurvenverlauf liegt vollständig unterhalb der wirklichen Momenten-Rotations-Charakteristik.

5.1.2 Elastische Tragwerksberechnung

(1) Bei linear-elastischen Berechnungsverfahren sind die Anschlüsse in der Regel nach ihrer Rotationssteifigkeit zu klassifizieren, siehe 5.2.2.

Berechnungsverfahren	Klassifizierung des Anschlusses			
Elastisch	gelenkig	biegesteif	nachgiebig	
Starr-Plastisch	gelenkig	volltragfähig	teiltragfähig	
Elastisch-Plastisch	gelenkig	biegesteif und volltragfähig	nachgiebig und teiltragfähig nachgiebig und volltragfähig biegesteif und teiltragfähig	
Anschlussmodell	gelenkig	biegesteif	nachgiebig	

Tabelle 5.1. Anschlussmodelle

Bild 5.1. Rotationssteifigkeit für linear-elastische Tragwerksberechnungen

Zu 5.1.1(1) und (2)

Im klassischen Stahlbau werden Anschlüsse entweder gelenkig oder biegesteif betrachtet und entsprechend konstruiert. Mit der Einführung der Komponentenmethode, die in Abschnitt 6 der DIN EN 1993-1-8 geregelt ist, können nun auch verformbare Anschlüsse konzipiert werden. Verformbar heißt in diesem Zusammenhang, der Anschluss besitzt eine signifikante, aber unter der der angeschlossenen Bauteile liegende Momententragfähigkeit und kann daher nicht als gelenkig klassifiziert werden. Gleichzeitig sind die Rotationen im Anschluss infolge der Momentenbeanspruchung so groß, dass der Anschluss nicht als starr eingestuft werden kann. Die Rotationssteifigkeit des Anschlusses beeinflusst die Verteilung der Schnittgrößen im System und muss bei der Stabwerksberechnung zum Beispiel über eine Drehfeder berücksichtigt werden. Dies bedingt, dass der planende Ingenieur schon zu Beginn eines Projektes die wesentlichen Anschlüsse konzipieren und festlegen muss. Damit ist ein deutlich erhöhter Planungsaufwand verbunden, jedoch lassen sich auf diesem Weg die Gesamtkosten einer Stahlkonstruktion optimieren, wie Weynand et al. in [K46] und [K47] gezeigt haben.

Die Klassifizierung eines Anschlusses erfolgt anhand der charakteristischen Kenngrößen:

die aus der Momenten-Rotationscharakteristik eines Anschlusses abgeleitet werden, vgl. Bild 6.1.

Die Ermittlung der charakteristischen Kenngrößen ist in Abschnitt 6 der DIN EN 1993-1-8 geregelt. Näherungsfunktionen können aber auch [K19] und [K33] entnommen werden.

Zu 5.1.2(1)

Bei einer elastischen Tragwerksberechnung ist die Verteilung der Schnittgrößen nur von der Steifigkeit der Bauteile und Anschlüsse abhängig. Je nach Rotationssteifigkeit des Anschlusses ist entweder ein Gelenk, ein biegesteifer Anschluss oder bei einem verformbaren Anschluss eine Drehfeder im statischen System anzusetzen. Da keine plastischen Systemreserven ausgenutzt werden, müssen Anschlüsse nur die auf sie einwirkenden Schnittgrößen übertragen können. Anforderungen hinsichtlich der Rotationskapazität bestehen nicht, so dass Anschlüsse bei einer elastischen Tragwerksberechnung nur über die Rotationssteifigkeit klassifiziert werden.

Anschlussausbildung	Träger-Stützen-Anschlüsse	Andere Anschlüsse (Träger-Träger- Anschlüsse, Trägerstöße, Stützenfuß- anschlüsse)
Geschweißt	2	3
Geschraubtes Stirnblech	2	3
Geschraubter Flanschwinkel	2	3,5
Fußplatte	-	3

Tak	pelle	5.2.	Anpassungs	beiwert 🤉	η für	die	Steifig	kei	t

(2) Die Anschlüsse müssen in der Regel ausreichende Tragfähigkeiten haben, um die in den Anschlüssen berechneten Schnittgrößen übertragen zu können.

(3) Bei verformbaren Anschlüssen ist für die Berechnungen in der Regel die Rotationssteifigkeit S_j anzusetzen, die zu dem Biegemoment $M_{j,Ed}$ gehört. Ist $M_{j,Ed}$ kleiner als 2/3 $M_{j,Rd}$, so darf für die Tragwerksberechnung die Anfangssteifigkeit $S_{j,ini}$ benutzt werden, siehe Bild 5.1(a).

(4) Als Vereinfachung für 5.1.2(3) darf die Rotationssteifigkeit in den Berechnungen für alle einwirkenden Momente $M_{j,\text{Ed}}$ mit $S_{j,\text{ini}}/\eta$ angesetzt werden, siehe Bild 5.1(b), wobei der Anpassungsbeiwert η für die Steifigkeit der Tabelle 5.2 zu entnehmen ist.

Zu 5.1.3 und 5.1.4

Eine ausreichende Rotationskapazität der einzelnen Bauteile vorausgesetzt, kann eine plastische Tragwerksberechnung erfolgen. Können dabei Einflüsse aus der Tragwerksverformung vernachlässigt werden, ist eine starr-plastische Berechnung möglich, bei der die Schnittgrößenverteilung im Gesamtsystem nur von der Tragfähigkeit der einzelnen Bauteile abhängt. Die Klassifizierung hat dann nur nach der Beanspruchbarkeit zu erfolgen. Können Effekte aus der Tragwerksverformung nicht vernachlässigt werden, ist eine elastisch-plastische Berechnung durchzuführen, bei der neben der Beanspruchbarkeit auch die (5) Für Anschlüsse von H- oder I-Profilen wird S_j in 6.3.1 angegeben.

5.1.3 Starr-plastische Tragwerksberechnung

(1) Bei starr-plastischer Tragwerksberechnung sind die Anschlüsse nach ihrer Tragfähigkeit zu klassifizieren, siehe 5.2.3.

(2) Für Anschlüsse von H- oder I-Profilen wird $M_{j,Rd}$ in 6.2 angegeben.

(3) Für Anschlüsse von Hohlprofilen dürfen die Verfahren in Abschnitt 7 angewendet werden.

Steifigkeit der einzelnen Bauteile einen Einfluss auf die Schnittgrößenverteilung im Gesamtsystem hat. Folglich muss die Klassifizierung der Anschlüsse auf Basis der Beanspruchbarkeit und der Rotationssteifigkeit erfolgen. In diesem Zusammenhang wird der Begriff "nachgiebiger Anschluss" (semi-rigid joint) eingeführt, unter dem die möglichen Kombinationen von starren, verformbaren (siehe 5.2.2), voll- und teiltragfähigen Anschlüssen (siehe 5.2.3) zusammengefasst werden.

Eine Übersicht über die anzuwendende Klassifizierungsmethode und die entsprechende Modellierung der Anschlüsse zeigt Bild K2:

Berechnungs- verfahren Anschlüsse nach		Klassifizierung der Anschlüsse			
elastisch	Steifigkeit	gelenkig	starr	verformbar	
starr-plastisch	Beanspruchbarkeit	gelenkig	volltragfähig	teiltragfähig	
elastisch- plastisch	Steifigkeit + Beanspruchbarkeit	gelenkig	biegesteif = starr + volltragfähig	nachgiebig = verformbar + volltragfähig verformbar + teiltragfähig starr + teiltragfähig	
Anschlussmodell für die Tragwerksberechnung		$ \qquad \qquad$	$\mathbf{M} \neq 0 \text{ und } \mathbf{\phi} = 0$	Ø und	

(4) Die Anschlüsse müssen ausreichende Rotationskapazität haben, um die Rotationsanforderungen, die sich aus der Tragwerksberechnung ergeben, erfüllen zu können.

(5) Für Anschlüsse von H- oder I-Profilen ist die Rotationskapazität in der Regel nach 6.4 zu überprüfen.

5.1.4 Elastisch-plastische Tragwerksberechnung

(1) Bei elastisch-plastischer Tragwerksberechnung sind die Anschlüsse in der Regel sowohl nach der Steifigkeit, siehe 5.2.2, als auch nach der Tragfähigkeit, siehe 5.2.3, zu klassifizieren.

(2) Für Anschlüsse von H- oder I-Profilen wird $M_{j,\text{Rd}}$ in 6.2, S_j in 6.3.1 und ϕ_{Cd} in 6.4 angegeben.

(3) Für Anschlüsse von Hohlprofilen dürfen die Verfahren in Abschnitt 7 angewendet werden.

(4) Bei der Ermittlung des Schnittgrößenverlaufs ist die Momenten-Rotations-Charakteristik der Anschlüsse in der Regel zu berücksichtigen.

(5) Vereinfachend darf eine bi-lineare Momenten-Rotations-Charakteristik nach Bild 5.2 verwendet werden. Der Anpassungsbeiwert η für die Steifigkeit ist dann in der Regel nach Tabelle 5.2 zu bestimmen.

5.1.5 Berechnung von Fachwerkträgern

(1) Die Regelungen in 5.1.5 gelten nur für Tragwerke, deren Anschlüsse nach Abschnitt 7 nachgewiesen werden.

(2) Für die Verteilung der Normalkräfte in einem Fachwerkträger darf vereinfachend von gelenkigen Anschlüssen der Stäbe ausgegangen werden, siehe auch 2.7.

(3) Sekundäre Momente in Anschlüssen, die aus den tatsächlichen Steifigkeiten der Anschlüsse herrühren, dürfen bei der Bemessung der Stäbe und Anschlüsse vernachlässigt werden, wenn die folgenden Bedingungen erfüllt sind:

 die geometrischen Abmessungen der Anschlüsse liegen in den Gültigkeitsgrenzen, die jeweils in Tabelle 7.1, Tabelle 7.8, Tabelle 7.9 oder Tabelle 7.20 angegeben sind;

Bild 5.2. Vereinfachte bi-lineare Momenten-Rotations-Charakteristik

- das Verhältnis von Systemlänge zu Bauteilhöhe der Stäbe in der Ebene des Fachwerks unterschreitet nicht einen bestimmten Grenzwert. Für Hochbauten darf der Grenzwert mit 6 angenommen werden. Größere Grenzwerte können für andere Anwendungen gelten, siehe entsprechende Teile von EN 1993;
- die Knotenexzentrizität ist innerhalb der in 5.1.5(5) festgelegten Grenzen.

(4) Momente infolge Querbelastung zwischen den Knotenpunkten (unabhängig davon, ob in Fachwerkebene oder rechtwinklig dazu) sind in der Regel bei der Bemessung der querbelasteten Bauteile selbst zu berücksichtigen. Werden die Bedingungen in 5.1.5(3) eingehalten, darf davon ausgegangen werden, dass:

- die Streben gelenkig an den Gurtstab angeschlossen sind, so dass keine Übertragung von Momenten aus den Gurtstäben auf die Streben oder umgekehrt stattfindet;
- die Gurtstäbe als Durchlaufträger mit gelenkigen Auflagern an den Knotenpunkten wirken.

(5) Momente aus Knotenexzentrizitäten dürfen bei der Bemessung von zugbeanspruchten Gurtstäben und Streben vernachlässigt werden. Sie dürfen ebenfalls bei der Bemessung von Anschlüssen vernachlässigt werden, wenn die Knotenexzentrizitäten in den folgenden Grenzen liegen:

$$- -0.55 \, d_0 \le e \le 0.25 \, d_0 \tag{5.1a}$$

$$-0,55 h_0 \le e \le 0,25 h_0 \tag{5.1b}$$

Dabei ist

- e die Knotenexzentrizität, siehe Bild 5.3;
- d_0 der Durchmesser des Gurtstabes;
- h_0 die Höhe des Gurtstabes in der Fachwerkebene.

Bild 5.3. Knotenexzentrizitäten

(6) Bei der Bemessung von druckbeanspruchten Gurtstäben sind die aus den Knotenexzentrizitäten resultierenden Momente in der Regel zu berücksichtigen, auch wenn die Knotenexzentrizitäten innerhalb der in 5.1.5(5) genannten Grenzen liegen. In diesem Fall sind die Momente aus der Knotenexzentrizität auf die beiden angeschlossenen druckbeanspruchten Gurtstäbe nach ihrer relativen Steifigkeit I/L zu verteilen, wobei L die Systemlänge der Gurtstäbe zwischen den Knotenpunkten ist.

(7) Liegen die Knotenexzentrizitäten außerhalb der in 5.1.5(5) genannten Grenzen, dann sind die aus den Knotenexzentrizitäten resultierenden Momente nicht nur bei der Bemessung der Bauteile, sondern auch bei der Bemessung der Anschlüsse zu berücksichtigen. In diesem Fall sind die Momente aus der Knotenexzentrizität zwischen allen Bauteilen, die sich an einem Knoten treffen, nach ihrer relativen Steifigkeit I/L zu verteilen.

(8) Die Spannungen in den Gurtstäben infolge von Gurtmomenten sind auch bei der Bestimmung der Beiwerte k_m , k_n und k_p für die Bemessung der Anschlüsse zu berücksichtigen, siehe Tabelle 7.2 bis Tabelle 7.5, Tabelle 7.10 und Tabelle 7.12 bis Tabelle 7.14.

(9) Wann Momente bei der Bemessung zu berücksichtigen sind, ist in Tabelle 5.3 zusammengefasst.

5.2 Klassifizierung von Anschlüssen

5.2.1 Allgemeines

 Alle Anschlussdetails müssen in der Regel die Voraussetzungen des zu Grunde gelegten Berechnungsverfahrens erfüllen, ohne dass dadurch unzulässige Auswirkungen auf andere Teile des Tragwerks entstehen.
 Anschlüsse können noch ihren Steiferkeit siche

(2) Anschlüsse können nach ihrer Steifigkeit, siehe 5.2.2, und nach ihrer Tragfähigkeit, siehe 5.2.3, klassifiziert werden.

Anmerkung: Der Nationale Anhang kann hierzu weitere Hinweise geben, z. B. zu 5.2.2.1(2).

NDP

DIN EN 1993-1-8/NA

zu 5.2.1(2) Anmerkung Keine weitere nationale Festlegung. 5.2.2 Klassifizierung nach der Steifigkeit

5.2.2.1 Allgemeines

(1) Ein Anschluss kann je nach vorhandener Rotationssteifigkeit als starr, gelenkig oder verformbar klassifiziert werden, indem die Anfangssteifigkeit $S_{j,\text{ini}}$ mit den Grenzkriterien in 5.2.2.5 verglichen wird.

Anmerkung: Zur Bestimmung von $S_{j,ini}$ für Anschlüsse von H- oder I-Profilen siehe 6.3.1. Regelungen zur Bestimmung von $S_{j,ini}$ für Anschlüsse von Hohlprofilen sind in dieser Norm nicht angegeben.

(2) Die Klassifizierung eines Anschlusses kann auf der Grundlage von Laborversuchen oder Anwendungserfahrungen oder auf der Grundlage von Nachrechnungen erfolgen, die sich auf Versuchsergebnisse stützen.

5.2.2.2 Gelenkige Anschlüsse

(1) Ein gelenkiger Anschluss muss in der Regel in der Lage sein, die auftretenden Schnittkräfte zu übertragen, ohne dass größere Momente erzeugt werden, welche unzulässige Auswirkungen auf die angeschlossenen Bauteile oder das Gesamttragwerk haben könnten.

(2) Ein gelenkiger Anschluss muss in der Regel in der Lage sein, die auftretenden Gelenkverdrehungen infolge der Bemessungswerte der einwirkenden Lasten auszuführen.

5.2.2.3 Starre Anschlüsse

(1) Bei starren Anschlüssen kann angenommen werden, dass diese eine ausreichend große Rotationssteifigkeit haben, so dass bei der Berechnung der Verformungen volle Stetigkeit der Biegelinien angesetzt werden kann.

5.2.2.4 Verformbare Anschlüsse

(1) Ein Anschluss, der weder die Merkmale für starre Anschlüsse noch für gelenkige Anschlüsse erfüllt, ist als verformbarer Anschluss einzustufen.

Anmerkung: Verformbare Anschlüsse führen zu einem vorausberechenbaren Zusammenwirken der Bauteile im Tragwerk, das durch die Momenten-Rotations-Charakteristik gesteuert wird.

Tabelle 5.3. Berücksichtigung von Biegemomenten

Komponente	Biegemomente hervorgerufen durch				
	Sekundäreinflüsse	Querbelastung	Knotenexzentrizität		
Druckbeanspruchter Gurt	Nein, sofern 5.1.5(3) erfüllt ist	Ja	Ja		
Zugbeanspruchter Gurt			Nein, sofern 5.1.5(3) und (5) erfüllt sind		
Strebe			Nein, sofern 5.1.5(3) und (5) erfüllt sind		
Anschluss			Nein, sofern 5.1.5(3) und (5) erfüllt sind		

Zu 5.2.2

Bei der Klassifizierung nach der Rotationssteifigkeit ist nach Bild 5.4 zu differenzieren zwischen: starren, gelenkigen und verformbaren Anschlüssen. Die zugehörigen Grenzkriterien sind in 5.2.2.5 für Träger- und Stützenfußanschlüsse angegeben. Bei den Trägeranschlüssen muss die elastische Anfangssteifigkeit $S_{i,ini}$ nach Abschnitt 6.3 für die Klassifizierung berechnet und mit den Grenzkriterien verglichen werden. Sollen verformbare Anschlüsse zur statischen und wirtschaftlichen Optimierung der Konstruktion eingesetzt werden, ist ein iterativer Prozess erforderlich. Mit einer abgeschätzten Rotationssteifigkeit $S_{j,\mathrm{app}}$ sind die Schnittgrößen des Systems zu bestimmen. Dann wird der Anschluss für die einwirkenden Beanspruchungen bemessen und die zugehörige elastische Anfangssteifigkeit $S_{i \text{ ini}}$ ermittelt und mit der ersten Abschätzung verglichen. Von einer ausreichenden Genauigkeit der Abschätzung kann ausgegangen werden, wenn die mit $S_{j,ini}$ ermittelten Schnittgrößen um nicht mehr als 10 % von den im ersten Schritt ermittelten abweichen.

Für häufig vorkommende Anschlusskonfigurationen mit zwei Schrauben in einer Reihe kann die Rotationssteifigkeit $S_{j,app}$ von Stirnplattenanschlüssen und Anschlüssen mit Gurtwinkeln nach [K19] mit folgender Gleichung abgeschätzt werden:

$$S_{j,\text{app}} = \frac{E \cdot z^2 \cdot t_{\text{fc}}}{c}$$

Dabei ist *z* der Abstand zwischen der Druck- und Zugkraftresultierenden, $t_{\rm fc}$ die Stützengurtdicke und *c* ein von der Anschlusskonfiguration abhängiger Hilfswert. Das Verfahren beruht auf vereinfachten Ansätzen und ist an die Einhaltung bestimmter Parameter (z. B. $d = 1.5t_{\rm fc}$) gebunden, siehe hierzu auch [K41]. Für Anschlusskonfigurationen mit vier Schrauben in einer Reihe hat *Schmidt* im Rahmen seiner Dissertation [K33] zwei Näherungsfunktionen aufgestellt, mit denen in Abhängigkeit von Stirnplattendicke und Schraubendurchmesser die Rotationssteifigkeit von IH2- und IH4-Anschlüssen abgeschätzt werden kann. Neben der Rotationssteifigkeit ist die *Rotationskapazität* – also die maximale im Anschluss mögliche Rotation vor dem Versagen – eine entscheidende, den Anschluss charakterisierende Kenngröße. Bei der Rotationskapazität werden die *Klassen 1, 2 und 3* unterschieden (Bild K3).

Anschlüsse der Klasse 1 erreichen ihre plastische Beanspruchbarkeit und aufgrund der Verformbarkeit des Anschlusses können sie ohne Verlust der plastischen Beanspruchbarkeit ein plastisches Gelenk ausbilden. Ein Klasse-1-Anschluss besitzt dabei eine ausreichend große Rotationskapazität für eine plastische Umlagerung der Schnittgrößen im System. Diese ausreichende Rotationskapazität ist bei Querschnitten der Klasse 2 nicht mehr gegeben, jedoch erreichen sie aufgrund der Verformbarkeit einzelner Komponenten und der damit möglichen inneren Umlagerung der Beanspruchungen die plastische Anschlusstragfähigkeit. Bei Querschnitten der Klasse 3 bestimmen verformungsarme Komponenten wie Schweißnähte oder Schrauben die Beanspruchbarkeit des Anschlusses. Innere plastische Umlagerungen sind nicht möglich, der Querschnitt erreicht nur die elastische Momententragfähigkeit.

Bild K3. Anschlussklassifizierung nach der Rotationskapazität

(2) Verformbare Anschlüsse sollten in der Lage sein, alle auftretenden Schnittgrößen zu übertragen.

5.2.2.5 Grenzkriterien

(1) Grenzkriterien für Anschlüsse (ausgenommen Stützenfuß-Anschlüsse) sind in 5.2.2.1(1) und Bild 5.4 angegeben.

(2) Stützenfußanschlüsse können als starr klassifiziert werden, wenn die folgenden Bedingungen erfüllt werden:

 bei Rahmentragwerken, bei denen zusätzliche Aussteifungen die Horizontalverschiebungen um mindestens 80% verringern und die Einflüsse der Seitenverschiebungen vernachlässigt werden können:

$$- \operatorname{wenn} \overline{\lambda}_0 \le 0.5; \tag{5.2a}$$

- wenn 0,5 <
$$\lambda_0$$
 < 3,93
und $S_{i,\text{ini}} \ge 7(2 \bar{\lambda}_0 - 1) EI_c/L_c;$ (5.2b)

- wenn
$$\overline{\lambda}_0 \ge 3.93$$
 und $S_{j,\text{ini}} \ge 48 E I_c / L_c;$ (5.2c)

bei anderen Rahmentragwerken wenn

$$S_{j,\text{ini}} \ge 30 \, E I_{\text{c}} / L_{\text{c}} \tag{5.2d}$$

Dabei ist

 λ_0 der Schlankheitsgrad einer Stütze, bei der beide Enden gelenkig angenommen werden;

 I_c , L_c wie in Bild 5.4 angegeben.

5.2.3 Klassifizierung nach der Tragfähigkeit

5.2.3.1 Allgemeines

(1) Ein Anschluss kann als volltragfähig, gelenkig oder teiltragfähig klassifiziert werden, indem seine Momententragfähigkeit $M_{j,Rd}$ mit den Momententragfähigkeiten der angeschlossenen Bauteile verglichen wird. Dabei gelten die Momententragfähigkeiten der angeschlossenen Bauteile direkt am Anschluss.

Zu 5.2.3

Bei der Klassifizierung nach der *Tragfähigkeit* des Anschlusses ist zu differenzieren zwischen: *gelenkigen, teil- und volltragfähigen Anschlüssen* entsprechend Bild K4.

Als Grenzkriterien definiert DIN EN 1993-1-8 für gelenkige Anschlüsse eine Momententragfähigkeit von weniger als 25 % der plastischen Momententragfähigkeit der angeschlossenen Bauteile. Ein gelenkiger Anschluss muss zudem Rotationen zulassen und eine ausreichende Rotationskapazität aufweisen, so dass er bei der Tragwerksberechnung als ideales Gelenk betrachtet werden kann. Als volltragfähig gilt ein Anschluss, wenn seine Momententragfähigkeit größer ist als die plastische Momententragfähigkeit der angeschlossenen Bauteile.

Zone 1: starr, wenn $S_{j,ini} \ge K_b E I_b / L_b$ Dabei ist

- K_b = 8 bei Rahmentragwerken, bei denen zusätzliche Aussteifungen die Horizontalverschiebungen um mindestens 80 % verringern
- $K_{\rm b} = 25$ bei anderen Rahmentragwerken, vorausgesetzt, dass in jedem Geschoss $K_{\rm b}/K_{\rm c} \ge 0,1^{\rm a)}$

^{a)} Bei Rahmentragwerken mit $K_{\rm b}/K_{\rm c}$ < 0,1 sollten die Anschlüsse als verformbar angesehen werden.

Zone 2: verformbar

In Zone 2 sind alle Anschlüsse als verformbar anzusehen. Die Anschlüsse in den Zonen 1 oder 3 können bei Bedarf auch als verformbar behandelt werden.

Zone 3: gelenkig, wenn $S_{j,ini} \leq 0.5 E I_b / L_b$

Legende

- $K_{\rm b}$ Mittelwert aller $I_{\rm b}/L_{\rm b}$ für alle Deckenträger eines Geschosses;
- $K_{\rm c}$ Mittelwert aller $I_{\rm c}/L_{\rm c}$ für alle Stützen eines Geschosses;
- Ib Flächenträgheitsmoment zweiter Ordnung eines Trägers;
- *I*_c Flächenträgheitsmoment zweiter Ordnung einer Stütze;
- L_b Spannweite eines Trägers (von Stützenachse zu Stützenachse);
- L_c Geschosshöhe einer Stütze.

Bild 5.4. Klassifizierung von Anschlüssen nach der Steifigkeit

Bild K4. Anschlussklassifizierung nach der Beanspruchbarkeit

5.2.3.2 Gelenkige Anschlüsse

(1) Ein gelenkiger Anschluss muss in der Regel in der Lage sein, die auftretenden Schnittkräfte zu übertragen, ohne dass größere Momente erzeugt werden, welche unzulässige Auswirkungen auf die angeschlossenen Bauteile oder das Gesamttragwerk haben könnten.

(2) Ein gelenkiger Anschluss muss in der Regel in der Lage sein, die auftretenden Gelenkverdrehungen infolge der Bemessungswerte der einwirkenden Lasten auszuführen.

(3) Ein Anschluss darf als gelenkig angesehen werden, wenn seine Momententragfähigkeit $M_{j,\text{Rd}}$ nicht größer als 1/4 der Momententragfähigkeit des volltragfähigen Anschlusses ist und ausreichende Rotationskapazität besteht.

5.2.3.3 Volltragfähige Anschlüsse

(1) Die Tragfähigkeit eines volltragfähigen Anschlusses darf in der Regel nicht geringer sein als die Tragfähigkeit der angeschlossenen Bauteile.

(2) Ein Anschluss darf als volltragfähig eingestuft werden, wenn er die Kriterien in Bild 5.5 erfüllt.

5.2.3.4 Teiltragfähige Anschlüsse

(1) Ein Anschluss, der weder die Kriterien für volltragfähige Anschlüsse noch für gelenkige Anschlüsse erfüllt, ist als teiltragfähig einzustufen.

5.3 Statisches Modell für Träger-Stützenanschlüsse

(1) Bei der Modellbildung für das Verformungsverhalten eines Träger-Stützenanschlusses sind die Schubverformungen des Stützenstegfeldes und die Rotationsverformungen der Verbindungen zu berücksichtigen.

Dabei ist

oder

 $M_{b,p\ell,Rd}$ die plastische Momententragfähigkeit eines Trägers $M_{c,p\ell,Rd}$ die plastische Momententragfähigkeit einer Stütze

Bild 5.5. Volltragfähige Anschlüsse

 $M_{i,Rd} \ge 2 M_{c,pl,Rd}$

(2) Die Anschlüsse sind für die durch die angeschlossenen Bauteile eingetragenen Schnittgrößen, nämlich die Biegemomente $M_{b1,Ed}$ und $M_{b2,Ed}$, die Normalkräfte $N_{b1,Ed}$ und $N_{b2,Ed}$ und die Querkräfte $V_{b1,Ed}$ und $V_{b2,Ed}$ zu bemessen, siehe Bild 5.6.

(3) Die resultierende Schubkraft $V_{wp,Ed}$ in einem Stützenstegfeld ist wie folgt zu ermitteln:

$$V_{\rm wp,Ed} = (M_{\rm b1,Ed} - M_{\rm b2,Ed})/z - (V_{\rm c1,Ed} - V_{\rm c2,Ed})/2$$
(5.3)

Dabei ist

z der Hebelarm, siehe 6.2.7.

(4) Für eine wirklichkeitsnahe Berechnung des Verhaltens des Anschlusses sollten das Stützenstegfeld und die einzelnen Verbindungen unter Berücksichtigung der Schnittgrößen der Bauteile am Anschnitt des Stützenstegfeldes getrennt modelliert werden, siehe Bild 5.6(a) und Bild 5.7.

a) Werte am Anschnitt des Stegfeldes

b) Werte am Knotenpunkt der Schwerachsen

Positive Richtung der Schnittgrößen in den Gleichungen (5.3) und (5.4)

Bild 5.6. Schnittgrößen, die auf den Anschluss einwirken

a) Schubkäfte im Stützenstegfeld b) Verbindungen mit den Schnittgrößen der angeschlossenen Träger

Bild 5.7. Schnittgrößen, die auf ein Stützenstegfeld am Knoten einwirken

(5) Vereinfachend zu 5.3(4) können einseitige Anschlüsse auch in Form punktförmiger Einzelanschlüsse und zweiseitige Anschlüsse auch in Form von zwei getrennten, punktförmigen interagierenden Einzelanschlüssen in den Schwerachsen modelliert werden. Somit ergeben sich für einen zweiseitigen Träger-Stützenanschluss zwei Momenten-Rotations-Charakteristiken, nämlich für jede Anschlussseite eine.

(6) Bei einem zweiseitigen Träger-Stützenanschluss sollte jeder dieser Einzelanschlüssen durch eine eigene Rotationsfeder modelliert werden, siehe Bild 5.8, deren Momenten-Rotations-Charakteristik sowohl das Verhalten des Stützenstegfeldes als auch der jeweiligen Verbindungen berücksichtigt.

(7) Bei der Bestimmung der Momententragfähigkeit und der Rotationssteifigkeit jedes Anschlusses sollte der mögliche Einfluss des Stützenstegfeldes durch die Übertragungsparameter β_1 und β_2 berücksichtigt werden.

Dabei ist

- β_1 der Übertragungsparameter β für den rechten Anschluss;
- β_2 der Übertragungsparameter β für den linken Anschluss.

Anmerkung: Die Übertragungsparameter β_1 und β_2 werden in 6.2.7.2(7) und 6.3.2(1) verwendet. Sie werden auch in 6.2.6.2(1) und 6.2.6.3(4) in Verbindung mit der Tabelle 6.3 benutzt, um den Abminderungsbeiwert ω für den Schub zu bestimmen.

(8) Näherungswerte für β_1 und β_2 für die Trägeranschlussmomente $M_{b1,Ed}$ und $M_{b2,Ed}$ am Anschnitt zum Stützenstegfeld, siehe Bild 5.6(a), können der Tabelle 5.4 entnommen werden.

(9) Als Alternative zu 5.3(8) können genauere Werte für β_1 und β_2 , die sich auf die Momente $M_{j,b1,Ed}$ und $M_{j,b2,Ed}$ am Schnittpunkt der Systemlinien nach Bild 5.6(b) beziehen, wie folgt ermittelt werden:

$$\beta_1 = \left| 1 - M_{j,b2,Ed} / M_{j,b1,Ed} \right| \le 2 \tag{5.4a}$$

$$\beta_2 = \left| 1 - M_{j,b1,Ed} / M_{j,b2,Ed} \right| \le 2$$
 (5.4b)

Dabei ist

 $M_{j,b1,Ed}$ das Moment am Schnittpunkt des rechten Trägers;

 $M_{j,b2,Ed}$ das Moment am Schnittpunkt des linken Trägers.

(10) Bei einem unausgesteiften zweiseitigen Träger-Stützenanschluss mit zwei Trägern unterschiedlicher Höhe ist bei der Bestimmung der Momententragfähigkeit der tatsächliche Schubspannungsverlauf im Stützenstegfeld zu berücksichtigen.

2 3

Einseitiger Anschluss

Zweiseitiger Anschluss

Bild 5.8. Vereinfachte statische Modelle für Anschlüsse

Ausführung der Anschlüsse	Einwirkung	Wert β
M _{b1,Ed}	$M_{ m b1,Ed}$	<i>β</i> ≈1
M M b2,Ed M b1,Ed	$M_{\rm b1,Ed}$ = $M_{\rm b2,Ed}$	β = 0 °
m b1,Ed	$M_{\rm b1,Ed}/M_{\rm b2,Ed} > 0$	<i>β</i> ≈1
	$M_{\rm b1,Ed} / M_{\rm b2,Ed} < 0$	<i>β</i> ≈2
	$M_{\rm b1,Ed} + M_{\rm b2,Ed} = 0$	<i>β</i> ≈2
^a In diesem Falle ist β der genaue Wert.		

|--|

Zu 6.1

Im Abschnitt 6 der DIN EN 1993-1-8 ist die Komponentenmethode zur Berechnung allgemeiner Anschlüsse mit H- oder I-Querschnitten geregelt. Die Komponentenmethode lässt sich auf beliebige geschweißte und mit Gurtwinkeln ausgeführte Anschlüsse anwenden. Auch geschraubte Stirnplattenverbindungen können nach der Komponentenmethode berechnet werden, wobei die zugrunde liegenden Modelle hier auf zwei Schrauben in einer Reihe beschränkt sind, so dass die Komponentenmethode zurzeit nicht direkt auf in Deutschland gebräuchliche IH2- und IH4-Anschlüsse angewandt werden kann.

Das Prinzip der Komponentenmethode basiert auf der gedanklichen Zerlegung eines Anschlusses in seine Grundkomponenten, für die jeweils Modelle zur Bestimmung der Beanspruchbarkeiten und Steifigkeiten in DIN EN 1993-1-8 bereitgestellt werden. Unter Berücksichtigung der Gleichgewichtsbedingungen und der Kraft-Verformungsbeziehungen wird aus den Beanspruchbarkeiten und den Steifigkeiten der den Anschluss bildenden Grundkomponenten die Anschlusstragfähigkeit $M_{j,\text{Rd}}$ und die Anschlusssteifigkeit S_j bestimmt. In den Stahlbau-Kalendern 2005 [K41] und 2010 [K26] sind der Komponentenmethode umfassende Beiträge gewidmet worden.

Die Komponentenmethode ermöglicht es dem planenden Ingenieur, Anschlüsse statisch und wirtschaftlich zu optimieren, wobei der erforderliche Rechenaufwand den Einsatz der EDV (z. B. CoP The Connection Program [K4]) in der Regel unumgänglich macht. Bereits seit Juli 2000 kann alternativ auch auf die "Typisierten Anschlüsse im Stahlhochbau" [K38] des DSTV zurückgegriffen werden, in denen die Tragfähigkeiten und Anschlusssteifigkeiten für geschraubte, momententragfähige Stirnplattenanschlüsse (Typen IH1 und IH3) nach DIN EN 1993-1-8 vertafelt sind. Im Vergleich zu den "Bemessungshilfen für profilorientiertes Konstruieren" von Prof. Oberegge [K27], die noch auf dem DASt-Modell beruhen und auf Stirnplatten aus S235 und die Verwendung hochfester, vorgespannter Schrauben beschränkt waren, sind in [K38] Anschlüsse aus S235 und S355 für Schrauben der Festigkeitsklassen 8.8 und 10.9 typisiert. Eine Vorspannung der Schrauben ist bei der Komponentenmethode anders als bei DASt-Modell nicht zwingend erforderlich, wird jedoch im Hinblick auf die Gebrauchstauglichkeit empfohlen. Mit der zweiten Auflage der "Typisierten Anschlüsse im Stahlhochbau" [K37] erfolgte eine Erweiterung auf Anschlüsse mit vier Schrauben in einer Reihe (Typen IH2 und IH4). Hierfür wurde in [K37] ein Modell entwickelt, das die Stirnplatte gedanklich in einen inneren und äußeren Bereich zerlegt. Bei der Modellbildung mussten zum Teil konservative Ansätze gewählt werden, da keine Versuchsdaten zur Validierung des Modells zur Verfügung standen. Dies führt dazu, dass nach dem Modell der erweiterten Komponentenmethode von Sedlacek und Weynand Anschlüsse zum Teil kleinere Tragfähigkeiten aufweisen als nach dem DASt-Modell. Die Erweiterung der Komponentenmethode auch auf vier Schrauben in einer Schraubenreihe ist Gegenstand aktueller Forschungsvorhaben. Erste Vorschläge zur Erweiterung der Komponentenmethode auch auf Konfigurationen mit vier Schrauben in einer Reihe wurden unter anderem in [K33], [K1] und [K2] entwickelt.

6.1 Allgemeines

6.1.1 Geltungsbereich

(1) Dieser Abschnitt enthält Berechnungsverfahren zur Bestimmung der Kenndaten von beliebigen Anschlüssen für Tragwerksberechnungen. Für die Anwendung dieser Verfahren wird ein Anschluss als eine Zusammenstellung von Grundkomponenten dargestellt, siehe 1.3(1).

(2) Die in dieser Norm verwendeten Grundkomponenten sind in Tabelle 6.1 aufgeführt. Die Kenngrößen dieser Grundkomponenten können nach den Regelungen dieser Norm bestimmt werden. Weitere Grundkomponenten sind möglich, wenn deren Kenngrößen mit Versuchen oder mit numerischen Verfahren, die an Versuchen kalibriert sind, bestimmt werden, siehe EN 1990.

Anmerkung: Die in dieser Norm angegebenen Berechnungsverfahren für Grundkomponenten sind allgemeingültig und können auf ähnliche Komponenten in anderen Anschlusskonfigurationen übertragen werden. Allerdings beruhen die hier angegebenen Berechnungsverfahren zur Bestimmung der Momententragfähigkeit, der Rotationssteifigkeit und der Rotationskapazität eines Anschlusses auf einer Verteilung der inneren Kräfte und Momente, die zu den in Bild 1.2 dargestellten Anschlusskonfigurationen gehört. Bei anderen Anschlusskonfigurationen sind die Berechnungsverfahren zur Bestimmung von Momententragfähigkeit, Rotationssteifigkeit und Rotationskapazität an die dafür zutreffende Verteilung der inneren Kräfte und Momente anzupassen.

