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ABSTRACT 

 

This thesis introduces per-stream priorities as a method of decreasing delays of 

important data during periods of low bandwidth availability. We group streams into 

priority classes and propose a scheduling algorithm to prioritize data among these 

classes. Per-stream priorities are useful in applications sending different types of data, 

such as Instant Messaging (IM) systems. We discuss the details of present (AOL 

Instant Messenger) and future IM systems (using Session Initiation Protocol) and how 

these systems benefit from prioritized SCTP. We discuss the practical application of 

example applications of such a scheme are discussed. Through simulation with ns-2, 

we compare prioritized SCTP to non-prioritized SCTP using an application with two 

streams (one stream is sending high-priority sporadic data while the other stream is 

sending low-priority bulk data). In periods when the bulk data submission rate is 

greater than the available bandwidth and the transmission rate of the sporadic data is 

less than the link transmission rate, we demonstrate that with per-stream priorities the 

bulk data transfer will not affect the quality of the sporadic data transfer.
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1. INTRODUCTION 

 

With the steady improvement of computer and network systems, end users are growing 

more accustomed to on-line multimedia experiences. However, these experiences are 

often bandwidth-intensive and to be comfortable to end users require high throughput 

connections. While the number of broadband subscribers grows daily, the majority of 

Internet users still rely on dial-up modem connections, which are often insufficient for 

comfortable viewing of multimedia data. In addition many pocket devices, such as 

mobile phones and Personal Digital Assistants (PDAs), now offer web browsing and 

streaming video over low bandwidth, wireless connections. The maximum throughput 

achieved by these devices often fluctuates depending on signal strength. 

 

In general, current network end users want to request various types of data from server 

applications. Therefore, the server applications must provide a way to transmit multiple 

data-types in parallel, and must effectively respond to periods of insufficient bandwidth.  

 

This thesis purposes an optimization to SCTP, a new general purpose transport protocol, 

which allows end users to specify the relative importance of data. We introduce data 

priority based upon logical flows of data from sender to receiver. In Section 2, we discuss 

the classical approaches to logical data separation and detail the motivations for moving 

beyond these approaches. In Section 3, we define per-stream priorities as an optional 
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scheduling algorithm for a SCTP sender. In Section 4, we discuss how to add per-stream 

priorities to SCTP implementations. We present sample applications that can use per-

stream priorities in Section 5. Sections 6 and 7 detail our performance evaluation of 

priority-enhanced SCTP. Section 8 closes with some remarks and suggestions for future 

work. 

 

2. MOTIVATION 

 

Throughout our discussion, we refer to multimedia applications that must exchange 

multiple types of data between an application’s host and other hosts. For instance, a 

media server might transmit sound data and video data to another host. In this thesis, we 

focus on multimedia applications in which each type of data can be ranked in order of 

relative importance. 

 

Traditionally, transmitting different types of data in parallel between endpoints relied on 

one of three approaches. In all three situations, Host A would like to send three types of 

data (labeled Data 1 through Data 3) to Host B. In the first approach (part 1 of Figure 1), 

Host A opens three TCP connections to Host B – one connection per data type. While 

this approach provides logical separation of data based on type, multiple connections 

defeat TCP-friendly congestion control by allowing an application to gain an unfair 

portion of available bandwidth at the expense of other data flows in the network. 
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In the second approach (part 2 of Figure 1), Host A multiplexes and demultiplexes the 

three types of data over a single connection. Applications using this approach maintain 

TCP-friendly congestion control; however, this approach increases complexity for the 

application programmer, since the application itself must handle the complicated task of 

efficiently and fairly managing data transmission scheduling. 

 

Figure 1 - Traditional Approaches to Parallel Data Transmission 
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The third approach (part 3 of Figure 1) has a multimedia application using UDP. This 

approach closely resembles the second approach; however application programmers must 

supply their own reliability service as well as their own multiplexing/demultiplexing due 

to UDP’s unreliable, connectionless service. 

 

With the introduction of the Stream Transmission Control Protocol (SCTP) [1, 2] and 

SCTP’s concept of streams, applications are presented with a new transport layer solution 

to transmitting multiple types of data. This new approach combines advantages of 

multiple end-to-end connections and application multiplexing/demultiplexing. An SCTP 

stream is a logical, unidirectional communication channel that exists within an SCTP 

end-to-end association. An SCTP endpoint may request multiple outbound streams 

during association setup. Each stream is given an independent send and receive buffer (at 

the sender and receiver, respectively). These streams and buffers exist for the duration of 

the SCTP association.  

