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Classical Algorithmic Chemoinformatics

Problems

 Identifying identical molecular structures

- Two molecules are considered the same if they have the same 

molecular graph

 Identifying substructures in a molecule

- A (fragment) structure is part of a molecule if it corresponds to

a subset of atoms and their corresponding bonds



Classical Algorithmic Chemoinformatics

Problems

 Identifying identical molecular structures

- Two molecules are considered the same if they have the same 

molecular graph

- Mathematical formulation

Graph isomorphism problem:

Two graphs are isomorphic (the same) if there is an edge-

preserving  one-to-one correspondence between their vertices

 Identifying substructures in a molecule

- A (fragment) structure is part of a molecule if it corresponds to

a subset of atoms and their corresponding bonds

- Mathematical formulation

Subgraph isomorphism problem:

A graph S is a subgraph of a graph G if S is isomorphic to a 

subgraph of G



Canonical Representations of Molecules

 “Old” problem of chemistry

 Problem: How to uniquely identify molecular structures

 Molecules are not “linear” but graphs

 “Naming” molecules in a unique way:

- Systematically derive a name from its structure

- Allows identification, cataloging of molecules, i.e. makes databases 

searchable

 Identifying molecules is “the same as” identifying isomorphic graphs

 Even for small molecules identity might not be obvious from 

inspection:

strychnin, source: en.wikipedia.org strychnin, source: ChemDraw



Linear Representations

Structural graphs

can be represented using linear representations

 Systematic name

- 7-Chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-2H-1,4-

benzodiazepin-2-one

 Smiles

- Clc3ccccc3C/2=N/C(O)C(=O)Nc1c\2cc(Cl)cc1

 InChI

- InChI=1S/C15H10Cl2N2O2/c16-8-5-6-12-10(7-8)13(19-

15(21)14(20)18-12)9-3-1-2-4-11(9)17/h1-

7,15,21H,(H,18,20)



Smiles Recap

 Acyclic molecules:

- SMILES is a linear representation of the atoms and bonds of a molecule.

- Atoms are represented by their chemical symbol

 B, C, N, O, S, P, F, Cl, Br, I

- Hydrogens are implicit

- Adjacent atoms in a SMILES representation are connected by a bond.

- Special symbols can be used to indicate the order of the bond

 -, =, #, :

- Branches can be specified by enclosing them in parentheses

 Isobutane: CC(C)C

C=CC(CCC)C(C(C)C)CCC



Smiles Recap

 Cyclic molecules

- Cycles are “broken” by removing a bond

- Broken bonds are marked by numerical indices

- The resulting tree is linearized

- Atoms of broken bonds are annotated with the corresponding 

indices

Images from: http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html



Smiles Recap

 Cyclic molecules

- Cycles are “broken” by removing a bond

- Broken bonds are marked by numerical indices

- The resulting tree is linearized

- Atoms of broken bonds are annotated with the corresponding 

indices

C12C3C4C1C5C4C3C25

Images from: http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html



InChI

 InChI  describe molecules in layers:

- molecular formula

- atom connectivity (topology)

- hydrogen locations (bond orders)

- charges

- stereochemistry

- …

 Atoms are numbered according to molecular formula

 Connectivity is described similar to SMILES:

- each atom is defined by its number

- no “ring-closure” numbers, instead numbers can be reused



InChI

InChI=1S/C15H10Cl2N2O2/c16-8-5-6-12-10(7-8)13(19-15(21)14(20)18-

12)9-3-1-2-4-11(9)17/h1-7,15,21H,(H,18,20)

 InChI=1S

 C15H10Cl2N2O2

 16-8-5-6-12-10(7-8)13(19-15(21)14(20)18-12)9-3-1-2-4-11(9)17

 h1-7,15,21H,(H,18,20)
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Canonical Representations

 Representations like Smiles and InChI depend on the 

order of traversal of atoms, i.e.

- What is the first atom of the representation?

- At each branch-point: Which path to follow first?

 Idea for canonicalization: 

Assign priorities to atoms based on the topology

- Priorities determine order of traversal

- Numbering of atoms in InChI depends on priorities

 Although there is no direct correspondence



Canonical Labeling: Basic Idea

 Assign initial invariants to atoms, encoding local 

information of the atoms

- Number of neighbors

- Atom type

- Number of hydrogens

- …

 Update invariant based on neighboring invariant

 Repeat until atoms are disambiguated

 … or no more atoms can be differentiated



Morgan Algorithm (Simple)

1. Assign initial invariant of 1

2. New invariant: Sum of neighboring values

3. Determine number of values
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Morgan Algorithm (Simple)

 Repeat summing of neighboring values 
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Morgan Algorithm (Simple)
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 Repeat summing of neighboring values 