6.1.2 Kenngrößen

6.1.2.1 Momenten-Rotations-Charakteristik

(1) Ein Anschluss kann durch eine Rotationsfeder dargestellt werden, welche die verbundenen Bauteile im Kreuzungspunkt der Schwerpunktlinien verbindet, siehe z. B. Bild 6.1(a) und (b) für einen einseitigen Träger-Stützenanschluss. Die Kenngrößen der Feder können in Form einer Momenten-Rotations-Charakteristik dargestellt werden, die die Beziehung zwischen dem am Anschluss angreifenden Biegemoment $M_{j,Ed}$ und der zugehörigen Rotation ϕ_{Ed} zwischen den verbundenen Bauteilen beschreibt. Im Allgemeinen ist diese Momenten-Rotations-Charakteristik nicht-linear, siehe Bild 6.1(c).

(2) Die Momenten-Rotations-Charakteristik liefert die drei wesentlichen Kenngrößen, siehe Bild 6.1(c):

- Momententragfähigkeit;
- Rotationssteifigkeit;
- Rotationskapazität.

Anmerkung: In bestimmten Fällen enthält die wirkliche Momenten-Rotations-Kurve Anfangsverdrehungen auf Grund von Schraubenschlupf, Passungenauigkeiten oder bei Stützenfußanschlüssen durch Fundament-Boden-Interaktion. Solche möglicherweise nicht unerheblichen Anfangsverdrehungen sollten in der Momenten-Rotations-Charakteristik berücksichtigt werden.

(3) Die Momenten-Rotations-Charakteristik eines Träger-Stützenanschlusses darf in der Regel zu keinem Widerspruch mit den Annahmen für die Gesamttragwerksberechnung und für die Bemessung der einzelnen Bauteile führen, siehe EN 1993-1-1.

(4) Wird die Momenten-Rotations-Charakteristik von Anschlüssen und Stützenfüßen von I- oder H-Querschnitten nach 6.3.1(4) ermittelt, kann angenommen werden, dass die Bedingungen in 5.1.1(4) für die Vereinfachung dieser Charakteristik für Zwecke der Tragwerksberechnung erfüllt sind.

6.1.2.2 Momententragfähigkeit

(1) Die Momententragfähigkeit $M_{j,Rd}$, die dem maximalen Moment der Momenten-Rotations-Charakteristik entspricht, siehe Bild 6.1(c), ist in der Regel nach 6.1.3(4) zu ermitteln.

6.1.2.3 Rotationssteifigkeit

(1) Die Rotationssteifigkeit S_j , die nach Bild 6.1(c) der Sekantensteifigkeit entspricht, ist in der Regel nach 6.3.1(4)zu ermitteln. Diese Definition von S_j gilt für Verdrehungen bis zu dem Wert ϕ_{Xd} in einer Momenten-Rotations-Charakteristik, bei dem das Moment $M_{j,Ed}$ den Wert $M_{j,Rd}$ erreicht, nicht jedoch darüber hinaus, siehe Bild 6.1(c). Die Anfangssteifigkeit $S_{j,ini}$ ist die Steigung des elastischen Bereichs der Momenten-Rotations-Charakteristik und ist in der Regel nach 6.1.3(4) zu ermitteln.

6.1.2.4 Rotationskapazität

(1) Mit der Rotationskapazität ϕ_{Cd} eines Anschlusses wird die maximale Rotation in einer Momenten-Rotations-Charakteristik bezeichnet, siehe Bild 6.1(c). ϕ_{Cd} ist in der Regel nach 6.1.3(4) zu ermitteln.

6.1.3 Grundkomponenten eines Anschlusses

(1) Die Momenten-Rotations-Charakteristik eines Anschlusses hängt von den Kenngrößen seiner Grundkomponenten ab, die in der Regel nach 6.1.3(2) auszuwählen sind.

(2) Die Grundkomponenten und Hinweise zur Bestimmung ihrer Kenngrößen sind Tabelle 6.1 zu entnehmen.

1 Grenzwert für S_i

c) Momenten-Rotations-Charakteristik

Bild 6.1. Momenten-Rotations-Charakteristik eines Anschlusses

b) Statisches Modell

(3) Bestimmte Komponenten können verstärkt werden. Einzelheiten zu den verschiedenen Verstärkungsmöglichkeiten sind in 6.2.4.3 und 6.2.6 angegeben.

(4) Die Zusammenhänge zwischen den Kenngrößen der Grundkomponenten eines Anschlusses und den Kenngrößen des Anschlusses sind in den folgenden Abschnitten angegeben:

- für die Momententragfähigkeit in 6.2.7 und 6.2.8;
- für die Rotationssteifigkeit in 6.3.1;

a) Anschluss

- für die Rotationskapazität in 6.4.

6.2 Tragfähigkeit

6.2.1 Schnittgrößen

(1) Außer in den in 6.2.1(2) und 6.2.1(3) spezifizierten Fällen darf angenommen werden, dass die Beanspruchungen der angeschlossenen Bauteile die Tragfähigkeit der Grundkomponenten eines Anschlusses nicht beeinflussen.

(2) Die Druckspannung in einer Stütze ist in der Regel bei der Ermittlung der Tragfähigkeit des Stützenstegfeldes mit Querdruck zu berücksichtigen, siehe 6.2.6.2(2).

			Verweis auf Berechnungsverfahren			
	Кот	ponente	Tragfähigkeit	Steifigkeits- koeffizient	Rotations- kapazität	
1	Stützenstegfeld mit Schubbeanspruchung		6.2.6.1	6.3.2	6.4.2 6.4.3	
2	Stützensteg mit Quer- druckbeanspruchung		6.2.6.2	6.3.2	6.4.2 6.4.3	
3	Stützensteg mit Quer- zugbeanspruchung		6.2.6.3	6.3.2	6.4.2 6.4.3	

	Tabelle 6.1	. Grundkom	ponenten eines	Anschlusses
--	-------------	------------	----------------	-------------

1

			Verweis auf Berechnungsverfahren			
	Котр	onente	Tragfähigkeit	Steifigkeits- koeffizient	Rotations- kapazität	
4	Stützenflansch mit Biegung	$ \xrightarrow{f_{t,Ed}} \xrightarrow{f_{t,Ed}} $	6.2.6.4	6.3.2	6.4.2 6.4.3	
5	Stirnblech mit Biege- beanspruchung	+ + + + + +	6.2.6.5	6.3.2	6.4.2	
6	Flanschwinkel mit Biegebeanspruchung		6.2.6.6	6.3.2	6.4.2	
7	Träger- oder Stützen- flansch und -steg mit Druckbeanspruchung	F _{c,Ed}	6.2.6.7	6.3.2	a	
8	Trägersteg mit Zug- beanspruchung		6.2.6.8	6.3.2	a	
9	Blech mit Zug- oder Druckbeanspruchung	$F_{t,Ed} \longrightarrow F_{t,Ed}$ $F_{c,Ed} \longrightarrow F_{c,Ed}$	auf Zug: — EN 1993-1-1 auf Druck: — EN 1993-1-1	6.3.2	а	
10	Schrauben mit Zug- beanspruchung		mit Stützenflansch: — 6.2.6.4 mit Stirnblech: — 6.2.6.5 mit Flanschwinkel: — 6.2.6.6	6.3.2	6.4.2	
11	Schrauben mit Ab- scherbeanspruchung		3.6	6.3.2	6.4.2	

Tabelle 6.1. Grundkomponenten eines Anschlusses (Fortsetzung)

Į.

1

		Verweis auf Berechnungsverfahren			
	Komponente		Tragfähigkeit	Steifigkeits- koeffizient	Rotations- kapazität
12	Schrauben mit Loch- leibungsbeanspru- chung (im Trägerflansch, Stützenflansch, Stirnblech oder Winkel)	F _{b,Ed} ↓ F _{b,Ed}	3.6	6.3.2	a
13	Beton (einschließlich Mörtel) mit Druck- beanspruchung		6.2.6.9	6.3.2	а
14	Fußplatte mit Biege- beanspruchung infolge Druck		6.2.6.10	6.3.2	а
15	Fußplatte mit Biege- beanspruchung infolge Zug		6.2.6.11	6.3.2	а
16	Ankerschrauben mit Zugbeanspruchung		6.2.6.12	6.3.2	а
17	Ankerschrauben mit Abscherbeanspru- chung		6.2.2	а	а
18	Ankerschrauben mit Lochleibungs- beanspruchung		6.2.2	а	а
19	Schweißnähte		4	6.3.2	а
20	Vouten		6.2.6.7	6.3.2	a
а	Dazu enthält diese Norm keine	Regelungen.			

Tabelle 6.1. Grundkomponenten eines Anschlusses (Fortsetzung)

Zu 6.1.3

In Bild K5 werden die Grundkomponenten am Beispiel eines Träger-Stützenanschlusses anschaulich dargestellt.

Die Berechnungsverfahren zur Bestimmung der Kenngrößen der einzelnen Komponenten sind in den nachfolgenden Abschnitten 6.2 (Tragfähigkeit), 6.3 (Steifigkeitskoeffizient) und 6.4 (Rotationskapazität) geregelt. Das generelle Vorgehen bei der Komponentenmethode wird für das bessere Verständnis nachfolgend für einen Träger-Stützenanschluss kurz erläutert. Für eine ausführliche Darstellung sei auf weiterführende Literatur verwiesen, z. B. [K26] und [K41]. (1) Ermittlung der Anschlusstragfähigkeit:

Die Anschlusstragfähigkeit wird für geschraubte Stimplattenverbindungen allgemein nach Gleichung (6.25): $M_{j,\text{Rd}} = \sum h_r \cdot F_{\text{tr.,Rd}}$ bestimmt.

Dabei ist $F_{\rm tr,Rd}$ die maßgebende Grenzzugkraft der Schraubenreihe r, die von den Tragfähigkeiten der lokalen und globalen Grundkomponenten des Anschlusses abhängt. h_r ist der Hebelarm der Schraubenreihe r bezogen auf den Druckpunkt, der i. d. R. in der Mittelachse des Druckflansches angenommen wird (Bild K5). Aufgrund des kleinen Hebelarms liefern die beim Druckpunkt liegenden Schrauben nur einen geringen Anteil zu der Anschlusstragfähigkeit und werden im Allgemeinen vernachlässigt und ausschließlich für den Abtrag der Querkräfte im Anschluss herangezogen.

Für die Ermittlung der maßgebenden Grenzzugkraft werden zunächst die Beanspruchbarkeiten der lokalen Grundkomponenten für jede Schraubenreihe individuell und für jede mögliche Schraubenreihengruppe bestimmt. Im Anschluss ist zu überprüfen, ob eine Schraubenreihengruppe eine geringere Beanspruchbarkeit aufweist als die Summe der zugehörigen individuellen Beanspruchbarkeiten der jeweiligen Schraubenreihen. Wenn dies der Fall ist, sind die Beanspruchbarkeiten der Schraubenreihen – beginnend mit der dem Druckpunkt am nächsten liegenden Schraubenreihe – nach Abschnitt 6.2.7.2 so weit zu reduzieren, bis die Beanspruchbarkeit der maßgebenden Schraubenreihengruppen erreicht wird. Ist auf Basis der Beanspruchbarkeiten der lokalen Grundkomponenten die Grenzzugtragfähigkeit jeder Schraubenreihe bestimmt worden, muss noch überprüft werden, ob die Grenztragfähigkeiten der globalen Grundkomponenten (Stützenstegfeld auf Schub, Stützensteg und Trägersteg / Trägergurt auf Druck) ausreichend groß sind oder ob eine weitere Abminderung der Grenzzugtragfähigkeiten erforderlich ist. Mit den maßgebenden Grenzzugkräften F_{tr.Rd} der Schraubenreihen kann abschließend die Momententragfähigkeit $M_{j,\mathrm{Rd}}$ des Anschlusses unter Verwendung der Hebelarme h_r bestimmt werden.

Bild K5. Grundkomponenten eines Anschlusses mit überstehender Stirnplatte

(2) Ermittlung der Anschlusssteifigkeit:

Bei der Anschlusssteifigkeit ist wie in Bild 6.1 anschaulich an der Momenten-Rotations-Charakteristik eines geschraubten Träger-Stützenanschlusses dargestellt, zu unterscheiden zwischen der: elastischen Anfangssteifigkeit $S_{j,ini}$

Se

Diese Differenzierung ist erforder^Iich, da die Momenten-Rotations-Charakteristiken von Anschlüssen nichtlinear sind und der Ansatz von $S_{j,\text{ini}}$ für Momentenbeanspruchungen größer als 2/3 $M_{j,\text{Rd}}$ zu einer Überschätzung der Anschlusssteifigkeit führen würde.

Die Ermittlung der Anschlusssteifigkeit erfolgt bei der Komponentenmethode mit Hilfe eines Gesamtfedermodells, bei dem jede im Anschluss vorhandene Grundkomponente als Wegfeder mit einer definierten Steifigkeit k_i erfasst wird. Aufgrund der sehr hohen Steifigkeitskoeffizienten einzelner Grundkomponenten, wie z. B. Trägergurt und -steg auf Druck, den Schweißnähten zwischen Träger und Stirnplatte, können diese bei der Ermittlung der Anschlusssteifigkeit vernachlässigt werden. Bild K6 zeigt das Gesamtfedermodell für einen geschraubten Träger-Stützenanschluss, wobei die Benennung der Steifigkeitskoeffizienten unter Berücksichtigung der Nummerierung der Grundkomponenten nach Tabelle 6.1 erfolgt.

Unter der Annahme, dass die Verformungen in Achse der Schraubenreihen proportional zum Abstand vom Druckpunkt sind, lassen sich die Steifigkeitskoeffizienten zu einer äquivalenten Federsteifigkeit k_{eq} und die Hebelarme zu einem äquivalenten Hebelarm z_{eq} zusammenfassen. Dem Gesamtfedermodell liegen dabei die Annahmen zugrunde, dass die Verformungen der einzelnen Grundkomponenten untereinander verträglich sind, dass die Beanspruchbarkeit und Verformbarkeit jeder Grundkomponente eingehalten wird und dass die inneren Schnittgrößen mit den äußeren Beanspruchungen im Gleichgewicht stehen!

Bild K6. Federmodell für einen unausgesteiften Stirnplattenanschluss

(3) Der Schub in einem Stützenstegfeld ist in der Regel bei der Ermittlung der Tragfähigkeit der folgenden Grundkomponenten zu berücksichtigen:

- Stützensteg mit Querdruck, siehe 6.2.6.2;
- Stützensteg mit Querzug, siehe 6.2.6.3.

6.2.2 Querkräfte

(1) In geschweißten Verbindungen oder geschraubten Verbindungen mit geschweißten Stirnblechen sind in der Regel die Schweißnähte am Steg des angeschlossenen Trägers für die gesamte Querkraft ohne Mitwirkung der Schweißnähte an den Trägerflanschen zu bemessen.

(2) In geschraubten Verbindungen mit Stirnblechen sollte die Tragfähigkeit jeder einzelnen Schraubenreihe für gleichzeitig wirkende Quer- und Zugkräfte nach den in Tabelle 3.4 angegebenen Kriterien überprüft werden. Dabei ist der Einfluss von Abstützkräften auf die Zugkraft in den Schrauben zu berücksichtigen.

Anmerkung: Vereinfachend darf angenommen werden, dass bei den für die Zugbeanspruchung benötigten Schrauben die volle Zugtragfähigkeit vorhanden ist, wenn die Querkraft den Wert aus folgenden Beiträgen nicht überschreitet:

- a) die volle Abschertragf\u00e4higkeit der Schrauben, die nicht f\u00fcr die Zugbeanspruchung herangezogen werden und
- b) das (0,4/1,4)fache der vollen Abschertragfähigkeit der Schrauben, die die volle Zugbeanspruchung aufnehmen müssen.

(3) In geschraubten Verbindungen mit Flanschwinkeln kann angenommen werden, dass der Winkel, der an den druckbeanspruchten Trägerflansch anschließt, die volle Querkraft des Trägers auf die Stütze überträgt, wenn:

- der Spalt g zwischen Trägerende und Stützenflansch nicht größer ist als die Dicke t_a des Flanschwinkels;
- die Querkraft nicht größer ist als die Abschertragfähigkeit der Schrauben, welche den Flanschwinkel mit der Stütze verbinden;
- der Trägersteg die Anforderungen in EN 1993-1-5, Abschnitt 6 erfüllt.

(4) Die Schubtragfähigkeit eines Anschlusses kann aus der Verteilung der Kräfte und Momente auf die Grundkomponenten des Anschlusses und den Tragfähigkeiten der Grundkomponenten abgeleitet werden, siehe Tabelle 6.1.

(5) Wenn für die Aufnahme der Querkräfte an Fußplatten keine speziellen Schubelemente vorgesehen sind, wie z. B. Blockanker oder Dübel, so ist in der Regel nachzuweisen, dass die Querkräfte durch den Gleitwiderstand zwischen Fußplatte und Fundament, siehe 6.2.2(6), und, falls die Schraubenlöcher nicht übergroß sind, durch die Abschertragfähigkeit der Ankerschrauben, siehe 6.2.2(7), zusammen übertragen werden können. Die Lochleibungstragfähigkeit von Blockankern oder Dübeln im Beton ist in der Regel nach EN 1992 zu überprüfen. (6) Der Gleitwiderstand $F_{f,Rd}$ zwischen Fußplatte und Mörtelschicht ist wie folgt zu bestimmen:

$$F_{\rm f,Rd} = C_{\rm f,d} \, N_{\rm c,Ed} \tag{6.1}$$

Dabei ist

- C_{f.d} der Reibbeiwert zwischen Fußplatte und Mör
 - telschicht. Folgende Werte können verwendet werden:
 - für Sand-Zement-Mörtel $C_{f,d} = 0,20$
 - für andere Mörtel-Zusammensetzungen sollte der Reibbeiwert C_{f,d} nach EN 1990, Anhang D durch Versuche bestimmt werden;
- $N_{c,Ed}$ Bemessungswert der einwirkenden Druckkraft in der Stütze.

Anmerkung: Wird die Stütze durch eine Zugkraft belastet, gilt $F_{f,Rd} = 0$.

(7) Die Abschertragfähigkeit $F_{vb,Rd}$ einer Ankerschraube ist als Minimum der beiden Werte $F_{1,vb,Rd}$ und $F_{2,vb,Rd}$ zu bestimmen:

 F_{1,vb,Rd} Abschertragfähigkeit der Ankerschraube, nach 3.6.1

$$-F_{2,\text{vb,Rd}} = \frac{\alpha_{\text{bc}} f_{\text{ub}} A_{\text{s}}}{\gamma_{\text{M2}}}$$
(6.2)

Dabei ist

$$\alpha_{\rm bc} = 0.44 - 0.0003 f_{\rm vt}$$

 f_{yb} die Streckgrenze der Ankerschraube, wobei 235 N/mm² $\leq f_{yb} \leq 640$ N/mm².

(8) Zwischen einer Fußplatte und einer Mörtelschicht ist der Gesamtschubwiderstand $F_{v,Rd}$ in der Regel wie folgt zu bestimmen:

$$F_{\rm v,Rd} = F_{\rm f,Rd} + n F_{\rm vb,Rd} \tag{6.3}$$

Dabei ist

n die Anzahl der Ankerschrauben in der Fußplatte.

(9) Beton und Bewehrung des Stützenfußfundaments sollten nach EN 1992 bestimmt werden.

6.2.3 Biegemomente

(1) Die Biegetragfähigkeit eines Anschlusses kann aus der Verteilung der Kräfte und Momente auf die Grundkomponenten des Anschlusses und den Tragfähigkeiten der Grundkomponenten abgeleitet werden, siehe Tabelle 6.1.

(2) Ist die einwirkende Längskraft $N_{\rm Ed}$ in dem angeschlossenen Bauteil nicht größer als 5% der plastischen Beanspruchbarkeit $N_{\rm p\ell,Rd}$ des Querschnittes, so kann die Biegetragfähigkeit eines Träger-Stützenanschlusses oder Trägerstoßes $M_{j,\rm Rd}$ nach 6.2.7 ermittelt werden.

(3) Die Biegetragfähigkeit $M_{j,Rd}$ eines Stützenfußes kann nach 6.2.8 ermittelt werden.

(4) In allen Anschlüssen sollten die Schweißnahtdicken so gewählt werden, dass die Biegetragfähigkeit des Anschlusses $M_{j,Rd}$ nicht durch die Tragfähigkeit der Schweißnähte, sondern immer durch die Tragfähigkeiten der anderen Grundkomponenten begrenzt wird.

 $\Sigma \ell_{eff}$

m

m _

Bild 6.2. Abmessungen eines äquivalenten T-Stummelflansches

(5) Ist in einem Lastfall in einem Träger-Stützenanschluss oder einem Trägerstoß ein plastisches Gelenk mit Rotationskapazität erforderlich, dann sollten die Schweißnähte mindestens für das Minimum der beiden folgenden Werte bemessen werden:

- die plastische Biegetragf\u00e4higkeit des angeschlossenen Bauteils M_{pl.Rd}
- die α -fache Biegetragfähigkeit des Anschlusses $M_{i,\text{Rd}}$

Dabei ist

- α = 1,4 für Rahmen, deren Aussteifungen das Kriterium (5.1) nach EN 1993-1-1, 5.2.1(3) erfüllen;
- $\alpha = 1,7$ für alle anderen Fälle.

(6) Steht in einer geschraubten Verbindung mehr als eine Schraubenreihe unter Zugbeanspruchung, dann kann zur Vereinfachung der Berechnung der Beitrag der näher am Druckpunkt liegenden Schraubenreihen vernachlässigt werden.

6.2.4 Äquivalenter T-Stummel mit Zugbeanspruchung

6.2.4.1 Allgemeines

(1) Zur Berechnung der Tragfähigkeit der folgenden Grundkomponenten geschraubter Anschlüsse kann das Modell des äquivalenten T-Stummels mit Zugbeanspruchung verwendet werden:

- Stützenflansch mit Biegebeanspruchung;
- Stirnblech mit Biegebeanspruchung;
- Flanschwinkel mit Biegebeanspruchung;
- Fu
 ßplatte mit Biegebeanspruchung infolge Zugbeanspruchung.

(2) Verfahren zur Berechnung dieser Grundkomponenten als äquivalente T-Stummel einschließlich der notwendigen Werte für e_{\min} , ℓ_{eff} und *m* sind in 6.2.6 angegeben.

(3) Es kann davon ausgegangen werden, dass die Versagensarten des Flansches eines äquivalenten T-Stummels die gleichen sind wie die der verschiedenen Grundkomponenten, für welche der T-Stummel als Modell gilt.

(4) Die wirksame Länge $\Sigma \ell_{eff}$ eines äquivalenten T-Stummels, siehe Bild 6.2, ist so anzusetzen, dass die Tragfähigkeiten der Grundkomponente des Anschlusses und des äquivalenten T-Stummelflansches gleich groß sind.

Anmerkung: Die wirksame Länge eines äquivalenten T-Stummels ist eine Ersatzlänge und stimmt nicht unbedingt mit der wirklichen Länge der Grundkomponente des Anschlusses überein.

(5) Der Bemessungswert der Zugtragfähigkeit eines T-Stummelflansches ist in der Regel nach Tabelle 6.2 zu bestimmen.

Anmerkung: In den Werten der Zugtragfähigkeit in Tabelle 6.2 sind Abstützkräfte bereits enthalten.

(6) Wenn Abstützkräfte auftreten können, siehe Tabelle 6.2, ist die Zugtragfähigkeit $F_{\rm T,Rd}$ eines T-Stummelflansches als der kleinste der Werte für die drei möglichen Versagensarten Modus 1, Modus 2 und Modus 3 anzusetzen.

(7) Treten keine Abstützkräfte auf, siehe Tabelle 6.2, ist die Zugtragfähigkeit $F_{T,Rd}$ eines T-Stummelflansches als der kleinste der Werte für die beiden möglichen Versagensarten nach Tabelle 6.2 festzulegen.

Zu 6.2.3(4) und (5)

Schweißnähte müssen aufgrund des geringen Verformungsvermögens als nicht duktile Grundkomponenten eingestuft werden und sollten grundsätzlich so ausgelegt sein, dass sie selbst bei Überfestigkeit im Grundmaterial nicht bemessungsmaßgebend werden. Insbesondere wenn eine ausreichende Rotationskapazität bei der Ausnutzung plastischer Systemreserven gefordert wird und ein plastisches Gelenk im Anschluss entstehen kann, muss sichergestellt werden, dass Grundkomponenten mit einem ausreichenden Verformungsvermögen (z. B. Stirnplatte auf Biegung) maßgebend werden. In (5) wird daher über den α -Wert eine Auslegung der Schweißnähte für die 1,4 bis 1,7-fache Anschlusstragfähigkeit gefordert. Bei der plastischen Biegetragfähigkeit der angeschlossenen Bauteile darf nach (5) ohne Materialüberfestigkeiten gerechnet werden. Hier empfiehlt es sich aber gerade bei Anschlüssen mit S235 aus den oben aufgeführten Gründen mindestens eine Überfestigkeit von 20 % zu berücksichtigen.

Zu 6.2.4

Im nachfolgenden Abschnitt sind die Grundgleichungen für das Modell des äquivalenten T-Stummels zusammengestellt, mit dem in der Komponentenmethode die Beanspruchbarkeiten der biegebeanspruchten Grundkomponenten nach 6.2.4.1(1) bestimmt werden. Bild K7 illustriert das Prinzip des T-Stummels anhand der Grundkomponente Stützenflansch auf Biegung:

Die Parameter m und e ergeben sich aus der Geometrie des Stützenprofils, wobei die Ausführung des Stützenprofils (geschweißt oder gewalzt) nach Bild 6.2 zu berücksichtigen ist. Die Beanspruchbarkeit des T-Stummels hängt von dem maßgebenden Versagensmodus ab. Die drei möglichen Versagensmodi sind (Bild K8):

Modus 3:

Schraubenversagen, in der Regel bei dicken Stützenflanschen/ Stirnplatten. Die Beanspruchbarkeit des T-Stummels wird ausschließlich von der Zugtragfähigkeit der Schrauben bestimmt.

Bild K7. Äquivalenter T-Stummel

Modus 1:

Vollständiges Fließen der Flansche, es stellen sich vier plastische Gelenke ein. In der Regel bei dünnen Stützenflanschen/Stirnplatten maßgebend. Die Zugkräfte in den Schrauben sind geringer als die Zugtragfähigkeit $F_{\rm t,Rd}$; die Beanspruchbarkeit des T-Stummels wird von der Momententragfähigkeit des Stützenflansches/der Stirnplatte bestimmt, wobei aus den möglichen Fließlinienmustern die maßgebende Länge des T-Stummels $\ell_{\rm eff}$ abgeleitet wird.

Modus 2:

Kombiniertes Versagen aus dem Fließen der Flansche (zwei Fließgelenke) und dem Versagen der Schrauben. In der Regel bei Stützenflanschen/Stirnplatten mittlerer Dicke. Die Beanspruchbarkeit des T-Stummels wird von der Schraubentragfähigkeit und der Momententragfähigkeit des Stützenflansches/der Stirnplatte unter Berücksichtigung des maßgebenden Fließlinienmusters bestimmt.

Bei den Versagensmodi 1 und 2 können Abstützkräfte auftreten, die die Beanspruchungen in den Schrauben vergrößern. Diese Abstützkräfte sind implizit in den in Tabelle 6.2 aufgeführten Gleichungen berücksichtigt. Die Ermittlung der Fließlinienlängen ist für die biegebeanspruchten Komponenten, die über das T-Stummel-Modell beschrieben werden, in den Abschnitten 6.2.6.4 und 6.2.6.5 geregelt.

Bild K8. Versagensarten des T-Stummels mit zwei Schrauben in einer Reihe

In [K1] ist das T-Stummel-Modell auf Konfigurationen mit vier Schrauben in einer Reihe erweitert und experimentell verifiziert worden. Bild K9 zeigt die verschiedenen Versagensmodi für das erweiterte T-Stummel-Modell.

Im Versagensmodus 2 ohne Abstützkräfte und Versagensmodus 3 wird in dem erweiterten Modell wie auch schon in [K27] eine Beschränkung der Zugkräfte in den äußeren Schrauben auf 80 % von $F_{\rm t,Rd}$ vorgenommen. Die Gleichungen für die Ermittlung der Beanspruchbarkeiten und auch die möglichen Fließlinienmuster zur Bestimmung der effektiven Länge des äquivalenten T-Stummels können [K1] entnommen werden.

- 1

Modus 2 - ohne Abstützkräfte

Bild K9. Versagensarten des T-Stummels mit vier Schrauben in einer Reihe

6.2.4.2 Einzelne Schraubenreihen, Schraubengruppen und Gruppen von Schraubenreihen

(1) Obwohl bei Verwendung eines äquivalenten T-Stummels zur Berechnung der Grundkomponente eines Anschlusses nach 6.2.4.1(1) die Kräfte in jeder Schraubenreihe des T-Stummelflansches allgemein gleich groß sind, ist zu berücksichtigen, dass unterschiedliche Kräfte in den verschiedenen Schraubenreihen auftreten können.

(2) Bei der Berechnung einer Gruppe von Schraubenreihen mit äquivalenten T-Stummeln kann es notwendig sein, die Gruppe in einzelne Schraubenreihen aufzuteilen, und diese jeweils durch einen eigenen äquivalenten T-Stummel zu modellieren.

(3) Bei der Modellierung einer Gruppe von Schraubenreihen mit äquivalenten T-Stummeln, sollten die folgenden Bedingungen eingehalten werden:

 a) die Kraft auf jede Schraubenreihe, gerechnet mit Betrachtung nur dieser einzelnen Schraubenreihe, sollte die Tragfähigkeit dieser Reihe nicht überschreiten; b) die Gesamtkraft auf jede Gruppe von Schraubenreihen, die jeweils zwei oder mehrere benachbarte Schraubenreihen innerhalb derselben Schraubengruppe umfasst, sollte die Tragfähigkeit dieser Gruppe von Schraubenreihen nicht überschreiten.

(4) Bei der Ermittlung der Zugtragfähigkeit einer Grundkomponente mit dem Modell des äquivalenten T-Stummelflansches sollten die folgenden Parameter berechnet werden:

a) die Tragfähigkeit einer einzelnen Schraubenreihe, indem nur diese Schraubenreihe betrachtet wird;

b) der Beitrag jeder einzelnen Schraubenreihe zu der Tragfähigkeit von zwei oder mehr benachbarten Schraubenreihen innerhalb einer Schraubengruppe, wenn nur diese Schraubenreihen betrachtet werden.

(5) Im Falle einer einzelnen Schraubenreihe sollte $\Sigma \ell_{\text{eff}}$ gleich der wirksamen Länge ℓ_{eff} gesetzt werden, die in 6.2.6 für diese einzelne Schraubenreihe tabelliert ist. (6) Im Falle einer Gruppe von Schraubenreihen sollte $\Sigma \ell_{\text{eff}}$ als Summe der wirksamen Längen ℓ_{eff} angesetzt werden, die in 6.2.6 für jede einzelne Schraubenreihe als Teil der Schraubengruppe tabelliert sind.

Zu Tabelle 6.2

In Tabelle 6.2 sind die Gleichungen zur Ermittlung der Beanspruchbarkeit des äquivalenten T-Stummels für alle drei Versagensmodi zusammengestellt. Die Gleichungen können sowohl bei nicht ausgesteiften und ausgesteiften Stützenflanschen sowie bei Stirnplatten verwendet werden. Der Einfluss von Steifen oder die Stirnplatte stützenden Flanschen wird über die wirksamen Längen $\ell_{\rm eff}$ erfasst, die nach den Tabellen 6.4 bis 6.6 zu bestimmen sind.

Bei den Versagensmodi 1 und 2 können in Abhängigkeit von den geometrischen Verhältnissen Abstützkräfte auftreten, die implizit in Tabelle 6.2 berücksichtigt sind. Die im Kopf von Tabelle 6.2 angegebene Grenzbedingung $L_b \leq L_b^*$ für das Auftreten von Abstützkräften wurde für biegebeanspruchte Stützenfußplatten hergeleitet und soll nach einem im ECCS-TC10 eingebrachten Vorschlag zukünftig in Absatz 6.2.6.12 der DIN EN 1993-1-8 aufgenommen werden. Für Stütze-Riegel-Verbindungen kann nach einem im ECCS-TC10 eingebrachten Vorschlag folgende Gleichung verwendet werden:

$$t_{\rm f} < 1,5d \cdot \sqrt{rac{m \cdot f_{
m ub}}{\ell_{
m eff} \cdot f_{
m y}}}$$

Für den Versagensmodus 1 bietet die DIN EN 1993-1-8 zur Bestimmung der Beanspruchbarkeit des Stützenflansches auf Biegung zwei verschiedenen Verfahren an. In beiden Verfahren wird unterstellt, dass sich die inneren Fließlinien im Übergang des Flansches zum Walzradius einstellen. Bei der Lage der äu-Beren Fließlinien werden in beiden Verfahren unterschiedliche Ansätze gewählt: In Verfahren 1 wird vereinfachend und auf der sicheren Seite liegend angenommen, dass sich die äußeren Fließlinien in Achse der Schrauben bilden. Dabei wird vernachlässigt, dass die Fließlinien im Bereich der Schrauben eine Einschnürung erfahren, die von den geometrischen Abmessungen des Schraubenkopfes, der Steifigkeit der Schraube und dem Vorspanngrad abhängt. Diese, die Beanspruchbarkeit vergrößernden Einflüsse, werden näherungsweise im Verfahren 2 berücksichtigt.

Auch durch die Anordnung von Futterplatten lässt sich die Beanspruchbarkeit des Stützenflansches im Modus 1 erhöhen. Die Biegetragfähigkeit wird unter Berücksichtigung der plastischen Momententragfähigkeit der Futterplatten $M_{\rm bp.Rd}$ ermittelt, wobei die Lage der äußeren Fließlinien entweder in Achse der Schrauben (Verfahren 1) oder nach innen in Richtung des Stegbleches versetzt (Verfahren 2) angenommen wird. Die Futterplatten müssen dabei den geometrischen Anforderungen nach Abschnitt 6.2.4.3 und Bild 6.3 entsprechen. Ist der Versagensmodus 2 maßgebend, dass heißt ein kombiniertes Versagen der Schrauben mit Bildung von Fließgelenken im Übergang vom Flansch zum Walzradius, dann haben weder die Schraubenköpfe noch die Futterplatte einen positiven Einfluss auf die Beanspruchbarkeit des Stützenflansches und die Beanspruchbarkeit bestimmt sich ausschließlich über die plastische Momententragfähigkeit des Stützenflansches $M_{
m pl,2,Rd}$ und die Zugtragfähigkeit $F_{t,Rd}$ der Schrauben.

Wird z. B. in einem Träger-Stützenanschluss eine Stirnplatte mit einer geringeren Breite als die des Stützenflansches verbaut, ist dies bei der Festlegung der geometrischen Abmessungen des äquivalenten T-Stummels entsprechend Bild 6.2 zu berücksichtigen. Auch die Lage der inneren Fließlinien hängt von der Ausführung des Stützenprofils (gewalzt / geschweißt) ab und kann Bild 6.2 entnommen werden.

	Abstützkräfte kö	Abstützkräfte können auftreten, d. h. $L_b \leq L_b^*$					
Modus 1	Verfahren 1	Verfahren 2 (alternatives Verfahren)					
ohne Futterplatten	$F_{\rm T,1,Rd} = \frac{4M_{\rm pl,1,Rd}}{m}$	$F_{\rm T,1,Rd} = \frac{(8n - 2e_{\rm w})M_{\rm pl,1,Rd}}{2mn - e_{\rm w}(m+n)}$					
mit Futterplatten	$F_{\rm T,1,Rd} = \frac{4M_{\rm pl,1,Rd} + 2M_{\rm bp,Rd}}{m}$	$F_{\rm T,1,Rd} = \frac{(8n - 2e_{\rm w})M_{\rm pl,1,Rd} + 4nM_{\rm bp,Rd}}{2mn - e_{\rm w}(m+n)}$	$F_{\mathrm{T},1-2,\mathrm{Rd}} = \frac{2M_{\mathrm{pl},1,\mathrm{Rd}}}{m}$				
Modus 2	F _{T,2,Rd} =	$=\frac{2M_{\rm pl,2,Rd}+n\Sigma F_{\rm t,Rd}}{m+n}$					
Modus 3		$F_{T,3,Rd} = \Sigma F_{t,Rd}$					
Modus 1: Vol	llständiges Fließen des Flansches						
Modus 2: Sch	hraubenversagen gleichzeitig mit Fli	eßen des Flansches					
Modus 3: Sch	nraubenversagen						
L _b — Del Un'	hnlänge der Schraube, angesetzt m terlegscheiben), plus der halben Ko	it der gesamten Klemmlänge (Gesamtdicke des pfhöhe und der halben Mutternhöhe oder	Blechpakets und der				
— Del Dic	hnlänge der Ankerschraube, angese sken der Mörtelschicht, der Fußplatte	etzt mit der Summe aus dem 8fachen Schraube e, der Unterlegscheiben und der halben Muttern	ndurchmesser, den ıhöhe				
$L_{b}^{\star} = -\frac{8}{2}$	$\frac{3.8 m^3 A_{\rm s} n_{\rm b}}{\Sigma l_{\rm eff,1} t_{\rm f}^3}$						
F _{T,Rd} Ber	messungswert der Zugtragfähigkeit	eines T-Stummelflansches					
Q Ab:	stützkraft						
$M_{\mathrm{p\ell},\mathrm{1,Rd}} = 0$),25 $\Sigma \ell_{\rm eff,1} t_{\rm f}^2 f_{\rm y} / \gamma_{\rm M0}$						
$M_{\mathrm{p}\ell,2,\mathrm{Rd}} = 0$),25 $\Sigma \ell_{\rm eff,2} t_{\rm f}^2 f_{\rm y} / \gamma_{\rm M0}$						
$M_{\rm bp,Rd} = 0$),25 $\Sigma \ell_{\rm eff,1} t_{\rm bp}^2 f_{\rm y,bp} / \gamma_{\rm M0}$						
n = e	p_{\min} jedoch $n \le 1,25m$						
n _b An:	zahl der Schraubenreihen (mit 2 Sch	hrauben je Reihe)					
F _{t,Rd} Be	messungswert der Zugtragfähigkeit	der Schraube, siehe Tabelle 3.4;					
ΣF _{t,Rd} Su	mme aller F _{t,Rd} der Schrauben in de	əm T-Stummel;					
$\Sigma \ell_{eff,1}$ We	ərt für $\Sigma \ell_{eff}$ für Modus 1;	F _{T.}	Rd				
$\Sigma \ell_{eff,2}$ We	ərt für $\Sigma \ell_{eff}$ für Modus 2;	0.5 F+ Q	0.5 F + Q				
e_{\min} , <i>m</i> und t_{f}	_f siehe Bild 6.2.		T,Rd				
f _{y,bp} Str	eckgrenze der Futterplatten;						
t _{bp} Dic	cke der Futterplatten;						
$e_{\rm W} = d$	ł _w /4;	Q d _w	d _w Q				
d _w Du Sc	rchmesser der Unterlegscheibe ode hraubenkopfes oder der Mutter, je n	er Eckmaß des and an art and a state and					

Tabelle 6.2. Tragfähigkeit $F_{T,Rd}$ eines T-Stummelflansches bei Zugbeanspruchung

1

Anmerkung 1: Bei geschraubten Träger-Stützenanschlüssen oder Trägerstößen kann damit gerechnet werden, dass Abstützkräfte auftreten.

