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0. Introduction

In this paper we shall study the Neron-Severi group for non-kahlerian el-
liptic surfaces. In a previous paper, see (2], we obtained a description of the
Neron-Severi group for elliptic bundles.

In section one we prove for convenience the (generally) known result that
every non-kahlerian elliptic surface is a quasi-bundle (with the general fibre an
elliptic curve E). Then we construct a (finite) cyclic cover of a (non-kahlerian)
quasi-bundle, which is an elliptic bundle (for the definitions see the first sec-
tion).

In section two we describe the Neron-Severi group (modulo torsion) for a

non-kahlerian elliptic surface by using the corresponding result from [2] for
elliptic bundles. We state the main result (Theorem 5):
”For a non-kdhlerian elliptic surface X = B, we have that the group NS(X)®
Q is tsomorphic to the group Hom(Jp, E) ® Q, where Jg is the Jacobian vari-
ety of the curve B and Hom(Jp, F) s the group of the morphisms of abelian
varieties”

We mention that in [3], by using the result from [2], we gave an explicit
description of the Picard group for a primary Kodaira surface.

For the case of algebraic quasi-bundles, see [12], which focuses on the di-
visibility properties of a general fibre of a quasi-bundle.
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for hospitality; a part of this paper was prepared at the time we visited this
institution. Finally, I want to thank N. Buruiana for the proof of Lemma 4.
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1. Quasi-bundles

All varieties will be defined over the field C of complex numbers.

An elliptic surface ¢ : X — B is a proper, connected, holomorphic map
from a (compact, connected, smooth) surface X to a (compact, connected,
smooth) curve B, such that the general fibre X, (b € B) is non-singular el-
liptic (the holomorphic structure may depend on b). We shall always assume
that ¢ is relatively minimal, i.e. all fibres are free of (—1)-curves.

Let F = 3" n;D; be a singular fibre of ¢, where D; s are the irreducible
reduced components and the n} s are their multiplicities. Let m denotes the
greatest common divisor of the n: s. If m > 2, then the fibre F' is called multi-
ple fibre of multiplicity m and we will write F' = mD | where D = Y (n;/m)D; .

An elliptic surface ¢ : X — B is called a quasi-bundle if all smooth fibres
are pairwise isomorphic, and the only singular fibres are multiples of smooth

(elliptic) curves. If moreover ¢ has no singular fibres then ¢ : X — B is said
to be a fibre bundle.

Let £ be an elliptic curve and let us consider its universal covering sequence
(1) 0-T>C—oE—0 TI'=Z*.

An elliptic bundle ¢ : X — B s a principal fibre bundle whose typical fibre
and structure group are the elliptic curve E. These holomorphic fibre bundles
are classified by the cohomology set H!(€g), where Eg is the sheaf of germs of
local holomorphic maps from B to E. To describe H'(€g) one use the exact
cohomology sequence

(2) H'(B,T') =» H'(B,0g) = H'(€p) > H*(B,T) = o
induced by (1); see, for example, [1] , Chapter V.5.

Let ¢ : X — B be a non-kahlerian elliptic surface. We need the following
(generally) known result (for algebraic elliptic surfaces see, for example, [12]):
Lemma 1 A non-kdhlerian elliptic surface p : X — B is a quasi-bundle.

Proof: In view of a result of Miyaoka (see [8]) the first Betti number is odd.
By the Theorem 2.6 of Chapter IV in [1] one has b;(X) = 2¢(X) — 1, where
q(X) = A" = dim H'(X,Ox) is the irregularity of X.



Denote by m; Dy, ...,m;D; all multiple fibres of ¢ and let £ be any smooth
fibre. Define
G(p) := Coker(Z = ®Z,,), 1 —(1,...,1).