Morgan Algorithm (Simple)
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 Repeat summing of neighboring values 



Morgan Algorithm (Simple)
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n=5
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n=6
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 Repeat summing of neighboring values 

 Until number of values does not increase 

anymore



Morgan Algorithm (Simple)

 Assign priorities according to invariants
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Morgan Algorithm (Simple)

 Disambiguate ties by

- atom type

- bond order

 Construct Smiles according to invariants
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CC(=O)Oc1ccccc1C(=O)O
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1   1 9  8 5 11 7  2 2



Morgan Algorithm

 Invariants are very simple

 Not able to distinguish different atom types bond 

orders initially

 Numerical explosion

 Not all atoms can be distinguished sufficiently 

well…



Morgan Based Fingerprints…

 Morgan algorithm also contains the basic idea for 

some fingerprints

- ECFP

- Morgan fingerprints (RDKit)

 Initial invariants encode atom types, hydrogens, 

bonds

- e.g. use Smarts patterns [CH2D1], [OH1D1]

 Each step combines the current invariant with 

those of the neighbors



Cangen Algorithm

 Weininger et al.1 proposed Cangen algorithm to 

address shortcomings:

- Improved invariants

- “Stable” prioritization

- Avoids ambiguities from combining invariants

- Resolves “symmetric” atoms

1. D Weininger D et al., JChemInfCompSci 29, 1989, 97--101



Cangen – Initial Invariants

 Initial invariants encode atom type information

- Number of neighbors

- Sum of bond orders

- Atom type

- Charge

- Number of attached hydrogens

a b
c

d
i

j
k l

mh
g

f

e

n=1
#ranks=6

Atom #bds Σ bds At.Nr Chg. #H

a 1 2 08 0 0

b 1 1 08 0 1

c 3 4 06 0 0

d 3 4 06 0 0

e 2 4 06 0 1

f 2 4 06 0 1

g 2 4 06 0 1

h 2 4 06 0 1

i 3 4 06 0 0

j 2 2 06 0 0

k 3 4 06 0 0

l 1 1 06 0 3

m 1 2 08 0 0



Cangen – Initial Invariants

 Initial invariants are transformed to ranks

a b
c

d
i

j
k l

mh
g

f

e

n=1
#ranks=6

Atom #bds Σ bds At.Nr Chg. #H rank

a 1 2 08 0 0 3

b 1 1 08 0 1 2

c 3 4 06 0 0 6

d 3 4 06 0 0 6

e 2 3 06 0 1 5

f 2 3 06 0 1 5

g 2 3 06 0 1 5

h 2 3 06 0 1 5

i 3 4 06 0 0 6

j 2 2 06 0 0 4

k 3 4 06 0 0 6

l 1 1 06 0 3 1

m 1 2 08 0 0 3



Cangen – Update Rule for Invariants

 Rank is mapped to corresponding prime:

 New invariant:

- primes of neighbors are multiplied

a b
c

d
i

j
k l

mh
g

f

e

n=1
#ranks=6

Rank 1 2 3 4 5 6 …

prime 2 3 5 7 11 13 …

Atom rank prime Nbors New Inv.

a 3 5 c 13

b 2 3 c 13

c 6 13 a,b,d 195   = 5*3*13

d 6 13 c,e,i 1889 = 13*11*13

e 5 11 d,f 143   = 13*11

f 5 11 e,g 121   = 11*11

g 5 11 f,h 121   = 11*11

h 5 11 g,i 143   = 11*13

i 6 13 d,h,j 1001 = 13*11*7

j 4 7 i,k 169   = 13*13

k 6 13 j,l,m 70     = 7*2*5

l 1 2 k 13

m 3 5 k 13



Cangen – Update Rule for Invariants

 New ranks are determined on the basis of:

- Old ranks

- New invariants

a b
c

d
i

j
k l

mh
g

f

e

n=2
#ranks=10

Atom rank New Inv. (rk.,inv.) New rank

a 3 13 (3,13) 3

b 2 13 (2,13) 2

c 6 195 (6,195) 8

d 6 1889 (6,1889) 10

e 5 143 (5,143) 6

f 5 121 (5,121) 5

g 5 121 (5,121) 5

h 5 143 (5,143) 6

i 6 1001 (6,1001) 9

j 4 169 (4,169) 4

k 6 70 (6,70) 7

l 1 13 (1,13) 1

m 3 13 (3,13) 3



Cangen – Iteration

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

a b
c

d
i

j
k l

mh
g

f

e

n=2
#ranks=10

Atom rank prime Nbors New Inv.