Anmerkung 2 : Bei Verfahren 2 wird angenommen, dass die auf den T-Stummelflansch einwirkende Schraubenkraft gleichmäßig unter der Unterlegscheibe, dem Schraubenkopf oder der Mutter verteilt ist, siehe Skizze, und es nicht zu einer Kraftkonzentration an der Schraubenachse kommt. Diese Annahme führt zu einem höheren Wert der Tragfähigkeit für Modus 1, während die Werte für $F_{T,1-2,Rd}$ und für Modus 2 und Modus 3 unverändert bleiben.

6.2.4.3 Verstärkungsbleche

(1) Stützenflansche mit Biegung können mit Hilfe lastverteilender Bleche nach Bild 6.3 verstärkt werden.

(2) Die Breite von Verstärkungsblechen entspricht in der Regel mindestens dem Abstand zwischen dem Rand des Stützenflansches und dem Beginn der Eckausrundung oder der Naht abzüglich 3 mm.

(3) Die Länge des Verstärkungsblechs sollte über die äußerste Schraubenreihe hinausgehen, die an der Zugübertragung beteiligt ist, siehe Bild 6.3.

(4) Wenn Verstärkungsbleche verwendet werden, ist die Zugtragfähigkeit $F_{\rm T,Rd}$ des T-Stummels in der Regel mit den Verfahren in Tabelle 6.2 zu ermitteln.

6.2.5 Äquivalenter T-Stummel mit Druckbeanspruchung

(1) Bei Anschlüssen von Stahl mit Beton kann der äquivalente T-Stummelflansch mit Druckbeanspruchung verwendet werden, um die Tragfähigkeit für die Kombination folgender Grundkomponenten zu bestimmen:

- Fußplatte mit Biegung aufgrund der Lagerpressung;

Beton und/oder Mörtelfüllung unter der Lagerpressung.

(2) Die gesamte wirksame Länge $\ell_{\rm eff}$ und die gesamte wirksame Breite $b_{\rm eff}$ des äquivalenten T-Stummels sind so anzusetzen, dass die Tragfähigkeiten der Grundkomponente des Anschlusses und des äquivalenten T-Stummels gleich groß sind.

Anmerkung: Die Werte für die wirksame Länge und die wirksame Breite eines äquivalenten T-Stummels sind Ersatzwerte für diese Längen und können von den wirklichen Abmessungen der Grundkomponenten des Anschlusses abweichen.

(3) Die Tragfähigkeit eines T-Stummelflansches $F_{C,Rd}$ auf Druck wird wie folgt bestimmt:

$$F_{\rm C,Rd} = f_{\rm jd} \ b_{\rm eff} \ \ell_{\rm eff} \tag{6.4}$$

Dabei ist

- $b_{\rm eff}$ die wirksame Breite des T-Stummelflansches, siehe 6.2.5(5) und 6.2.5(6);
- $\ell_{\rm eff}$ die wirksame Länge des T-Stummelflansches, siehe 6.2.5(5) und 6.2.5(6);
- f_{jd} der Bemessungswert der Beton- oder Mörtelfestigkeit unter Lagerpressung, siehe 6.2.5(7).

(4) Für die Spannungsverteilung unter dem T-Stummel darf eine gleichmäßige Verteilung nach Bild 6.4(a) und Bild 6.4(b) angenommen werden. Die Druckspannung auf der Auflagerfläche darf den Bemessungswert der Beton- oder Mörtelfestigkeit f_{jd} unter Lagerpressung nicht überschreiten, wenn die zusätzliche Ausbreitungsbreite *c* folgenden maximalen Wert annimmt:

$$c = t \left[f_{\rm v} / (3f_{\rm id} \,\gamma_{\rm M0}) \right]^{0.5} \tag{6.5}$$

Dabei ist

t die Dicke des T-Stummelflansches;

 $f_{\rm v}$ die Streckgrenze des T-Stummelflansches.

(5) Ist die wirkliche Abmessung der Grundkomponente des Anschlusses (der Fußplatte), welche durch den T-Stummel abgebildet wird, kleiner als die Ausbreitungsbreite c, so ist die wirksame Fläche nach Bild 6.4(a) anzusetzen.

(6) Ist die wirkliche Abmessung der Grundkomponente des Anschlusses (der Fußplatte), welche durch den T-Stummel abgebildet wird, größer als Ausbreitungsbreite c, so ist der den Wert c übersteigende Anteil zu vernachlässigen, siehe Bild 6.4(b).

(7) Der Bemessungswert der Beton- oder Mörtelfestigkeit f_{jd} unter Lagerpressung wird in der Regel wie folgt bestimmt:

$$f_{\rm jd} = \beta_{\rm j} F_{\rm Rdu} / (b_{\rm eff} \,\ell_{\rm eff}) \tag{6.6}$$

Dabei ist

 β_j der Anschlussbeiwert. Dieser kann mit 2/3 angesetzt werden, wenn die charakteristische Festigkeit des Mörtels nicht kleiner als das 0,2fache der charakteristischen Festigkeit des Fundamentbetons ist und die Dicke des Mörtels nicht größer

Bild 6.3. Stützenflansch mit Verstärkungsblechen

Bild 6.4. Fläche des äquivalenten T-Stummels mit Druckbeanspruchung

als das 0,2fache der kleinsten Abmessung der Stahlfußplatte ist. Wenn die Dicke des Mörtels größer als 50 mm ist, sollte die charakteristische Festigkeit des Mörtels mindestens so hoch sein wie die des Fundamentbetons.

 F_{Rdu} die Tragfähigkeit unter konzentrierten Lasten nach EN 1992, wobei $A_{\text{c0}} = b_{\text{eff}} \ell_{\text{eff}}$ angesetzt wird.

6.2.6 Tragfähigkeit der Grundkomponenten

6.2.6.1 Stützensteg mit Schubbeanspruchung

(1) Die Anwendbarkeit der Bemessungsverfahren in 6.2.6.1(2) bis 6.2.6.1(14) ist auf Schlankheiten des Stützenstegs $d_c/t_w \leq 69\varepsilon$ begrenzt.

(2) Bei einem einseitigen Anschluss oder bei einem beidseitigen Anschluss mit ähnlich hohen Trägern ist die plastische Schubtragfähigkeit $V_{wp,Rd}$ des nicht ausgesteiften Stützenstegfeldes, das durch den Bemessungswert der einwirkenden Schubkraft $V_{wp,Ed}$ belastet wird, siehe 5.3(3), wie folgt zu ermitteln:

$$V_{\rm wp,Rd} = \frac{0.9 f_{\rm y,wc} A_{\rm vc}}{\sqrt{3} \gamma_{\rm M0}}$$
(6.7)

Dabei ist

 $A_{\rm vc}$ die Schubfläche der Stütze, siehe EN 1993-1-1.

(3) Die Schubtragfähigkeit kann durch Stegsteifen oder zusätzliche Stegbleche erhöht werden.

(4) Werden zusätzliche Stegsteifen in der Druck- und Zugzone der Stütze eingesetzt, kann die plastische Schubtragfähigkeit des Stützenstegfeldes $V_{wp,Rd}$ um den Wert $V_{wp,add,Rd}$ vergrößert werden. Es gilt:

$$V_{\rm wp,add,Rd} = \frac{4M_{\rm p\ell,fc,Rd}}{d_{\rm s}}$$

jedoch

$$V_{\rm wp,add,Rd} \le \frac{2M_{\rm p\ell,fc,Rd} + 2M_{\rm p\ell,st,Rd}}{d_{\rm s}} \tag{6.8}$$

Dabei ist

$$d_{s}$$
 der Achsabstand zwischen den Stegsteifen;
 $M_{p\ell,fc,Rd}$ die plastische Biegetragfähigkeit eines
Stützenflansches;
 $M_{p\ell,st,Rd}$ die plastische Biegetragfähigkeit einer

 $M_{p\ell,st,Rd}$ die plastische Biegetragfanigkeit einer Stegsteife.

Anmerkung: Bei geschweißten Anschlüssen sollten die Stegsteifen der Stütze in den Achsen der Trägerflansche liegen.

(5) Werden diagonale Stegsteifen eingesetzt, sollte die plastische Schubtragfähigkeit des Stützenstegfeldes nach EN 1993-1-1 bestimmt werden.

Anmerkung: Dabei wird bei zweiseitigen Träger-Stützenanschlüssen angenommen, dass beide Träger etwa die gleiche Trägerhöhe haben.

(6) Wird ein Stützensteg durch ein zusätzliches Stegblech verstärkt, siehe Bild 6.5, so kann die Schubfläche A_{vc} um $b_s t_{wc}$ vergrößert werden. Wird ein weiteres zusätzliches Stegblech auf der anderen Stegseite angebracht, sollte keine weitere Vergrößerung der Schubfläche angesetzt werden.

(7) Zusätzliche Stegbleche können auch zur Vergrößerung der Rotationssteifigkeit eines Anschlusses eingesetzt werden, die durch Vergrößerung der Steifigkeit des Stützenstegs für Schub-, Druck- oder Zugbeanspruchung bewirkt wird, siehe 6.3.2(1).

(8) Zusätzliche Stegbleche sollten die gleiche Stahlgüte haben wie die Stütze.

(9) Die Breite b_s sollte mindestens so groß sein, dass die Schweißnähte um das zusätzliche Stegblech an die Eckausrundung heranreichen.

(10) Die Länge ℓ_s sollte so groß sein, dass sich das zusätzliche Stegblech über die effektive Breite des Ste-

a) Anordnung b) Beispiele für Querschnitte mit Längsnähten

Anmerkung: Auf die Schweißbarkeit in den Ecken ist zu achten.

Bild 6.5. Beispiele für Verstärkungen mit zusätzlichen Stegblechen

ges unter der Querzugbeanspruchung und der Querdruckbeanspruchung hinaus erstreckt, siehe Bild 6.5. (11) Die Dicke t_s des zusätzlichen Stegbleches sollte mindestens der Stützenstegdicke t_{wc} entsprechen.

(12) Die Schweißnähte zwischen dem zusätzlichen Stegblech und dem Profil sind für die Bemessungswerte der Kräfte zu bemessen.

(13) Die Breite b_s eines zusätzlichen Stegbleches sollte kleiner als 40 ε t_s sein.

(14) In nicht-korrosiver Umgebung können auch unterbrochene Schweißnähte eingesetzt werden.

6.2.6.2 Stützensteg mit Beanspruchung durch Querdruck

(1) Für die Tragfähigkeit eines nicht ausgesteiften Stützenstegs, der durch Querdruck beansprucht wird, gilt:

$$F_{c,wc,Rd} = \frac{\omega k_{wc} b_{eff,c,wc} t_{wc} f_{y,wc}}{\gamma_{M0}}$$
jedoch

$$F_{\rm c,wc,Rd} \le \frac{\omega k_{\rm wc} \,\rho \, b_{\rm eff,c,wc} \, t_{\rm wc} f_{\rm y,wc}}{\gamma_{\rm M1}} \tag{6.9}$$

Dabei ist

- ω der Abminderungsbeiwert, der mögliche Interaktionseffekte mit der Schubbeanspruchung im Stützenstegfeld nach Tabelle 6.3 berücksichtigt;
- $b_{\rm eff,c,wc}$ die wirksame Breite des Stützenstegs für Querdruck:

f
ür einen geschwei
ßten Anschluss:

$$b_{\rm eff,c,wc} = t_{\rm fb} + 2\sqrt{2} a_{\rm b} + 5(t_{\rm fc} + s)$$
 (6.10)

Dabei sind

- $a_{\rm c}$, $r_{\rm c}$ und $a_{\rm b}$ wie in Bild 6.6 angegeben.
- für eine geschraubte Stirnblechverbindung:

$$b_{\rm eff,c,wc} = t_{\rm fb} + 2\sqrt{2} a_{\rm p} + 5(t_{\rm fc} + s) + s_{\rm p}$$
 (6.11)

Dabei ist

- s_p die Länge, die mit der Annahme einer Ausbreitung von 45° durch das Stirnblech (mindestens t_p und bis zu $2t_p$, wenn der Überstand des Stirnblechs über den Flansch hinaus ausreichend groß ist) ermittelt wird.
- f
 ür eine geschraubte Verbindung mit Flanschwinkeln:

$$b_{\rm eff,c,wc} = 2t_{\rm a} + 0.6 \, r_{\rm a} + 5(t_{\rm fc} + s) \tag{6.12}$$

Tabelle 6.3.	Abminderungsbeiwert	ω	für	die	Interaktion	mit	Schubbeans	pruchung

Übertragungsparameter β	Abminderungsbeiwert ω
$0 \le \beta \le 0.5$	$\omega = 1$
0.5 < eta < 1	$ω = ω_1 + 2 (1 - β) (1 - ω_1)$
$\beta = 1$	$\omega = \omega_1$
$1 < \beta < 2$	$\omega = \omega_1 + (\beta - 1) (\omega_2 - \omega_1)$
$\beta = 2$	$\omega = \omega_2$
$\omega_{1} = \frac{1}{\sqrt{1 + 1.3 \left(b_{\text{eff,c,wc}} t_{\text{wc}} / A_{\text{vc}} \right)^{2}}}$	$\omega_2 = \frac{1}{\sqrt{1 + 5.2 \left(b_{\text{eff,c,wc}} t_{\text{wc}} / A_{\text{vc}} \right)^2}}$
A_{vc} Schubfläche der Stütze, siehe 6.2.6.1; β Übertragungsparameter, siehe 5.3(7).	

c) geschweißtes Stützenprofil

Dabei ist

- bei einer Stütze mit gewalztem I- oder H-Querschnitt: $s = r_c$
- bei einer Stütze mit geschweißtem I- oder H-Querschnitt: $s = \sqrt{2}a_c$
- *ρ* Abminderungsbeiwert für Plattenbeulen:

$$- \text{ für } \lambda_p \le 0.72$$
: $\rho = 1.0$ (6.13a)

- für
$$\bar{\lambda}_{\rm p} > 0,72$$
: $\rho = (\bar{\lambda}_{\rm p} - 0,2)/\bar{\lambda}_{\rm p}^2$ (6.13b)

Dabei ist

$$\bar{\lambda}_{\rm p} = 0.932 \sqrt{\frac{b_{\rm eff,c,wc} \, d_{\rm wc} f_{\rm y,wc}}{E t_{\rm wc}^2}}$$

(Plattenschlankheitsgrad) (6.13c)

mit folgenden Werten für $d_{\rm wc}$

- bei einer Stütze mit gewalztem I- oder H-Querschnitt: $d_{wc} = h_c - 2(t_{fc} + r_c)$
- bei einer Stütze mit geschweißtem I- oder H-Querschnitt: $d_{wc} = h_c - 2(t_{fc} + \sqrt{2} a_c)$
- $k_{\rm wc}$ Abminderungsbeiwert nach 6.2.6.2(2).

(2) Überschreitet die maximale Längsdruckspannung $\sigma_{\rm com,Ed}$ im Steg (am Ende des Ausrundungsradius bei einem gewalzten Profil oder am Schweißnahtübergang bei einem geschweißten Profil) infolge Druckkraft und Biegemoment in der Stütze den Wert 0,7 $f_{y,wc}$, so ist deren Auswirkung auf die Tragfähigkeit zu berücksichtigen, indem der Wert für $F_{c,wc,Rd}$ nach Gleichung (6.9) mit dem folgenden Beiwert k_{wc} abgemindert wird:

Bild 6.6. Querdruck bei einer nichtausgesteiften Stütze

- falls $\sigma_{\text{com,Ed}} \leq 0.7 f_{\text{y,wc}}$: $k_{\text{wc}} = 1$

- falls
$$\sigma_{\rm com,Ed} > 0.7 f_{\rm y,wc}$$
:
 $k_{\rm wc} = 1.7 - \sigma_{\rm com,Ed}/f_{\rm y,wc}$

Anmerkung: Im Allgemeinen beträgt der Abminderungsbeiwert $k_{wc} = 1,0$ und keine Reduzierung ist notwendig. Daher kann die Abminderung in Vorberechnungen vernachlässigt werden, bei denen noch keine Längsspannungen bekannt sind.

(3) Das knickstabähnliche Beulen eines nicht ausgesteiften Stützenstegs infolge Querdruck, siehe Bild 6.7, sollte konstruktiv verhindert werden.

(4) Die Tragfähigkeit des Stützensteges für Querdruck kann durch Stegsteifen oder zusätzliche Stegbleche vergrößert werden.

(5) Quersteifen oder geeignet angeordnete Diagonalsteifen können einzeln oder zusammen im Stützenstegfeld verwendet werden, um die Tragfähigkeit des Stützensteges für Querdruck zu vergrößern.

Anmerkung: Bei geschweißten Anschlüssen sollten die Quersteifen in der Achse der Trägerflansche liegen. Bei geschraubten Anschlüssen sollten die Steifen in der Achse der Druckkräfte (Druckpunkt) liegen. Der Druckpunkt ist in Bild 6.15 definiert.

(6) Wird ein nicht ausgesteifter Stützensteg durch ein zusätzliches Stegblech nach 6.2.6.1 verstärkt, so darf die effektive Dicke des Stegblechs mit 1,5 t_{wc} angesetzt werden. Wenn zusätzliche Stegbleche beidseitig am Steg angebracht werden, darf die effektive Dicke mit

Bild 6.7. Knickstabähnliches Beulen eines nichtausgesteiften Stützensteges

2,0 $t_{\rm wc}$ angesetzt werden. Bei der Berechnung des Abminderungsbeiwerts ω zur Berücksichtigung der Interaktion mit der Schubbeanspruchung darf die Schubfläche $A_{\rm vc}$ des Stegs nur auf den Wert angehoben werden, der auch bei der Erhöhung der Schubtragfähigkeit zulässig ist, siehe 6.2.6.1(6).

6.2.6.3 Stützensteg mit Beanspruchung durch Querzug

(1) Die Tragfähigkeit eines nicht ausgesteiften Stützenstegs für Beanspruchung durch Querzug wird in der Regel wie folgt bestimmt:

$$F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,wc}}{\gamma_{M0}}$$
(6.15)

Dabei ist

 ω der Abminderungsbeiwert zur Berücksichtigung der Interaktion mit der Schubbeanspruchung im Stützenstegfeld.

(2) Bei einer geschweißten Verbindung wird in der Regel die wirksame Breite $b_{\text{eff.t,wc}}$ der Komponente Stützensteg mit Querzug wie folgt ermittelt:

$$b_{\rm eff,t,wc} = t_{\rm fb} + 2\sqrt{2}\,a_{\rm b} + 5(t_{\rm fc} + s) \tag{6.16}$$

Dabei ist

- bei einer Stütze mit gewalztem I- oder
- H-Querschnitt: $s = r_c$
- bei einer Stütze mit geschweißtem I- oder H-Querschnitt: $s = \sqrt{2} a_c$

 $a_{\rm c}$ und $r_{\rm c}$ wie in Bild 6.8 und $a_{\rm b}$ wie in Bild 6.6 angegeben.

(3) Bei einer geschraubten Verbindung wird in der Regel die wirksame Breite $b_{\rm eff,t,wc}$ der Komponente Stützensteg mit Querzug mit der wirksamen Länge des äquivalenten T-Stummels für den Stützenflansch gleichgesetzt, siehe 6.2.6.4.

(4) Der Abminderungsbeiwert ω zur Berücksichtigung der Interaktion mit der Schubbeanspruchung im

Stützenstegfeld ist in der Regel nach Tabelle 6.3 mit dem Wert $b_{\rm eff,t,wc}$ nach 6.2.6.3(2) oder 6.2.6.3(3) zu ermitteln.

(5) Die Tragfähigkeit des Stützensteges für Querzug kann durch Stegsteifen oder zusätzliche Stegbleche vergrößert werden.

(6) Die Stegsteifen können als Quersteifen und/oder entsprechend angeordnete Diagonalsteifen ausgebildet

werden, um die Tragfähigkeit des Stützensteges für Querzug zu vergrößern.

Anmerkung: Bei geschweißten Anschlüssen liegen üblicherweise die Quersteifen in der Achse der Trägerflansche.

(7) Schweißnähte zwischen Diagonalsteifen und Stützenflansch sollten als voll durchgeschweißte Nähte mit Kapplage ausgeführt werden, damit die Schweißnahtdicke gleich der Steifendicke ist.

(8) Wird ein nicht ausgesteifter Stützensteg durch zusätzliche Stegbleche entsprechend 6.2.6.1 verstärkt, so hängt die Tragfähigkeit für Querzug von der Dicke der Längsnähte entlang der zusätzlichen Stegbleche ab. Die wirksame Dicke des Stegs $t_{w,eff}$ wird in der Regel wie folgt bestimmt:

- sind die Längsnähte durchgeschweißte Stumpfnähte der Nahtdicke $a \ge t_s$ gilt:
 - bei einseitigem zusätzlichem Stegblech:

$$t_{\rm w,eff} = 1.5 t_{\rm wc}$$
 (6.17)

- bei beidseitigen zusätzlichen Stegblechen:

$$t_{\rm w,eff} = 2.0 \ t_{\rm wc}$$
 (6.18)

- sind die Längsnähte Kehlnähte der Nahtdicke a $\ge t_s/\sqrt{2}$ gilt sowohl für einseitige als auch für beidseitige zusätzliche Stegbleche:

$$t_{\rm w,eff} = 1,4 t_{\rm wc}$$
 (6.19a)

– für die Stahlgüten S 420 oder S 460:

$$t_{\rm w,eff} = 1,3 t_{\rm wc}$$
 (6.19b)

(9) Bei der Berechnung des Abminderungsbeiwerts ω zur Berücksichtigung der Interaktion mit der Schubbeanspruchung darf die Schubfläche A_{vc} des durch zusätzliche Stegbleche verstärkten Stegs nur auf den Wert angehoben werden, der auch bei der Erhöhung der Schubtragfähigkeit zulässig ist, siehe 6.2.6.1(6).

6.2.6.4 Stützenflansch mit Biegebeanspruchung

6.2.6.4.1 Nicht ausgesteifter Stützenflansch und geschraubte Verbindung

(1) Die Tragfähigkeit und die Versagensform eines nicht ausgesteiften Stützenflansches, der in Verbindung mit Schrauben mit Zugbeanspruchung auf Biegung beansprucht wird, sind in der Regel mit Hilfe des äquivalenten T-Stummelflansches für folgende Fälle zu ermitteln, siehe 6.2.4:

- jede Gruppe von Schraubenreihen ist f
 ür die Übertragung der Zugkr
 äfte erforderlich.

(2) Die Maße e_{\min} und *m* für die Ermittlung nach 6.2.4 sind Bild 6.8 zu entnehmen.

(3) Die wirksame Länge des äquivalenten T-Stummelflansches sollte für die einzelnen Schraubenreihen und die Schraubengruppe nach 6.2.4.2 mit den Werten ermittelt werden, die in Tabelle 6.4 für die einzelnen Schraubenreihen angegeben sind.

6.2.6.4.2 Ausgesteifter Stützenflansch und Anschluss mit geschraubtem Stirnblech oder Flanschwinkeln

(1) Mit Quersteifen und/oder entsprechend angeordneten Diagonalsteifen kann die Biegetragfähigkeit des Stützenflansches vergrößert werden.

(2) Die Tragfähigkeit und die Versagensform eines ausgesteiften Stützenflansches, der in Verbindung mit Schrauben mit Zugbeanspruchung auf Biegung beansprucht wird, sind mit Hilfe des äquivalenten T-Stummelflansches für folgende Fälle zu ermitteln, siehe 6.2.4:

- jede Gruppe von Schraubenreihen ist f
 ür die Übertragung der Zugkr
 äfte erforderlich.

(3) Treten Gruppen von Schraubenreihen auf beiden Seiten einer Steife auf, sind diese getrennt mit T-Stummelflanschen zu untersuchen, siehe Bild 6.9. Die Tragfähigkeit und Versagensform sind dann für jeden äquivalenten T-Stummel zu bestimmen.

(4) Die Maße e_{\min} und *m* für die Ermittlung nach 6.2.4 sind Bild 6.8 zu entnehmen.

(5) Die wirksamen Längen ℓ_{eff} der äquivalenten T-Stummelflansche sind in der Regel nach 6.2.4.2 mit den Werten zu ermitteln, die in Tabelle 6.5 für die einzelnen Schraubenreihen angegeben sind. Der α -Wert in Tabelle 6.5 ist nach Bild 6.11 zu ermitteln. (6) Für die Steifen gelten die Anforderungen nach 6.2.6.1.

6.2.6.4.3 Nicht ausgesteifter Stützenflansch und geschweißte Verbindung

(1) Bei einem geschweißten Anschluss ist in der Regel die Tragfähigkeit $F_{fc,Rd}$ eines nicht ausgesteiften Stützenflansches, der infolge Querzug- oder Querdruckbeanspruchung aus dem Trägerflansch auf Biegung belastet wird, wie folgt zu bestimmen:

$$F_{\rm fc,Rd} = b_{\rm eff,b,fc} t_{\rm fb} f_{\gamma,fb} / \gamma_{\rm M0} \tag{6.20}$$

Dabei ist

 $b_{\rm eff,b,fc}$ die wirksame Breite $b_{\rm eff}$, die in 4.10 für die Betrachtung des Trägerflansches als Platte definiert ist.

Anmerkung: Die Anforderungen in 4.10 sind ebenfalls zu beachten.

6.2.6.5 Stirnblech mit Biegebeanspruchung

(1) Die Tragfähigkeit und die Versagensform eines Stirnblechs, das in Verbindung mit Schrauben mit Zugbeanspruchung auf Biegung beansprucht wird, sind mit Hilfe des äquivalenten T-Stummelflansches für folgende Fälle zu ermitteln, siehe 6.2.4:

 jede einzelne Schraubenreihe ist f
ür die Übertragung der Zugkr
äfte erforderlich;

a) Geschweißtes Stirnblech schmaler als der Stützenflansch

b) Geschweißtes Stirnblech breiter als der Stützenflansch

c) Flanschwinkel

Bild 6.8. Maße für e, e_{min}, r_c und m

 jede Gruppe von Schraubenreihen ist f
ür die Übertragung der Zugkr
äfte erforderlich.

(2) Treten Gruppen von Schraubenreihen im Stirnblech auf beiden Seiten einer Steife auf, sind diese in der Regel getrennt mit äquivalenten T-Stummeln zu untersuchen. Dies gilt besonders bei Stirnblechen, bei denen die Schraubenreihe des überstehenden Teils gesondert als äquivalenter T-Stummel anzusetzen ist, siehe Bild 6.10. Die Tragfähigkeit und die Versagensform sind dann für jeden äquivalenten T-Stummel zu bestimmen. (3) Das Maß e_{\min} für den Teil des Stirnblechs zwischen den Trägerflanschen, siehe 6.2.4, ist Bild 6.8 zu entnehmen. Für den überstehenden Teil des Stirnblechs ist e_{\min} identisch mit e_x , siehe Bild 6.10.

(4) Die wirksame Länge ℓ_{eff} des äquivalenten T-Stummelflansches sollte nach 6.2.4.2 mit den Werten ermittelt werden, die in Tabelle 6.6 für die einzelnen Schraubenreihen angegeben sind.

Lage der	Schraubenreihe e	inzeln betrachtet	Schraubenreihe als Teil einer Gruppe von Schraubenreihen			
reihe Kreisförmiges reihe Muster		Nicht kreisförmiges Muster ℓ _{eff,nc}	Kreisförmiges Muster ℓ _{eff,cp}	Nicht kreisförmiges Muster ℓ _{eff,nc}		
Innere Schrauben- reihe	$2\pi m$ $4m + 1,25e$		2p	р		
Äußere Schrauben- reihe	der kleinere Wert von: $2\pi m$ $\pi m + 2e_1$	der kleinere Wert von: 4m + 1,25e $2m + 0,625e + e_1$	der kleinere Wert von: $\pi m + p$ $2e_1 + p$	der kleinere Wert von: 2m + 0.625e + 0.5p $e_1 + 0.5p$		
Modus 1:	$\ell_{\rm eff,1}$ = $\ell_{\rm eff,nc}$ jed	och $\ell_{eff,1} \leq \ell_{eff,cp}$	$\Sigma \ell_{\rm eff,1} = \Sigma \ell_{\rm eff,nc}$ jed	och $\Sigma \ell_{eff,1} \leq \Sigma \ell_{eff,cp}$		
Modus 2:	$\ell_{\rm eff,2} = \ell_{\rm eff,nc}$		$\Sigma \ell_{\rm eff,2} = \Sigma \ell_{\rm eff,nc}$			
e ₁ ist der Abstar gemessen in der	e 1 ist der Abstand von der Mitte der Verbindungsmittel in der Endreihe zum benachbarten freien Ende des Stützenflansches, gemessen in der Richtung der Achse des Stützenprofils (siehe Zeile 1 und Zeile 2 in Bild 6.9).					

Die zur kleinsten Tragfähigkeit zugehörigen Fließlinienmuster

sind individuell für jede Schraube und auch für jede mögliche

Schraubenreihengruppe zu bestimmen. In Bild K10 sind die

Fließmuster zu der Tabelle 6.4 grafisch dargestellt.

	Tabelle 6.4.	Wirksame	Längen	für	nicht	ausgesteifte	Stützenflansche
--	--------------	----------	--------	-----	-------	--------------	-----------------

Zu Tabelle 6.4

Die wirksamen Längen des äquivalenten T-Stummels, die zur Ermittlung der Beanspruchbarkeit nach Tabelle 6.2 benötigt werden, sind für nicht ausgesteifte Stützenflansche in Tabelle 6.4 geregelt. Es ist zu unterscheiden zwischen:

- kreisförmigen Fließmustern (circular pattern \rightarrow Index cp)

nicht kreisförmigen Fließmustern

(non-circular pattern \rightarrow Index nc).

Schraubenreihe als Teil einer Lage der Schraubenrelhe einzeln betrachtet Gruppe von Schraubenreihen Schrauben Kreisförmiges Nicht kreis-Kreisförmiges Nicht kreisreihe Muster förmiges Muster Muster förmiges Muster Innere Schraubenreihe Äußere Schraubenreihe

Bild K10. Fließmuster für einen nicht ausgesteiften Stützengurt

	Schraubenreihe e	inzeln betrachtet	Schraubenreihe als Teil einer Gruppe von Schraubenreihen		
Lage der Schraubenreihe	Kreisförmiges Muster ℓ _{eff,cp}	Nicht kreisförmiges Muster ℓ _{eff,nc}	Kreisförmiges Muster ℓ _{eff,cp}	Nicht kreisförmiges Muster ℓ _{eff,nc}	
Innere Schraubenreihe neben einer Steife	2πm	can	$\pi m + p$	$0,5p + \alpha m$ -(2m + 0,625e)	
Andere innere Schraubenreihe	2πm	4 <i>m</i> + 1,25 <i>e</i>	2 p	р	
Andere äußere Schraubenreihe	der kleinere Wert von: $2\pi m$ $\pi m + 2e_1$	der kleinere Wert von: 4m + 1,25e $2m + 0,625e + e_1$	der kleinere Wert von: $\pi m + p$ $2e_1 + p$	der kleinere Wert von: 2m + 0.625e + 0.5p $e_1 + 0.5p$	
Äußere Schraubenreihe neben einer Steife	der kleinere Wert von: $2\pi m$ $\pi m + 2e_1$	$e_1 + \alpha m$ -(2m + 0,625e)	nicht relevant	nicht relevant	
Modus 1:	$\ell_{\text{eff},1} = \ell_{\text{eff,nc}} \text{ jedoch } \ell_{\text{eff},1} \leq \ell_{\text{eff,cp}}$		$\Sigma \ell_{\text{eff},1} = \Sigma \ell_{\text{eff},\text{nc}} \text{ jedoch } \Sigma \ell_{\text{eff},1} \leq \Sigma \ell_{\text{eff},\text{cp}}$		
Modus 2:	$\ell_{\rm eff,2} = \ell_{\rm eff,nc}$		$\Sigma \ell_{\rm eff,2} = \Sigma \ell_{\rm eff,nc}$		
α ist Bild 6.11 zu entneh	men.				

Tabelle 6.5. Wirksame Längen für ausgesteifte Stützenflansche

e1 ist der Abstand von der Mitte der Verbindungsmittel in der Endreihe zum benachbarten freien Ende des Stützenflanschs, gemessen in der Richtung der Achse des Stützenprofils (siehe Zeile 1 und Zeile 2 in Bild 6.9).

Zu Tabelle 6.5

In Tabelle 6.5 sind die wirksamen Längen für ausgesteifte Stützenflansche geregelt. Für innere und äußere Schraubenreihen, die nicht neben einer Steife liegen, entsprechen die Fließmuster und die wirksamen Längen denen von nicht ausgesteiften Stützenflanschen (siehe Autorenhinweis zu Tabelle 6.4). Für Schraubenreihen neben einer Steife zeigt Bild K11 die möglichen Fließmuster und gibt die zugehörigen wirksamen Längen entsprechend Tabelle 6.5 an.

Der Einfluss der Steife auf die Beanspruchbarkeit des Stützenflansches, wird über den Hilfswert α nach Bild 6.11 erfasst. Abhängig vom Abstand der betrachteten Schraube zum Stützensteg und zur Steife liegen die α -Werte zwischen 4,45 $\leq \alpha \leq$ 8,00.

Bild K11. Fließmuster und wirksame Längen für einen ausgesteiften Stützengurt

Legende

1 Äußere Schraubenreihe neben einer Steife

2 Andere äußere Schraubenreihe

3 Andere innere Schraubenreihe

4 Innere Schraubenreihe neben einer Steife

Bild 6.9. Untersuchung eines ausgesteiften Stützenflansches mit verschiedenen T-Stummel-Modellen

Bild 6.10. Behandlung von überstehenden Stirnblechen als separate T-Stummelflansche

Bild 6.11. *α*-Werte für ausgesteifte Stützenflansche und Stirnbleche

(5) Die Werte für m und m_x in Tabelle 6.6 sind Bild 6.10 zu entnehmen.

6.2.6.6 Flanschwinkel mit Biegebeanspruchung

(1) Die Tragfähigkeit und die Versagensform von Flanschwinkeln, die in Verbindung mit Schrauben mit Zugbeanspruchung auf Biegung beansprucht werden, sind mit Hilfe des äquivalenten T-Stummelflansches zu ermitteln, siehe 6.2.4.

(2) Die wirksame Länge $\ell_{\rm eff}$ eines äquivalenten T-Stummelflansches ist mit $0.5b_{\rm a}$ anzusetzen, wobei $b_{\rm a}$ die Länge des Winkels nach Bild 6.12 ist.

(3) Die Maße e_{\min} und *m*, siehe 6.2.4, sind Bild 6.13 zu entnehmen.

6.2.6.7 Trägerflansch und -steg mit Druckbeanspruchung

(1) Die Resultierende des Druckwiderstandes des Trägerflansches und der angrenzenden Druckzone im Trägersteg kann im Druckpunkt nach 6.2.7 angenommen werden. Für die Tragfähigkeit von Trägerflansch und -steg bei Druckbeanspruchung gilt folgende Gleichung:

$$F_{\rm c,fb,Rd} = M_{\rm c,Rd} / (h - t_{\rm fb})$$
 (6.21)

Dabei ist

h die Höhe des angeschlossenen Trägers;

 $M_{c,Rd}$ die Biegetragfähigkeit des Trägerquerschnitts, soweit erforderlich unter Berücksichtigung der Abminderung aus Querkraftinteraktion, siehe EN 1993-1-1. Bei Vouten kann $M_{c,Rd}$ unter Vernachlässigung des zwischenliegenden Flansches berechnet werden;

*t*_{fb} die Flanschdicke des angeschlossenen Trägers.

Beträgt die Höhe des Trägers einschließlich Voute mehr als 600 mm, so ist in der Regel der Beitrag des Trägersteges zu der Tragfähigkeit bei Druckbeanspruchung auf 20 % zu begrenzen.