Then there exists an exact sequence
(3) H(E,Z) > H\(X,Z)—> H\(B,Z) x G(p) = 0,

induced by ¢ and the inclusion of £ in X (see [11], Theorem 1.3). Since b;(X)
is odd and rankH,(E,Z) = 2, it follows that the rank of the image of H,(E, Z)
is one. We get b(X) = 2¢(B) + 1, hence ¢(X) — g(B) =1 (g(B) is the genus
of the curve B).

The first terms of the Leray spectral sequence
EY* = H?(B, Rp.0x) — H"™(X,0x)
yield the exact sequence
(4) 0— HY(B,9.0x) = H'(X,0x) — H*(B,R'¢.0Ox) = 0
Since p.Ox = Og we get
(5) h%(B, R'p.0x) = q(X) — g(B) = 1

and
X(Ox) = deg(R'p.Ox)"
(see [1] , Chapter V, Proposition 12.2).

By relative duality (see [1]), one has:

¢.(wx/p) = (R'p.0x)",

where 7 V" denotes dual as Og-module. The Theorem 18.2, Chapter III, in
[1] shows that

deg(R'¢.0x)" = deg(ip.(wx/)) >0

and this degree vanishes if and only if all the smooth fibres of ¢ are isomorphic
and the singular fibres are of type mly, i.e. multiples of smooth (elliptic)
curves.

Suppose deg(p.(wx/p)) > 0. Since deg(R'¢.Ox) < 0, then h®(B, R'¢.0x) =
0 and we get a contradiction with (5). It follows that x(Ox) =0and ¢ : X —
B is a quasi-bundle. |}



Lemma 2 Let ¢ : X — B be a quasi-bundle with the first Betti number odd.
Letmy Dy, ...,m,Dy be all multiple fibres of p and let m denote the least common
multiple of my,...,m;. Then there ezist an elliptic bundle ¢y : Y — C, with the
first Betti number odd, and two cyclic coveringse : C — B,m:Y — X, both
with group Z.,, such that pom =co 1.

Proof: Choose an integer e > 0 such that m divides t +e. Let o(D;}) = F; €
B ,i=1,...,t, and take distinct points Py, ..., Piye € B, which are different
from P;,2 = 1,...,t. Then there is at least one line bundle L on B with

L3 = Og(Py + ... + Piy).

Such an L defines a cyclic covering € : C — B of degree m, totally ramified at
Py, ..., Py (see [1],Chapter I, Lemma 17.1).

Let Y be the normalization of X x5 C. Then Y is smooth by [1], Chapter
III, Proposition 9.1, and there exists a cyclic covering map 7 : ¥ — X with
group G = Z,,, 1.e. X =Y/G.

We get the following commutative diagram:

For this construction see [12] or {1], Chapter III, Theorem 10.3. Again, by
[1] , Chapter III, Proposition 9.1, one sees that ¥ : Y — C is a fibre bundle.
Denote by F a smooth fibre of ¢ and by E a connected component of 7 “I(E).
Then £ is a fibre of ¢ and the restriction £ — E of 7 is an isomorphism.

Now, we can apply to this situation the results of Kodaira in [6], [7}. The
elliptic surface Y has no singular fibres, hence the local monodromy is trivial.
Then the functional invariant J of Y is constant. Since X = Y/G is not
a deformation of an algebraic surface, by Theorems 14.5 and 14.6 in [7], we
deduce that the homological invariant of Y is trivial too (the global monodromy
is trivial). It follows that v : Y — C is an elliptic bundle defined by an element
£ € H'(Ep). From the proof of the Theorem 14.7 in [7] we get ¢(¢) # 0 hence,
by the Theorem 11.9 in [7] (or, by the Proposition 5.3, Chapter V, in [1]), we
obtain that b, (Y) is odd. |



2. The Neron-Severi group

Let v : X = B be a non-kahlerian elliptic surface. From the previous section
we get the diagram:

Pi(Y) —HY(Y,Z)

Let G = Z,, be the finite group of the cyclic covering 7 : ¥ — X.

