WMO WWRP 4th International Symposium on Nowcasting and Very-short-range Forecast 2016 (WSN16)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

25-29 July 2016, Hong Kong

Use of improved remote sensing data for a better nowcasting of severe weather events

Tim Böhme

Deutscher Wetterdienst (National German Weather Service)

General Forecasts Department

- 1. Data for nowcasting at Deutscher Wetterdienst (DWD)
- 2. Radar data as main input for nowcasting:
 - \rightarrow network configuration and scan strategy
 - ightarrow operational and pre-operational radar products
- 3. Weather warnings and their visualisation

data:	resolution:	update:	used for:	new:
satellite (Meteosat RSS)	3 km	5 min	convection fog	day–night-composite with HRV data
radar	250 m / 1 km	5 min	precipitation+ structure	dual-pol radar data
lightning (LINET)	1 km	1 min	thunderstorm	
additional observation SYNOP, METAR, radiosonde				
model data (COSMO, ICON)	2.8 km	3 h		also probabilistic data

テ × × WSN16 臨近預報

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Nowcasting data at DWD

Day-night composite (IR 10.8 + HRV 0.4-1.1) Meteosat rapid scanning service (RSS)

+ lightning detection (LINET)

RADAR network + scan strategy

Deutscher Wetterdienst Wetter und Klima aus einer Hand

network of 17 operational radars

- Volume scan of 10 elevations:
 - 5.5° down to 0.5°
 - 8.0° up to 25°
 - 90° calibration scan

range bins of **1 km** up to **180 km**, **1**° azimuth – repetition cycle of **5 min**

<u>"Precipitation scan"</u> (terrain following)
 range bins of 250 m up to 150 km, 1° azimuth –
 repetition cycle of 5 min

RADAR products (winter)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

RADAR products (winter)

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

RADAR products (winter)

> RADAR products

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Precipitation in South-Western Germany:

Reflektivity in dBZ:

Case study 03 November 2014

 $\Delta x = 1 \text{ km}, \Delta t = 5 \text{ min}$

> RADAR products

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Precipitation in South-Western Germany:

1h-pricipitation rate at the ground:

(mm/h)

100-15

75-100

50-75

40-50

35-10

30-35

25-30

20-25

15-20

10-15

7.5-10

5.0.7.5

3.0-5.0 2.0-3.0

1.0-2.0

0.5-1.0

0.1-0.5

operational:

- reflectivity + radial wind velocity data
- cell objects: KONRAD + CellMOS + meso-cyclone algorithms

pre-operational:

- identification of <u>heavy precipitation</u> possibility:
 - VIL, VII, VIL track, VII track
- identification of <u>rotation</u>:

rotation + 3h-rotation track (mid level \rightarrow z=3-6 km) rotation + 3h-rotation track (low level \rightarrow z=0-3 km)

in planning:

- High-resolution radar data signals
 - → TVS signals ("tornado vortex signature")
 - \rightarrow tornado genese
 - → identification by gradient of flow velocity between inflow and outflow

RADAR products (summer)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Case study 07 June 2016

heavy precipitation event including tornadoes above Northern Germany (city of Hamburg)

RADAR products (summer)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

heavy precipitation event including tornadoes above Northern Germany (city of Hamburg): Case study 07 June 2016

heavy precipitation event including tornadoes above Northern Germany (city of Hamburg):

RADAR products (summer)

Case study

07 June 2016

WSN16 臨近預報

radar reflectivity

radar radial wind velocity

heavy precipitation event including tornadoes above Northern Germany (city of Hamburg):

RADAR products (summer)

Case study

07 June 2016

WSN16 臨近預報

low level (z=0-3 km) rotation signals

mid-level (z=3-6 km) rotation signals

RADAR products (summer) Wetter und Klima aus einer Hand WSN16 臨近預報 Case study heavy precipitation event including rotation signals 10 June 2016 above Northern Germany: So 20:00 UTC m/s / km m/s / km 6,0 - 10 6,0 - 10 4,0 - 6,0 4,0 - 6,0 3,0 - 4,0 3,0 - 4,0 2,3 - 3,0 2,3 - 3,0 1,6 - 2,3 1,6 - 2,3 1 - 1,6 1 - 1,6 0,5 - 1 0,5 - 1 0 - 0,5 0 - 0,5

low level (z=0-3 km) rotation signals

mid-level (z=3-6 km) rotation signals

RADAR products (summer)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

heavy precipitation event including tornadoes above Northern Germany (city of Hamburg):

Visualisation of:

Case study

07 June 2016

- radar reflectivity
- KONRAD cells
- CellMOS cells

Weather warnings

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Case study 07 June 2016 heavy precipitation event including tornadoes

above Northern Germany

(city of Hamburg)

Weather warnings

DWD uses different ways to distribute official weather warnings:

- telefax
- SMS
- app:

www.dwd.de/warnwetter

- overview about current warning situation in Germany
- detailed information about local situation
 → official warnings and trends
 → GPS warnings
- configurable warning elements and alarm levels

Weather warnings

Deutscher Wetterdienst Wetter und Klima aus einer Hand

WarnWetter- App of DWD:

currently 2.700.000 users

- current satellite images in high resolution (RSS)
- DWD weather radar data

٠

- predicted tracks of storm cells
- localised forecasts and current observations
- model forecasts which are relevant for warnings
 → storms, heavy precipitation
- video clips in case of heavy weather events
- traffic information (google)

NEW:

until 14 July 2016:

warnings for rural districts (Landkreis)

since 14 July 2016:

warnings for communities and urban districts (Stadtbezirk)

Thank you! 多謝

Tim Böhme

Tim.Boehme@dwd.de

Deutscher Wetterdienst Business Area Weather Forecasting Services General Forecasts Department Frankfurter Str. 135 63067 Offenbach Germany