(2) Wird ein Träger durch Vouten verstärkt, gelten die folgenden Voraussetzungen:

- die Stahlgüte der Voute sollte mindestens der Stahlgüte des Trägers entsprechen;
- die Flanschabmessungen und die Stegdicke der Voute sollten nicht kleiner sein als die des Trägers;
- der Winkel zwischen Voutenflansch und Trägerflansch sollte nicht größer sein als 45°;
- die Länge s_s der steifen Auflagerung darf mit der Schnittlänge des Voutenflansches parallel zum Trägerflansch angesetzt werden.

	Schraubenreihe e	einzeln betrachtet	Schraubenreihe als Teil einer Gruppe von Schraubenreihen		
Lage der Schraubenreihe	Kreisförmiges Muster ℓ _{eff,cp}	Nicht kreisförmiges Muster ℓ _{eff,nc}	Kreisförmiges Muster ℓ _{eff,cp}	Nicht kreisförmiges Muster ℓ _{eff,nc}	
Äußere Schraubenreihe neben Trägerzugflansch	der kleinste Wert von: $2\pi m_x$ $\pi m_x + w$ $\pi m_x + 2e$	der kleinste Wert von: $4m_x + 1,25e_x$ $e+2m_x + 0,625e_x$ $0,5b_p$ $0,5w + 2m_x + 0,625e_x$	—	_	
Innere Schraubenreihe neben Trägerzugflansch	2πm	cam	$\pi m + p$	$0,5p + \alpha m$ -(2m + 0,625e)	
Andere innere Schraubenreihe	2πm	4 <i>m</i> + 1,25 <i>e</i>	2 p	р	
Andere äußere Schraubenreihe	2πm	4 <i>m</i> + 1,25 <i>e</i>	$\pi m + p$	2 <i>m</i> +0,625 <i>e</i> +0,5 <i>p</i>	
Modus 1:	$\ell_{\text{eff},1} = \ell_{\text{eff},\text{nc}} \text{ jedoch } \ell_{\text{eff},1} \leq \ell_{\text{eff},\text{cp}}$		$\Sigma \ell_{\text{eff,1}} = \Sigma \ell_{\text{eff,nc}} \text{ jedoch } \Sigma \ell_{\text{eff,1}} \leq \Sigma \ell_{\text{eff,cp}}$		
Modus 2:	ℓ _{eff,2} =	= l _{eff,nc}	$\Sigma \ell_{\rm eff,2} = \Sigma \ell_{\rm eff,nc}$		
α ist Bild 6.11 zu entneh	men.				

Tabelle 6.6. Wi	rksame Läng	en für Stirı	ibleche
-----------------	-------------	--------------	---------

Zu Tabelle 6.6

Für biegebeanspruchte Stirnplatten ist bei der Ermittlung der wirksamen Längen des T-Stummels zu differenzieren zwischen Schrauben, die innerhalb und außerhalb der Trägerkammer liegen. Außerhalb der Trägerkammer liegenden Schrauben "fehlt" der stützende Steg, so dass für diese Schraubenreihen ein vertikal ausgerichteter T-Stummel als Modell verwendet wird. In der Regel wird außerhalb der Trägerkammer nicht mehr als eine Schraubenreihe angeordnet. Daher sind in DIN EN 1993-1-8 keine wirksamen Längen für Gruppenbetrachtungen von außerhalb der Trägerkammer liegenden Schrauben angegeben. Die möglichen Fließmuster und die wirksamen Längen sind in Bild K12 zusammengefasst.

Die wirksame Länge des T-Stummels ist dabei auf die halbe Breite der Stirnplatte b_p zu beschränken. Für die innerhalb der Trägerkammer liegenden Schrauben sind die gleichen Fließmuster wie bei einem biegebeanspruchten, ausgesteiften Stützenflansch zu berücksichtigen (siehe Tabelle 6.5).

Bild K12. Fließmuster und wirksame Längen für eine Stirnplatte

a) Spalt $g \leq$ 0,4 $t_{\rm a}$

Anmerkung:

- Zwischen Winkel und Stützenflansch wird nur eine Schraubenreihe angenommen.
- Zwischen Winkel und Trägerflansch können mehrere Schraubenreihen auftreten.

- Die Länge ba des Winkels braucht nicht identisch mit der Breite des Stützen- und Trägerflansches sein.

Bild 6.13. Maße e_{min} und m für geschraubte Flanschwinkel

(3) Wird der Träger durch Vouten verstärkt, so ist die Tragfähigkeit des Trägerstegs mit Druck nach 6.2.6.2 zu ermitteln.

6.2.6.8 Trägersteg mit Zugbeanspruchung

(1) Bei einer geschraubten Stirnblechverbindung ist die Tragfähigkeit des Trägerstegs bei Zugbeanspruchung wie folgt zu ermitteln:

$$F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{y,wb} / \gamma_{M0}$$
(6.22)

(2) Die effektive Breite $b_{\text{eff,t,wb}}$ des Trägerstegs mit Zug ist mit der wirksamen Länge des äquivalenten T-Stummel-Modells für das Stirnblech mit Biegebelastung gleichzusetzen, die nach 6.2.6.5 für eine einzelne Schraubenreihe oder eine Schraubengruppe ermittelt wird.

6.2.6.9 Beton oder Mörtel mit Druckbeanspruchung

(1) Bei der Bestimmung des Bemessungswertes der Beton- oder Mörtelfestigkeit zwischen Fußplatte und Betonfundament sind die Kenngrößen und Abmessungen des Mörtels und des Betons zu berücksichtigen. Das Betonfundament ist nach EN 1992 nachzuweisen. (2) Der Bemessungswert der Beton- oder Mörtelfestigkeit und der Bemessungswert der Tragfähigkeit $F_{e,pl,Rd}$ der Fußplatte sollte mit Hilfe des äquivalenten T-Stummels nach 6.2.5 ermittelt werden.

6.2.6.10 Fußplatte mit Biegebeanspruchung infolge Druck

(1) Die Tragfähigkeit $F_{c,pl,Rd}$ einer Fußplatte mit Biegebelastung infolge Druck sollte zusammen mit dem Betonfundament, auf dem die Fußplatte angeordnet ist, mit Hilfe des äquivalenten T-Stummels nach 6.2.5 ermittelt werden.

6.2.6.11 Fußplatte mit Biegebeanspruchung infolge Zug

(1) Die Tragfähigkeit $F_{t,pl,Rd}$ und die Versagensform einer Fußplatte mit Biegebelastung infolge Zug aus der Belastung durch Ankerschrauben kann nach den Regeln in 6.2.6.5 bestimmt werden. (2) Bei Fußplatten brauchen möglicherweise auftretende Abstützkräfte nicht berücksichtigt zu werden bei der Ermittlung der Dicke der Fußplatte. Hebelkräfte sollten bei der Ermittlung der Ankerschrauben berücksichtigt werden.

6.2.6.12 Ankerschrauben mit Zugbeanspruchung

(1) Ankerschrauben sind für die Schnittgrößen aus den Bemessungslasten auszulegen. Sie sollten Zugkräfte aus abhebenden Auflagerkräften und Biegemomenten übernehmen.

(2) Bei der Berechnung der Zugkräfte in den Ankerschrauben infolge Biegung sind die Hebelarme nicht größer anzusetzen als der Abstand zwischen dem Schwerpunkt der Auflagerfläche auf der Druckseite und dem Schwerpunkt der Ankerschraubengruppe auf der Zugseite.

Anmerkung: Toleranzen in der Lage der Ankerschrauben können Einfluss haben.

(3) Die Tragfähigkeit der Ankerschrauben ist als kleinster Wert aus der Tragfähigkeit der Ankerschraube nach 3.6 und der Verbundfestigkeit zwischen Beton und Ankerschraube nach EN 1992-1-1 zu bestimmen.
(4) Ankerschrauben können im Fundament wie folgt verankert werden:

- durch Haken, siehe Bild 6.14(a);
- durch Unterlegscheiben, siehe Bild 6.14(b);
- durch andere in den Beton eingelassene Lastverteilungselemente;
- durch andere Verbindungsmittel, die entsprechend getestet und zugelassen sind.

(5) Werden die Schrauben am Ende mit einem Haken versehen, ist die Verankerungslänge so zu wählen, dass Verbundversagen vor dem Fließen der Schraube verhindert wird. Die Verankerungslänge sollte nach EN 1992-1-1 festgelegt werden. Bei dieser Verankerungsform sind Schrauben mit Streckgrenzen f_{yb} größer als 300 N/mm² zu vermeiden.

a) Haken

b) Unterlegscheibe

(6) Werden die Ankerschrauben mit Unterlegscheiben oder anderen Lasteinleitungselementen verwendet, braucht die Verbundwirkung nicht berücksichtigt zu werden. Die gesamte Ankerkraft sollte dann von den Lasteinleitungselementen übertragen werden.

6.2.7 Biegetragfähigkeit von Träger-Stützenanschlüssen und Stößen

6.2.7.1 Allgemeines

(1) Für den Bemessungswert des einwirkenden Biegemomentes $M_{i,Ed}$ gilt:

$$\frac{M_{j,\text{Ed}}}{M_{i,\text{Rd}}} \le 1,0\tag{6.23}$$

(2) Die Verfahren in 6.2.7 zur Berechnung der Biegetragfähigkeit $M_{j,Rd}$ eines Anschlusses berücksichtigen keine gleichzeitig wirkenden Normalkräfte N_{Ed} . Sie sollten daher nur verwendet werden, wenn die einwirkende Normalkraft im angeschlossenen Bauteil nicht größer als 5 % der plastischen Beanspruchbarkeit $N_{p\ell,Rd}$ seines Querschnittes ist.

(3) Überschreitet die einwirkende Normalkraft $N_{\rm Ed}$ in dem angeschlossenen Bauteil 5 % der plastischen Beanspruchbarkeit $N_{\rm p\ell,Rd}$, kann die folgende konservative Näherung benutzt werden:

$$\frac{M_{j,\text{Ed}}}{M_{j,\text{Rd}}} + \frac{N_{j,\text{Ed}}}{N_{j,\text{Rd}}} \le 1,0 \tag{6.24}$$

Dabei ist

- $M_{j,\text{Rd}}$ die Biegetragfähigkeit des Anschlusses ohne gleichzeitig wirkende Normalkraft;
- $N_{j,\text{Rd}}$ die Normalkrafttragfähigkeit des Anschlusses ohne gleichzeitig wirkendes Moment.

(4) Die Biegetragfähigkeit eines geschweißten Anschlusses sollte mit den Angaben in Bild 6.15(a) bestimmt werden.

(5) Die Biegetragfähigkeit eines geschraubten Anschlusses mit bündigem Stirnblech und mit nur einer Schraubenreihe mit Zugbeanspruchung (oder nur einer Schraubenreihe, die für Zug in Anspruch genommen wird, siehe 6.2.3(6), sollte nach Bild 6.15(c) bestimmt werden.

(6) Die Biegetragfähigkeit eines geschraubten Anschlusses mit Flanschwinkeln sollte nach Bild 6.15(b) bestimmt werden.

(7) Die Biegetragfähigkeit eines geschraubten Stirnblechanschlusses mit mehr als einer Schraubenreihe, die auf Zug beansprucht wird, wird in der Regel nach 6.2.7.2 bestimmt.

(8) Vereinfachend kann die Biegetragfähigkeit eines Anschlusses mit überstehendem Stirnblech mit nur zwei Schraubenreihen mit Zugbeanspruchung nach Bild 6.16 bestimmt werden, vorausgesetzt, die Beanspruchbarkeit F_{Rd} ist nicht größer als $3,8F_{\text{t,Rd}}$, wobei $F_{\text{t,Rd}}$ in Tabelle 6.2 angegeben ist. In diesem Fall kann die gesamte Zugzone des Stirnblechs als eine Grundkomponente betrachtet werden. Liegen die bei-

Γ	Verbindungsart	Druckpunkt	Hebelarm	Kräfteverteilung
a)	Geschweißter Anschluss	In der Achse der Mittelebene des Druckflansches	 z = h - t_{fb} h Höhe des ange- schlossenen Trägers t_{fb} Dicke des Träger- flansches 	F _{Rd} + F _{Rd}
b)	Geschraubter Anschluss mit Flanschwinkeln	In der Achse der Mittelebene des anliegenden Winkel-Schenkels am Druckflansch	Abstand zwischen dem Druckpunkt und der Schraubenreihe unter Zug	F _{Rd} + F _{Rd} + +
C)	Geschraubter Anschluss mit Stirnblech mit nur einer Schraubenreihe mit Zugbeanspruchung	In der Achse der Mittelebene des Druckflansches	Abstand zwischen dem Druckpunkt und der Schraubenreihe unter Zug	$F_{Rd} \rightarrow F_{Rd} \rightarrow F$
d)	Geschraubter Anschluss mit überste- hendem Stirnblech mit nur zwei Schraubenreihen mit Zugbeanspru- chung	In der Achse der Mittelebene des Druckflansches	Auf der sicheren Seite liegend, Abstand zwi- schen dem Druckpunkt und dem Schwerpunkt der beiden Schrauben- reihen	
e)	Andere geschraubte Stimblechan- schlüsse mit zwei oder mehr Schrau- benreihen mit Zugbeanspruchung	In der Achse der Mittelebene des Druckflansches	Als Nährungswert, Ab- stand zwischen dem Druckpunkt und dem Schwerpunkt der bei- den äußersten auf Zug belasteten Schrau- benreihen	Ein genauerer Wert für den Hebelarm <i>z</i> kann als <i>z</i> _{eq} nach 6.3.3.1 bestimmt werden.

Bild 6.15. Druckpunkt, Hebelarm z und Kräfteverteilung zur Berechnung der Biegetragfähigkeit $M_{j,\mathrm{Rd}}$

den Schraubenreihen etwa im gleichen Abstand zum Trägerflansch, kann dieser Teil des Stirnblechs als ein T-Stummel betrachtet werden, um die Kraft $F_{1,Rd}$ der Schraubenreihe zu bestimmen. Der Wert für $F_{2,Rd}$ kann dann mit $F_{1,Rd}$ gleichgesetzt werden, so dass F_{Rd} mit $2F_{1,Rd}$ angenommen werden kann.

(9) Der Druckpunkt sollte im Zentrum des Spannungsblocks infolge der Druckkräfte liegen. Vereinfachend kann der Druckpunkt wie in Bild 6.15 angenommen werden.

(10) Ein Bauteilstoß oder ein Teil davon, der auf Zug beansprucht wird, muss in der Regel für alle am Stoß einwirkenden Momente und Kräfte bemessen werden.

Bild 6.16. Vereinfachte Berechnung von geschraubten Anschlüssen mit überstehenden Stirnblechen

(11) Stöße sind in der Regel so zu konstruieren, dass die verbundenen Bauteile in ihrer Lage gesichert sind. In Kontaktstößen sind in der Regel Reibungskräfte zwischen den Kontaktflächen für die Lagesicherung der verbundenen Bauteile nicht ausreichend.

(12) Die Bauteile sind möglichst so anzuordnen, dass die Schwerpunktachsen der Stoßlaschen mit den Schwerpunktachsen der Bauteile übereinstimmen. Bei Exzentrizitäten sind die daraus resultierenden Kräfte zu berücksichtigen.

(13) Wenn für die druckbeanspruchten Bauteile nicht vollständiger Kontakt vorgesehen ist, so sollten Stoßlaschen angeordnet werden, welche die Schnittgrößen am Stoß einschließlich der Momente infolge Exzentrizitäten, Anfangsimperfektionen und Verformungen aus Wirkungen nach Theorie zweiter Ordnung übertragen. Als Mindestmomente am Stoß sollten 25 % der Momententragfähigkeit des schwächeren Querschnitts in beiden Achsen und als Mindestquerkräfte 2,5 % der plastischen Drucktragfähigkeit des schwächeren Querschnitts angesetzt werden.

(14) Wird vollständiger Kontakt der druckbeanspruchten Bauteile vorgesehen, so sind in der Regel die Stoßlaschen für mindestens 25 % der maximalen Druckkraft in der Stütze auszulegen.

DIN EN 1993-1-8/NA

zu 6.2.7.1(13) und 6.2.7.1 (14) Kontaktstoβ und Druckübertragung durch Kontakt

(1) Druckkräfte normal zur Kontaktfuge dürfen in den Fällen der Ausführung nach Bild NA.1 b) oder c) vollständig durch Kontakt übertragen werden, wenn

- die Stoßflächen eben sind (Sägeschnitt),
- der Querschnittsversatz und der Winkel am Stoß den Toleranzen nach DIN EN 1090-2 entsprechen, siehe Bild NA.2,
- die Lage der Stoßflächen durch Verbindungsmittel gesichert ist,
- der Stoß zwischen zwei gleichen Profilen erfolgt.

(2) Die Grenzdruckspannungen in der Kontaktfuge dürfen wie die des Werkstoffs der gestoßenen Bauteile angenommen werden.

(3) Beim Nachweis der zu stoßenden Bauteile müssen die Schnittgrößen an der Stoßstelle und ein eventuelles Bilden einer klaffenden Fuge berücksichtigt werden. Bei gleichen Profilen am Stoß darf auf die Berücksichtigung unterschiedlicher Querschnittsabmessungen der Stoßfläche der Profile infolge Toleranzen verzichtet werden. Beim Stoß nach Bild NA.1 c) gilt dies nur dann, wenn die beiden Bauteile aus der gleichen Lieferlänge stammen. Andernfalls sind die Grenzdruckspannungen auf 90 % zu reduzieren.

Bild NA.1. Mögliche Ausführungen von Kontaktstößen; a) Teilkontakt, b) und c) vollständiger Kontakt

Bild NA.2. Erlaubte Toleranzen, $\varphi \leq 1/500$, $e \leq 2 \text{ mm}$

(4) Zugbeanspruchungen sind durch schlupffreie Verbindungen oder Schweißverbindungen aufzunehmen.(5) Für die Übertragung der Querkräfte am Stoß sind Verbindungsmittel vorzusehen, eine Mitwirkung der Reibung darf nicht angenommen werden.

Anmerkung: Literatur zum Kontaktstoß, siehe [5]

(15) Die Ausrichtung druckbelasteter Bauteile sollte durch Decklaschen oder andere Maßnahmen sichergestellt werden. Die Stoßlaschen und deren Verbindungsmittel sollten für Kräfte, die senkrecht zur Bauteilachse nach allen Richtungen auftreten können, ausgelegt sein. Bei der Bemessung von Stößen sind auch die Effekte aus Theorie zweiter Ordnung zu berücksichtigen. (16) Für Stöße von Biegeträgern gilt Folgendes:

a) Druckflansche sind wie Druckglieder zu behandeln;

b) Zugflansche sind wie Zugglieder zu behandeln;

c) Schubbeanspruchte Teile sind für die gleichzeitige

Übertragung folgender Einwirkungen auszulegen:

- Schubkraft am Stoß,
- Moment infolge der Exzentrizität der Schwerpunktlage der Gruppe von Verbindungsmitteln an beiden Seiten des Stoßes;
- Anteil des Biegemoments, der Verformung oder der Rotation des Trägers, der auf die schubbeanspruchten Teile entfällt, unabhängig davon, ob bei der Bemessung des Trägers Spannungsumlagerungen in andere Teile des Trägers vorgenommen wurden oder nicht.

6.2.7.2 Träger-Stützenanschlüsse mit geschraubten Stirnblechverbindungen

(1) Die Biegetragfähigkeit $M_{j,Rd}$ eines Träger-Stützenanschlusses mit einer geschraubten Stirnblechverbindung darf wie folgt bestimmt werden:

$$M_{j,\mathrm{Rd}} = \sum_{r} h_{\mathrm{r}} F_{\mathrm{tr,Rd}} \tag{6.25}$$

Dabei ist

- $F_{tr,Rd}$ die wirksame Tragfähigkeit der Schraubenreihe *r* auf Zug;
- *h*_r der Abstand der Schraubenreihe *r* vom Druckpunkt;
- *r* die Nummer der Schraubenreihe.

Anmerkung: Bei einem geschraubten Anschluss mit mehr als einer Schraubenreihe mit Zugbeanspruchung erfolgt die Nummerierung der Schraubenreihen ausgehend von der Schraubenreihe, die am weitesten entfernt vom Druckpunkt liegt.

(2) Bei geschraubten Stirnblechverbindungen sollte der Druckpunkt in der Mittelachse des Druckflansches des angeschlossenen Bauteiles angenommen werden.

(3) Die Bestimmung der wirksamen Tragfähigkeit $F_{tr,Rd}$ der einzelnen Schraubenreihen sollte Schritt für Schritt

erfolgen, angefangen mit Schraubenreihe 1 (der Schraubenreihe, die am weitesten vom Druckpunkt entfernt ist), dann Schraubenreihe 2 usw.

(4) Bei der Bestimmung von der wirksamen Tragfähigkeit $F_{tr,Rd}$ der Schraubenreihe r sollten alle anderen Schraubenreihen, die näher zum Druckpunkt liegen, unberücksichtigt bleiben.

(5) Die wirksame Tragfähigkeit $F_{tr,Rd}$ der Schraubenreihe *r* sollte aus der Tragfähigkeit $F_{t,Rd}$ einer einzelnen Schraubenreihe nach 6.2.7.2(6) bestimmt werden, wobei erforderlichenfalls noch Reduktionen nach 6.2.7.2(7), 6.2.7.2(8) und 6.2.7.2(9) vorzunehmen sind. (6) Die wirksame Tragfähigkeit $F_{tr,Rd}$ der Schraubenreihe *r*, die als Tragfähigkeit einzelner Schraubenreihen bestimmt wird, ist als Minimum der Tragfähigkeiten einzelner Schraubenreihen für folgende Grundkomponenten zu berechnen:

- Stützensteg mit Zugbeanspruchung F_{t,wc,Rd}, siehe 6.2.6.3;
- Stützenflansch mit Biegebeanspruchung F_{t,fc,Rd}, siehe 6.2.6.4;
- Stirnblech mit Biegebeanspruchung $F_{t,ep,Rd}$, siehe 6.2.6.5;
- Trägersteg mit Zugbeanspruchung $F_{t,wb,Rd}$, siehe 6.2.6.8.

(7) Die ermittelte wirksame Tragfähigkeit $F_{tr,Rd}$ der Schraubenreihe *r* ist gegebenenfalls weiterhin zu reduzieren, damit für die gesamte Tragfähigkeit $F_{t,Rd}$ bei Berücksichtigung aller Schraubenreihen einschließlich der Schraubenreihe *r* folgende Bedingungen erfüllt sind:

- $F_{t,Rd} \leq V_{wp,Rd}/\beta$ mit β nach 5.3(7), siehe 6.2.6.1;
- $F_{t,Rd}$ ist nicht größer als der kleinste der folgenden Werte:
- die Tragfähigkeit des Stützensteges für Druckbelastung F_{c.wc.Rd}, siehe 6.2.6.2;
- die Tragfähigkeit des Trägerflansches und -steges für Druckbelastung $F_{c,fb,Rd}$, siehe 6.2.6.7.

(8) Die ermittelte wirksame Tragfähigkeit $F_{tr,Rd}$ der Schraubenreihe *r* ist gegebenenfalls weiterhin zu reduzieren, damit die Summe der Tragfähigkeiten aller Schraubenreihen einschließlich der Schraubenreihe *r*, die Teil einer Gruppe von Schraubenreihen sind, nicht die Tragfähigkeit dieser Gruppe als Ganzes überschreitet. Dies ist für folgende Grundkomponenten zu überprüfen:

- Stützensteg mit Zugbeanspruchung F_{t,wc,Rd}, siehe 6.2.6.3;
- Stützenflansch mit Biegebeanspruchung F_{t,fc,Rd}, siehe 6.2.6.4;
- Stirnblech mit Biegebeanspruchung F_{t,ep,Rd}, siehe 6.2.6.5;
- Trägersteg mit Zugbeanspruchung F_{t,wb,Rd}, siehe 6.2.6.8.

(9) Wird die wirksame Tragfähigkeit $F_{tx,Rd}$ einer der zuerst berechneten Schraubenreihen *x* größer als 1,9 $F_{t,Rd}$, dann ist die wirksame Tragfähigkeit $F_{tr,Rd}$ für die Schraubenreihe *r* zu reduzieren, um folgender Bedingung zu genügen:

Bild 6.17. Geschraubte Trägerstöße mit geschweißten Stirnblechen

$$F_{\rm tr.Rd} \le F_{\rm tx.Rd} \ h_{\rm r}/h_{\rm x} \tag{6.26}$$

Dabei ist

- h_x der Abstand der Schraubenreihe *x* zum Druckpunkt;
- x die Schraubenreihe, die am weitesten vom Druckpunkt entfernt liegt und deren Beanspruchbarkeit größer als 1,9 $F_{t,Rd}$ ist.

Anmerkung: Im Nationalen Anhang können weitere Hinweise zur Anwendung der Gleichung (6.26) enthalten sein.

NDP

DIN EN 1993-1-8/NA

zu 6.2.7.2(9) Anmerkung

DIN EN 1993-1-8:2010-12, Gleichung (6.26) dient dazu, ein mögliches Schraubenversagen auszuschließen.

(10) Das Verfahren in 6.2.7.2(1) bis 6.2.7.2(9) kann auch für die Berechnung eines geschraubten Trägerstoßes mit angeschweißten Stirnblechen, siehe Bild 6.17, verwendet werden, wenn die Komponenten, welche die Stütze betreffen, außer Betracht gelassen werden.

6.2.8 Tragfähigkeit von Stützenfüßen mit Fußplatten

6.2.8.1 Allgemeines

(1) Stützenfüße sind in der Regel mit ausreichender Größe, Steifigkeit und Festigkeit auszuführen, um die Schnittkräfte aus den Stützen in die Fundamente oder andere Lager ohne Überschreitung der Beanspruchbarkeiten zu übertragen.

(2) Die Tragfähigkeit der Fußplatte auf dem Auflager kann mit der Annahme einer gleichmäßigen Druckverteilung über die Druckfläche ermittelt werden. Bei Betonfundamenten sollte die Lagerpressung nicht die Beton- oder Mörtelfestigkeit f_{jd} nach 6.2.5(7) überschreiten. (3) Bei Stützenfüßen mit kombinierter Beanspruchung aus einwirkender Normalkraft und Biegemoment kann in Abhängigkeit von der relativen Größe von Normalkraft und Biegemoment die folgende Verteilung der Kräfte zwischen Fußplatte und dem Fundament angenommen werden:

- Bei vorherrschender Druckkraft kann unter beiden Stützenflanschen voller Anpressdruck auftreten, siehe Bild 6.18(a).
- Bei vorherrschender Zugkraft kann an beiden Stützenflanschen volle Zugspannung auftreten, siehe Bild 6.18(b).
- Bei vorherrschendem Biegemoment kann unter dem einen Stützenflansch Druck und an dem anderen Zug auftreten, siehe Bild 6.18(c) und Bild 6.18(d).
- (4) Die Bemessung von Fußplatten ist in der Regel nach 6.2.8.2 und 6.2.8.3 durchzuführen.

(5) Für die Aufnahme der Schubkräfte zwischen Fußplatte und Fundament sollte eine der folgenden Möglichkeiten verwendet werden:

- Reibungswiderstand zwischen Fußplatte und Fundament zusammen mit der Schubtragfähigkeit der Ankerschrauben;
- Schubtragf\u00e4higkeit der das Fundament umgebenden Teile.

Wenn zur Aufnahme der Schubkräfte zwischen Fußplatte und Fundament Ankerschrauben verwendet werden, sollte auch die lokale Lochleibungsfestigkeit des Betons nach EN 1992 untersucht werden.

Sind die vorgenannten Möglichkeiten nicht ausreichend, so sollten zur Kraftübertragung der Schubkräfte zwischen Fußplatte und Fundament spezielle Dübel verwendet werden, z. B. Blockanker oder Bolzendübel.

6.2.8.2 Stützenfußverbindung unter reiner Normalkraftbeanspruchung

(1) Die Tragfähigkeit $N_{j,Rd}$ einer symmetrischen Stützenfußplatte unter zentrisch einwirkender Druckkraft kann durch Addition der Einzeltragfähigkeiten $F_{C,Rd}$ der drei T-Stummel nach Bild 6.19 bestimmt werden (zwei T-Stummel unter den Stützenflanschen und ein T-Stummel unter dem Stützensteg). Die drei T-Stummel dürfen nicht überlappen, siehe Bild 6.19. Die Einzeltragfähigkeiten der jeweiligen T-Stummel sind nach 6.2.5 zu berechnen.

6.2.8.3 Stützenfußverbindung mit Normalkraft- und Biegebeanspruchung

(1) Die Biegetragfähigkeit $M_{j,Rd}$ eines Stützenfußes für eine kombinierte Beanspruchung aus Normalkraft und Biegemoment sollte nach Tabelle 6.7 ermittelt werden. Bei der Ermittlung der Tragfähigkeit wird der Anteil des Betondrucks unmittelbar unter dem Stützensteg (T-Stummel 2 in Bild 6.19) vernachlässigt. Bei dem Verfahren werden folgende Parameter benutzt:

- F_{T,1,Rd} Tragfähigkeit auf Zug auf der linken Seite der Verbindung, siehe 6.2.8.3(2);

a) Stützenfußverbindung bei vorherrschender Druckkraft

c) Stützenfußverbindung bei vorherrschendem Biegemoment

Bild 6.18. Bestimmung des Hebelarms z bei Stützenfußverbindungen

Bild 6.19. Nicht überlappende T-Stummel

- F_{T,r,Rd} Tragfähigkeit auf Zug auf der rechten Seite der Verbindung, siehe 6.2.8.3(3);
- F_{C,1,Rd} Tragfähigkeit auf Druck auf der linken Seite der Verbindung, siehe 6.2.8.3(4);
- F_{C,r,Rd} Tragfähigkeit auf Druck auf der rechten Seite der Verbindung, siehe 6.2.8.3(5);

(2) Als Tragfähigkeit $F_{T,1,Rd}$ auf Zug auf der linken Seite der Verbindung sollte der kleinste Wert folgender Tragfähigkeiten der Grundkomponenten angesetzt werden:

- Stützensteg mit Zugbeanspruchung unter dem linken Stützenflansch F_{t,wc,Rd}, siehe 6.2.6.3;
- Fußplatte mit Biegbeanspruchung unter dem linken Stützenflansch $F_{t,pl,Rd}$, siehe 6.2.6.11.

(3) Als Tragfähigkeit $F_{T,r,Rd}$ auf Zug auf der rechten Seite der Verbindung sollte der kleinste Wert folgender Tragfähigkeiten der Grundkomponenten angesetzt werden:

- Stützensteg mit Zugbeanspruchung unter dem rechten Stützenflansch F_{t,wc.Rd}, siehe 6.2.6.3;
- Fußplatte mit Biegbeanspruchung unter dem rechten Stützenflansch F_{t,pl,Rd}, siehe 6.2.6.11.

b) Stützenfußverbindung bei vorherrschender Zugkraft

d) Stützenfußverbindung bei vorherrschendem Biegemoment

(4) Als Tragfähigkeit $F_{C,1,Rd}$ auf Druck auf der linken Seite der Verbindung sollte der kleinste Wert folgender Tragfähigkeiten der Grundkomponenten angesetzt werden:

- Beton mit Druckbeanspruchung unter dem linken Stützenflansch F_{c.pl.Rd}, siehe 6.2.6.9;
- Linker Stützenflansch und Stützensteg mit Druckbeanspruchung F_{c,fc,Rd}, siehe 6.2.6.7.

(5) Als Tragfähigkeit $\bar{F}_{C,r,Rd}$ auf Druck auf der rechten Seite der Verbindung sollte der kleinste Wert folgender Tragfähigkeiten der Grundkomponenten angesetzt werden:

- Beton mit Druckbeanspruchung unter dem rechten Stützenflansch $F_{c,pl,Rd}$, siehe 6.2.6.9;
- Rechter Stützenflansch und Stützensteg mit Druckbeanspruchung F_{c.fc.Rd}, siehe 6.2.6.7.
- (6) Zur Berechnung von $z_{T,1}$, $z_{C,1}$, $z_{T,r}$, $z_{C,r}$ siehe 6.2.8.1.

6.3 Rotationssteifigkeit

6.3.1 Grundmodell

(1) Die Rotationssteifigkeit eines Anschlusses ist in der Regel anhand der Verformbarkeiten der einzelnen

Grundkomponenten, welche jeweils mit ihren elastischen Steifigkeitskoeffizienten k_i nach 6.3.2 gekennzeichnet werden, zu berechnen.

Anmerkung: Die elastischen Steifigkeitskoeffizienten gelten allgemein.

(2) Bei geschraubten Stirnblechanschlüssen mit zwei oder mehr auf Zug belasteten Schraubenreihen sollten

Belastung	Hebelarm z	Biegetragfä	higkeit <i>M</i> j,Rd
Linke Seite mit Zugbeanspruchung	$z = z_{\mathrm{T},1} + z_{\mathrm{C},\mathrm{r}}$	$N_{ m Ed} > 0$ und $e > z_{ m T,1}$	$N_{\rm Ed} \leq 0$ und $e \leq -z_{\rm C,r}$
Rechte Seite mit Druckbeanspruchung		kleinster Wert von $\frac{F_{\rm T}}{z_{\rm C,r}}$	$\frac{F_{T,Rd} z}{e+1}$ und $\frac{-F_{C,r,Rd} z}{z_{T,1}/e-1}$
Linke Seite mit Zugbeanspruchung	$z = z_{\mathrm{T},1} + z_{\mathrm{T},\mathrm{r}}$	$N_{\rm Ed} > 0$ und $0 < e < z_{\rm T,1}$	$N_{\rm Ed} > 0$ und $-z_{\rm T,r} < e \leq 0$
Kechte Seite mit Zugbeanspruchung		kleinster Wert von $rac{F_{\mathrm{T,I,Rd}} z}{z_{\mathrm{T,r}}/e+1}$ und $rac{F_{\mathrm{T,r,Rd}} z}{z_{\mathrm{T,I}}/e-1}$	kleinster Wert von $\frac{F_{\text{T,1,Rd}} z}{z_{\text{T,r}}/e+1}$ und $\frac{F_{\text{T,1,Rd}} z}{z_{\text{T,1}}/e-1}$
Linke Seite mit Druckbeanspruchung	$z = z_{\rm C,1} + z_{\rm T,r}$	$N_{\rm Ed} > 0$ und $e \leq -z_{\rm T,r}$	$N_{\rm Ed} \leq 0$ und $e > z_{\rm C,1}$
Rechte Seite mit Zugbeanspruchung		kleinster Wert von $\frac{-h}{z_{\rm T,r}}$	$\frac{F_{\text{C},1,\text{Rd}} z}{/e+1} \text{ und } \frac{F_{\text{T},\text{r},\text{Rd}} z}{z_{\text{C},1}/e-1}$
Linke Seite mit Druckbeanspruchung	$z = z_{\rm C,1} + z_{\rm C,r}$	$N_{\rm Ed} \leq$ 0 und 0 < $e < z_{\rm C,1}$	$N_{\rm Ed} \leq 0 { m und} - z_{ m C,r} < e \leq 0$
Rechte Seite mit Druckbeanspruchung		kleinster Wert von $\frac{-F_{C,1,Rd} z}{z_{C,r}/e+1}$ und $\frac{-F_{C,r,Rd} z}{z_{C,1}/e-1}$	kleinster Wert von $\frac{-F_{\text{C,1,Rd}} z}{z_{\text{C,r}}/e+1}$ und $\frac{-F_{\text{C,r,Rd}} z}{z_{\text{C,1}}/e-1}$
Positive Momente $M_{Ed} > 0$ im Uhrzeigersinn, positive Kräfte $N_{Ed} > 0$: Zug $e = \frac{M_{Ed}}{N_{Ed}} = \frac{M_{Rd}}{N_{Pd}}$			

Tabelle 6.7. Biegetragfähigkeit *M*_{i.Rd} von Stützenfüßen

die Steifigkeitskoeffizienten k_i der jeweiligen Grundkomponenten zusammengefasst werden. Für Träger-Stützenanschlüsse und Trägerstöße wird ein Verfahren in 6.3.3 und für Stützenfüße in 6.3.4 angegeben.

(3) Bei geschraubten Stirnblechanschlüssen mit zwei oder mehr auf Zug belasteten Schraubenreihen können vereinfachend Schraubenreihen vernachlässigt werden, wenn alle anderen Schraubenreihen, die näher zum Druckpunkt liegen, ebenfalls vernachlässigt werden. Die Anzahl der verbleibenden Schraubenreihen muss nicht gleich der Anzahl Schraubenreihen sein, die zur Berechnung der Biegetragfähigkeit verwendet wird.

(4) Wenn die Normalkraft $N_{\rm Ed}$ im angeschlossenen Träger nicht mehr als 5 % der plastischen Beanspruchbarkeit $N_{p\ell,Rd}$ des Querschnitts beträgt, kann die Rotationssteifigkeit S_j eines Träger-Stützenanschlusses oder Trägerstoßes ausreichend genau für ein Moment $M_{j,Ed}$, das kleiner als die Biegetragfähigkeit $M_{j,Rd}$ des Anschlusses ist, nach folgender Gleichung bestimmt werden:

$$S_j = \frac{E z^2}{\mu \sum_i \frac{1}{k_i}}$$
(6.27)

Dabei ist

- k_i der Steifigkeitskoeffizient für die Grundkomponente *i*;
- z der Hebelarm, siehe 6.2.7;
- μ das Steifigkeitsverhältnis $S_{j,ini}/S_j$, siehe 6.3.1(6).

Anmerkung: Die Gleichung (6.27) stellt für $\mu = 1,0$ die Anfangsrotationssteifigkeit $S_{j,ini}$ des Anschlusses dar.

(5) Die Rotationssteifigkeit S_j eines Stützenfußes kann ausreichend genau nach 6.3.4 für ein Moment $M_{j,Ed}$, das kleiner als die Biegetragfähigkeit $M_{j,Rd}$ des Anschlusses ist, bestimmt werden.