a 3 5 c 19

b 2 3 c -

c 8 19 a,b,d -

d 10 29 c,e,i -

e 6 13 d,f 319   =  29*11

f 5 11 e,g 143  = 13*11

g 5 11 f,h 143   = 11*13

h 6 13 g,i 243   = 11*23

i 9 23 d,h,j -

j 4 7 i,k -

k 7 17 j,l,m -

l 1 2 k -

m 3 5 k 17



Cangen – Iteration

a b
c

d
i

j
k l

mh
g

f

e

n=3
#ranks=12

Atom rank New Inv. (rk.,inv.) New rank

a 3 19 (3,19) 4

b 2 - (2,-) 2

c 8 - (8,-) 10

d 10 - (10,-) 12

e 6 319 (6,319) 8

f 5 143 (5,143) 6

g 5 143 (5,143) 6

h 6 243 (6,243) 7

i 9 - (9,-) 11

j 4 - (4,-) 5

k 7 (7,-) 9

l 1 - (1,-) 1

m 3 17 (3,17) 3

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms



Cangen – Iteration

a b
c

d
i

j
k l

mh
g

f

e

n=3
#ranks=12

Atom rank prime Nbors New Inv.

a 4 7 c -

b 2 3 c -

c 10 29 a,b,d -

d 12 37 c,e,i -

e 8 19 d,f -

f 6 13 e,g 249  = 19*13

g 6 13 f,h 221  = 13*17

h 7 17 g,i -

i 11 31 d,h,j -

j 5 11 i,k -

k 9 23 j,l,m

l 1 2 k -

m 3 5 k -

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms



Cangen – Final Ranking

a b
c

d
i

j
k l

mh
g

f

e

n=4
#ranks=13

Atom rank New Inv. (rk.,inv.) New rank

a 4 - (4,-) 4

b 2 - (2,-) 2

c 10 - (10,-) 11

d 12 - (12,-) 13

e 8 - (8,-) 9

f 6 249 (6,249) 7

g 6 221 (6,221) 6

h 7 - (7,-) 8

i 11 - (11,-) 12

j 5 - (5,-) 5

k 9 (9,-) 10

l 1 - (1,-) 1

m 3 - (3,-) 3

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

 Final ranking



Cangen – Final Ranking

n=4
#ranks=13

a=4 b=2
c=11

d=13

i=12

j=5
k=10 l=1

M=3h=8
g=6

f=7

e=9

Atom rank New Inv. (rk.,inv.) New rank

a 4 - (4,-) 4

b 2 - (2,-) 2

c 10 - (10,-) 11

d 12 - (12,-) 13

e 8 - (8,-) 9

f 6 249 (6,249) 7

g 6 221 (6,221) 6

h 7 - (7,-) 8

i 11 - (11,-) 12

j 5 - (5,-) 5

k 9 (9,-) 10

l 1 - (1,-) 1

m 3 - (3,-) 3

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

 Final ranking yields priorities



Cangen – Generate Smiles

a=4 b=2
c=11

d=13

i=12

j=5
k=10 l=1

M=3h=8
g=6

f=7

e=9

n=4
#ranks=13

CC(=O)Oc1ccccc1C(O)=O
lk m ji hgfed c a  b

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

 Final ranking yields priorities

 Generate Smiles



Cangen – Ties

 In case of symmetric atoms not all 

atoms can be uniquely prioritized this 

way:

 In this case a single tie is broken to be 

able to continue the algorithm

 If necessary, repeat breaking ties until 

all ambiguities are reolved
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Remarks: Canonical Representations

 Limitations

- Modifications are needed to handle stereochemistry

- Different tautomers of a compound yield different Smiles

- Canonicalization also depends on the aromaticity model

- Different variations of the algorithms exist:

 Canonical Smiles are only canonical with respect to a specific toolkit!

 InChI also uses a canonical atom labeling algorithm

- Its algorithm is based on a mathematical group-theoretical 

formulation

- The basic idea of iterative refinement of rankings by finer 

partitioning of the atoms into different ranks is similar

- More complex

- More robust

- Standardized



Remarks: Canonical Representations

 Will CANGEN always provide unique representation?

- The method works as long as the algorithm is able to distinguish 

between non-symmetric molecules.

- The algorithm could fail if for each atom in a molecule there is 

another non-symmetric atom with the same local neighborhood.