 

Figure 2 shows an example case where Hosts A and B have established a multistreamed 

association. In this example, Host A would like to transmit three different types of data. 

Therefore, during association setup, Host A requests three streams to Host B (numbered 

streams 0 to 2). Host B only has one type of data to send to Host A. Therefore Host B 

requests and maintains one stream to Host A (numbered stream 0). Since Host A has 

multiple outbound streams, the SCTP implementation on Host A must provide a 

scheduling algorithm for data transmission across the streams. The SCTP Implementers 
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Figure 2 - A Multi-Streamed SCTP Association between Hosts A and B 

 

Guide [3] states that an SCTP implementation must choose a scheduling algorithm that 

avoids stream starvation. Namely, delivery of data submitted to a certain SCTP stream 

may not be indefinitely postponed. The guide offers two algorithms: round-robin or first-

come first-serve.  

 

Using round-robin for scheduling, Host A would select a data chunk from stream 0’s 

send queue. If Host A could still send data (as allowed by Host B’s advertised receiver 

window and Host A’s congestion window), Host A would send a data chunk from stream 

1’s send queue. A data chunk from A’s stream 2’s send queue would be sent next. Then, 

Host A would send a data chunk from stream 0. This round-robin process would continue 

for the life of the association between A and B.  

 

Using first-come first-serve for scheduling, Host A would transmit each data chunk in the 

order the chunk was received from the application layer regardless of the chunk’s send 

queue. 
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While streams were originally introduced by the SCTP authors to prevent head-of-line 

blocking in SS7-style signaling over IP networks, streams can also provide applications 

with logical data separation and a central point of connection management. Streams are 

managed within an association’s current receiver and congestion windows. With the 

introduction of the PR-SCTP (Partial-Reliability) Internet Draft [4] to the IETF, SCTP 

streams can effectively transport loss-tolerant multimedia data in addition to loss-

intolerant data. Thus, SCTP streams provide powerful features to applications without 

increasing application complexity. 

 

Even with these strengths, networks whose nodes are highly mobile and volatile can 

prove problematic for an SCTP association using multiple streams. Namely, fluctuating 

available bandwidth (for example, induced by congestion or signal degradation) can 

introduce delays in communication between endpoints across all streams due to SCTP’s 

data chunk scheduling algorithm. For example, multimedia network applications running 

on PDAs and mobile phones could experience a decrease in the quality of service and 

data rate as they roamed further from a signal tower. The United States Military’s Future 

Combat Systems also experience fluctuating data rates depending on battlefield 

conditions and mission requirements; and thus may alternate between “high throughput 

mode” and “low-probability of detection/anti-jamming mode (LPD/AJ).”  In either case, 

these networks require survivable and sustained communications during periods of “high 

QoS - high bandwidth” as well as during periods of “high loss - low throughput”. 
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3. DEFINITION OF PER-STREAM PRIORITY 

 

To grant multimedia applications an ability to address periods of poor network 

conditions, we investigate the theoretical and practical implications of adding priorities to 

SCTP streams. We describe stream priorities as an additional service available to 

applications. A stream priority scheme allows an application to specify relative 

importance of data. Given the network conditions at the moment, transmission of critical 

data should take precedence, thereby reducing perceived delays for critical data during 

periods of low quality of service. In this example situation, whenever possible, less 

important data should be transmitted, depending on available bandwidth. 

 

We define an SCTP stream priority scheme as: 

Data on stream j always have greater or equal priority 
 in relation to data on stream k, with j < k 

 

The addition of stream priorities is an extension to SCTP’s existing sender-side API and 

scheduling algorithm implementation only. Priorities do not change the on-the-wire 

SCTP protocol and thereby do not change SCTP’s current packet format (i.e., no addition 

of a new control chunk). By avoiding such modifications, stream priorities do not require 