(6) Das Steifigkeitsverhältnis μ ist in der Regel wie folgt zu bestimmen:

- wenn
$$M_{j,Ed} \le 2/3 M_{j,Rd}$$
:
 $\mu = 1$ (6.28a)

- wenn $2/3 M_{i,Rd} < M_{i,Ed} \le M_{i,Rd}$:

$$\mu = (1.5 M_{i \, \text{Ed}} / M_{i \, \text{Rd}})^{\psi} \tag{6.28b}$$

Dabei kann der Beiwert ψ nach Tabelle 6.8 bestimmt werden.

(7) Die bei der Berechnung der Steifigkeiten von geschweißten Träger-Stützenanschlüssen und bei Anschlüssen mit geschraubten Flanschwinkeln zu berücksichtigenden Grundkomponenten sind in Tabelle 6.9

Tabelle 6.8. Werte für den Beiwert ψ

Typ der Verbindung	ψ
Geschweißt	2,7
Geschraubtes Stirnblech	2,7
Geschraubte Flanschwinkel	3,1
Fußplattenverbindungen	2,7

Tabelle 6.9. Anschlüsse mit geschweißten Verbindungen oder geschraubten Flanschwinkelverbindungen

1

 Tabelle 6.10.
 Anschlüsse mit geschraubten Stirnblechverbindungen und Fußplattenverbindungen

Träger-Stützenanschluss mit geschraubten Stirnblechverbindungen	Anzahl der Schraubenreihen mit Zugbeanspruchung	Zu berücksichtigende Steifigkeitskoeffizienten k _i
Einspitig	Eine	$k_1; k_2; k_3; k_4; k_5; k_{10}$
	Zwei oder mehr	k ₁ ; k ₂ ; k _{eq}
Zwoisoitig Momente aleich und gegenläufig	Eine	k ₂ ; k ₃ ; k ₄ ; k ₅ ; k ₁₀
Zweisenig — Momente gleich und gegenlaung	Zwei oder mehr	<i>k</i> ₂ ; <i>k</i> _{eq}
Zwoisoitig Momente verschieden	Eine	$k_1; k_2; k_3; k_4; k_5; k_{10}$
	Zwei oder mehr	k ₁ ; k ₂ ; k _{eq}
Träger-Stoß mit geschraubten Stirnblechverbindungen		
Zwoisoitia Momente gloich und gegenläufig	Eine	k ₅ [links]; k ₅ [rechts]; k ₁₀
	Zwei oder mehr	k _{eq}
Fußplattenverbindungen		
	Eine	k ₁₃ ; k ₁₅ ; k ₁₆
Fußplattenverbindungen	Zwei oder mehr	k ₁₃ ; k ₁₅ und k ₁₆ für jede Schraubenreihe

angegeben. Die Grundkomponenten von geschraubten Stirnblechverbindungen und von Fußplatten sind der Tabelle 6.10 zu entnehmen. Die in diesen beiden Tabellen genannten Steifigkeitskoeffizienten k_i der Grundkomponenten sind in Tabelle 6.11 angegeben.

(8) Bei Träger-Stützenanschlüssen mit Stirnblechen sollte die Anschlusssteifigkeit wie folgt bestimmt werden: Der äquivalente Steifigkeitskoeffizient k_{eq} und der

äquivalente Hebelarm z_{eq} des Anschlusses ist nach 6.3.3 zu ermitteln. Die Steifigkeit des Anschlusses sollte dann mit den Steifigkeitskoeffizienten k_{eq} (für die Verbindung) und k_1 (für den Stützensteg mit Schubbeanspruchung) und mit dem Hebelarm $z = z_{eq}$ (gleich dem äquivalenten Hebelarm des Anschlusses) nach 6.3.1(4) berechnet werden.

Komponente	Steifigkeitskoeffizient k _i		
Stützenstegfeld mit Schub- beanspruchung	Nicht ausgesteift, einseitiger Anschluss, oder zweiseitiger Anschluss mit etwa gleich hohen Trägern	Ausgesteift	
	$k_1 = \frac{0.38 A_{\rm vc}}{\beta z}$	$k_1 = \infty$	
	zHebelarm nach Bild 6.15; β Übertragungsparameter nach 5.3 (7).		
Stützensteg mit	Nicht ausgesteift	Ausgesteift	
Queraruck- beanspruchung	$k_2 = \frac{0.7 b_{\rm eff.c.wc} t_{\rm wc}}{d_{\rm c}}$	$k_2 = \infty$	
	$b_{\rm eff,c,wc}$ effektive Breite des Stützenstegs be	ei Druckbeanspruchung nach 6.2.6.2.	
Stützensteg mit Querzug- beanspruchung	Ausgesteifte oder nicht ausgesteifte ge- schraubte Verbindung mit einer Schrauben- reihe mit Zug oder nicht ausgesteifte geschweißte Verbindung	Ausgesteifte geschweißte Verbindung	
	$k_3 = \frac{0.7 \ b_{\rm eff,t,wc} t_{\rm wc}}{d_{\rm c}}$	$k_3 = \infty$	
	$ b_{\rm eff,t,wc} {\rm effektive \ Breite \ des \ Stützensteges \ minimizer \ schwarzen \ $	it Zugbeanspruchung nach 6.2.6.3. Für rreihe mit Zug sollte $b_{\rm eff,t,wc}$ der kleinsten der Is Teil einer Schraubenreihengruppe) rubenreihe nach Tabelle 6.4 (für einen nicht abelle 6.5 (für einen ausgesteiften	
Stützenflansch mit Biege- beanspruchung (für eine Schrau- benreihe mit Zug)	$k_4 = \frac{0.9 \ell_{\rm eff} t_{\rm fc}^{-3}}{m^3}$ $\ell_{\rm eff} \text{kleinste der wirksamen Längen (einzeln oder als Teil einer Schraubenreihengruppe),}$ die sich für diese Schraubenreihe nach Tabelle 6.4 (für einen nicht ausgesteiften Stützenflansch) oder Tabelle 6.5 (für einen ausgesteiften Stützenflansch) ergeben; m wie in Bild 6.8 definiert.		
Stirnblech mit Biegebeanspru- chung (für eine Schrau- benreihe mit Zug)	$k_{5} = \frac{0.9 \ell_{\text{eff}} t_{\text{p}}^{-3}}{m^{3}}$ $\ell_{\text{eff}} kleinste der wirksamen Längen (einzeln die sich für diese Schraubenreihe nach mit wie allgemein in Bild 6.11 definiert, jedon überstehenden Teil eines Stirnblechs mit$	oder als Teil einer Schraubenreihengruppe), Tabelle 6.6 ergeben; ch gilt für eine Schraubenreihe im = m_x , wobei m_x in Bild 6.10 definiert ist.	

Tabelle 6.11. Steifigkeitskoeffizienten für Grundkomponenten

|___

_

1

Komponente	Steifigkeitskoeffizient k _i		
Flanschwinkel mit Biege- beanspruchung	$k_{6} = \frac{0.9 \ell_{eff} t_{a}^{3}}{m^{3}}$ $\ell_{eff} \text{ wirksame Länge des Flanschwinkels nach Bild 6.12;}$ m wie in Bild 6.13 definiert.		
Schrauben mit Zugbeanspru- chung (für eine Schraubenreihe)	$k_{10} = 1,6A_s/L_b$ Vorgespannt oder nicht vorgespannt L_b Dehnlänge der Schraube, die sich aus der gesamten Klemmlänge (Gesamtdicke des Materials und der Unterlegscheiben) plus der halben Kopfhöhe und der halben Mutternhöhe ergibt.		
Schrauben mit	Nicht vorgespannt	Vorgespannt ^a	
beanspruchung	$k_{11} (\text{oder } k_{17}) = \frac{16n_{\text{b}} d^2 f_{\text{ub}}}{Ed_{\text{M16}}}$	$k_{11} = \infty$	
	d_{M16} Nenndurchmesser einer Schraube M1 $n_{\rm b}$ Anzahl der Schraubenreihen mit Schu	6; b.	
Schrauben mit	Nicht vorgespannt	Vorgespannt ^a	
Lochleibungs- beanspruchung (für jede Kom-	$k_{12} \text{ (oder } k_{13}\text{)} = \frac{24n_{\rm b}k_{\rm b}k_{\rm t}df_{\rm u}}{E}$	$k_{12} = \infty$	
ponente j, an der die Schrauben mit Lochleibung wirken)	$\begin{split} k_{\rm b} &= k_{\rm b1} \\ & \text{jedoch } k_{\rm b} \leq k_{\rm b2} \\ k_{\rm b1} &= 0.25 \ e_{\rm b}/d + 0.5 \\ & \text{jedoch } k_{\rm b1} \leq 1.25 \\ k_{\rm b2} &= 0.25 \ p_{\rm b}/d + 0.375 \\ & \text{jedoch } k_{\rm b2} \leq 1.25 \\ k_{\rm t} &= 1.5 \ t_{\rm j}/d_{\rm M16} \\ & \text{jedoch } k_{\rm t} \leq 2.5 \end{split}$	 <i>e</i>_b Randabstand der Schraubenreihe in Kraftrichtung; <i>f</i>_u Zugfestigkeit des Stahls, der auf Lochleibung beansprucht wird; <i>p</i>_b Abstand der Schraubenreihen in Kraftrichtung; <i>t</i>_j Blechdicke dieser Komponente. 	
Beton mit Druck- beanspruchung (einschließlich Mörtel)	$k_{13} = \frac{E_c \sqrt{b_{eff} l_{eff}}}{1,275 E}$ b_{eff} wirksame Breite des T-Stummelflansche l_{eff} wirksame Länge des T-Stummelflansche	es, siehe 6.2.5(3); es, siehe 6.2.5(3).	
Blech mit Biege- beanspruchung infolge Druck $k_{14} = \infty$ Dieser Koeffizient wird bereits bei der Berechnung des Steifigkeitskoeffiziente berücksichtigt.		nnung des Steifigkeitskoeffizienten k_{13}	
Fußplatte mit	Mit Abstützkräften ^b	Ohne Abstützkräfte ^b	
chung infolge Zug (für eine Schrau-	$k_{15} = \frac{0.85 \ell_{\rm eff} t_{\rm p}^{-3}}{m^3}$	$k_{15} = \frac{0,425 \ell_{\rm eff} t_{\rm p}^{\ 3}}{m^3}$	
benreihe mit Zug)	 <i>l</i>_{eff} wirksame Länge des T-Stummelflansch <i>t</i>_p Dicke der Fußplatte; <i>m</i> Abstand nach Bild 6.8. 	es, siehe 6.2.5(3);	

Tabelle 6.11. Steifigkeitskoeffizienten für Grundkomponenten (Fortsetzung)

1

Kannanata	Ctaifinkaita	kaaffiniant k		
Komponente	Komponente Steingkeitskoemzient k _i			
Ankerschrauben	Mit Abstützkräften ^b	Ohne Abstützkräfte ^b		
mit Zug- beanspruchung	$k_{16} = 1.6A_{\rm s}/L_{\rm b}$	$k_{16} = 2,0A_{\rm s}/L_{\rm b}$		
	L _b Dehnlänge der Ankerschraube, die sich bendurchmesser, den Dicken der Mörtel und der halben Mutternhöhe ergibt.	aus der Summe aus dem 8fachen Schrau- Ischicht, der Fußplatte, der Unterlegscheiben		
ANMERKUNG 1	Bei der Berechnung von $b_{ m eff}$ und $l_{ m eff}$ entspricht der b	Abstand c der 1,25fachen Fußplattendicke.		
ANMERKUNG 2 des Anschlusses.	Verstärkungsbleche an den Stützenflanschen hat	ben keinen Einfluss auf die Rotationssteifigkeit $S_{\rm j}$		
ANMERKUNG 3 braucht daher bei de	ANMERKUNG 3 Für Schweißnähte (k_{19}) darf unendlich große Steifigkeit angenommen werden. Diese Komponente braucht daher bei der Berechnung der Rotationssteifigkeit S_j nicht berücksichtigt zu werden.			
ANMERKUNG 4 Für einen Trägerflansch und -steg mit Druck (k_7), einen Trägersteg mit Zug (k_8), Bleche mit Zug oder Druck (k_9) oder für Vouten (k_{20}) darf der Steifigkeitskoeffizient als unendlich groß angenommen werden. Diese Komponenten brauchen bei der Berechnung der Rotationssteifigkeit S_i nicht berücksichtigt zu werden.				
ANMERKUNG 5 entsprechenden Gru	ANMERKUNG 5 Wenn mit zusätzlichen Stegblechen verstärkt wird, sollten die Steifigkeitskoeffizienten für die entsprechenden Grundkomponenten des Anschlusses k_1 bis k_3 wie folgt vergrößert werden:			
 — k₁ f ür das St üt berechnet werd 	 k₁ f			
 — k₂ für den Stüt werden; 	 k₂ für den Stützensteg mit Druckbeanspruchung sollte mit der wirksamen Stegdicke nach 6.2.6.2(6) berechnet werden; 			
 — k₃ für den Stü werden. 	k ₃ f ür den St ützensteg mit Zugbeanspruchung sollte mit der wirksamen Stegdicke nach 6.2.6.3(8) berechnet werden.			
^a Vorausgesetzt, di nicht auf Lochleibi	Vorausgesetzt, die Schrauben sind so bemessen, dass bei dem relevanten Lastniveau kein Gleiten auftritt und die Schrauben nicht auf Lochleibung wirken.			
^b Abstützkräfte könr	Abstützkräfte können auftreten, wenn $L_{\rm b} \le \frac{8.8m^3A_{\rm s}}{l_{\rm eff}t^3}$			

Tabelle 6.11. Steifigkeitskoeffizienten für Grundkomponenten (Fortsetzung)

6.3.2 Steifigkeitskoeffizienten für die Grundkomponenten eines Anschlusses

(1) Die Steifigkeitskoeffizienten für die Grundkomponenten eines Anschlusses sind Tabelle 6.11 zu entnehmen.

6.3.3 Stirnblechanschlüsse mit zwei oder mehr Schraubenreihen mit Zugbeanspruchung

6.3.3.1 Allgemeines Verfahren

(1) Bei Stirnblechanschlüssen mit zwei oder mehr Schraubenreihen mit Zugbeanspruchung ist für alle Grundkomponenten für diese Schraubenreihen der äquivalente Steifigkeitskoeffizient k_{eq} in der Regel wie folgt zu ermitteln:

$$k_{\rm eq} = \frac{\sum\limits_{\rm r} k_{\rm eff,r} h_{\rm r}}{z_{\rm eq}}$$
(6.29)

Dabei ist

 $h_{\rm r}$ der Abstand der Schraubenreihe *r* vom Druckpunkt;

- $k_{\rm eff,r}$ der effektive Steifigkeitskoeffizient für die Schraubenreihe *r* unter Berücksichtigung der Steifigkeitskoeffizienten k_i für die Grundkomponenten, die in 6.3.3.1(4) oder 6.3.3.1(5) angegeben sind;
- z_{eq} der äquivalente Hebelarm, siehe 6.3.3.1(3).

(2) Der effektive Steifigkeitskoeffizient $k_{\text{eff,r}}$ für die Schraubenreihe *r* wird in der Regel wie folgt bestimmt:

$$k_{\rm eff,r} = \frac{1}{\sum_{\rm i} \frac{1}{k_{\rm i,r}}}$$
 (6.30)

Dabei ist

 $k_{i,r}$ der Steifigkeitskoeffizient der Komponente *i* bezogen auf die Schraubenreihe *r*.

(3) Der äquivalente Hebelarm z_{eq} ist wie folgt zu bestimmen:

$$z_{\rm eq} = \frac{\sum_{\rm r} k_{\rm eff,r} \, h_{\rm r}^2}{\sum_{\rm r} k_{\rm eff,r} \, h_{\rm r}} \tag{6.31}$$

Bild 6.20. Hebelarm z für das vereinfachte Verfahren

(4) Bei einem Träger-Stützenanschluss mit Stirnblechverbindung wird in der Regel der äquivalente Steifigkeitskoeffizient k_{eq} aus den Steifigkeitskoeffizienten k_i folgender Komponenten bestimmt:

- Stützensteg mit Zugbeanspruchung (k_3) ;
- Stützenflansch mit Biegebeanspruchung (k_4) ;
- Stirnblech mit Biegebeanspruchung (k_5) ;
- Schrauben mit Zugbeanspruchung (k_{10}) .

(5) Bei einem Trägerstoß mit geschraubten Stirnblechen wird in der Regel der äquivalente Steifigkeitskoeffizient k_{eq} aus den Steifigkeitskoeffizienten k_i folgender Komponenten bestimmt:

- Stirnblech mit Biegebeanspruchung (k₅);
- Schrauben mit Zugbeanspruchung (k_{10}) .

6.3.3.2 Vereinfachtes Verfahren für überstehende Stirnbleche mit zwei Schraubenreihen mit Zugbeanspruchung

(1) Bei überstehenden Stirnblechverbindungen mit zwei Schraubenreihen mit Zugbeanspruchung (eine im überstehenden Teil des Stirnblechs und eine zwischen den Flanschen des Trägers, siehe Bild 6.20) dürfen Ersatzsteifigkeitskoeffizienten der entsprechenden Grundkomponenten verwendet werden, mit denen die kombinierte Wirkung der beiden Schraubenreihen berücksichtigt wird. Als Ersatzsteifigkeitskoeffizient darf der zweifache Wert des entsprechenden Wertes für eine Schraubenreihe im überstehenden Teil des Stirnblechs angenommen werden.

Anmerkung: Diese Näherung führt zu einer etwas zu geringen Rotationssteifigkeit.

(2) Wenn dieses vereinfachte Verfahren angewandt wird, ist in der Regel als Hebelarm z der Abstand vom Druckpunkt zu dem Punkt anzunehmen, der genau zwischen den beiden Schraubenreihen mit Zugbeanspruchung liegt, siehe Bild 6.20.

6.3.4 Stützenfüße

(1) Die Rotationssteifigkeit S_j eines Stützenfußes, der gleichzeitig durch Normalkraft und Biegung beansprucht wird, sollte nach Tabelle 6.12 berechnet werden. Bei dieser Methode werden die folgenden Steifigkeitskoeffizienten verwendet:

- $k_{\text{T},1}$ Zugsteifigkeitskoeffizient der linken Seite des Anschlusses und dessen Inverse und identisch mit der Summe der auf der rechten Seite des Anschlusses wirkenden Inversen der Steifigkeitskoeffizienten k_{15} und k_{16} , siehe Tabelle 6.11;
- $k_{\text{T,r}}$ Zugsteifigkeitskoeffizient der rechten Seite des Anschlusses und dessen Inverse und identisch mit der Summe der auf der linken Seite des Anschlusses wirkenden Inversen der Steifigkeitskoeffizienten k_{15} und k_{16} , siehe Tabelle 6.11;

Belastung	Hebelarm <i>z</i>	Rotationssteifigkeit S _{j,ini}	
Linke Seite mit Zugbeanspruchung	$z = z_{\mathrm{T},1} + z_{\mathrm{C},\mathrm{r}}$	$N_{\rm Ed} > 0$ und $e > z_{\rm T,1}$	$N_{\rm Ed} \leq 0$ und $e \leq -z_{\rm C,r}$
Rechte Seite mit Druckbeanspruchung		$\frac{Ez^2}{\mu(1/k_{\mathrm{T},\mathrm{I}}+1/k_{\mathrm{C},\mathrm{r}})}\frac{e}{e+e_\mathrm{k}} \text{ wobe}$	ei $e_{\rm k} = \frac{z_{\rm C,r}k_{\rm C,r} - z_{\rm T,1}k_{\rm T,1}}{k_{\rm T,1} + k_{\rm C,r}}$
Linke Seite mit Zugbeanspruchung	$z = z_{\mathrm{T},1} + z_{\mathrm{T},\mathrm{r}}$	$N_{\rm Ed} > 0$ und $0 < e < z_{\rm T,1}$	$N_{\rm Ed} > 0$ und $-z_{\rm T,r} < e \leq 0$
Rechte Seite mit Zugbeanspruchung		$rac{Ez^2}{\mu(1/k_{\mathrm{T,I}}+1/k_{\mathrm{T,r}})}rac{e}{e+e_\mathrm{k}}$ wobe	$e_{k} = \frac{z_{T,r}k_{T,r} - z_{T,1}k_{T,1}}{k_{T,1} + k_{T,r}}$
Linke Seite mit Druckbeanspruchung	$z = z_{\rm C,1} + z_{\rm T,r}$	$N_{\rm Ed} > 0$ und $e \leq -z_{\rm T,r}$	$N_{\rm Ed} \leq 0$ und $e > z_{\rm C,1}$
Rechte Seite mit Zugbeansprüchung		$\frac{Ez^2}{\mu(1/k_{\mathrm{C},1}+1/k_{\mathrm{T},\mathrm{r}})}\frac{e}{e+e_\mathrm{k}} \text{ wobe}$	ei $e_{\rm k} = \frac{z_{\rm T,r}k_{\rm T,r} - z_{\rm C,1}k_{\rm C,1}}{k_{\rm C,1} + k_{\rm T,r}}$
Linke Seite mit Druckbeanspruchung	$z = z_{C,1} + z_{C,r}$	$N_{\rm Ed} \leq 0$ und $0 < e < z_{\rm C,1}$	$N_{\rm Ed} \leq 0 { m und} - z_{ m C,r} < e \leq 0$
Rechte Seite mit Druckbeanspruchung		$\frac{Ez^2}{\mu(1/k_{\mathrm{C},\mathrm{I}}+1/k_{\mathrm{C},\mathrm{r}})}\frac{e}{e+e_\mathrm{k}} \text{ wobe}$	ei $e_{\rm k} = \frac{z_{\rm C,r}k_{\rm C,r} - z_{\rm C,1}k_{\rm C,1}}{k_{\rm C,1} + k_{\rm C,r}}$
Positive Momente $M_{Ed} > 0$ im Uhrzeigersinn, Positive Kräfte $N_{Ed} > 0$: Zug, μ siehe 6.3.1 (6). $e = \frac{M_{Ed}}{N_{Ed}} = \frac{M_{Rd}}{N_{Ed}}$			

Tabelle 6.12. Rotationssteifigkeit S_i von Stützenfüßen

- $k_{C,1}$ Drucksteifigkeitskoeffizient der linken Seite des Anschlusses und identisch mit dem auf der linken Seite des Anschlusses wirkenden Steifigkeitskoeffizienten k_{13} , siehe Tabelle 6.11;
- $k_{\text{C,r}}$ Drucksteifigkeitskoeffizient der rechten Seite des Anschlusses und identisch mit dem auf der rechten Seite des Anschlusses wirkenden Steifigkeitskoeffizienten k_{13} , siehe Tabelle 6.11.
- (2) Zur Berechnung von $z_{T,1}$, $z_{C,1}$, $z_{T,r}$, $z_{C,r}$ siehe 6.2.8.1.

6.4 Rotationskapazität

6.4.1 Allgemeines

(1)P Bei starr-plastischer Berechnung müssen die Anschlüsse an den Stellen, wo plastische Gelenke entstehen können, über ausreichende Rotationskapazität verfügen.

(2) Die Rotationskapazität eines geschraubten oder eines geschweißten Anschlusses kann mit den Regelungen in 6.4.2 oder 6.4.3 ermittelt werden. Die Regelungen dort gelten nur für Stahlgüten S235, S275 und S355 und für Anschlüsse, bei denen der Bemessungswert der einwirkenden Normalkraft $N_{\rm Ed}$ im angeschlossenen Bauteil 5% der plastischen Tragfähigkeit $N_{\rm nf \ Bd}$ des Querschnitts nicht überschreitet.

(3) Alternativ zu 6.4.2 und 6.4.3 kann auf den Nachweis der Rotationskapazität des Anschlusses verzichtet werden, vorausgesetzt, dass die Biegetragfähigkeit $M_{j,Rd}$ des Anschlusses mindestens das 1,2fache der plastischen Biegetragfähigkeit $M_{pl,Rd}$ des Querschnitts des angeschlossenen Bauteils beträgt.

(4) In den Fällen, die nicht in 6.4.2 und 6.4.3 geregelt sind, kann die Rotationskapazität durch Versuche in Übereinstimmung mit EN 1990, Anhang D, bestimmt werden. Alternativ können geeignete numerische Berechnungsverfahren verwendet werden, sofern diese entsprechend EN 1990 auf den Ergebnissen von Versuchen basieren.

6.4.2 Geschraubte Anschlüsse

(1) Bei einem Träger-Stützenanschluss, dessen Biegetragfähigkeit $M_{j,Rd}$ durch die Schubtragfähigkeit des Stützenstegfeldes bestimmt wird, kann davon ausgegangen werden, dass genügend Rotationskapazität zur Anwendung des plastisch-plastischen Berechnungsverfahrens vorhanden ist, wenn $d_{wc}/t_w \leq 69\varepsilon$ gilt. (2) Bei einem Anschluss mit Stirnblech oder Flanschwinkeln kann davon ausgegangen werden, dass genügend Rotationskapazität zur Anwendung des plastischplastischen Berechnungsverfahrens vorhanden ist, wenn die folgenden Bedingungen erfüllt sind:

a) die Biegetragfähigkeit des Anschlusses wird bestimmt durch die Tragfähigkeit von entweder:

- dem Stützenflansch mit Biegebeanspruchung oder
- dem Stirnblech oder dem Flanschwinkel auf der Trägerzugseite mit Biegebeanspruchung.

b) die Dicke *t* des Stützenflansches oder des Stirnblechs oder des Flanschwinkels auf der Trägerzugseite (nicht notwendigerweise die gleiche Grundkomponente wie in (a)) erfüllt folgende Bedingung:

$$t \le 0.36d \sqrt{f_{\rm ub}/f_{\rm y}} \tag{6.32}$$

Dabei ist

d der Nenndurchmesser der Schraube;

- f_{ub} die äußerste Bruchfestigkeit des Schraubenwerkstoffes;
- f_y die Streckgrenze der maßgebenden Grundkomponente.

(3) Bei einem geschraubten Anschluss, dessen Biegetragfähigkeit $M_{j,Rd}$ durch die Abschertragfähigkeit der Schrauben bestimmt wird, darf nicht davon ausgegangen werden, dass genügend Rotationskapazität zur Anwendung des plastisch-plastischen Berechnungsverfahrens vorhanden ist.

6.4.3 Geschweißte Anschlüsse

(1) Bei einem geschweißten Träger-Stützenanschluss, bei dem nur der Stützensteg in der Druckzone ausgesteift ist, nicht jedoch in der Zugzone, kann die Rotationskapazität ϕ_{Cd} wie folgt bestimmt werden, wenn die Biegetragfähigkeit nicht durch die Schubtragfähigkeit des Stützenstegfeldes bestimmt wird, siehe 6.4.2(1):

$$\phi_{\rm Cd} = 0.025 \ h_{\rm c}/h_{\rm b} \tag{6.33}$$

Dabei ist

 $h_{\rm b}$ die Profilhöhe des Trägers;

 $h_{\rm c}$ die Profilhöhe der Stütze.

(2) Bei einem nicht ausgesteiften, geschweißten Träger-Stützenanschluss, der nach den Regelungen dieses Abschnitts bemessen wird, kann eine Rotationskapazität ϕ_{Cd} von mindestens 0,015 rad angenommen werden.

7 Anschlüsse mit Hohlprofilen

7.1 Allgemeines

7.1.1 Geltungsbereich

(1) Dieser Abschnitt enthält detaillierte Anwendungsregeln zur Bestimmung der Tragfähigkeit von ebenen und räumlichen Anschlüssen in Fachwerken, die aus runden, quadratischen oder rechteckigen Hohlprofilen bestehen, sowie von ebenen Anschlüssen mit Kombinationen von Hohlprofilen und offenen Profilen. Dabei wird vorwiegend ruhende Belastung vorausgesetzt.

(2) Die Tragfähigkeit von Anschlüssen wird als maximale Tragfähigkeit der Streben des Fachwerks für Normalkräfte oder Biegemomente angegeben.

(3) Diese Anwendungsregeln gelten für warmgefertigte Hohlprofile nach EN 10210 und für kaltgeformte Hohlprofile nach EN 10219, sofern die Abmessungen der Hohlprofile den Anforderungen dieses Abschnitts genügen.

(4) Der Nennwert der Streckgrenze von warmgefertigten Hohlprofilen und von kaltgeformten Hohlprofilen sollte 460 N/mm² im Endprodukt nicht überschreiten. Für Endprodukte mit einem Nennwerte der Streckgrenze größer als 355 N/mm² sind in der Regel die in diesem Abschnitt angegebenen Tragfähigkeiten mit dem Abminderungsbeiwert 0,9 zu reduzieren.

(5) Der Nennwert der Wanddicke von Hohlprofilen sollte mindestens 2,5 mm betragen.

(6) Der Nennwert der Wanddicke von Gurtstäben aus Hohlprofilen sollte 25 mm nicht überschreiten, es sei denn, es werden entsprechende Maßnahmen zur Sicherstellung geeigneter Werkstoffeigenschaften in Dickenrichtung getroffen.

(7) Der Ermüdungsnachweis ist in EN 1993-1-9 geregelt.

(8) Die geregelten Anschlusstypen sind in Bild 7.1 dargestellt.

7.1.2 Anwendungsbereich

(1) Die Anwendungsregeln für Anschlüsse mit Hohlprofilen gelten nur, wenn die Bedingungen 7.1.2(2) bis 7.1.2(8) eingehalten sind.

(2) Die druckbeanspruchten Querschnittselemente der Bauteile sollten den Anforderungen der Querschnittsklassen 1 oder 2, die in EN 1993-1-1 für axialen Druck angegeben sind, entsprechen.

(3) Für die Anschlusswinkel θ_i zwischen Gurtstäben und Streben bzw. zwischen benachbarten Streben sollte gelten:

 $\theta_i \ge 30^\circ$

(4) Die Enden der Bauteile, die am Anschluss zusammentreffen, sollten derart vorbereitet werden, dass die äußere Profilform nicht verändert wird. Abgeflachte und angedrückte Endverbindungen werden in diesem Abschnitt nicht behandelt.

(5) Bei Anschlüssen mit Spalt sollte die Spaltweite zwischen den Streben nicht geringer als $(t_1 + t_2)$ sein, so dass genügend Platz für die erforderlichen Schweißnähte vorhanden ist.

(6) Bei Anschlüssen mit Überlappung sollte eine ausreichende Überlappung vorhanden sein, um die Querkraftübertragung von einer Strebe zur anderen zu ermöglichen. In jedem Fall sollte das Überlappungsverhältnis mindestens 25% betragen. Wenn die Überlappung größer als $\lambda_{ov,lim} = 60\%$ ist, falls die verdeckte Naht der überlappten Strebe nicht geschweißt ist oder $\lambda_{ov,lim} = 80\%$ ist, falls die verdeckte Naht der überlappten Strebe geschweißt ist oder wenn die Streben rechteckige Profile mit $h_i < b_i$ und/oder $h_j < b_j$, sind, sollte die Verbindung zwischen den Streben und der Oberfläche des Gurtstabes auf Abscherung überprüft werden. (7) Wenn überlappende Streben unterschiedliche Wanddicken und/oder unterschiedliche Werkstoff-

Zu 7.1.1(4)

Für Hohlprofile mit Streckgrenzen über 460 N/mm² bis 700 N/mm² ist nach DIN EN 1993-1-12 ein Abminderungsbeiwert von 0,8 anzusetzen.

Zu 7.1.1(5)

Zur Vermeidung des Durchfallens der Naht wird eine Mindestwanddicke von 2,5 mm gefordert. Kann die Stahlbaufirma durch eine Verfahrensprüfung nachweisen, dass sie auch dünnwandigere Hohlprofile schweißen kann, darf von der geforderten Mindestwanddicke abgewichen werden.

Zu 7.1.2(3)

Die Forderung nach Anschlusswinkel $\theta_i \ge 30^{\circ}$ stellt sicher, dass auch die Schweißnaht zwischen der Strebe und dem Gurtprofil bei Punkt D (vgl. Bild K13) einwandfrei ausgeführt werden kann. Anschlusswinkel größer als $\theta_i = 50^{\circ}$ sollten bei Strebenfachwerken aus Hohlprofilen vermieden werden.

Bild K13. Knotenanschluss mit Spalt

Zu 7.1.2(4)

Anschlüsse mit abgeflachten oder halbabgeflachten Profilenden werden vornehmlich bei Rundhohlprofilen für Konstruktionen mit geringen Spannweiten oder untergeordneter Bedeutung im Gesamtsystem eingesetzt, um den Aufwand bei dem Zuschnitt der Profilenden zu vermeiden. Die Nachweisführung für derartige Anschlüsse ist normativ nicht geregelt, kann aber mit Hilfe der Fachliteratur z. B. [K17], [K44] erfolgen. Bei größeren Wanddicken sollte die Abflachung nicht durch Kaltumformung hergestellt werden, da aufgrund der großen plastischen Verformungen Risse an den Profilenden entstehen können.

Zu 7.1.2(6)

Das Überlappungsverhältnis wird mit λ_{ov} bezeichnet und ist nach der in Bild 1.3 angegebenen Gleichung zu bestimmen. Überlappungsverhältnisse λ_{ov} < 25 % sind zu vermeiden, da die Steifigkeit des Anschlusses im Bereich der Überlappung wesentlich größer ist als bei dem Anschluss zwischen der überlappenden Strebe und dem Gurtprofil. Die unterschiedlichen Steifigkeitsverhältnisse führen zu lokalen Spannungsspitzen und können zu einem vorzeitigen Versagen des Anschlusses beitragen. Überschreitet die Überlappung λ_{ov} die Grenzwerte $\lambda_{ov,lim}$, liegen die Anschlüsse - unabhängig von dem Querschnitt des Gurtstabes (Hohlprofil, I-, H- oder U-Profil) - nicht mehr innerhalb des Gültigkeitsbereiches der DIN EN 1993-1-8. Für Kreisund Rechteck-Hohlprofile kann für solche Fälle abweichend auf die CIDECT-Design Guides (vgl. [K28], [K44]) zurückgegriffen werden. Zum Nachweis auf Abscherung siehe auch Tabelle 7.8, 7.20 und 7.23.

Bild 7.1. Anschlusstypen in Fachwerken mit Hohlprofilen

festigkeiten aufweisen, sollte die Strebe mit dem geringeren Wert $t_i f_{vi}$ die andere Strebe überlappen.

(8) Wenn überlappende Streben unterschiedliche Breiten aufweisen, sollte die Strebe mit der geringeren Breite die Strebe mit der größeren Breite überlappen.

7.2 Berechnung und Bemessung

7.2.1 Allgemeines

(1)P Im Grenzzustand der Tragfähigkeit dürfen die Bemessungswerte der Schnittgrößen in den Streben und in den Gurten die Tragfähigkeiten der Bauteile nach EN 1993-1-1 nicht überschreiten.

(2)P Im Grenzzustand der Tragfähigkeit dürfen darüber hinaus die Bemessungswerte der Schnittgrößen in den Streben die Tragfähigkeiten der Anschlüsse nach 7.4, 7.5, 7.6 oder 7.7 nicht überschreiten.

(3) Die einwirkenden Spannungen $\sigma_{0,Ed}$ oder $\sigma_{p,Ed}$ im Gurt eines Anschlusses sind wie folgt zu berechnen:

$$\sigma_{0,\text{Ed}} = \frac{N_{0,\text{Ed}}}{A_0} + \frac{M_{0,\text{Ed}}}{W_{\text{el},0}}$$
(7.1)

$$\sigma_{\rm p,Ed} = \frac{N_{\rm p,Ed}}{A_0} + \frac{M_{0,Ed}}{W_{\rm el,0}}$$
(7.2)

Dabei ist

$$N_{\rm p,Ed} = N_{0,\rm Ed} - \sum_{i>0} N_{i,\rm Ed} \cos \theta_i$$

7.2.2 Versagensformen von Anschlüssen mit Hohlprofilen

(1) Die Tragfähigkeiten von Anschlüssen mit Hohlprofilen und mit Kombinationen von Hohlprofilen und offenen Profilen sind für folgende Versagensformen zu ermitteln:

- a) Flanschversagen des Gurtstabes (plastisches Versagen des Flansches) oder Plastizierung des Gurtstabes (plastisches Versagen des Gurtquerschnitts);
- b) Seitenwandversagen des Gurtstabes (oder Stegblechversagen) durch Fließen, plastisches Stauchen oder Instabilität (Krüppeln oder Beulen der Seitenwand oder des Stegbleches) unterhalb der druckbeanspruchten Strebe;
- c) Schubversagen des Gurtstabes;
- d) Durchstanzen der Wandung eines Gurthohlprofils (Rissinitiierung führt zum Abriss der Strebe vom Gurtstab);
- e) Versagen der Strebe durch eine verminderte effektive Breite (Risse in den Schweißnähten oder in den Streben);
- f) Lokales Beulversagen der Streben oder der Hohlprofilgurtstäbe im Anschlusspunkt.

Anmerkung: Die Begriffe, die fett gedruckt sind, werden bei der Beschreibung der einzelnen Versagensformen in den Tabellen für die Tragfähigkeiten von Anschlüssen in 7.4 bis 7.7 verwendet. (2) Bild 7.2 zeigt die Versagensformen (a) bis (f) von Anschlüssen von KHP-Streben an KHP-Gurtstäbe.(3) Bild 7.3 zeigt die Versagensformen (a) bis (f) von Anschlüssen von RHP-Streben an RHP-Gurtstäbe.