Lemma 3 With the above notations we have the isomorphism
NS(X)®Q=NS(Y)°®Q,

where NX(Y)C is the subgroup of invariants of the Neron-Severi group NS(Y').

Proof: Obviously, m*(NS(X)) € NS(Y). For any g € G we denote also by ¢
the covering transformation g : Y — Y and we have 7 o g = #. Then, for any
v € NS(X), it follows g*(7*(v)) = 7*(%), i.e.

(6) m*(NS(X)) c NS(Y)°.

Now, let B be an element of NS(Y)® and write 8 = ¢;(M) with M a line
bundle on Y. Take the line bundle on Y defined by

®gea(g'M) = N ’
Since ¢1(g*M) = g*(c1(M)) = g*(8) = B, we get ¢i(N) = mf. Because N is

a G-sheaf we have an action of G on 7.(A). But G is an abelian group, so the
sheaf of invariants 7.(A)® of m.(N) is a line bundle (the invariant summand
in the splitting of 7,(A) as a direct sum according to the characters of G); see
[9], [4] or, for a systematic study of abelian covers {10].

Taking the zero divisor D of the natural morphism of line bundles
(7 (N)F) 2 N,
we get the 1somorphism
N = 7°(L) @ Oy(D),
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where £ := m.(N)®. But D is a sum of fibres of the non-kihlerian elliptic
bundle Y = C and, by [2] the Chern class ¢;(Oy (D)) is a torsion element in
NS(Y). Let k be an integer such that kc;(Oy(D)) = 0 in NS(Y). Then we
have

kmf = key(n*(L)) = (e (L)),
1.€e.
(7) kmNS(Y) C m*(NS(X)) C NS(Y).
By [5), we know that therg exists an homomorphism
p: H(Y,Z) » HY(X,2),

such that gon*(y) = mvy for y € HYX,Z). If vy € Ker(n*), then my =0, i.e.
7 is a torsion element of H*(X,Z). From this fact and from (7) we get

NS(X)®Q=NS(Y)°®Q,
the desired isomorphism. [

Lemma 4 Lete: C — B be a cyclic covering (with group G = Z,,) of curves
and let E be an elliptic curve. Then there exists an ezact sequence of groups

0 = Hom(Jg, E) = Hom(Jg, E)® = Hom(G, E),
where Jg, resp. Jco, is the Jacobian variety of the curve B, resp. C.

Proof: By a suitable choice we can suppose that we have the diagram:

C C__.JC
€ I

B C_.JB

Let h be the genus of the curve C and let = z; + ... + 2z, € Jg, where
t1,...,zx € C. If f € Hom(J¢, E)°, then for all g € G

flgzi + ... + gzn) = f(z1 + ... + ).

Take x, = z € C an arbitrary element and z; = ... =z, =0 € C C Jg. Then
we get

flgz + (R = 1)g0) = f(z) = f(=),
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where f is the restriction of f to C. It follows

flgz) = f(z) = a; € E,

for all z € C. Thus we obtain a map (¢ = a,) : G = E. But
flgg's) = f(z) = flgg'z) = flg'z) + f(g') — f(),
le.
Uggr = g + ag,
and so (g = a,) is a homomorphism a/ : G — E. Clearly, a/ = 0 iff flgz) =
f(z) for all g € G and all =z € C, i.e. iff there exists it : B — [ such that

f = Gioe. But the elements of a curve generates (as a group) the corresponding
Jacobian, so we have f = uo¢e,where u: Jg = E is a morphism.Jj

Theorem 5 Let X — B be a non-kdhlerian elliptic surface. Then we have
the isomorphism

NS(X)® Q= Hom(Js,E) ® Q,

where Jp is the Jacobian variely of the curve B and Hom(Jg, E) is the group
of the morphisms of abelian varieties.

Proof: By the previous results and the Theorem 3.1 in [2].}}
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