SCTP’s receiver-side to be aware that prioritization is occurring at the sender. This 

transparency maintains backward compatibility with non-priority enhanced endpoints, 

thereby allowing any SCTP receiver to operate with both priority and non-priority 

enhanced SCTP senders. In addition, this transparency allows for easier Internet 

deployment. 
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Originally, we considered a strict priority scheme for SCTP. In such a scheme, items on 

stream j always have priority over items on stream k, with j < k. However, a strict priority 

scheme has an obvious weakness: in cases where an SCTP sender has bandwidth 

sufficient only to transmit data for streams 0-3, data on stream 4 will be indefinitely 

postponed. In some applications (such as SS7 signaling and stereo audio streaming 

applications), multiple data streams are considered of equal importance. A priority 

scheme must have a method of addressing this situation. By assigning the same priority 

to two or more streams, our priority scheme will treat those streams’ data equally. 

 

4. SPECIFICATION 

 
To implement the priority scheme discussed in Section 3, we must first add a new field to 

the SCTP stream data-structure. This integer field (called priority below) will store a 

positive value corresponding to the relative priority of the stream. Upon association 

setup, priority must be initialized to the value 0 for all streams. In this manner, 

unless the values are changed, priority-enhanced SCTP behaves as basic SCTP. 
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Secondly, the priority scheme implementation requires the addition to the following 

interfaces to the SCTP Sockets API: 

 
sctp_enablepriority ()  
{ 
 for (j = 0; j < num_streams; j++)  

{ 
streams[j].priority = j; 

 } 
} 

 

sctp_enablepriority sets a default strict priority scheme among an SCTP 

association’s streams. To adjust priorities and to rank streams of equal importance, use: 

 
sctp_setequalpriority (int startStream, int endStream) 
{ 
  
 int p = streams[startStream].priority; 
 for (j = startStream; j <= endStream; j++) 
 { 
  streams[j].priority = p; 
 } 
 
 for (j = endStream + 1; j < num_streams; j++) 
 { 
  p++; 
  streams[j].priority = p; 
 } 
} 

 

sctp_setequalpriority sets all streams between (and including) streams startStream 

and endStream to equal priority. Then, the interface resets the priorities on all streams 

greater than the endStream. 
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To disable SCTP priorities completely, use: 

 
sctp_disablepriority () 
{ 
 for (j = 0; j < num_streams; j++)  

{ 
streams[j].priority = 0; 

 } 
} 

 
 
Finally, when priorities are enabled, the following algorithm should be used to assign 

TSN numbers to data among the stream queues: 

 
1. int stream_num;    // current stream number 
2. int current_priority   // current priority 
3. boolean priority_class_has_data // does the current priority 

//  have any streams that 
//  have data to be sent? 

4. int priority_class_base_stream // the first stream with the 
//  current priority 

 
5. stream_num = 0; 
6. current_priority = 0; 
7. priority_class_has_data = false; 
8. priority_class_base_stream = 0; 

 
9. while (space exists in SCTP packet) 
10. { 
11. if (streams[stream_num] has data chunks to transmit) 
12. { 
13. assign TSN to a chunk from streams[stream_num] 
14. bundle chunk into SCTP packet 

 
15. priority_class_has_data = true; 
16. } 

 
17. stream_num++; 

 
18. if ((priority_class_has_data) &&  

(streams[stream_num].priorities > current_priority)) 
19. { 
20.            stream_num = priority_class_base_stream; 
21.            priority_class_has_data = false; 
22. }  
23. else if(streams[stream_num].priorities > current_priority) 
24. { 
25.            current_priority++; 
26.            priority_class_base_stream = stream_num; 
27.            priority_class_has_data = false; 
28. } 

 
29. } 
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The above algorithm should be added after the implementation checks for space in the 

congestion and receiver windows. After initialization (Lines 1-8), the algorithm performs 

a round-robin type operation among the streams while space exists in the SCTP packet 

(Line 9). First, the current stream is checked for data (Line 11). If the stream has data 

chunks to transmit, a TSN is assigned to the data chunk at the head of the stream’s queue 

(Lines 13-14). This chunk is now ready for transport. Since the stream had data to send, 

the priority_class_has_data flag is set to true (Line 15). This flag allows the 

algorithm to track when the priority level should be increased.  

 

The algorithm then considers the next stream number (Lines 17-28). If this stream is of 

the same priority observed before, then we loop to process the new stream’s data. If this 

stream is of a lower priority, we check the priority_class_has_data flag. If the flag is 

set to true, then the algorithm resets the stream number to the first stream number with 

the current priority (Line 26). This ensures that all data of greater priority takes 

precedence over all lower priority data. 