Zu 7.2.1(2)

Die in den Abschnitten 7.4 bis 7.7 angegebenen Bemessungswerte der Strebentragfähigkeiten sind Ergebnis internationaler Forschungsarbeiten, die sich zu Beginn im Wesentlichen auf experimentelle Untersuchungen stützte und in der jüngeren Vergangenheit vermehrt durch numerische Untersuchungen ergänzt wurde. Die theoretischen Hintergründe und die mechanischen Modelle, auf denen die in den Abschnitten 7.4 bis 7.7 angegebenen Bestimmungsgleichungen für die Tragfähigkeit von geschweißten Hohlprofil-Anschlüssen basieren, sind von *Puthli et al.* zusammenfassend in [K30] dargestellt.

Die Berechnungsmodelle werden stetig weiterentwickelt und verfeinert. Da diese Entwickelungen nicht immer direkt in die Normung aufgenommen werden kann, sei an dieser Stelle parallel auf die Veröffentlichungen der CIDECT (z. B. [K28], [K44]) verwiesen, die in der Regel den aktuellen Stand der Technik wiedergeben.

Wer parallel mit der Norm und den CIDECT-Handbüchern arbeitet, muss dabei unter anderem berücksichtigen, dass in den CIDECT-Handbüchern der Gurtspannungseinfluss auf die Knotentragfähigkeit immer auf Grundlage der maximale Gurtdruckspannung $\sigma_{0,Ed}$ zu bestimmen ist und das $\sigma_{0,Ed}$ abweichend von DIN EN 1993-1-8, aber in Übereinstimmung mit allen weiteren internationalen Regelwerken zu Hohlprofilknoten, negativ definiert ist. Dies und weitere in der DIN EN 1993-1-8 enthaltene inkonsistente Reglungen sowie unpräzise bzw. missverständliche Formulierungen haben *Wardenier* und *Puthli* sehr ausführlich mit allen Hintergründen in [K45] dargestellt und Korrekturvorschläge für DIN EN 1993-1-8 ausgearbeitet. Auf die aus Sicht der Verfasser wichtigsten Korrekturvorschläge von *Wardenier* und *Puthli* wird an entsprechender Stelle hingewiesen.

Zu 7.2.1(3)

Bei der Ermittlung der in der Anschlussfläche des Gurtstabes wirkenden Spannungen $\sigma_{0,Ed}$ bzw. $\sigma_{p,Ed}$ sind – soweit vorhanden – auch aus der Tragwerksebene wirkende Biegemomente zu berücksichtigen, vgl. auch [K45].

Zu 7.2.2(1)

Die Versagensform "e) Versagen der Strebe" ist in der Regel nur dann zu erwarten, wenn sich aufgrund von Steifigkeitssprüngen lokale Spannungskonzentrationen im Anschlussbereich bei der Strebe einstellen. Bei Konstruktionen aus Kreis-Hohlprofilen ist dies weniger kritisch, daher sind im Abschnitt 7.4 hierzu auch keine weiteren Angaben zur Strebentragfähigkeit zu finden. Anders bei Gurtstäben aus offenen Profilen oder Rechteck-Hohlprofilen, hier resultieren aus den hohen Steifigkeiten im Bereich der Stegbleche bzw. der Seitenwände lokale Spannungsspitzen, die zum Versagen der Streben führen können. In den Abschnitten 7.5 bis 7.7 werden daher von der Anschlussgeometrie abhängige wirksame Breiten eingeführt, mit denen die Strebentragfähigkeit ermittelt werden kann.

1

Versagensform	Längskraftbelastung	Biegebelastung
а		
b		
C		
d		
e		
f		

Bild 7.2. Versagensformen von Anschlüssen mit KHP-Bauteilen

(4) Bild 7.4 zeigt die Versagensformen (a) bis (f) von Anschlüssen von KHP- und RHP-Streben an Gurtstäbe mit I- oder H-Querschnitten.

(5) Obwohl im Allgemeinen die Tragfähigkeit von Anschlüssen mit korrekt ausgeführten Schweißnähten bei Zugbeanspruchung größer ist als bei Druckbeanspruchung, wird die Tragfähigkeit eines Anschlusses auf der Grundlage der Strebenbeanspruchbarkeit auf Druck bestimmt, um möglicherweise auftretende größere örtliche Verformungen oder eine Abminderung der Rotations- oder Deformationskapazität zu vermeiden.

_

1

Versagensform	Längskraftbelastung	Biegebelastung
a		
b		
C		
d		
e		
f		

Bild 7.3. Versagensformen von Anschlüssen mit RHP-Bauteilen

_

1

Bild 7.4. Versagensformen von Anschlüssen von KHP- und RHP-Streben an Gurtstäbe mit I- oder H-Querschnitten

7.3 Schweißnähte

7.3.1 Tragfähigkeit

(1)P Die Schweißnähte, welche die Streben mit den Gurtstäben verbinden, müssen so bemessen werden, dass sie ausreichende Tragfähigkeit bei nichtlinearen Spannungsverteilungen und ausreichendes Deformationsvermögen für die Umlagerung von Biegemomenten aufweisen.

(2) In geschweißten Anschlüssen von Hohlprofilen sind die Schweißnähte in der Regel über den ganzen Umfang des Hohlprofilquerschnitts als durchgeschweißte Stumpfnähte, Kehlnähte oder als Kombinationenvon beiden auszuführen. Jedoch braucht in Anschlüssen mit teilweiser Überlappung der nicht sichtbare Bereich der Verbindung nicht verschweißt zu werden, wenn die Längskräfte in den Streben derart ausgewogen sind, dass ihre Kraftkomponenten rechtwinklig zur Gurtstabachse um nicht mehr als 20 % differieren. (3) Typische Schweißnahtdetails sind in der Bezugsnormengruppe 7 in 1.2.7 dargestellt.

(4) Die Tragfähigkeit der Schweißnaht je Längeneinheit am Umfang einer Strebe sollte normalerweise nicht kleiner als die Zugtragfähigkeit des Bauteilquerschnitts je Längeneinheit am Umfang sein.

(5) Die erforderliche Schweißnahtdicke ist in der Regel nach Abschnitt 4 zu bestimmen.

Zu 7.3.1(4)

Mit dieser Forderung wird ein vorzeitiges, sprödes Versagen der Schweißnähte im Anschluss verhindert und insbesondere bei zugbeanspruchten Querschnittsteilen mit ungleichmäßigen Spannungsverteilungen sichergestellt, dass eine Umverteilung der Spannungen durch Fließen zu weniger beanspruchten Querschnittsteilen ermöglicht wird, ohne ein vorzeitiges Versagen der Schweißnähte.

Bild 7.5. Schweißnahtdicke von Hohlkehlnähten bei Rechteckhohlprofilen

(6) Das in 7.3.1(4) genannte Kriterium braucht nicht beachtet zu werden, wenn die Wirksamkeit einer kleineren Schweißnaht im Hinblick auf die Tragfähigkeit, Verformungs- und Rotationskapazität unter Berücksichtigung einer möglichen Begrenzung der wirksamen Schweißnahtlänge nachgewiesen werden kann.

(7) Für Rechteckhohlprofile (RHP) ist die Definition der Schweißnahtdicke von Hohlkehlnähten in Bild 7.5 dargestellt.

(8) Zum Schweißen in kaltgeformten Bereichen, siehe 4.14.

7.4 Geschweißte Anschlüsse von KHP-Bauteilen

7.4.1 Allgemeines

(1) Liegen die geometrischen Abmessungen von Anschlüssen innerhalb des Gültigkeitsbereiches von Tabelle 7.1, dürfen die Tragfähigkeiten von geschweißten Anschlüssen von KHP-Bauteilen nach 7.4.2 und 7.4.3 bestimmt werden.

(2) Liegen die geschweißten Anschlüsse innerhalb des Gültigkeitsbereiches nach Tabelle 7.1, braucht nur Flanschversagen des Gurtstabes und Durchstanzen betrachtet zu werden. Die Tragfähigkeit eines Anschlusses ist durch den kleinsten Wert definiert.

(3) Bei Anschlüssen außerhalb des Gültigkeitsbereiches nach Tabelle 7.1 sollten alle Versagensformen untersucht werden, die in 7.2.2 aufgelistet sind. Zusätzlich sollten in diesem Fall bei der Bemessung der Anschlüsse die Sekundärmomente, die sich aus ihrer Rotationssteifigkeit ergeben, berücksichtigt werden.

7.4.2 Ebene Anschlüsse

(1)P Werden die Streben an den Anschlüssen nur durch Längskräfte beansprucht, dürfen die Bemessungswerte der einwirkenden Schnittgrößen $N_{i,Ed}$ die Bemessungswerte der Tragfähigkeiten $N_{i,Rd}$, die in Tabelle 7.2, Tabelle 7.3 oder Tabelle 7.4 angegeben sind, nicht überschreiten.

(2) Werden die Streben an den Anschlüssen durch Biegemomente und Längskräfte beansprucht, ist in der Regel die folgende Interaktionsbedingung zu erfüllen:

Tabelle 7.1.	Gültigkeitsbereich	für	geschweißte	Anschlüsse
von KHP-Stre	ben an KHP-Gurtst	äbe		

Durchmesserverhältnis		$0.2 \leq d_{\rm i}/d_0 \leq 1.0$
Gurtstäbe	Zug	$10 \le d_0/t_0 \le 50$ (allgemein), jedoch: $10 \le d_0/t_0 \le 40$ (für X-Anschlüsse)
	Druck	Klasse 1 oder 2 und $10 \le d_0/t_0 \le 50$ (allgemein), jedoch: $10 \le d_0/t_0 \le 40$ (für X-Anschlüsse)
Streben	Zug	$d_{\rm i}/t_{\rm i} \leq 50$
	Druck	Klasse 1 oder 2
Überlappung		25 % $\leq \lambda_{ov} \leq \lambda_{ov,lim}$, siehe 7.1.2 (6)
Spalt		$g \geq t_1 + t_2$

$$\frac{N_{i,\text{Ed}}}{N_{i,\text{Rd}}} + \left[\frac{M_{\text{ip},i,\text{Ed}}}{M_{\text{ip},i,\text{Rd}}}\right]^2 + \frac{|M_{\text{op},i,\text{Ed}}|}{M_{\text{op},i,\text{Rd}}} \le 1,0$$
(7.3)

Dabei ist

- $M_{ip,i,Rd}$ die Momententragfähigkeit des Anschlusses in der Ebene des Fachwerks;
- $M_{\rm ip,i,Ed}$ das einwirkende Biegemoment in der Ebene des Fachwerks;
- $M_{\text{op},i,\text{Rd}}$ die Momententragfähigkeit des Anschlusses rechtwinklig zur Ebene des Fachwerks;
- $M_{\text{op},i,\text{Ed}}$ das einwirkende Biegemoment rechtwinklig zur Ebene des Fachwerks.

Zu 7.4.2, Gleichung (7.3)

Wirken neben Längskräften und Biegemomenten in ebenen Anschlüssen aus Kreis-Hohlprofilen noch Querkräfte

 $V_{\rm Ed}$ > 0,5 $V_{\rm pl,Rd}$

sollte nach $[\dot{K30}]$ die Streckgrenze für die Ermittlung der Normalkraft- und Momententragfähigkeit wie folgt reduziert werden:

$$f_{\rm y,red} = f_{\rm y} \cdot \left[1 - \left(2 \frac{V_{\rm Ed}}{V_{\rm pl,Rd}} - 1 \right)^2 \right]$$

Auch für räumliche Knoten aus KHP-Profilen, deren Tragfähigkeit unter Berücksichtigung eines Abminderungsbeiwertes μ nach Abschnitt 7.4.3, mit den Grundgleichungen für ebene Anschlüsse berechnet wird, ist die Abminderung der Streckgrenze bei kombinierten Längskräften und Biegemomenten erforderlich, sofern die im Anschluss wirkenden Querkräfte nicht als gering eingestuft werden können ($V_{\rm Ed} \leq 0.5 V_{\rm pl.Rd}$).

Die Reduktion der Streckgrenze ist sinngemäß auch bei ebenen und räumlichen Anschlüssen mit Gurtstäben aus Rechteck-Hohlprofilen und aus Kreis- oder Rechteck-Hohlprofilen gefertigten Streben anzuwenden (siehe Abschnitt 7.5, Interaktionsgleichung (7.4)).

Tabelle 7.2. Tragfähigkeit von geschweißten Anschlüssen von KHP-Streben an KHP-Gurtstäbe

Zu Tabelle 7.2

Abhängig von den geometrischen Verhältnissen sollten nach [K45] bei X-Anschlüssen (cos $\theta > \beta$) auch das Schubversagen des Gurtstabquerschnittes und bei K- und N-Anschlüssen ($\lambda_{ov} > \lambda_{ov,lim}$) das Abscheren der Strebenüberlappung von der Oberfläche des Gurtstabes geprüft werden. Bei hohen Gurtzugspannungen ist nach *Wardenier* und *Puthli* auch der Einfluss auf die Knotentragfähigkeit über einen Reduktionsfaktor $k_p \leq 1,0$ zu berücksichtigen. Ein experimentell abgesicherter Ansatz für k_p findet sich in [K45]. Der Einfluss hoher Gurtzugspannungen ist auch bei den Tabellen 7.3 bis 7.5 zu beachten.

Flanschversagen des Gurtstabes			
$- \underbrace{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array}} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array}$	$N_{1,Rd} = k_{p} f_{y0} t_{0}^{2} (4 + 20\beta^{2}) / \gamma_{M5}$ $M_{ip,1,Rd} = 0$ $M_{op,1,Rd} = 0,5 \ b_{1} N_{1,Rd}$		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $	$N_{1,\text{Rd}} = \frac{5k_{\text{p}}f_{\text{y0}}t_{0}^{2}}{1 - 0.81\beta} / \gamma_{\text{M5}}$ $M_{\text{ip},1,\text{Rd}} = 0$ $M_{\text{op},1,\text{Rd}} = 0.5 \ b_{1} N_{1,\text{Rd}}$		
$\begin{array}{c c} h_{1} \\ \hline \\ $	$N_{1,Rd} = 5k_{p}f_{y0}t_{0}^{2} (1+0.25\eta)/\gamma_{M5}$ $M_{ip,1,Rd} = h_{1}N_{1,Rd}$ $M_{op,1,Rd} = 0$		
$ \begin{array}{c} h_{1} \\ \hline \\ $	$N_{1,Rd} = 5k_{p}f_{y0}t_{0}^{2} (1+0.25\eta)/\gamma_{M5}$ $M_{ip,1,Rd} = h_{1}N_{1,Rd}$ $M_{op,1,Rd} = 0$		
Durchstanzen			
$\sigma_{\max} t_1 = (N_{\text{Ed}}/A + M_{\text{Ed}}/W_{\text{el}})t_1 \le 2t_0 (f_{y0}/\sqrt{3})/\gamma_{\text{M5}}$			
Gültigkeitsbereich	Beiwert k _p		
Zusätzlich zu den Grenzen in Tabelle 7.1 gilt:	Für $n_p > 0$ (Druck):		
$\beta \ge 0,4$ und $\eta \le 4$	$k_{\rm p} = 1 - 0.3 \ n_{\rm p} \ (1 + n_{\rm p}) \ {\rm jedoch} \qquad k_{\rm p} \le 1.0$		
dabei ist $\beta = b_1/d_0$ und $\eta = h_1/d_0$	Für $n_{\rm p} \le 0$ (Zug): $k_{\rm p} = 1,0$		

Tabelle 7.3. Tragfähigkeit von geschweißten Anschlüssen von Blechen an KHP-Bauteile

1

(3) Die einwirkende Schnittgröße $M_{i,Ed}$ darf am Anschnitt der Strebe am Gurtstabflansch bestimmt werden. (4) Die Biegetragfähigkeit $M_{i,Rd}$ der Anschlüsse in Fachwerkebene und rechtwinklig dazu ist Tabelle 7.3, Tabelle 7.4 oder Tabelle 7.5 zu entnehmen.

(5) Bei speziellen geschweißten Anschlüssen, die in Tabelle 7.6 aufgeführt sind, sind in der Regel die dort angegebenen speziellen Bemessungskriterien zu erfüllen.

1

Flanschversagen des Gurtstabs	
$ \begin{array}{c} h_{1} \\ h_{2} \\ h_{1} \\ h_{2} \\ h_{2} \\ h_{2} \\ h_{2} \\ h_{2} \\ h_{2} \\ h_{3} \\ h_{4} \\ h_{1} $	$\begin{split} N_{1,\text{Rd}} &= k_{\text{p}} f_{\text{y0}} t_0^2 \left(4 + 20\beta^2\right) (1 + 0.25\eta) / \gamma_{\text{M5}} \\ M_{\text{ip},1,\text{Rd}} &= h_1 N_{1,\text{Rd}} / (1 + 0.25\eta) \\ M_{\text{op},1,\text{Rd}} &= 0.5 \ b_1 N_{1,\text{Rd}} \end{split}$
$ \begin{array}{c} \begin{array}{c} h_{1} \\ \hline \end{array} \\ d_{0} \begin{array}{c} \uparrow \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ t_{0} \\ \hline \end{array} \\ \hline \end{array} \\ t_{0} \\ \hline \end{array} \\ \hline \end{array} \\ H \end{array} $	$N_{1,\text{Rd}} = \frac{5k_{\text{p}}f_{y0}t_{0}^{2}}{1 - 0.81\beta}(1 + 0.25\eta)/\gamma_{\text{M5}}$ $M_{\text{ip},1,\text{Rd}} = h_{1}N_{1,\text{Rd}}/(1 + 0.25\eta)$ $M_{\text{op},1,\text{Rd}} = 0.5 b_{1}N_{1,\text{Rd}}$
$ \begin{array}{c} h_1 \\ \hline \\ $	$N_{1,\text{Rd}} = k_{\text{p}} f_{y0} t_0^2 (4 + 20\beta^2) (1 + 0.25\eta) / \gamma_{\text{M5}}$ $M_{\text{ip},1,\text{Rd}} = h_1 N_{1,\text{Rd}}$ $M_{\text{op},1,\text{Rd}} = 0.5 b_1 N_{1,\text{Rd}}$
$ \begin{array}{c} h_{1} \\ \downarrow \\ $	$N_{1,\text{Rd}} = \frac{5k_{\text{p}}f_{y0}t_{0}^{2}}{1 - 0.81\beta} (1 + 0.25\eta)/\gamma_{\text{M5}}$ $M_{\text{ip},1,\text{Rd}} = h_{1} N_{1,\text{Rd}}$ $M_{\text{op},1,\text{Rd}} = 0.5 \ b_{1} N_{1,\text{Rd}}$
Durchstanzen	
I- oder H-Profile mit $\eta > 2$ (für axialen Druck und Biegung in versetzten Ebenen) und RHP-Profile: $\sigma_{\max} t_1 = (N_{Ed,1} / A_1 + M_{Ed,1} / W_{el,1}) t_1 \le t_0 (f_{y0} / \sqrt{3}) / \gamma_N$	15
Alle anderen Fälle: $\sigma_{max} t_1 = (N_{Ed 1} / A_1 + M_{Ed 1} / W_{el})$	$(t_1) t_1 \le 2 t_0 (f_{y_0} / \sqrt{3}) / \gamma_{M5}$
Dabei ist t_1 die Flansch- oder Wanddicke der I-, H-, od	er RHP-Querprofile
Gültigkeitsbereich	Beiwert k _p
Zusätzlich zu den Grenzen in Tabelle 7.1 gilt:	Für $n_{\rm p} > 0$ (Druck):
$eta \ge 0,4$ und $\eta \le 4$	$k_{\rm p}$ = 1 – 0,3 $n_{\rm p}$ (1 + $n_{\rm p}$) jedoch $k_{\rm p} \le$ 1,0
wobei $\beta = b_1/d_0$ und $\eta = h_1/d_0$	Für $n_{\rm p} \le 0$ (Zug): $k_{\rm p} = 1.0$

Tabelle 7.4. Tragfähigkeit von geschweißten Anschlüssen von I-, H- oder RHP-Streben an KHP-Gurtstäbe

(6) Die Zahlenwerte des Beiwerts k_g für K-, N- und KT-Anschlüsse, siehe Tabelle 7.2, sind in Bild 7.6 angegeben. Der Beiwert k_g gilt für Anschlüsse mit Spalt und Überlappung, wobei negative Werte von g die Überlappungslänge q repräsentieren, siehe Bild 1.3(b).

Bild 7.6. Werte für den Beiwert k_q zur Verwendung in Tabelle 7.2

Tabelle 7.6. Bemessungskriterien für spezielle geschweißte Anschlüsse von KHP-Streben an KHP-Gurtstäbe

7.4.3 Räumliche Anschlüsse

(1) In jeder maßgebenden Ebene eines räumlichen Anschlusses sind in der Regel die Bemessungskriterien in 7.4.2 unter Verwendung der verminderten Tragfähigkeiten nach 7.4.3(2) zu erfüllen.

(2) Die Tragfähigkeiten für jede maßgebende Ebene von räumlichen Anschlüssen sind mit Hilfe des maßgebenden Abminderungsbeiwerts μ aus Tabelle 7.7 zu bestimmen. Mit dem Abminderungsbeiwert μ wird die jeweilige Tragfähigkeit reduziert, die für den entsprechenden ebenen Anschluss nach 7.4.2, mit Hilfe des Beiwerts k_p für die zugehörige Gurtstabkraft berechnet worden ist.

7.5 Geschweißte Anschlüsse von KHP- oder RHP-Streben an RHP-Gurtstäbe

7.5.1 Allgemeines

(1) Liegen die geometrischen Abmessungen von Anschlüssen innerhalb des Gültigkeitsbereichs nach Tabelle 7.8, dürfen die Tragfähigkeiten von geschweißten

 Tabelle 7.7.
 Abminderungsbeiwerte f
 ür r
 äumliche Anschl
 üsse

Anschlusstyp	Anschlussparameter [$i = 1$ oder 2, $j = $ überlappte Strebe]						
	$\boldsymbol{b}_i/\boldsymbol{b}_0$	$\boldsymbol{b}_i/\boldsymbol{t}_i$ und $\boldsymbol{h}_i/\boldsymbol{t}_i$ oder $\boldsymbol{d}_i/\boldsymbol{t}_i$		$\boldsymbol{h}_0/\boldsymbol{b}_0$	b_0/t_0	Spalt oder Überlappung $\boldsymbol{b}_i/\boldsymbol{b}_j$	
	$ \begin{array}{c} $		Zug	und h_i/b_i	und h_0/t_0		
T, Y, oder X	$b_{i}/b_{0} \ge 0,25$	$b_i/t_i \le 35$ und	$b_i/t_i \le 35$ und	\geq 0,5 jedoch \leq 2,0	\leq 35 und Klasse 1 oder 2	_	
K-Spalt N-Spalt	$b_i/b_0 \ge 0.35$ und $\ge 0.1 + 0.01 \ b_0/t_0$	$h_i/t_i \le 35$ und Klasse 1 oder 2	$ n_i/\tau_i \leq 35$	$n_i/l_i \geq 33$		\leq 35 und Klasse 1 oder 2	$\begin{array}{l} g/b_0 \geq 0.5(1-\beta) \\ \text{jedoch} \leq 1.5(1-\beta)^a \\ \text{und mindestens} \\ g \geq t_1 + t_2 \end{array}$
K-Überlappung N-Überlappung	$b_i / b_0 \ge 0,25$	Klasse 1			Klasse 1 oder 2	$25\% \leq \lambda_{\rm ov} \leq \lambda_{\rm ov, lim}^{\rm b}$ $b_i/b_j \leq 0.75$	
KHP-Strebe	$d_i/b_0 \ge 0.4$ jedoch ≤ 0.8	Klasse 1	$d_i/t_i \leq 50$	Wie oben jedoch mit d_i anstatt b_i und d_j anstatt b_j			

Tabelle 7.8. Gültigkeitsbereich für geschweißte Anschlüsse von KHP- oder RHP-Streben an RHP-Gurtstäbe

^a Falls $g/b_0 > 1,5(1 - \beta)$ und $g > t_1 + t_2$ ist der Anschluss wie zwei getrennte T- oder Y-Anschlüsse zu behandeln. ^b $\lambda_{ov,lim} = 60\%$ falls die verdeckte Naht nicht geschweißt ist und 80% wenn die verdeckte Naht geschweißt ist. Falls die Überlappung $\lambda_{ov,lim}$ überschreitet oder wenn die Streben rechteckige Profile mit $h_i < b_i$ und/oder $h_j < b_j$ sind, muss die Verbindung zwischen den Streben und der Oberfläche des Gurtstabes auf Abscherung überprüft werden.

Anschlüssen von Hohlprofilstreben an RHP-Gurtstäbe nach 7.5.2 und 7.5.3 bestimmt werden.

(2) Liegen die geschweißten Anschlüsse innerhalb des Gültigkeitsbereichs nach Tabelle 7.8, brauchen nur die in den Tabellen angegebenen Bemessungskriterien beachtet zu werden. Die Tragfähigkeit eines Anschlusses ist durch den kleinsten Wert definiert.

(3) Bei geschweißten Anschlüssen außerhalb des Gültigkeitsbereichs nach Tabelle 7.8 sollten alle Versagensformen untersucht werden, die in 7.2.2 aufgelistet sind. Zusätzlich sollten in diesem Falle bei der Bemessung der Anschlüsse die Sekundärmomente, die sich aus ihrer Rotationssteifigkeit ergeben, berücksichtigt werden.

7.5.2 Ebene Anschlüsse

7.5.2.1 Unverstärkte Anschlüsse

(1) Werden die Streben an den Anschlüssen nur durch Längskräfte beansprucht, dürfen die Bemessungswerte der einwirkenden Schnittgrößen $N_{i,Ed}$ die Bemessungswerte der Tragfähigkeiten $N_{i,Rd}$, die aus 7.5.2.1(2) oder 7.5.2.1(4) ermittelt werden, nicht überschreiten.

(2) Liegen die geometrischen Abmessungen von geschweißten Anschlüssen von quadratischen Hohlprofilstreben oder KHP-Streben an quadratische Hohlprofil-Gurtstäbe innerhalb des Gültigkeitsbereichs nach Tabelle 7.8 und werden die zusätzlichen Bedingungen von Tabelle 7.9 erfüllt, können die Tragfähigkeiten mit den Gleichungen der Tabelle 7.10 bestimmt werden. (3) Liegen die geschweißten Anschlüsse innerhalb des Gültigkeitsbereichs nach Tabelle 7.9, brauchen nur

Querschnitte der Strebe	Anschlusstyp	Anschlussparameter	
Quadratisches Hohlprofil	T, Y oder X	$b_i / b_0 \le 0.85$	$b_0/t_0 \ge 10$
	K-Spalt oder N-Spalt	$0,6 \le \frac{b_1 + b_2}{2b_1} \le 1,3$	$b_0/t_0 \ge 15$
КНР	T, Y oder X		$b_0/t_0 \ge 10$
	K-Spalt oder N-Spalt	$0,6 \le \frac{d_1 + d_2}{2d_1} \le 1,3$	$b_0/t_0 \ge 15$

Tabelle 7.9. Zusätzliche Bedingungen für die Verwendung von Tabelle 7.10

Anschlusstyp	Tragfähigkeit [<i>i</i> = 1 oder 2, <i>j</i> = überlappte Strebe]		
T-, Y- und X-Anschlüsse	Flanschversagen des Gurtstabs $\beta \le 0,85$		
	$N_{1,\mathrm{Rd}} = \frac{k_{\mathrm{n}} f_{\mathrm{y0}} t_{0}^{2}}{(1-\beta) \mathrm{sin} \theta_{\mathrm{1}}} \left(\frac{2\beta}{\mathrm{sin} \theta_{\mathrm{1}}} + 4\sqrt{1-\beta}\right) / \gamma_{\mathrm{M5}}$		
K- und N-Anschlüsse mit Spalt	Flanschversagen des Gurtstabs $\beta \le 1,0$		
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$N_{i,\text{Rd}} = \frac{8.9\gamma^{0.5}k_{\text{n}}f_{y0}t_{0}^{2}}{\sin\theta_{i}} \left(\frac{b_{1}+b_{2}}{2b_{0}}\right)/\gamma_{\text{M5}}$		
K- und N-Anschlüsse mit Überlappung ^a	Versagen der Strebe25 % $\leq \lambda_{ov} < 50$ %		
In Strebe <i>i</i> Druckkraft und in Strebe <i>j</i> Zugkraft oder umgekehrt.	$N_{i,\text{Rd}} = f_{y_i} t_i \left(b_{\text{eff}} + b_{\text{e,ov}} + 2h_i \frac{\lambda_{\text{ov}}}{50} - 4t_i \right) / \gamma_{\text{M5}}$		
h ₁ b ₃ N ₃ N ₁ N ₁ N ₁ N ₁ N ₁ N ₁ N ₁	Versagen der Strebe 50 % $\leq \lambda_{ov} < 80$ %		
θι	$r_{i,\text{Rd}} = f_{y} i_{i} L^{0} \text{eff} + b_{e,\text{ov}} + 2n_{i} = 4i_{i} f^{\prime} / M5$		
	Versagen der Strebe $\lambda_{\rm ov} \ge 80 \ \%$		
	$N_{i,\mathrm{Rd}} = f_{\mathrm{y}i}t_i[b_i + b_{\mathrm{e,ov}} + 2h_i - 4t_i]/\gamma_{\mathrm{M5}}$		
Parameter $b_{\rm eff}$, $b_{\rm e,ov}$ und $k_{\rm n}$			
$b_{\text{eff}} = \frac{10}{b_0 / t_0} \frac{f_{\text{y0}} t_0}{f_{\text{y}i} t_i} b_i \text{jedoch } b_{\text{eff}} \le b_i$	Für $n > 0$ (Druck): $k_n = 1,3 - \frac{0,4n}{\beta}$		
$b_{e,ov} = \frac{10}{b_j / t_j} \frac{f_{y_j} t_j}{f_{y_i} t_i} b_i$ jedoch $b_{e,ov} \le b_i$	jedoch $k_n \le 1,0$ Für $n \le 0$ (Zug): $k_n = 1,0$		
Bei KHP-Streben sind die obigen Grenzwerte mit $\pi/4$: h_2 durch d_2 zu ersetzen.	zu multiplizieren und b_1 und h_1 durch d_1 und b_2 sowie		
^a Nur die überlappte Strebe <i>i</i> braucht nachgewiesen zu werd dividiert durch die plastische Beanspruchbarkeit der Strebe) di	en. Der Ausnutzungsgrad (d. h. die Tragfähigkeit des Anschlusses er überlappenden Strebe <i>i</i> ist in der Regel mit dem Ausnutzungsgrad		

Tabelle 7.10. Tragfähigkeit von geschweißten Anschlüssen mit quadratischen Hohlprofilen oder KHP

Zu Tabelle 7.10

1

Auch bei RHP-Gurten können hohe Gurtzugspannungen im Anschlussbereich die Knotentragfähigkeit vermindern. Basierend auf neueren Untersuchungen, die auch Eingang in die aktuellen CIDECT-Handbücher gefunden haben, schlagen *Wardenier* und

der überlappenden Strebe gleichzusetzen. Siehe auch Tabelle 7.8.

Puthli in [K45] Abminderungsfaktoren $k_{\rm n} \leq$ 1,0 vor, die sinngemäß auch bei den Tabellen 7.11 und 7.14 (für T- und X-Anschlüsse) sowie Tabelle 7.12 (für K-Anschlüsse) anzuwenden sind.

1

Anschlusstyp	Tragfähigkeit		
	Flanschversagen des Gurtstabs $\beta \le 0,85$		
h 1	$N_{1,\text{Rd}} = \frac{k_{\text{n}} f_{\text{y0}} t_0^2}{(1-\beta) \sin\theta_1} \left(\frac{2\eta}{\sin\theta_1} + 4\sqrt{1-\beta}\right) / \gamma_{\text{M5}}$		
N.	Seitenwandversagen des Gurtstabs ^a $\beta = 1,0^{b}$		
θ_1	$N_{1,\text{Rd}} = \frac{k_{\text{n}} f_{\text{b}} t_{0}}{\sin \theta_{1}} \left(\frac{2h_{1}}{\sin \theta_{1}} + 10t_{0}\right) / \gamma_{\text{M5}}$		
	Versagen der Strebe $\beta \ge 0.85$		
Y	$N_{1,\text{Rd}} = f_{\text{yi}t_1}(2h_1 - 4t_1 + 2b_{\text{eff}})/\gamma_{\text{M5}}$		
K i i	Durchstanzen $0,85 \le \beta \le (1-1/\gamma)$		
	$N_{1,\text{Rd}} = \frac{f_{y0}t_0}{\sqrt{3}\sin\theta_1} \left(\frac{2h_1}{\sin\theta_1} + 2b_{\text{e},\text{p}}\right) / \gamma_{\text{M5}}$		
^a Bei X-Anschlüssen mit $\cos \theta_1 > h_1/h_0$ ist das Minimum von die	sem Wert und der Schubtragfähigkeit der Gurtstabseitenwände für		
K- und N-Anschlüsse mit Spalt nach Tabelle 7.12 anzusetzer	1. \sim		
Bei 0,85 $\leq \beta \leq$ 1,0 wird zwischen den werten für Flanschvers Gurtstabes (Beulen der Seitenwand oder Schubversagen) m	agen des Guntstabes mit $\beta = 0.85$ und für Seitenwandversagen des it $\beta = 1,0$ linear interpoliert.		
Bei KHP-Streben sind die obigen Grenzwerte mit $\pi/4$ zu multiplizieren und b_1 und h_1 ist durch d_1 und b_2 sowie h_2 durch d_2 zu ersetzen.			
Für Zug:	$h_{n} = \frac{10}{f_{y0}t_0} h_{h}$ index $h_{n} \le h_{h}$		
$f_{b} = f_{y0}$	$b_0 / t_0 f_{yi} t_1$		
Für Druck:	$b_{\mathbf{e},\mathbf{p}} = \frac{10}{b_0 / t_0} b_1 \qquad \qquad \text{jedoch } b_{\mathbf{e},\mathbf{p}} \le b_1$		
$f_{\rm b} = \chi f_{\rm y0}$ (T- und Y-Anschlüsse)			
$f_{\rm b} = 0.8 \ \chi f_{\rm y0} \sin \theta_{\rm 1}$ (X-Anschlüsse)			
	Für <i>n</i> > 0 (Druck):		
Dabei ist χ der Abminderungsbeiwert nach der maßgebenden Knickkurve für Biegeknicken nach EN 1993-1-1 und einem normalisierten Schlank-	$k_{\rm n} = 1.3 - \frac{0.4n}{\beta}$		
heitsgrad $\overline{\lambda}$, der wie folgt berechnet wird:	jedoch $k_n \leq 1,0$		
	Für <i>n</i> ≤ 0 (Zug):		
$\frac{h_0}{t_0} - 2 \sqrt{\frac{1}{\sin \theta_1}}$	k _n = 1,0		
$\lambda = 3,46 \frac{1}{\sqrt{\frac{E}{f_{y0}}}}$			

Tabelle 7.11. Tragfähigkeit von geschweißten T-, X- und Y-Anschlüssen von RHP- oder KHP-Streben an RHP-Gurtstäbe

1

Anschlusstyp	Tragfähigkeit [<i>i</i> = 1 oder 2]		
K- und N-Anschlüsse mit Spalt	Flanschversagen des Gurtstabs		
	$N_{i,\text{Rd}} = \frac{8.9k_{\text{n}}f_{\text{y0}}t_{0}^{2}\sqrt{\gamma}}{\sin\theta_{\text{i}}} \left(\frac{b_{1}+b_{2}+h_{1}+h_{2}}{4b_{0}}\right) / \gamma_{\text{M5}}$		
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Schubversagen des Gurtstabs		
	$N_{i,\text{Rd}} = \frac{f_{y0}A_v}{\sqrt{3}\sin\theta_i} / \gamma_{\text{M5}}$		
	$N_{0,\text{Rd}} = \left[(A_0 - A_v) f_{y0} + A_v f_{y0} \sqrt{1 - (V_{\text{Ed}} / V_{\text{pl,Rd}})^2} \right] / \gamma_{\text{M5}}$		
	Versagen der Strebe		
	$N_{i,\text{Rd}} = f_{\text{y}i} t_i (2h_i - 4t_i + b_i + b_{\text{eff}})/\gamma_{\text{M5}}$		
	Durchstanzen $\beta \leq (1 - 1/\gamma)$		
	$N_{i,\text{Rd}} = \frac{f_{\text{y0}} t_0}{\sqrt{3} \sin \theta_i} \left(\frac{2h_i}{\sin \theta_i} + b_i + b_{\text{e,p}} \right) / \gamma_{\text{M5}}$		
K- und N-Anschlüsse mit Überlappung	Wie in Tabelle 7.10.		
Bei KHP-Streben sind die obigen Grenzwerte mit $\pi/4$ z sowie h_2 durch d_2 , außer bei Schubversagen des Gurt	tu multiplizieren und b_1 und h_1 ist durch d_1 und b_2 stabes zu ersetzen.		
$A_v = (2h_0 + \alpha b_0)t_0$ Für eine RHP-Strebe: $\alpha = \sqrt{\frac{1}{1 + \frac{2}{3}}}$	$b_{\text{eff}} = \frac{10}{b_0 / t_0} \frac{f_{y0} t_0}{f_{yi} t_i} b_i$ jedoch $b_{\text{eff}} \le b_i$		
$\sqrt{1 + \frac{4g^2}{3t_0^2}}$	$b_{e,p} = \frac{10}{b_0 / t_0} b_i$ jedoch $b_{e,p} \le b_i$		
wobei g die Spaltbreite ist, siehe Bild 1.3(a).	$F_{n}^{i} = 12 0.4n$		
Für KHP-Streben: $\alpha = 0$	$\kappa_n = 1.3 - \frac{\beta}{\beta}$		
	jedoch $k_n \leq 1,0$		
	Für $n \le 0$ (Zug): $k_n = 1,0$		

Tabelle 7.12. Tragfähigkeit von geschweißten K- und N-Anschlüssen von RHP- oder KHP-Streben an RHP-Gurtstäbe

Flanschversagen des Gurtstabes und Versagen der Strebe mit reduzierter wirksamer Breite betrachtet zu werden. Als Tragfähigkeit ist in der Regel der kleinere von beiden Werten zu verwenden.

Anmerkung: Bei der Bestimmung der Tragfähigkeit von geschweißten Anschlüssen von Hohlprofilstreben an quadratische Hohlprofil-Gurtstäbe in Tabelle 7.10 werden alle Bemessungskriterien weggelassen, die innerhalb des Gültigkeitsbereichs nach Tabelle 7.9 nicht maßgebend sind.

(4) Liegen unverstärkte geschweißte Anschlüsse von KHP- oder RHP-Streben an RHP-Gurtstäbe innerhalb des Gültigkeitsbereichs nach Tabelle 7.8, können die Tragfähigkeiten unter Verwendung der Gleichungen in Tabelle 7.11, Tabelle 7.12 oder Tabelle 7.13 ermittelt werden. Zu verstärkten Anschlüssen siehe 7.5.2.2.

Zu Tabelle 7.13

Bei Anschlüssen mit Querblechen sollte neben den in Tabelle 7.13 aufgeführten Versagensformen zusätzlich immer auch die Tragfähigkeit des Querbleches nach folgender Gleichung geprüft werden:

$N_{1,\text{Rd}} = f_{y0} t_1 b_{eff} / \gamma_{\text{M5}}$

Insbesondere bei breiten Querblechen ($\beta > 0,85$) kann die Tragfähigkeit des Querbleches maßgebend werden. Für die Kehlnahtverbindung zwischen Querblech und Flansch des Gurtstabes ist Fußnote a der Tabelle 7.13 zu berücksichtigen.

Bei hohen Gurtzugspannungen kann der Einfluss auf die Knotentragfähigkeit wie beim Hinweis zu Tabelle 7.10 nach [K45] berücksichtigt werden. Dabei gilt $k_m = k_n$.

Į.

1

Querblech	Flanschversagen des Gurtstabs $\beta \le 0,85$			
*	$N_{1,\text{Rd}} = k_{\text{n}} f_{y0} t_0^2 \frac{2 + 2.8\beta}{\sqrt{1 - 0.9\beta}} / \gamma_{\text{M5}}^{\text{a}}$			
$ \bigvee_{i=1}^{N_i} \xrightarrow{ e_{i_i} } $	Seitenwandversagen des Gurtstabs (plast. Stauchen) für $b_1 \ge b_0 - 2t_0$			
	$N_{1,\text{Rd}} = k_{\text{p}} f_{y0} t_0 (2t_1 + 10t_0) / \gamma_{\text{M5}}^{\text{a}}$			
	Durchstanzen für $b_1 \le b_0 - 2t_0$			
< <u>-</u> -∞_→	$N_{1,\text{Rd}} = \frac{f_{y0}t_0}{\sqrt{3}} \left(2t_1 + 2b_{e,p}\right) / \gamma_{\text{M5}}^{a}$			
Längsblech	Flanschversagen des Gurtstabs			
$ \begin{array}{c} & \downarrow N_{1} \\ & \downarrow \stackrel{h_{1}}{\longleftarrow} \\ & \downarrow \stackrel{h_{2}}{\longleftarrow} \\ & \downarrow \stackrel{h_{2}}{\longleftarrow} \\ & \downarrow \stackrel{h_{2}}{\longleftarrow} \\ & \downarrow \stackrel{h_{3}}{\longleftarrow} \\ & \downarrow \stackrel{h_{3}}{\longrightarrow} \\ & \downarrow h_{3$	$N_{1,\text{Rd}} = \frac{k_{\text{m}} f_{y_0} t_0^2}{\gamma_{\text{M5}}} \left(2h_1 / b_0 + 4\sqrt{1 - t_1 / b_0} \right)^a$			
I- oder H-Profil				
	Falls $\eta \ge 2\sqrt{1-\beta}$ kann bei I- oder H-Profilen $N_{1,\text{Rd}}$ auf der sicheren Seite liegend mit Hilfe der Formeln für zwei Querbleche (siehe oben) bestimmt werden, die die gleichen Abmessungen wie die Flansche der I- oder H-Profile haben. Falls $\eta < 2\sqrt{1-\beta}$ sollte $N_{1,\text{Rd}}$ zwischen den Werten für ein Querblech und für zwei Querbleche interpoliert werden. $M_{\text{ip},1,\text{Rd}} = N_{1,\text{Rd}} (h_1 - t_1)$ $N_{1,\text{Rd}}$ die Leistung eines Flansches; β das Verhältnis der Breite des Flansches			
	der I- oder H-Profilstreben und der Breite des RHP-Gurtstabes.			
Gültigkeitsbereich				
Zusätzlich zu den Grenzen in Tabelle 7.8 gilt: $0,5 \le \beta \le 1,0$ $b_0/t_0 \le 30$				
Parameter $b_{\rm eff}, b_{\rm e,p}$ und $k_{\rm m}$				
$b_{\text{eff}} = \frac{10}{b_0 / t_0} \frac{f_{y0} t_0}{f_{y1} t_1} b_1$ jedoch $b_{\text{eff}} \le b_i$	Für $n > 0$ (Druck): $k_m = 1,3(1 - n)$ jedoch $k_m \le 1,0$			
$b_{e,p} = \frac{10}{b_0 / t_0} b_1$ jedoch $b_{e,p} \le b_i$	Für $n \le 0$ (Zug): $k_{\rm m} = 1,0$			
^a Kehlnahtverbindungen sollten nach 4.10 bemessen werde	n			

Tabelle 7.13. Tragfähigkeit von geschweißten Anschlüssen von Blechen oder von I- oder H-Profilstreben an RHP-Gurtstäbe

T

T

T- und X-Anschlüsse	Biegetragfähigkeit		
Moment in der Ebene des Fachwerks (θ = 90°)	Flanschversagen des Gurtstabs $\beta \le 0.85$		
θ Hip,1	$M_{\rm ip,1,Rd} = k_{\rm n} f_{\rm y0} t_0^2 h_1 \left(\frac{1}{2\eta} + \frac{2}{\sqrt{1-\beta}} + \frac{\eta}{1-\beta}\right) / \gamma_{\rm M5}$	Ł	
<u> </u> 	Seitenwandversagen des Gurtstabs (plast. Stauchen) 0,85 < $\beta \le 1,0$		
• M _{ip,1}	$\begin{split} M_{\rm ip,1,Rd} &= 0.5 f_{\rm yk} t_0 (h_1 + 5 t_0)^2 / \gamma_{\rm M5} \\ f_{\rm yk} &= f_{\rm y0} \qquad \text{für T-Anschlüsse} \\ f_{\rm yk} &= 0.8 f_{\rm y0} \qquad \text{für X-Anschlüsse} \end{split}$		
╞ <u>╼╍┙┙</u> ╡╴╴╴╴╴╴╴╴╴╴╴╴╴ ╞╼╍╍╼┲╼┾╼╦╼╍╼╼╡	Versagen der Strebe $0.85 \le \beta \le 1.0$		
M _{ip}	$M_{\rm ip,1,Rd} = f_{\rm y1} (W_{\rm pl,1} - (1 - b_{\rm eff} / b_1) b_1 (h_1 - t_1) t_1) / \gamma_{\rm M5}$	n de Nacional	
Moment rechtwinklig zur Ebene des Fachwerks (θ = 90°)	Flanschversagen des Gurtstabs	$eta \leq 0,85$	
M _{op,1}	$M_{\rm op,1,Rd} = k_{\rm n} f_{\rm y0} t_0^2 \left(\frac{h_1(1+\beta)}{2(1-\beta)} + \sqrt{\frac{2b_0 b_1(1+\beta)}{1-\beta}} \right) / \gamma_{\rm M5}$		
	Seitenwandversagen des Gurtstabs (plast. Stauchen) 0,85 < $\beta \le 1,0$		
M _{op,1}	$\begin{aligned} M_{\text{op},1,\text{Rd}} &= f_{\text{yk}} t_0 (b_0 - t_0) (h_1 + 5t_0) / \gamma_{\text{M5}} \\ f_{\text{yk}} &= f_{\text{y0}} & \text{für T-Anschlüsse} \\ f_{\text{yk}} &= 0.8 f_{\text{y0}} & \text{für X-Anschlüsse} \end{aligned}$	•	
	Versagen des Gurtstabs durch Querschnittsverformung (nur T-Anschlüsse) ^a		
	$M_{\rm op,1,Rd} = 2f_{\rm y0} t_0 \left(h_1 t_0 + \sqrt{b_0 h_0 t_0 (b_0 + h_0)} \right) / \gamma_{\rm M5}$	1 A.	
	Versagen der Strebe $0.85 < \beta < 1.0$		
Inviop.1	$\frac{M_{\text{op},1,\text{Rd}}}{M_{\text{op},1,\text{Rd}}} = f_{\text{y1}} \left(W_{\text{pl},1} - 0.5 \left(1 - b_{\text{eff}} / b_1 \right)^2 b_1^2 t_1 \right) / \gamma_{\text{M5}}$		
Parameter b_{eff} und k_{n}			
$b_{\rm eff} = \frac{10}{b_0 / t_0} \frac{f_{y0} t_0}{f_{y1} t_1} b_1$	Für $n > 0$ (Druck): $k_n = 1,3 - \frac{0,4n}{\beta}$		
jedoch $b_{\rm eff} \leq b_1$	Jedoch $k_n \le 1,0$ Für $n \le 0$ (Zug): $k_n = 1,0$	-	
^a Dieses Kriterium braucht nicht berücksi Maßnahmen verhindert wird.	chtigt zu werden, wenn die Querschnittsverformung des Gurtstabs dur	ch geeignete	

Tabelle 7.14. Biegetragfähigkeit von geschweißten Anschlüssen von RHP-Streben an RHP-Gurtstäbe

Į.

1

(5) Werden die Streben an den Anschlüssen durch Biegemomente und Längskräfte beansprucht, ist in der Regel folgende Bedingung zu erfüllen:

Dabei ist M_{ip,*i*,Rd}

 $M_{\mathrm{ip},i,\mathrm{Ed}}$

die Momententragfähigkeit des Anschlusses in der Ebene des Fachwerks; das einwirkende Biegemoment in der Ebene des Fachwerks;

$$\frac{N_{i,\text{Ed}}}{N_{i,\text{Rd}}} + \frac{M_{\text{ip},i,\text{Ed}}}{M_{\text{ip},i,\text{Rd}}} + \frac{M_{\text{op},i,\text{Ed}}}{M_{\text{op},i,\text{Rd}}} \le 1,0$$
(7.4)

Tabelle 7.15. Bemessungskriterien für spezielle geschweißte Anschlüsse von RHP-Streben an RHP-Gurtstäben

Anschlusstyp	Bemessungskriterien
Die Kräfte können sowohl Zug- als auch Druckkräfte sein, jedoch in beiden Streben gleich.	
N_1 θ_1 θ_1 N_1	$N_{1,Ed} \le N_{1,Rd}$ wobei $N_{1,Rd}$ dem Wert $N_{1,Rd}$ für einen X-Anschluss nach Tabelle 7.11 entspricht.
In Strebe 1 immer Druckkraft und in Strebe 2 immer Zugkraft.	$N_{1,\mathrm{Ed}}\sin heta_1$ + $N_{3,\mathrm{Ed}}\sin heta_3 \le N_{1,\mathrm{Rd}}\sin heta_1$
A Na	$N_{2,\mathrm{Ed}}\sin \theta_2 \leq N_{1,\mathrm{Rd}}\sin \theta_1$
N_1 N_2	wobei $N_{1,Rd}$ dem Wert $N_{1,Rd}$ für einen K-Anschluss nach Tabelle 7.12 entspricht. Dabei wird
θ_1 θ_3 θ_2	$\frac{\frac{b_1 + b_2 + h_1 + h_2}{4b_0}}{\text{durch:}}$ durch: $\frac{b_1 + b_2 + b_3 + h_1 + h_2 + h_3}{6b_0}$ ersetzt.
In allen Streben entweder nur Druck oder nur Zug.	
N_1 N_2	$N_{1,\mathrm{Ed}}\sin \theta_1 + N_{2,\mathrm{Ed}}\sin \theta_2 \le N_{\mathrm{x,Rd}}\sin \theta_{\mathrm{x}}$
θ_1 θ_2 N_2 N_1	wobei $N_{x,Rd}$ dem Wert $N_{x,Rd}$ für einen X-Anschluss nach Tabelle 7.11 entspricht. Dabei ist $N_{x,Rd} \sin \theta_x$ der größere der beiden folgenden Werte: $ N_{1,Rd} \sin \theta_1 $ oder $ N_{2,Rd} \sin \theta_2 $
In Strebe 1 immer Druckkraft und in Strebe 2 immer Zugkraft.	$N_{i,\mathrm{Ed}} \leq N_{i,\mathrm{Rd}}$
N_1 θ_1 N_2 N_2 N_2 N_1 N_2 N_1 N_2 N_2 N_1 N_2 N_2 N_1 N_2 N_2 N_1 N_2	wobei $N_{i,\text{Rd}}$ dem Wert $N_{i,\text{Rd}}$ für einen K-Anschluss nach Tabelle 7.12 entspricht, vorausgesetzt, dass für den Gurtstab im Schnitt 1-1 bei Anschlüssen mit Spalt gilt: $\left[\frac{N_{0,\text{Ed}}}{N_{\text{pl},0,\text{Rd}}}\right]^2 + \left[\frac{V_{0,\text{Ed}}}{V_{\text{pl},0,\text{Rd}}}\right]^2 \le 1,0$

$M_{\text{op},i,\text{Rd}}$	die Momententragfähigkeit des
1,000	Anschlusses rechtwinklig zur Ebene des
	Fachwerks;
$M_{\text{op},i,\text{Ed}}$	das einwirkende Biegemoment
-F	rechtwinklig zur Ebene des Fachwerks.

1

(6) Die einwirkende Schnittgröße $M_{i,\text{Ed}}$ darf am Anschnitt der Strebe am Gurtstabflansch bestimmt werden.

(7) Bei unverstärkten Anschlüssen sind in der Regel die Momententragfähigkeiten $M_{i,Rd}$ in Fachwerkebene und rechtwinklig dazu nach Tabelle 7.13 oder Tabelle 7.14 zu ermitteln. Zu verstärkten Anschlüssen siehe 7.5.2.2. (8) Bei speziellen geschweißten Anschlüssen, die in Tabelle 7.15 und Tabelle 7.16 aufgeführt sind, sind in der Regel die dort angegebenen Bemessungskriterien zu erfüllen.

Tabelle 7.16	. Bemessungskriterien	für aeschweißt	e Rahmeneckanschlüsse	und abgeknickte	Anschlüsse mit RHP-Bauteilen

Anschlusstyp	Bemessungskriterien
Geschweißte Rahmeneckanschlüsse	
θ	Der Querschnitt sollte für reine Biegung in Klasse 1 eingestuft sein, siehe EN 1993-1-1. $N_{\rm Ed} \le 0.2N_{\rm pl,Rd}$ und $\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} + \frac{M_{\rm Ed}}{M_{\rm pl,Rd}} \le \kappa$ Für $\theta \le 90^{\circ}$: $\kappa = \frac{3\sqrt{b_0/h_0}}{[b_0/t_0]^{0.8}} + \frac{1}{1+2b_0/h_0}$ Für 90° < $\theta \le 180^{\circ}$: $\kappa = 1 - (\sqrt{2}\cos(\theta/2))(1-\kappa_{90})$ wobei κ_{90} der Wert κ für $\theta = 90^{\circ}$ ist.
Abackaichter Guttetabanschluss	$t_{\rm p} \ge 1,5t \text{ und } \ge 10 \text{ mm}$ $\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} + \frac{M_{\rm Ed}}{M_{\rm pl,Rd}} \le 1,0$
gedachte Gurtstabverlängerung	$N_{i,\text{Ed}} \leq N_{i,\text{Rd}}$ wobei $N_{i,\text{Rd}}$ dem Wert $N_{i,\text{Rd}}$ für einen K- oder N-Anschluss mit Überlappung nach Tabelle 7.12 entspricht.

7.5.2.2 Verstärkte Anschlüsse

(1) Geschweißte Anschlüsse können auf verschiedene Arten verstärkt werden. Die angemessene Verstärkungsart hängt von der maßgebenden Versagensform ohne Verstärkung ab.

(2) Durch Gurtlamellen auf den Gurtstabflanschen können die Tragfähigkeiten für Versagen des Gurtstabflansches, Durchstanzen oder Versagen der Strebe durch reduzierte wirksame Breite vergrößert werden.

(3) Paarweise angeordnete Seitenlamellen können die Tragfähigkeit für Versagen der Seitenwände des Gurtstabes oder Schubversagen des Gurtstabes vergrößern.
(4) Um Teilüberlappung der Streben in K- oder N-Anschlüssen zu vermeiden, können die Streben an eine Quersteife angeschweißt werden.

(5) Jedmögliche Kombination dieser Verstärkungsarten ist möglich.

(6) Die Stahlgüte der Verstärkungen sollte nicht geringer sein als die des Gurtstabes.

(7) Die Tragfähigkeiten von verstärkten Anschlüssen sind mit Hilfe der Tabelle 7.17 und Tabelle 7.18 zu bestimmen.

7.5.3 Räumliche Anschlüsse

(1) Bei räumlichen Anschlüssen sind in jeder maßgebenden Ebene die Bemessungskriterien in 7.5.2 mit den nach 7.5.3(2) abgeminderten Tragfähigkeiten zu erfüllen.

(2) Die Abminderungsbeiwerte μ für die Tragfähigkeiten für jede maßgebende Ebene sind aus Tabelle 7.19 zu bestimmen. Die Tragfähigkeit des ebenen Anschlusses wird nach 7.5.2 unter Verwendung der Gurtstabkraft des räumlichen Anschlusses berechnet.

7.6 Geschweißte Anschlüsse von KHP- oder RHP-Streben an I- oder H-Profil Gurtstäbe

(1) Liegen die geometrischen Abmessungen von Anschlüssen innerhalb des Gültigkeitsbereiches nach Tabelle 7.20, sind in der Regel die Tragfähigkeiten der Anschlüsse mit den Gleichungen in Tabelle 7.21 oder Tabelle 7.22 zu bestimmen.

(2) Liegen die geschweißten Anschlüsse innerhalb des Gültigkeitsbereichs nach Tabelle 7.20, brauchen nur die in den Tabellen angegebenen Versagensformen beachtet werden. Die Tragfähigkeit eines Anschlusses ist durch den kleinsten Wert definiert.

(3) Bei geschweißten Anschlüssen außerhalb des Gültigkeitsbereichs nach Tabelle 7.20 sollten alle Versagensformen untersucht werden, die in 7.2.2 aufgelistet sind. Zusätzlich sollten in diesem Fall bei der Bemessung der Anschlüsse die Sekundärmomente, die sich aus ihrer Rotationssteifigkeit ergeben, berücksichtigt werden.

(4) Werden die Streben an den Anschlüssen nur durch Längskräfte beansprucht, dürfen die Bemessungswerte der einwirkenden Schnittgrößen $N_{i,Ed}$ die Bemes-

sungswerte der Tragfähigkeiten $N_{i,Rd}$, die in Tabelle 7.21 angegeben sind, nicht überschreiten.

(5) Werden die Streben an den Anschlüssen durch Biegemomente und Längskräfte beansprucht, ist in der Regel folgende Interaktionsbedingung zu erfüllen:

$$\frac{N_{i,\text{Ed}}}{N_{i,\text{Rd}}} + \frac{M_{\text{ip},i,\text{Ed}}}{M_{\text{ip},i,\text{Rd}}} \le 1,0$$
(7.5)

Dabei ist

- $M_{\rm ip,i,Rd}$ die Momententragfähigkeit des Anschlusses in der Ebene des Fachwerks;
- $M_{\rm ip, i, Ed}$ das einwirkende Biegemoment in der Ebene des Fachwerks.

(6) Die einwirkende Schnittgröße $M_{i,Ed}$ darf am Anschnitt der Strebe am Gurtstabflansch bestimmt werden. (7) Die Biegetragfähigkeit $M_{ip,1,Rd}$ der Anschlüsse in Fachwerkebene ist Tabelle 7.22 zu entnehmen.

(8) Wird der Gurtstab durch Steifen ausgesteift, siehe Bild 7.7, so wird die Tragfähigkeit $N_{i,Rd}$ für Versagen der Strebe bei T-, X-, Y-, K-Anschlüssen mit Spalt und N-Anschlüssen mit Spalt, siehe Tabelle 7.22, wie folgt berechnet:

$$N_{i,\mathrm{Rd}} = 2f_{\mathrm{y}i} t_i (b_{\mathrm{eff}} + b_{\mathrm{eff},\mathrm{s}}) / \gamma_{\mathrm{M5}}$$

$$(7.6)$$

Dabei ist

$$b_{\rm eff} = t_{\rm w} + 2r + 7 t_{\rm f} f_{\rm y0} / f_{\rm yi} \text{ jedoch} \le b_i + h_i - 2t_i$$

$$b_{\text{eff,s}} = t_{\text{s}} + 2a + 7 t_{\text{f}} f_{\text{y0}} / f_{\text{yi}} \text{ jedoch} \le b_i + h_i - 2t_i$$

 $b_{\text{eff}} + b_{\text{eff,s}} \leq b_i + h_i - 2t_i$

- a die Schweißnahtdicke an der Steife. Die Nahtdicke
 '2a' wird durch 'a' ersetzt, wenn einseitige Kehlnähte verwendet werden;
- s der Index für Steife.

(9) Die Wanddicke der Steifen sollte mindestens der Stegdicke des I-Profils entsprechen.

Bild 7.7. Steifen an I-Profil-Gurtstäben

Tabelle 7.17. Tragfähigkeit von geschweißten verstärkten T-, Y- und X-Anschlüssen von RHP- oder KHP-Streben an RHP-Gurtstäbe

Tabelle 7.18. Tragfähigkeit von geschweißten verstärkten K- und N-Anschlüssen von RHP- oder KHP-Streben an RHP-Gurtstäbe

Tabelle 7.19. Abminderungsbeiwerte für räumliche Anschlüsse

Anschlusstyp	Anschlussparameter [$i = 1$ oder 2, $j =$ überlappte Strebe]					
	$d_{\rm w}/t_{\rm w}$	$\boldsymbol{b}_i/\boldsymbol{t}_i$ und $\boldsymbol{h}_i/\boldsymbol{t}_i$	$\boldsymbol{b}_i/\boldsymbol{t}_i$ und $\boldsymbol{h}_i/\boldsymbol{t}_i$ oder $\boldsymbol{d}_i/\boldsymbol{t}_i$		$m{b}_0/m{t}_{ m f}$	$\boldsymbol{b}_i / \boldsymbol{b}_j$
		Druck	Zug			
х	Klasse 1 und $d_{\rm w} \leq 400 {\rm mm}$	Klasse 1 oder 2 und	$\frac{h_i}{t_i} \leq 35$	\geq 0,5 jedoch \leq 2,0	Klasse 1 oder 2	-
T oder Y	Klasse 1 oder 2	$\left \frac{h_i}{h}\right \le 35$	$\frac{b_i}{t} \le 35$	1,0		-
K-Spalt N-Spalt	$d_{\rm w} \leq 400 {\rm mm}$	$\frac{t_i}{\frac{b_i}{t}} \leq 35$	$\frac{d_i}{t_i} \le 50$			
K-ÜberlappungN-Überlappung25 % $\lambda_{ov} \leq \lambda_{ov,lim}^{a}$		$\frac{d_i}{t_i} \le 50$	C,	\geq 0,5 jedoch \leq 2,0		≥ 0,75

Tabelle 7.20. Gü	tiakeitsbereich für	aeschweißte	Anschlüsse von	KHP- ode	r RHP-Streben	an I- ode	er H-Profil	Gurtstäbe
------------------	---------------------	-------------	----------------	----------	---------------	-----------	-------------	-----------

^a $\lambda_{ov,lim} = 60$ % falls die verdeckte Naht nicht geschweißt ist und 80 % wenn die verdeckte Naht geschweißt ist. Falls die Überlappung $\lambda_{ov,lim}$ überschreitet oder wenn die Streben rechteckige Profile mit $h_i < b_i$ und/oder $h_j < b_j$ sind, muss die Verbindung zwischen den Streben und der Oberfläche des Gurtstabes auf Abscherung überprüft werden.

7.7 Geschweißte Anschlüsse von KHP- oder RHP-Streben an U-Profil Gurtstäbe

(1) Liegen die geometrischen Abmessungen von Anschlüssen innerhalb des Gültigkeitsbereiches nach Tabelle 7.23, können die Tragfähigkeiten der Anschlüsse von Hohlprofilstreben an U-Profil Gurtstäbe nach Tabelle 7.24 bestimmt werden.

(2) Bei der Bemessung der Anschlüsse sollten die Momente aus Sekundärwirkung, die sich aus ihrer Rotationssteifigkeit ergeben, berücksichtigt werden.

(3) Für Anschlüsse mit Spalt ist in der Regel die Tragfähigkeit $N_{0,\text{Rd}}$ des Gurtstabquerschnitts zu bestimmen. Dabei wird die Schubkraftübertragung zwischen den Streben durch den Gurtstab berücksichtigt, jedoch werden die Sekundärmomente vernachlässigt. Der Nachweis ist nach EN 1993-1-1 zu führen.

NCI

DIN EN 1993-1-8/NA

Kontaktstoß und Druckübertrag durch Kontakt

Druckkräfte normal zur Kontaktfuge dürfen vollständig durch Kontakt übertragen werden, wenn seitliches Ausweichen der Bauteile am Kontaktstoß ausgeschlossen ist. Wenn Kräfte aus druckbeanspruchten Querschnitten oder Querschnittsteilen durch Kontakt übertragen werden, müssen

- die Stoßflächen der in den Kontaktfugen aufeinandertreffenden Teile eben und zueinander parallel und
- lokale Instabilitäten infolge herstellungsbedingter Imperfektionen ausgeschlossen oder unschädlich sein und
- die gegenseitige Lage der miteinander zu stoßenden Teile gesichert sein.

Die Grenzdruckspannungen in der Kontaktfuge sind gleich denen des Werkstoffes der gestoßenen Bauteile. Beim Nachweis der zu stoßenden Bauteile müssen Verformungen, Toleranzen und eventuelles Bilden einer klaffenden Fuge berücksichtigt werden. Die ausreichende Sicherung der gegenseitigen Lage der Bauteile ist nachzuweisen. Dabei dürfen Reibungskräfte nicht berücksichtigt werden.

In Querschnittsteilen mit Dicken t von 10 mm bis 30 mm aus den Stahlsorten S235, S275 oder S355, die durch Doppelkehlnähte an Stirnplatten angeschlossen sind, genügt für die Druckübertragung die rechnerische Schweißnahtdicke a = 0.15 t, wenn die als Stegabstand bezeichnete Spaltbreite h zwischen Querschnittsteil und Stirnplatte nicht größer als 2,0 mm ist. Sofern in diesem Anschluss des Profils gleichzeitig auch Querkräfte zu übertragen sind, muss die Übertragung der Druckspannungen und der Schubspannungen unterschiedlichen Querschnittsteilen zugewiesen werden. Die Schweißnahtbemessung für die Querkraftübertragung ist nach DIN EN 1993-1-8:2010-12, Abschnitt 4 vorzunehmen. Für die zur Übertragung der Druckspannungen und die zur Übertragung der Schubspannungen aus der Querkraft herangezogenen Kehlnähte ist einheitlich der größere Wert der aus den beiden Nachweisen ermittelten Schweißnahtdicke anzusetzen. Sofern in dem Anschluss des Profils auch Zugspannungen übertragen werden, ist dafür die Schweißnahtbemessung DIN EN 1993-1-8: 2010-12, Abschnitt 4 vorzunehmen.

Anmerkung 1: Verformungen können hierbei Vorverformungen, elastische Verformungen und lokale plastische Verformungen sein.

Anmerkung 2: Toleranzen können einen Versatz in der Schwerlinie von Querschnittsteilen bewirken.

Anmerkung 3: Herstellungsbedingte Imperfektionen können z. B. Versatz oder Unebenheiten sein. Lokale Instabilitäten können insbesondere bei dünnwandigen Bauteilen auftreten, siehe z. B. [2], [3].

Anmerkung 4: Die Anforderung für die Begrenzung des Luftspaltes gilt z. B. für den Anschluss druckbeanspruchter Flansche an Stirnplatten.

DIN EN 1993-1-8/NA

Stumpfstoß von Querschnittsteilen verschiedener Dicken

Wechselt an Stumpfstößen von Ouerschnittsteilen die Dicke, so sind bei Dickenunterschieden von mehr als 10 mm die vorstehenden Kanten im Verhältnis 1:1 oder flacher zu brechen (siehe Bild NA.3).

Bild NA.3. Beispiele für das Brechen von Kanten bei Stumpfstößen von Querschnittsteilen mit verschiedenen Dicken

NCI

NCI

DIN EN 1993-1-8/NA

Geschweißte Endanschlüsse zusätzlicher Gurtplatten

Sofern kein Nachweis für den Gurtplattenanschluss geführt wird, ist die zusätzliche Gurtplatte nach Bild NA.4 a) vorzubinden.

Bild NA.4. Vorbinden zusätzlicher Gurtplatten

Bei Gurtplatten mit t > 20 mm darf der Endanschluss nach Bild NA.4 b) ausgeführt werden. Bei Bauteilen mit vorwiegend ruhender Beanspruchung darf auf die Ausführung nach Bild NA.4 verzichtet werden. Die Stirnkehlnähte können wie die Flankenkehlnähte ausgeführt werden. Deren Dicke ergibt sich nach den statischen Erfordernissen.

NCI

DIN EN 1993-1-8/NA

Gurtplattenstöße

Wenn aufeinanderliegende Gurtplatten an derselben Stelle gestoßen werden, ist der Stoß mit Stirnfugennähten vorzubereiten (siehe Bild NA.5).

Legende 1 Stirnfugennähte

Bild NA.5. Beispiele für die Nahtvorbereitung eines Stumpfstoßes aufeinanderliegender Gurtplatte

Zu NCI Stumpfstoß von Querschnittsteilen verschiedener Dicken

Die Forderung, Kanten von Stumpfstößen bei Dickenunterschieden von mehr als 10 mm entsprechend Bild NA.3 zu brechen, ist aus Element (515) der DIN 18800-1 übernommen worden und soll lokale Spannungsspitzen bei abrupten Dickenänderungen vermeiden. Dies ist insbesondere bei nicht vorwiegend ruhenden Beanspruchungen, stoßartigen Belastungen und bei niedrigen Temperaturen von Bedeutung. Kerbfälle für Ermüdungsnachweise von guerlaufenden Stumpfnähten können der Tabelle 8.3 der DIN EN 1993-1-9 entnommen werden.

Anschlusstyp	Tragfähigkeit [<i>i</i> = 1 oder 2, <i>j</i> = überlappte Strebe]			
T-, Y- und X-Anschlüsse	Fließen des Steges des Gurtstabes			
N1 KM	$N_{1,\text{Rd}} = \frac{f_{y0}t_w b_w}{\sin\theta_1} / \gamma_{\text{M5}}$			
	Versagen der Strebe			
	$N_{1,\mathrm{Rd}} = 2f_{\mathrm{y1}} t_1 p_{\mathrm{eff}} / \gamma_{\mathrm{M5}}$			
K- und N-Anschlüsse mit Spalt [i = 1 oder 2]	Fließen des Steges des Gurtstabes	Nachweis gegen Versagen der Strebe nicht erforderlich, wenn:		
h1	$N_{1,\mathrm{Rd}} = \frac{f_{\mathrm{y0}} t_{\mathrm{w}} b_{\mathrm{w}}}{\sin \theta_1} / \gamma_{\mathrm{M5}}$	$g/t_{\rm f} \le 20 - 28\beta; \beta \le 1,0 - 0,03\gamma$ wobei $\gamma = b_0/2t_{\rm f}$ und für KHP:		
	Versagen der Strebe	$0,75 \le d_1/d_2 \le 1,33$ oder für		
b ₁ N ₁ N ₂ b ₂	$N_{i,\mathrm{Rd}} = 2f_{\mathrm{yi}} t_i p_{\mathrm{eff}} \gamma_{\mathrm{M5}}$	RHP: $0,75 \le b_1/b_2 \le 1,33$		
e. 7 - + 9	Schubversagen des Gurtstabes			
	$N_{i,\text{Rd}} = \frac{f_{y0}A_v}{\sqrt{3}\sin\theta_i} / \gamma_{\text{M5}}$	· · ·		
	$N_{0,\text{Rd}} = \left[\left(A_0 - A_v \right) f_{y0} + A_v f_{y0} \right]$	$\sqrt{1 - (V_{\rm Ed} / V_{\rm pl,Rd})^2}] / \gamma_{\rm M5}$		
K- und N-Anschlüsse mit Überlappung ^a [<i>i</i> = 1 oder 2]	Versagen der Strebe	25 % $\leq \lambda_{\rm ov}$ < 50 %		
Die Kräfte in den Streben <i>i</i> und <i>j</i> können sowohl Zug- als auch Druckkräfte sein.	$N_{i,\text{Rd}} = f_{yi} t_i (p_{\text{eff}} + b_{e,\text{ov}} + 2h_i \frac{\lambda_{\text{ov}}}{50} - 4t_i) / \gamma_{\text{M5}}$			
	Versagen der Strebe	50 % $\leq \lambda_{\rm ov} < 80$ %		
NI NI	$N_{i,\mathrm{Rd}} = f_{\mathrm{y}i} t_i (p_{\mathrm{eff}} + b_{\mathrm{e,ov}} + 2h_{\mathrm{i}} - 4t_{\mathrm{i}})/$	Ϋм5		
	Versagen der Strebe	$\lambda_{\rm OV} \ge 80$ %		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	$N_{i,\text{Rd}} = f_{yi} t_i (b_i + b_{e,\text{ov}} + 2h_i - 4t_i) / \gamma_i$	45		
· .	$p_{\text{eff}} = t_{\text{w}} + 2r + 7t_{\text{f}}f_{\text{y0}}/f_{\text{yi}}$			
$A_{\rm v} = A_0 - (2 - \alpha) b_0 t_{\rm f} + (t_{\rm w} + 2r) t_{\rm f}$	jedoch bei T-, Y-, X-Anschlüsse und K- und N-Anschlüssen mit Spalt:			
Bei RHP-Strebe:	$p_{\text{eff}} \le b_{\mathbf{j}} + h_{\mathbf{j}} - 2t_{\mathbf{j}}$	$b_{ii} = \frac{h_i}{1 + 5(t_f + r)}$		
$\alpha = \sqrt{\frac{1}{1}}$	jedoch bei K- und N-Anschlüssen mit Überlappung:	$\sin \theta_i$ sin θ_i jedoch		
$V(1+4g^2/(3t_{\rm f}^2))$	<i>p</i> eff [≤] <i>b</i> i	$b_{\rm w} \le 2t_i + 10 \ (t_{\rm f} + r)$		
Bei KHP-Strebe: $\alpha = 0$	$b_{\rm e,ov} = \frac{10}{b_j / t_j} \frac{f_{\rm yj} t_j}{f_{\rm yi} t_i} b_i$			
	jedoch $b_{e,ov} \le b_i$			
Bei KHP-Streben sind die obigen Grenzwerte mit $\pi/4$ durch d_2 , außer bei Schubversagen des Gurtstabs z	4 zu multiplizieren und b_1 und h_1 ist d u ersetzen.	urch d_1 und b_2 sowie h_2		
^a Nur die überlappende Strebe <i>i</i> braucht nachgewieser	n zu werden. Der Ausnutzungsgrad (d. h.	die Tragfähigkeit des Anschlusses		

Tabelle 7.21. Tragfähigkeit von geschweißten Anschlüssen von RHP- oder KHP-Streben an I- oder H-Profil Gurtstäbe

T

dividiert durch die plastische Beanspruchbarkeit der Strebe) der überlappten Strebe j ist in der Regel mit dem Ausnutzungsgrad der überlappenden Strebe gleichzusetzen. Siehe auch Tabelle 7.20.