 

Upon initial observation of the algorithm, we might conclude that a number of factors 

influence the running time: namely, size of the SCTP packet, number of streams, amount 

of data to transmit, and number of priority classes. However, when analyzing the worst-

case running time, we can limit these factors to only the number of streams and the 

amount of data to transmit.  

 

We do not consider the packet size since, at any time instance, either: 
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1. The packet size is too small for all of the available stream data – This condition 

will restrict the running time, since the algorithm terminates once a packet is full, 

or 

2. The packet size is greater than the amount of available data – In this case, the 

amount of available data will ultimately determine running time.  

In theory, a worst-case scenario occurs when the amount of packet space remaining is 

infinite (however, in practice the packet space is finite!) 

 

Priority classes do not affect running time. Classes only affect the order in which packets 

are transmitted during the algorithm’s execution, and do not increase the total number of 

loop iterations. 

 

Therefore, we consider the worst-case scenario when at most d chunks of data must be 

transmitted over n streams. We set the SCTP packet size to infinity to maximize the 

running time. Then, the running time (T) for our algorithm is: 

T = n + d 

The while loop will execute at least once for each stream in the association (to determine 

if there is data to send on that stream – Line 11) and once for each piece of data. 

Therefore, we conclude that this algorithm is order O (n + d). 
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5. APPLICABILITY 

 

Several applications may benefit from a per-stream priority scheme. Initially, we focus 

on one widely used (and increasingly popular) general-purpose application – namely 

instant messaging. 

5.1 Overview of Instant Messaging User Activities 

 
Since the late 1990s, the number of Instant Messaging users has increased exponentially. 

Corporations are turning to instant messaging solutions to cut costs of telephony systems, 

as these solutions allow users to communicate via short text messages over the Internet. 

 

Fundamentally, instant messaging client software allows a user connect to an instant 

messaging service and communicate with other users, who are also connected to the same 

service. Basic communication is performed through the exchange of simple, short text 

messages between service users. Text message conversations closely resemble person-to-

person conversations in real-life. Typically, a user types a message to another user, and 

then awaits a reply. The reply may come quickly (if the receiver is expecting an instant 

message and replies immediately), may be delayed (the receiver is away or is busy), or 

may never come (the receiver is ignoring the sender). In addition, the sender may be 

impatient and may transmit multiple short messages in quick succession. Generally, we 

characterize an instant messaging sender’s text-data traffic as sporadic and bursty. 

Text messages are usually transported through the instant messaging service’s network. 

Namely, when a user Alice wants to send a message to another user, Bob, Alice relays 
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the message through a server. The server then forwards the message to Bob. When Bob 

responds, the message first goes to the server; and then the server forwards the response 

to Alice.  

 

Current instant messaging clients also support communication of types of data other than 

email-like text – including image, voice and video, and the exchange of files between two 

users. Relaying bulk data from multiple users may quickly overload servers. To avoid 

this overload, instant messaging services often negotiate a direct connection between two 

users. The following sections describe how present and future instant messaging systems 

implement these advanced features. 

5.2 Current Instant Messaging Systems: An AOL Instant Messenger Case Study 

 
Of the current instant messaging systems, AOL Instant Messenger (AIM) [5] maintains a 

commanding market lead. The AIM service boasts over 180 million registered users, 

giving AOL nearly 90% of the instant messaging market. 

 

The AIM service runs over a proprietary protocol developed by AOL, known as OSCAR 

[9, 10]. OSCAR is an application layer protocol that primarily uses TCP for transport1.  

                                                 
1 AOL’s ad service uses HTTP over UDP to transport small advertisement images that 
are displayed above the user’s buddy list. Otherwise, OSCAR services use TCP for 
transport. 
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Figure 3 - Alice and Bob connected to the AIM Basic OSCAR Service 

 

When a user, Alice, first logs on to the AIM service, she contacts an Authorizer, a server 

that manages authentication requests. The Authorizer then sends Alice a cookie that 

allows Alice access to any Basic OSCAR Service (BOS), namely Login/Logoff, Locate, 

Instant Message, and Buddy List services. Using this cookie, Alice may also log into 

special-purpose servers, including advertisement, stock ticker, and chat servers. 

 

After receiving a cookie, Alice establishes a TCP connection to the BOS handling instant 

messages. Through this connection, Alice can send short text-only messages to any other 

user logged into the AIM service. In Figure 3, Alice can send text messages through the 

Instant Message BOS to Bob. The details of this procedure are proprietary to AOL. 

 

Through the AIM service, Alice can negotiate TCP connections between herself and Bob 

to allow them to share additional types of data. These connections may be maintained 

simultaneously. At present, an AIM user may have at most three direct TCP connections 

to another user: one for images (called the direct connection), one for voice (called the 

talk connection), and one for file transfer (called the file connection). Figure 3 depicts 
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these connections between Alice and Bob. The direct connection allows Alice to insert 

images into her conversation with Bob. These images will be displayed inside Alice’s 

chat window on Bob’s computer. While a direct connection is maintained, all text 

messages between Alice and Bob also go through the direct TCP connection, and not 

through the Instant Message BOS. Messages are multiplexed with the image data during 

a direct connection. 

 

The talk connection allows Alice and Bob to communicate via voice using their systems’ 

microphones and speakers. Finally, the file connection allows Alice to send/receive files 

to/from Bob. While maintaining any or all of these three connections, Alice and Bob can 

continue their text-messaging conversations. 

 

Consider a scenario where Alice and Bob share a direct connection and a file connection. 

Before transferring a file, text messages sent by Alice will reach Bob with minimal 

latency. However, Alice will notice a significant increase in text-message latency if she 

begins sending a file to Bob in parallel (sometimes as great as 5-10 seconds).  

 

To maintain a comfortable mode of text communication between these two hosts while 

Alice transmits a file to Bob, the network needs to provide low end-to-end latency for the 

text. Thus the text data should ideally receive priority over the file data. In our example, 

we assume the file transfer is secondary to the ongoing text conversation, and therefore 

could be sacrificed, so long as the file data is reliably delivered at some point during the 

conversation. 
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5.3 Future Instant Messaging Systems: IM over the Session Initiation Protocol Case 
Study 

 
AIM’s architecture is limited in that the application requires multiple TCP connections to 

directly connect Alice and Bob. As explained in Section 2, multiple TCP connections 

have various disadvantages. The next generation instant messaging protocol, SIP with 

SIMPLE2 [6, 7], allows such direct connections while maintaining transport layer 

independence. Due to SIP’s wide support by software industry giants and the 3rd 

Generation Partnership Project (3GPP), SIP is slated to become a future session protocol 

of choice for instant messaging software.  

 

The SIMPLE extension [7] allows users to exchange text messages without any 

relationship (or state) between messages. Text messages traverse a SIP based network in 

a method similar to that of the general model discussed in Section 5.1. However, if two 

users want to exchange video or voice data, the full functionality of SIP is required. 

 

 

 
Figure 4 - A SIP call between Alice and Bob 

 

                                                 
2 SIP – Session Initiation Protocol; SIMPLE – SIP for Instant Messaging and Presence 
Leveraging Extensions 
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SIP provides primitives used for the negotiation of multimedia ‘sessions’ between two 

hosts, called calls. Primitives support the setup and teardown of these calls between two 

or more users reachable on an IP network. Throughout the network, SIP Registrar 

Servers track user’s reach-ability for a given domain. In Figure 4, Alice belongs to 

DomainA.com. When she logs onto the SIP network, she exchanges information with the 

Registrar Server for her domain. The Registrar Server, in turn, makes note that Alice is 

reachable, or present. 

 

If Alice then wants to call Bob, she sends Bob an INVITE message. Since Bob is not in 

the same domain as Alice (he is in DomainB.com), Alice forwards the INVITE to her 

domain’s SIP proxy server3 (shown in Figure 4 as DomainA.com). Alice’s proxy server 

then performs a DNS lookup to determine the location of DomainB.com’s SIP Registrar 

server. When the lookup is complete, Alice’s SIP proxy forwards the request to 

DomainB.com’s Registrar server; which in turn forwards the INVITE to Bob. If Bob 

accepts the INVITE, then SIP is used to negotiate call options.  