Anschlusstyp	Biegetragfähigkeit [<i>i</i> = 1 oder 2, <i>j</i> = überlappte Strebe]			
T- und Y-Anschlüsse	Fließen des Steges des Gurtstabes			
$M_{ip,1} \qquad \downarrow^{t_1} \\ \uparrow \\ \downarrow^{h_1} \\ \downarrow^{h_1}$	$M_{\rm ip,1,Rd} = 0.5 f_{\rm y0} t_{\rm w} b_{\rm w} (h_1 - t_1) / \gamma_{\rm M5}$			
	Versagen der Strebe			
b₀Ţ ↓ ↓ ↓ ↓	$M_{\rm ip,1,Rd} = f_{\rm y1} t_1 p_{\rm eff} h_{\rm z} / \gamma_{\rm M5}$			
Parameter $p_{ m eff}$ und $b_{ m w}$				
$p_{\text{eff}} = t_{\text{w}} + 2r + 7t_{\text{f}}f_{\text{y0}}/f_{\text{y1}}$ jedoch $p_{\text{eff}} \le b_1 + h_1 - 2t_1$	$b_{\rm w} = \frac{h_1}{\sin \theta_1} + 5(t_{\rm f} + r)$ jedoch $b_{\rm w} \le 2t_1 + 10(t_{\rm f} + r)$			

Tabelle 7.22. Biegetragfähigkeit von geschweißten Anschlüssen von RHP-Streben an I- oder H-Profil Gurtstäbe

Tabelle 7.23. Gültigkeitsbereich für geschweißte Anschlüsse von KHP- oder RHP-Streben an U-Profil-Gurtstäbe

Anschlusstyp	Anschlussparameter [$i = 1$ oder 2, $j = $ überlappte Strebe]					
	$\boldsymbol{b}_i/\boldsymbol{b}_0$	b_i/t_i und h_i/t_i d_i/t_i	t _i oder	h_i/b_i	$\boldsymbol{b}_0/\boldsymbol{t}_0$	Spalt oder Überlappung $\boldsymbol{b}_i/\boldsymbol{b}_j$
		Druck	Zug			
K-Spalt N-Spalt	\geq 0,4 und $b_0 \leq$ 400 mm	Klasse 1 oder 2 und hi	$\frac{h_i}{t_i} \le 35$	\ge 0,5 jedoch \le 2,0	Klasse 1 oder 2	$0.5(1-\beta^*) \le g/{b_0}^* \le 1.5 \ (1-\beta^*)^a$ und $g \ge t_1 + t_2$
K-Über- lappung N-Über- lappung	\geq 0,25 und $b_0 \leq$ 400 mm	$rac{\overline{t}_i}{\overline{t}_i} \leq 35$ $rac{b_i}{\overline{t}_i} \leq 35$ $rac{d_i}{\overline{t}_i} \leq 50$	$\frac{t_i}{t_i} \leq 35$ $\frac{d_i}{t_i} \leq 50$			$25 \% \le \lambda_{ov} \le \lambda_{ov,lim}^{b}$ $b_i/b_j \ge 0.75$
$\beta^* = b_1 / b_0^* b_0^* = b_0 - 2 (t_w + r_0)$						

1

^a Diese Bedingung gilt nur, wenn $\beta \leq 0,85$. ^b $\lambda_{ov,lim} = 60\%$ falls die verdeckte Naht nicht geschweißt ist und 80% wenn die verdeckte Naht geschweißt ist. Falls die Überlappung $\lambda_{ov,lim}$ überschreitet oder wenn die Streben rechteckige Profile mit $h_i < b_i$ und/oder $h_j < b_j$ sind, muss die Verbindung zwischen den Streben und der Oberfläche des Gurtstabes auf Abscherung überprüft werden.

Ļ

а

1

Anschlusstyp	Tragfähigkeit [<i>i</i> = 1 oder 2, <i>j</i> = überlappte Strebe]			
K- und N-Anschlüsse mit Spalt	Versagen der Strebe			
hi ti hi	$N_{i,\mathrm{Rd}} = f_{\mathrm{y}i} t_i (b_i + b_{\mathrm{eff}} + 2h_i - 4t_i) / \gamma_{\mathrm{M5}}$			
bit IN Ni bit	Versagen des Gurtstabs			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array}\end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$	$N_{i,\text{Rd}} = \frac{f_{y0}A_{v}}{\sqrt{3}\sin\theta_{i}} / \gamma_{\text{M5}}$ $N_{0,\text{Rd}} = \left[(A_{0} - A_{v})f_{y0} + A_{v}f_{y0}\sqrt{1 - (V_{\text{Ed}}/V_{\text{pl},\text{Rd}})^{2}} \right] / \gamma_{\text{M5}}$			
K- und N-Anschlüsse mit Überlappung ^a	Versagen der Strebe25 % $\leq \lambda_{ov} < 50$ %			
	$N_{i,\text{Rd}} = f_{yi} t_i (b_{\text{eff}} + b_{\text{e,ov}} + 2h_i \frac{\lambda_{\text{ov}}}{50} - 4t_i) / \gamma_{\text{M5}}$			
bi Ni Ni Pr	Versagen der Strebe $50 \% \le \lambda_{ov} < 80 \%$			
θ_i θ_j t_o	$N_{i,\mathrm{Rd}} = f_{\mathrm{y}i} t_i (b_{\mathrm{eff}} + b_{\mathrm{e,ov}} + 2h_i - 4t_i) / \gamma_{\mathrm{M5}}$			
	Versagen der Strebe $\lambda_{ov} \ge 80 \ \%$			
	$N_{i,\mathrm{Rd}} = f_{\mathrm{y}i} t_i (b_i + b_{\mathrm{e,ov}} + 2h_i - 4t_i) / \gamma_{\mathrm{M5}}$			
$A_{\rm v} = A_0 - (1 - \alpha) b_0^* t_0$				
$b_0^* = b_0 - 2 (t_w + r_0)$				
Bei RHP: $\alpha = \sqrt{\frac{1}{(1 + 4g^2 / 3t_f^2)}}$	$b_{\text{eff}} = \frac{10}{b_0^* / t_0} \frac{f_{y0} t_0}{f_{yi} t_i} b_i \text{ jedoch } b_{\text{eff}} \le b_i$			
Bei KHP: $\alpha = 0$	$b_{a,av} = \frac{10}{f_{y,j} t_j} b_i$ jedoch $b_{a,av} \le b_i$			
$V_{\rm pl,Rd} = \frac{f_{\rm y0}A_{\rm v}}{\sqrt{3}} / \gamma_{\rm M5}$	$b_j / t_j f_{\mathbf{y}i} t_i$			
$V_{\rm Ed}$ = ($N_{i,\rm Ed} \sin \theta_i$) _{max}				
Bei KHP-Streben sind die oben genannten Grenzwerte außer bei Schubversagen des Gurtstabs nit $\pi/4$ zu multiplizieren und b_1 und h_1 ist durch d_1 und b_2 sowie h_2 durch d_2 zu ersetzen.				

Tabelle 7.24.	Tragfähigkeit von	geschweißten	Anschlüssen v	on RHP-	oder KHP-Streben	an U-Profil-Gurtstäbe
---------------	-------------------	--------------	---------------	---------	------------------	-----------------------

Nur die überlappende Strebe *i* braucht nachgewiesen zu werden. Der Ausnutzungsgrad (d. h. die Tragfähigkeit des Anschlusses dividiert durch die plastische Beanspruchbarkeit der Strebe) der überlappten Strebe *j* ist in der Regel mit dem Ausnutzungsgrad der überlappenden Strebe gleichzusetzen.

1

Die beiden Anhänge NA.A und NA.B entstammen dem Nationalen Anhang DIN EN 1993-1-8/NA:2010-12

Anhang NA.A (normativ)

Ergänzende Vorspannverfahren zu DIN EN 1090-2

NA. A.1 Allgemeines

Alle Regeln aus DIN EN 1090-2:2008-12, 8.5.1 gelten sinngemäß. Die wesentliche Besonderheit der ergänzenden Vorspannverfahren besteht im Aufbringen der – im Vergleich zur Mindestvorspannkraft $F_{p,C}$ – kleineren Regelvorspannkraft $F_{p,C}^*$. Dadurch kann die Ermittlung eines Referenz-Drehmomentes nach DIN EN 1090-2:2008-12, 8.5.2 entfallen. Stattdessen können, eine Schmierung nach k-Klasse K1 vorausgesetzt, feste Werte für die Anziehmomente angegeben werden. Daraus folgt ein modifiziertes Drehmoment-Vorspannverfahren (siehe NA. A.3) und ein modifiziertes kombiniertes Vorspannverfahren (siehe NA. A.4). Ferner ist es dadurch möglich, das traditionelle Drehimpuls-Vorspannverfahren beizubehalten (siehe NA. A.2).

NA. A.2 Drehimpuls-Vorspannverfahren

Die Garnituren müssen mit Hilfe eines vorher auf geeignete Weise eingestellten Impuls- oder Schlagschraubers mit einer Unsicherheit von weniger als 4% angezogen werden. Jedes hierfür benutzte Einstellgerät ist hinsichtlich seiner Messgenauigkeit regelmäßig nach Angaben des Geräteherstellers zu überprüfen. Soll auf die Regel-Vorspannkraft $F_{p,C}^*$ nach Spalte 2 von Tabelle NA. A.1 bzw. Tabelle NA. A.2 vorgespannt werden, so muss der Schrauber auf den um etwa 10% höheren Vorspannkraftwert $F_{V,DI}$ nach Spalte 3 von Tabelle NA. A.1 bzw. Spalte 4 von Tabelle NA. A.2 eingestellt werden. Bei kleinerer planmäßiger Vorspannkraft als der Regel-Vorspannkraft $F_{p,C}^*$ sind die Einstell-Vorspannkraftwerte proportional zu reduzieren.

NA. A.3 Modifiziertes Drehmoment-Vorspannverfahren

Das Vorspannen der Garnituren erfolgt nach DIN EN 1090-2:2008-12, 8.5.3, mit folgenden Modifizierungen:

Tabelle NA. A.1. Vorspannkräfte und Anziehmomente für Drehimpuls- und modifiziertes Drehmoment-Vorspannverfahren für Garnituren der Festigkeitsklasse 8.8 nach DIN EN ISO 4014, DIN EN ISO 4017, DIN EN ISO 4032 und DIN 34820 – k-Klasse K1 nach DIN EN 14399-1

	1	2	3	4		
			Drehimpulsverfahren	Modifiziertes Drehmomentverfahren		
	Maße	Regel- Vorspann- kraft F _{p,c} * kN	Einzustellende Vorspannkraft F _{v,DI} zum Erreichen der Regelvorspannkraft F _{p,C} * kN	Aufzubringendes Anziehmoment M _A zum Erreichen der Regel- Vorspannkraft F _{p,C} * Nm		
			Oberflächenzustand: feue oder wie hergeste	rverzinkt und geschmiert ^a Ilt und geschmiert ^a		
1	M12	35	40	70		
2	M16	70	80	170		
3	M20	110	120	300		
4	M22	130	145	450		
5	M24	150	165	600		
6	M27	200	220	900		
7	M30	245	270	1 200		
8	M36	355	390	2 100		
а	Muttern mit Molybdänsulfid oder gleichwertigem Schmierstoff behandelt.					

Der erste Anziehschritt kann beliebig gewählt werden. Soll auf die Regelvorspannkraft $F_{p,C}^*$ nach Spalte 2 von Tabelle NA. A.1 bzw. Tabelle NA. A.2 vorgespannt werden, so muss im zweiten Anziehschritt das in Spalte 4 von Tabelle NA. A.1 bzw. Tabelle NA. A.2 angegebene Anziehmoment M_A aufgebracht werden. Bei kleinerer planmäßiger Vorspannkraft als der Regelvorspannkraft $F_{p,C}^*$ ist das Anziehmoment proportional zu reduzieren.

Anmerkung: Dieses Verfahren ermöglicht ein beliebiges stufenweises Vorspannen in Anschlüssen mit vielen Schrauben sowie ein Nachziehen als Kontrolle oder zum Ausgleich von Vorspannkraftverlusten nach wenigen Tagen.

NA. A.4 Modifiziertes kombiniertes Vorspannverfahren

Das Vorspannen der Garnituren erfolgt nach DIN EN 1090-2:2008-12, 8.5.4, mit folgenden Modifizierungen:

Das im ersten Anziehschritt aufzubringende Anziehmoment $M_{A,MKV}$ (Voranziehmoment) ist Spalte 5 von Tabelle NA. A.2 zu entnehmen. Das Anziehen kann mit Hilfe eines der in NA. A.2 und NA. A.3 beschriebenen Verfahren erfolgen. Ein Mitdrehen der Schraube relativ zum Bauteil ist zu verhindern.

Der im zweiten Anziehschritt zum Erreichen der Regelvorspannkraft $F_{p,C}$ * nach Spalte 2 von Tabelle NA. A.2 aufzubringende Weiterdrehwinkel ϑ_{MKV} ist Tabelle NA. A.3 zu entnehmen.

Anmerkung 1: Kleinere planmäßige Vorspannkräfte als die Regelvorspannkraft $F_{p,C}^*$ sind bei Anwendung des modifizierten kombinierten Vorspannverfahrens nicht zulässig.

Anmerkung 2: Ist mit Hilfe des Voranziehmomentes $M_{A,MKV}$ eine ausreichend flächige Anlage der zu verbindenden Bauteile nicht erreichbar und das Erreichen der planmäßigen Vorspannkraft somit zweifelhaft, so ist der erforderliche Weiterdrehwinkel ϑ_{MKV} durch eine Verfahrensprüfung an der jeweiligen Originalverschraubung zu ermitteln (z. B. mittels Messung der Schraubenverlängerung).

NA. A.5 Tabellen

Tabellen NA.A.1, NA.A.2 und NA.A.3 siehe Seite 117–119.

Tabelle NA. A.2. Vorspannkräfte und Anziehmomente für Drehimpuls-, modifiziertes Drehmoment-, und modifiziertes kombiniertes Vorspannverfahren für Garnituren der Festigkeitsklasse 10.9 nach DIN EN 14399-4, DIN EN 14399-6 und DIN EN 14399-8 – k-Klasse K1 nach DIN EN 14399-1

	1	2	3	4	5	
			Drehimpuls- verfahren	Modifiziertes Drehmoment- verfahren	Modifiziertes kombiniertes Verfahren	
	Maße	Regel- Vor- spann- kraft F _{p,c} *	Einzustellende Vorspannkraft $F_{\rm V,DI}$ zum Erreichen der Regel- Vorspannkraft $F_{\rm p,C}^{*}$	Aufzubringendes Anziehmoment $M_{\rm A}$ zum Erreichen der Regelvorspannkraft $F_{\rm p,C}^{\star}$	Voranziehmoment M _{A,MKV}	
		KN	kN	Nm	Nm	
feu oder w		Oberflächenzustand: erverzinkt und geschmiert ^a <i>v</i> ie hergestellt und geschmiert ^a				
1	M12	50	60	100	75	
2	M16	100	110	250	190	
3	M20	160	175	450	340	
4	M22	190	210	650	490	
5	M24	220	240	800	600	
6	M27	290	320	1 250	940	
7	M30	350	390	1 650	1 240	
8	M36	510	560	2 800	2 100	
^a M	Muttern mit Molybdänsulfid oder gleichwertigem Schmierstoff behandelt.					

	1	2	3	
	Gesamtnenndicke ∑r der zu verbindenden Teile (einschließlich aller Futterbleche und Unterlegscheiben) d= Schraubendurchmesser	Während des zweiten Anziehschrittes aufzubringender Weiterdrehwinkel ℬ _{MKV} Drehung		
1	∑ <i>t</i> < 2 d	45°	1/8	
2	$2 d \le \sum t \le 6 d$	60°	1/6	
3	$6 d \le \sum t < 10 d$	90°	1/4	
4	10 <i>d</i> < ∑ <i>t</i>	keine Empfehlung	keine Empfehlung	

Tabelle NA. A.3. Erforderliche Weiterdrehwinkel ϑ_{MKV} für das modifizierte kombinierte Vorspannverfahren an Garnituren der Festigkeitsklasse 10.9

Anhang NA.B (normativ)

Gussteile, Schmiedeteile und Bauteile aus Vergütungsstählen

NA. B.1 Werkstoffe

(1) Die Vergütungsstähle C35+N und C45+N nach DIN EN 10083-2 sind nur für stählerne Lager, Gelenke und spezielle Verbindungselemente (z. B. Raumfachwerkknoten, Bolzen) zu verwenden.

(2) Die Stahlgusssorten GS200, GS240, G17Mn5+QT, G20Mn5+QT und G20Mn5+N nach DIN EN 10340 (Stahlguss für das Bauwesen), die Stahlgusssorten GE200 und GE240 nach DIN EN 10293 (Stahlguss für allgemeine Anwendungen) sowie die Gusseisensorten EN-GJS-400-15, EN-GJS-400-18, EN-GJS-400-18-LT, EN-GJS-400-18-RT nach DIN EN 1563 (Gießereiwesen – Gusseisen mit Kugelgrafit) sind nur für spezielle Formstücke, wie z. B. Verankerungsbauteile für Rundstäbe mit Gewinde, anzuwenden.

NA. B.2 Anforderungen

(1) Bauteile aus den oben genannten Werkstoffen dürfen nur elastisch berechnet und bemessen werden.

(2) Für Bauteile aus Stahlguss und Gusseisen sind die Anforderungen an die innere und äußere Beschaffenheit entsprechend dem Verwendungszweck festzulegen. In Tabelle NA. B.2 sind für vorwiegend ruhend beanspruchte Bauteile in Abhängigkeit von den unterschiedlichen Beanspruchungszonen H (hoch), M (mittel) und N (niedrig) die erforderlichen Gütestufen angegeben. Bezüglich der Kriterien für die verschiedenen Beanspruchungszonen gilt, dass jeweils jedes einzelne Kriterium maßgebend wird. Die Beanspruchungszonen eines Gussstückes oder die entsprechende einheitliche Klassifizierung bei kleinen Gussstücken sind in den Bauteilzeichnungen zu definieren. Wegen des Korrosionsschutzes können bezüglich der Oberflächenbeschaffenheit höhere Anforderungen erforderlich sein, als in Tabelle NA. B.2 angegeben. Der Nachweis der Gütestufen gilt als erbracht, wenn die Prüfung einer Stichprobe von 10% der Gussstücke einer Produktionseinheit keine unzulässigen Befunde ergab. Bei Bauteilen, deren Versagen die Standsicherheit wesentliche Teile einer baulichen Anlage gefährdet, ist eine umfassendere Prüfung erforderlich, deren Umfang projektspezifisch festzulegen ist.

(3) Fertigungsschweißungen an Gussstücken nach DIN EN 1559-1 und DIN EN 1559-2 sind zulässig, wenn die dafür erforderliche Qualifizierung des Schweißverfahrens und des Schweißpersonals nach DIN EN 1090-2 vorliegt. Zur Qualifizierung des Schweißverfahrens siehe Tabelle NA. B.1.

(4) Für den Nachweis ausreichender Zähigkeit gilt DIN EN 1993-1-10 entsprechend. Dabei ist für Stahlguss zusätzlich eine Temperaturverschiebung $\Delta T_{\rm G} = -10$ K zu berücksichtigen und für die Bauteildicke ist der Maximalwert in einem 50 mm breiten Bereich beiderseits der Schweißnaht anzusetzen. Die Zuordnung zu den Walzstahlsorten ist hinsichtlich der Festigkeit und der Kerbschlagarbeit vorzunehmen. Für Stahlguss ist die DIN EN 1993-1-10:2010-12, Abschnitt 3 nicht anzuwenden.

(5) Zur Ermittlung der mechanisch-technologischen Kennwerte von Gussstücken ist in Abhängigkeit von der für den Verwendungsfall erforderlichen Zuverlässigkeit eine Probe zu gießen, deren Abmessungen Abkühlbedingungen sicherstellt, die den Verhältnissen an den höchstbeanspruchten Stellen des Gussstückes entsprechen.

(6) Für alle Schmiede- und Gusserzeugnisse müssen Prüfbescheinigungen nach DIN EN 10204, z.B. Prüfbescheinigung 3.1, vorliegen.

Schweißp	prozesse nach DIN EN ISO 4063	Methode der Qualifizierung		
Ordnungs- nummer	Bezeichnung	Werkstoff	Mechanisie- rungsgrad	Methode der Qualifizierung
111	Lichtbogenhandschweißen			DIN EN ISO 15610, DIN EN ISO 15611
114	Metalllichtbogenschweißen mit Fülldrahtelektrode ohne Schutzgas	Walzstähle, Schmiede- stähle und Stahlguss- werkstoffe	Manuell und teil- mechanisch	DIN EN ISO 13611, DIN EN ISO 15612, DIN EN ISO 15613, oder DIN EN ISO 15614-1,
12	Unterpulverschweißen	D < 355	Voll-	
135	Metall-Aktivgas-Schweißen	N/mm^2	und automatisch	
		Walzstähle		DIN EN ISO 15613
136	136 Metall-Aktivgas-Schweißen mit Fülldrahtelektrode			DIN EN ISO 15614-1 unter Beachtung der zusätzlichen
141	Wolfram-Schutzgasschweißen	werkstoffe	Alle	Richtlinie DVS 1702
15	5 Plasmaschweißen			
311	Gasschweißen mit Sauerstoff- Acetylen-Flamme	N/mm²		

Tabelle NA. B.1. Methoden der Qualifizierung von Schweißverfahren

NA. B.3 Charakteristische Werte

(1) Für Stähle im geschmiedeten Zustand gelten als charakteristische Werte für die entsprechenden Wanddickenbereiche die unteren Grenzwerte der Streckgrenze und der Zugfestigkeit in den jeweiligen Technischen Lieferbedingungen.

(2) Bei der Ermittlung von Beanspruchungen und Beanspruchbarkeiten sind für die Gusswerkstoffe die in Tabelle NA. B.3 angegebenen charakteristischen Werte zu verwenden.

(3) Bei Erzeugnisdicken, die größer sind als die in Tabelle NA. B.3, Spalte 2 angegebenen, jedoch kleiner oder gleich den in den jeweiligen Technischen Lieferbedingungen angegebenen, dürfen als charakteristische Werte für die entsprechenden Wanddickenbereiche die unteren Grenzwerte der Streckgrenze und der Zugfestigkeit nach den jeweiligen Technischen Lieferbedingungen verwendet werden.

(4) Bauteile, deren Wanddicken größer als 160 mm sind, gehören nicht zum Anwendungsbereich der Norm.

Anmerkung: Die Erzeugnisdicken sind auch durch die Güteanforderungen an Gusserzeugnissen begrenzt.

(5) Die temperaturabhängige Veränderung der charakteristischen Werte ist bei Temperaturen über 100 °C zu berücksichtigen.

NA. B.4 Schweißnähte

(1) Bei Bauteilen aus Stahlguss sind in den Beanspruchungszonen H und M nach Tabelle NA. B.2 Schweißverbindungen mit nicht durchgeschweißten Nähten nicht zulässig. Schweißverbindungen in den Beanspruchungszonen H und M sind mit voll durchgeschweißten Nähten (Stumpf-, HV- und DHV-Nähte) auszuführen.

(2) In der Beanspruchungszone N sind nicht durchgeschweißte Nähte (HY-, DHY- und Kehlnähte) zulässig. Zur Berechnung der Tragfähigkeit sind die Korrelationsbeiwerte β_w nach Tabelle NA. B.4 zu verwenden. Der Nachweis der Schweißnähte wird auf das vereinfachte Bemessungsverfahren nach DIN EN 1993-1-8:2010-12, Abschnitt 4.5.3.3 beschränkt.

1

	Beanspruchungszonen	Gi	ütestufen				
	Kriterien ^a	Der inneren Beschaffenheit (Volumen) Ultraschallprüfung nach DIN EN 12680-1 ^b oder DIN EN 12680-3 ^c	Der äußeren Beschaffenheit (Oberfläche) ^d Eindringprüfung nach DIN EN 1371-1 oder Magnetpulverprüfung nach DIN EN 1369				
	1,00 ≥ η _{Zug} > 0,75						
	Wanddicke $t \le 30 \text{ mm}^{b}$						
	Wanddicke $t \le 20 \text{ mm}^{\circ}$						
н	Schweißflanken	1 ^e					
	Bereiche von Krafteinleitungen (z.B. Sachlochgewinde)		SP2 oder SM2 (Einzelanzeigen)				
	Druckkegel von vorgespannten Schrauben		LP2b oder LM2b				
	$0,75 \ge \eta_{Zug} > 0,30$		(lineare Anzeigen)				
м	$1,00 \ge \eta_{\text{Druck}} > 0,75$	2f					
	Wanddicke 30 mm < $t \le 50$ mm ^b		(Anzeigen in Reihe)				
	Wanddicke 20 mm < $t \le 30$ mm ^c						
	0,30 ≥ <i>η</i> _{Zug}						
N	$0,75 \ge \eta_{\text{Druck}}$	3ť					
	Wanddicke <i>t</i> > 50 mm ^b	Ŭ					
	Wanddicke $t > 30 \text{ mm}^{c}$						
^a Für	^a Für den Ausnutzungsgrad gilt $\eta = S_d/R_d$.						
^b Für Stahlguss.							
^c Für Gusseisen mit Kugelgraphit.							
^d Zur visuellen Bestimmung der Oberfläche kann auch DIN EN 12454 vereinbart werden.							
e Ob	erflächenrisse mit Tiefen über 3 mm sind u	nzulässig.					
^f Inn	erhalb einer Bezugsfläche dürfen nicht glei	chzeitig Reflektoren am Rand und Kern a	auftreten.				

Tabelle NA. B.2. Anforderungen an die innere und äußere Beschaffenheit von vorwiegend ruhend beanspruchten Bauteilen aus Stahlguss und Gusseisen mit Kugelgraphit

1

	1	2	3	4	5	6	7	8
Lfd. Nr.	Gusswerkstoffe	Erzeug- nisdicke	Streck- grenze	Zug- festig- keit	E-Modul	Schub- modul	Tempe- ratur- dehnzahl	Technische Liefer- bedingungen
		t mm	∫ _{y,k} N/mm²	∫ _{u,k} N/mm²	E N/mm²	G N/mm²	α _τ Κ ⁻¹	
1	GS200	<i>t</i> ≤ 100	200	380	210 000	210 000 81 000 12 × ⁻	12 × 10 ⁻⁶	DIN EN 10340
2	GS240		240	450				DIN EN 10340
3	GE200	t ≤ 160 t ≤ 50	200	380				DIN EN 10293
4	GE240		240	450				DIN EN 10293
5	G17Mn5+QT		240	450				DIN EN 10340
6	G20Mn5+N	<i>t</i> ≤ 30	300	480				DIN EN 10340
7	G20Mn5+Qt	<i>t</i> ≤ 100	300	500				DIN EN 10340
8	EN-GJS-400-15	<i>t</i> ≤ 60	250	390	169 000	46 000	12,5 × 10 ⁻⁶	DIN EN 1563
9	EN-GJS-400-18		250	390				DIN EN 1563
10	EN-GJS-400-18-LT		230	380				DIN EN 1563
11	EN-GJS-400-18-RT		250	390				DIN EN 1563

Tabelle NA. B.3. Als charakteristische Eigenschaften für Gusswerkstoffe festgelegte Werte

Tabelle NA. B.4. Korrelations beiwerte β_w für Kehlnähte

Stahl	β_{w}
GS200	1,0
GS240	1,0
G17Mn5+QT	1,0
G20Mn5+N	1,0
G20Mn5+QT	1,1

NA. B.5 Schraubenverbindungen

(1) Bei Sacklochverschraubungen in Bauteilen aus Gusswerkstoffen ist für den Bereich des eingeschnittenen Gewindes durch zerstörungsfreie Prüfung nachzuweisen, dass die für die Übertragung der jeweiligen Beanspruchung erforderliche Werkstoffhomogenität vorhanden ist.

NCI

Literaturhinweise

[1] Fischer, M. und Wenk, P.: Vergleich vorhandener Konzepte zur erforderlichen Kehlnahtdicke. Stahlbau 57 (1988), S. 2–8.

[2] Scheer, J., Peil, U. und Scheibe, H.-J.: Zur Übertragung von Kräften durch Kontakt im Stahlbau. Bauingenieur 62 (1987), S. 419–424.

[3] Lindner, J. und Gietzelt, R.: Kontaktstöße in Druckstäben. Stahlbau 57 (1988), S. 39–50, S. 384.

[4] DIN EN 1011 (alle Teile), *Schweißen* – Empfehlungen zum Schweißen metallischer Werkstoffe.

[5] JRC – Scientific and Technical Reports: Effects of imperfections of steel columns with contact splices on the design, JRC, September 2010.

Literatur zu den Kommentaren

[K1] AiF: Entwicklung eines Bemessungsmodells für geschraubte, momententragfähige Kopfplattenverbindungen mit 4 Schrauben in einer Schraubenreihe auf Grundlage der prEN 1993-1-8:2003. Bericht zum Forschungsvorhaben AiF – Nr. 15 059, Lehrstuhl Stahlbau, Technische Universität Dortmund; Lehrstuhl für Stahl-, Leicht- und Verbundbau, RWTH Aachen; Institut für konstruktiven Ingenieurbau, Fachhochschule Köln, Veröffentlichung für 2013 geplant.

[K2] AiF: Plastische Bemessung von Stirnplatten-Anschlüssen mit vier Schrauben in einer Reihe. Bericht zum Forschungsvorhaben AiF – Nr. 11 446, Lehrstuhl für Stahl-, Leichtund Verbundbau und Forschungsgebiet Stahlbau und Windingenieurtechnik, RWTH Aachen, 2000.

[K3] Bijlaard, F. S. K.; de Freitas, S. T.; de Vries, P.: Experimental research of single bolt connections for high strength steel S690. V Congresso de Constructao Metálica e Mista. Lisboa 2005.

[K4] CoP The Connection Program: Softwaremodul zur Berechnung von Anschlüssen nach der Komponentenmethode. Entwicklung: ICCS Software Solutions bv, Niederlande in Kooperation mit der der Universität Lüttich und der RWTH Aachen, http://www.connectionprogram.com/.

[K5] Corrigendum to EN 1993-1-8, Document N1667E. CEN / TC 250/SC3/N1667E, Final Version 27th November 2008.

[K6] DIN 18800 Stahlbauten – Teil 1. Bemessung und Konstruktion. Ausgabe November 2008.

[K7] DIN 18800 Stahlbauten – Teil 7. Ausführung und Herstellergualifikation. Ausgabe November 2008.

[K8] DIN EN 1090 Ausführung von Stahl- und Aluminiumtragwerken – Teil 2. Technische Regeln für die Ausführung von Stahltragwerken. Ausgabe Dezember 2008.

[K9] DIN EN 1993 Bemessung und Konstruktion von Stahlbauten – Teil 1-8. Bemessung von Anschlüssen. Ausgabe Dezember 2010.

[K10] DIN EN 1993 Bemessung und Konstruktion von Stahlbauten – Teil 1-12. Zusätzliche Regeln zur Erweiterung von EN 1993 auf Stahlsorten bis S700. Ausgabe Dezember 2010.

[K11] DIN EN 1993 Bemessung und Konstruktion von Stahlbauten – Teil 1-8/NA: Nationaler Anhang – National festgelegte Parameter. Ausgabe Dezember 2010.

[K12] DIN EN 1993 Bemessung und Konstruktion von Stahlbauten – Teil 1-12/NA: Nationaler Anhang – National festgelegte Parameter. Ausgabe August 2011.

[K13] DIN EN 1993 Bemessung und Konstruktion von Stahlbauten – Teil 1-3. Allgemeine Regeln – Ergänzende Regeln für kaltgeformte dünnwandige Bauteile und Bleche. Ausgabe Februar 2007.

[K14] DIN EN 1993 Bemessung und Konstruktion von Stahlbauten – Teil 1-1. Allgemeine Bemessungsregeln und Regeln für den Hochbau. Ausgabe Dezember 2010.

[K15] DIN EN ISO 10684 Verbindungselemente: Feuerverzinkung. Ausgabe Dezember 2008. [K16] DIN-Fachbericht 103. Stahlbrücken. 3. Auflage März 2009, DIN Deutsches Institut für Normung e. V., Beuth Verlag, Berlin.

[K17] Dutta, D.: Hohlprofilkonstruktionen. Ernst & Sohn, Berlin; 1999.

[K18] ECCS: European recommendations for bolted connections with injection bolts. ECCS publication No. 79, Brussels.

[K19] ECCS: Frame design including joint behavior. Commission oft he European Communities; ECCS Contracts no. 7210-SA/212 and 7210-SA/320, 1997.

[K20] Eggert, H.; Henke, G.: Stahlbaunormen Kommentierte Stahlbauregelwerke. Stahlbau-Kalender 2007, Hrsg.: Prof. Dr.-Ing. U. Kuhlmann, Ernst & Sohn, Berlin; 2007.

[K21] EN 1990 Grundlagen der Tragwerksplanung. Ausgabe Oktober 2002.

[K22] Hothan, S.; Ortmann, C.; Kathage, K.: Stahlbaunormen Kommentierte Stahlbauregelwerke. Stahlbaukalender 2010, Hrsg.: Prof. Dr.-Ing. U. Kuhlmann, Ernst & Sohn, Berlin; 2010.

[K23] ISO 898 Mechanische Eigenschaften von Verbindungselementen aus Kohlenstoffstahl und legiertem Stahl – Teil 1. Schrauben. Ausgabe August 2009.

[K24] Kuhlmann, U.; Günther, H.-P.; Rasche, C. et al.: Wirtschaftliche Schweißverbindungen höherfester Baustähle. FOSTA Forschungsprojekt P652, August 2008.

[K25] Kuhlmann, U.; Rasche, C.: Tragfähigkeit von Kehlnahtverbindungen höherfester Baustähle S690 im Stahlbau. FOSTA Forschungsprojekt P812, Februar 2012.

[K26] Kuhlmann, U.; Rölle, L.: Verbundanschlüsse nach Eurocode. Stahlbau-Kalender 2010, Hrsg.: Prof. Dr.-Ing. U. Kuhlmann, Ernst & Sohn, Berlin; 2010.

[K27] Oberegge, O.; Hockelmann, H. P.; Dorsch, L.: Bemessungshilfen für profilorientiertes Konstruieren. 3. Auflage Stahlbauverlagsgesellschaft mbH, Köln 1997.

[K28] Packer, J. A.; Wardenier, J.; Zhao, X. L. et al.: Design Guide for Rectangular Hollow Sections (RHS) Joints under Predominantly Static Loading. CIDECT-Design Guides, second Edition, 2010.

[K29] Petersen, C.: Stahlbau – Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten. 2. Auflage, Vieweg Verlag, 1990.

[K30] Puthli, R.; Ummenhofer, T.; Wardenier, J.; Pertermann, I.: Anschlüsse mit Hohlprofilen nach DIN EN 1993-1-8:2005. Stahlbau-Kalender 2011, Hrsg.: Prof. Dr.-Ing. U. Kuhlmann, Ernst & Sohn, Berlin; 2011.

[K31] Rasche, C.: Zur Bestimmung der Tragfähigkeit von Kehlnahtverbindungen höherfester Baustähle. Mitteilung des Institutes für Konstruktion und Entwurf, Nr. 2012-1, Institut für Konstruktion und Entwurf, Universität Stuttgart, 2012.

[K32] Rasche, C.; Kuhlmann, U.: Zur Bestimmung der Tragfähigkeit von Kehlnahtverbindungen höherfester Baustähle. Stahlbau 81 (2012), Heft 11. [K33] Schmidt, B.: Zum Tragverhalten von geschraubten momententragfähigen Stirnplattenverbindungen mit 4 Schrauben in jeder Schraubenreihe. Technische Universität Dortmund, Schriftenreihe Stahlbau, Heft 3, Herausgeber Prof. Dr.-Ing. D. Ungermann.

[K34] Schmidt, H.; Stranghöner, N.: Ausführung geschraubter Verbindungen nach DIN EN 1090-2. Stahlbaukalender 2011, Hrsg.: Prof. Dr.-Ing. U. Kuhlmann, Ernst & Sohn, Berlin; 2011.

[K35] Sedlacek, G.; Paschen, M.; Gresnigt, A. M.: Bericht zur Erstanwendung der Injektionsschrauben bei der Hauptträgerstegverstärkung an der Schlossbrücke Oranienburg. Berlin; RWTH Aachen Lehrstuhl für Stahlbau, 1997.

[K36] Sedlacek, G.; Schneider, R.: Background documentation to prEN 1993-1-8. Third draft, Aachen June 4th, 2004, unveröffentlicht.

[K37] Sedlacek, G.; Weynand, K.; Klinkhammer, R.: Typisierte Anschlüsse im Stahlhochbau. Stahlbau-Verlags GmbH, Düsseldorf 2. Auflage 2002.

[K38] Sedlacek, G.; Weynand, K.; Oerder, S.: Typisierte Anschlüsse im Stahlhochbau. Stahlbau-Verlags GmbH, Düsseldorf 1. Auflage 2000.

[K39] Ungermann, D., Schneider, S.: Scher- Lochleibungsverbindungen mit mehr als zwei Schrauben in Kraftrichtung hintereinander in Bauteilen aus hochfestem Stahl (S690). FOSTA Forschungsprojekt P742, März 2010.

[K40] Ungermann, D.; Schneider, S.: Geschraubte Anschlüsse und Verbindungen nach Eurocode 3 (DIN EN 1993-1-8). Stahlbau 79 (11-2010). [K41] Ungermann, D.; Weynand, K.; Jaspart, J. P.; Schmidt, B.: Momententragfähige Anschlüsse mit und ohne Steifen. Stahlbau-Kalender 2005, Hrsg.: Prof. Dr.-Ing. U. Kuhlmann, Ernst & Sohn, Berlin, 2005.

[K42] Vayas, I.: Tragverhalten, Auslegung und Nachweise von Stahlhochbauten in Erdbebengebieten. Stahlbau-Kalender 2008, Hrsg.: Prof. Dr.-Ing. U. Kuhlmann, Ernst & Sohn, Berlin; 2008.

[K43] VDI 2230. Systematische Berechnung hochbeanspruchter Schraubenverbindungen, Zylindrische Einschraubenverbindungen; VDI-Richtlinien, Verein Deutscher Ingenieure, Blatt 1, Februar 2003.

[K44] Wardenier, J.; Kurobane, Y.; Packer, J. A. et al.: Design Guide for Circular Hollow Sections (CHS) Joints under Predominantly Static Loading. CIDECT-Design Guides, second Edition, 2010.

[K45] Wardenier, J.; Puthli, R.: Korrekturvorschläge für die DIN EN 1993-1-8 zum Thema Hohlprofilanschlüsse. Stahlbau 80 (07-2010).

[K46] Weynand, K.: Sicherheits- und Wirtschaftlichkeitsuntersuchungen zur Anwendung nachgiebiger Anschlüsse im Stahlbau – Beitrag zur Weiterentwicklung moderner Bemessungskonzepte. Shaker Verlag, Aachen 1997.

[K47] Weynand, K.; Jaspart, J. P.; Steenhuis, M.: Economy studies of steel building frames with semi rigid joints. Proceedings of 2nd World Conferece on Steel in Construction, San Sebastian, Elsevier Science Publication, 1998.