 

Using header information, all control data for the call will flow over the same 

application-layer path as the first request – that is, control information will flow from 

Alice to Alice’s SIP proxy to Bob’s SIP Registrar to Bob. This path is called the control 

                                                 
3 In this scenario, the server DomainA.com acts as both a SIP proxy and a SIP registrar 
(analogously for server DomainB.com). 
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path (as denoted by the solid line). The state of the call is maintained though this control 

path until Alice or Bob decide to terminate the session.  

 

During the call negotiation, a media path is also setup whereby Alice can transmit data 

directly to Bob along a direct connection (as denoted by the dotted line). In this case, 

media can represent any data type – including text, audio, video, or files. 

 

SIP provides transport layer independence. That is, SIP control and media paths currently 

operate over either UDP or TCP. Due to SCTP’s inherent benefits to signaling, SCTP has 

been suggested as another possible transport layer to SIP [11]. While one SCTP 

association could be maintained between Alice and the DomainA.com SIP Server, 

another association could be maintained between Alice and Bob (thereby creating the 

media path). 

 

Let us return to our instant messaging scenario between Alice and Bob. Alice would like 

to send Bob a file while maintaining a comfortable text conversation with him. Using SIP 

over SCTP, the priority scheme proposed in Section 3 addresses this situation. Let the 

chat data go over stream 0, and the image data go over stream 1. During an SCTP 

association, chat data would be sent immediately while the bulk data would be delayed. If 

there remains room in the receiver and the congestion windows after all stream 0 data has 

been sent, the stream 1’s bulk data would be sent. During periods when stream 0 has no 

data to send, stream 1 would transmit as much data as allowed by the available window 

space. 
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6. SIMULATION 

 
To effectively investigate the theoretical and practical implications of adding stream 

priorities to SCTP, we add the strict priority scheme into the University of Delaware’s 

SCTP module [12] for ns-2. This module is in wide use and provides a reliable baseline 

for SCTP functionality. 

 

Through simulation we demonstrate that, based on our performance criteria, priority-

enhanced SCTP outperforms basic SCTP in the instant messaging application discussed 

in the Section 5. In our simulation, we rate performance by measuring the end-to-end 

latency experienced by the text messaging data on stream 0. We demonstrate that the chat 

performance is not sacrificed in the presence of a file transfer. SCTP with priorities 

performs as well as basic SCTP in the worst conditions. Otherwise, chat data on stream 0 

of priority-enhanced SCTP is delivered to the receiver sooner after submission than the 

chat data of basic SCTP. 
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Figure 5 - Simulation Network 

 

For our simulation experiment, we create a link between two hosts, a sender and the 

receiver (see Figure 5). We establish an SCTP association with two streams in either 

direction. The sender’s stream 0 carries small packets (30 bytes of application-layer data) 

representative of text messages used during an instant messaging conversation. To 

simulate a conversation, this data is generated at 30-second intervals. The sender’s stream 

1 carries the bulk data for a continuous file transfer, representative of a large image file 

transfer. 

 

Using this association, we compare “basic SCTP” to “priority SCTP”. To illustrate the 

performance gain by priority SCTP, we test both versions over a simulated 56Kbps (Dial-

up modem) link and a 128Kbps (ISDN) link. This link, for both speeds, has a propagation 

delay of 250ms. 
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During simulation we expect that, with priorities, the quality of the chat data on stream 0 

should not be affected by the bulk data on stream 1 during certain conditions. 

Specifically, let: 

R0 = Rate of data submitted by the application for transmission over stream 0.  

R1 = Rate of data submitted by the application for transmission over stream 1.  

RAvailable = Rate at which SCTP can send data to the receiver.  

 

For these values, we assume application-layer data rates. 

 

There are two conditions when priorities will have minimal, if any, effect on data 

transmission. Condition (1) exists where R0 + R1 < RAvailable. During this time, there will 

be no transport layer queuing, and data would be transmitted immediately after receipt 

from the application. Condition (2) exists where R0 > RAvailable. During this period, 

queuing would occur on stream 0, introducing delays regardless of the amount of data on 

stream 1. Under this condition, a priority scheme could not prevent delays on stream 0. 

However, the delays experienced on stream 0 should still be less than the delays on an 

unprioritized stream 0. 

 

We hypothesize that: 

With per-stream priorities, the quality of sporadic data on stream 0 will not be affected 
by the bulk data on stream 1 when R0 < RAvailable < R0 + R1. 

 

Under these conditions, the data on stream 0 would be transmitted in favor of data on 

stream 1. 
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Throughout the simulation, we analyze the ‘quality of sporadic data’ by measuring the 

end-to-end latency of data on stream 0. We define end-to-end latency as the time elapsed 

from when the sending application gives the text data to the SCTP sender until the SCTP 

receiver hands-off the text data to the receiving application. 

 

7. DISCUSSION OF RESULTS 

 

We performed the above simulation 100 times, using a different random seed for each 

run. We discarded the initial 5 packets and selected the next 15 sequential chat packets 

from the simulation. Then, we analyzed the end-to-end latency for these packets.  

 

In (1), we show the average end-to-end latency for the 30-byte chat packets on stream 0 

across a 56Kbps line. This simulation demonstrates our hypothesis scenario, namely R0 < 

RAvailable < R0 + R1. In basic SCTP, the first-come first-serve nature of basic SCTP 

increases the end-to-end latency of the data on stream 0. As we hypothesized, this low 

bandwidth link produces an unacceptable latency for stream 0 data. Since the data on 

stream 1 will be queued at a constant rate, the sender’s transmit queue will be filled with 

data from stream 1. All of this data must be transmitted before new data on stream 0 is 

sent. Therefore, the latency on stream 0 increases over time as more data for stream 1 is 

queued for transport at the sender.   
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Average End-to-End Latency Over 56 Kbps Link
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Average End-to-End Latency Over 128 Kbps Link
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Figure 6 – Latency for Chat Packets  
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While using priority SCTP over a 56Kbps link, the latency on stream 0 remains fairly 

constant, despite the lower bandwidth. The chat packets report an average delay of 8 

seconds. We know that the data on stream 0 is transmitted upon receipt by the sender’s 

transport layer from the sending application. 

 

In (2), we demonstrate Condition 1 above: namely, R0 + R1 < RAvailable. From the graph, 

we observe that at higher bandwidths (128 Kbps), priority SCTP behaves similar to basic 

SCTP. The link speed for both the priority and basic transmissions is faster than the rate 

at which the sending application produces packets. A 30-byte chat message does not 

experience queuing in either priority SCTP or basic SCTP. Therefore, the latency 

observed, derived from the propagation delay, in the graph is equivalent for both 

protocols. This condition demonstrates the stability of priority-SCTP. 

 

We do not demonstrate Condition 2 above: namely, R0 > RAvailable. While maintaining a 

realistic chat traffic simulation, Condition 2 is unlikely in any practical scenario. To 

observe Condition 2 in our simulation, RAvailable must reduce to less than 1 byte per 

second. 

 

8. CONCLUSIONS AND FUTURE WORK 

 
Initially, we have summarized classical approaches to logical data separation using TCP 

and UDP, and detailed the motivations for moving beyond these approaches. SCTP 

addresses the issue of logical data separation by introducing streams. To enhance SCTP 
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for multimedia applications (such as instant messaging), we defined a per-stream priority 

scheme as an optional scheduling algorithm. We have discussed how to add per-stream 

priorities to existing SCTP senders without changing the on-the-wire protocol. Finally, 

we have shown via simulation that priority SCTP reduces end-to-end latency in certain 

scenarios. 

 

The strict priority scheme, presented in this paper, only addresses reliable data. Future 

work should investigate using priorities with PR-SCTP [4], the partially reliable data 

transfer option for SCTP. PR-SCTP, as mentioned before, allows streams to have varying 

levels of reliability. Applications using both PR-SCTP and per-stream priorities could 

transmit important data while expiring data of lesser importance in times of insufficient 

bandwidth. Such an investigation would extend per-stream priorities to effectively handle 

such data as left and right stereo feeds, MPEG video frames, and other time-sensitive 

material. 
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9. DISCLAIMER 

Prepared through collaborative participation in the Communications and Networks 

Consortium sponsored by the U. S. Army Research Laboratory under the Collaborative 

Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U. S. 

Government is authorized to reproduce and distribute reprints for Government purposes 

notwithstanding any copyright notation thereon. 

 

The views and conclusions contained in this document are those of the authors and 

should not be interpreted as representing the official policies, either expressed or implied, 

of the Army Research Laboratory or the U. S. Government. 
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