- This can happen

- …although these molecules may be of little practical value

Images from: Carhart RE. JChemInfCompSci,1978,18,108--110



Remarks

 Canonicalization of molecular representations allows easy 

identification of identical molecules

 It solves the “graph isomorphism” problem

- It is believed no efficient (polynomial-time) algorithm exists for 

solving this problem

- Thus any algorithm for this problem

 either is inefficient at least in some instances

 or fails to yield a unique canonical representation in some instances

 Cangen algorithm is a practical, efficient algorithm for 

generating canonical Smiles but it can fail for some 

obscure molecules

 InChI algorithm is practical, correct, and efficient (all but in 

a theoretical sense)



Substructure Searching

 Finding canonical identifiers effectively solves the graph 

isomorphism problem

 The corresponding problem to substructure searching is 

the subgraph isomorphism problem

 The subgraph isomorphism problem is believed to be 

harder than graph isomorphism

- (The former is NP-complete whereas the latter is not)

 Algorithms rely on (but in a smart way) exploring the 

search space



Substructure Searching: Basic Idea

Given: substructure S of  k atoms    and        molecule of n atoms

Find mapping between all atoms of S and some atoms of M so that:

if there is a bond between two atoms in S there has to be a bond 

between the two corresponding atoms in M

Problem: the number of possible mappings can be huge

- e.g. n=30, k=7 there are ca. 10 billion (10·109) possible mappings

Naively exploring the search space is too time expansive

- Standard algorithmic solution: Backtracking 

S, k=6 M, n=8



Backtracking

 Backtracking is a search strategy that traverses a search tree in 

depth-first order

 A search tree assigns atoms of S to all possible atoms of M in a 

systematic way

1→e

2→a 2→b 2→c 2→f

3→b 3→c 3→f

4→d 4→g

… … …… … … … … …

… … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h
… … …

… … … … … …



Backtracking

 At each step of traversing the tree check whether the assignment is 

plausible, i.e.

- atom types match and

- bonds between already assigned substructure atoms match bonds of 

corresponding atom

- if not, skip this specific branch 1→e

2→a 2→b 2→c 2→f

3→b 3→c 3→f

4→d 4→g

… … …… … … … … …

… … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h
… … …

… … … … … …



Backtracking

 Assign: 1→e

- Assign: 2 →a
 Assignment is not possible

 Skip branch

1→e

2→a 2→b 2→c 2→f

3→b 3→c 3→f

4→d 4→g

… … …… … … … … …

… … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h
… … …

… … … … … …

XX



Backtracking

 Assign: 1→e

- …

- Assign: 2 →b
 Assignment is not possible

 Skip branch

1→e

2→a 2→b 2→c 2→f

… … …… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X



Backtracking

 Assign: 1→e

- …

- Assign: 2 →c
 Assignment possible

 …

 Assign: 3 →f

1→e

2→a 2→b 2→c 2→f

… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X
3→f3→b3→a

X X



Backtracking

 Assign: 1→e

- …

- Assign: 2 →c
 …

 Assign: 3 →f

- …

- Assign 4 →g 1→e

2→a 2→b 2→c 2→f

… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X
3→f

4→g

3→b3→a

X X

4→g

X



Backtracking

 Assign: 1→e

- Assign: 2 →c
 Assign: 3 →f

- Assign 4 →g

- No viable assignment for 5

1→e

2→a 2→b 2→c 2→f

… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X
3→f

… …

4→g
… …

Dead end



Backtracking

 Assign: 1→e
- …

- Assign: 2 →f

1→e

2→a 2→b 2→c 2→f

… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X
3→f

… …

4→g
… …

Dead end

X



Backtracking

 Assign: 1→e

- Assign: 2 →f
 Assign: 3 →c

- Assign: 4 →d

Assign: 5→b 

Assign: 6→a

- Assign: 3 →c 1→e

2→a 2→b 2→c 2→f

… … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X

3→c
… …

4→d

… …

X

5→b

6→a



Ullmann Algorithm

 For backtracking:

- The earlier search tree traversal fails, the better

- The order in which substructure atoms are assigned is arbitrary

- However, starting with rare hetero-atoms might be good for 

efficiency because only few options are usually available for these

 Refined backtracking: Ullmann algorithm

- Backtracking only checks if currently mapped atom yields 

plausible assignment

- Idea:

 In each step, keep track of all possible assignments for all substructure atoms

 If no possible matches remain for any single substructure atom the branch can 

be skipped 

 Note, that the basic backtracking only check possibilities of the current atom to 

be assigned and not any later ones



Ullmann Algorithm: Feasibility Matrix

 Keep track of all possible matches for substructure atoms in a 

feasibility matrix

 Initially:

- atom types must match

- the corresponding atom in the molecule must have at least as many 

neighbors as the substructure atom
 e.g., 3 cannot be assigned to e

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 x x x

3 x x

4 x x

5 x x x x x



Ullmann Algorithm: Refinement

 Next, the matrix is refined by checking the plausibility of each entry:

 Thus, for M(s,m)=x check for all neighbors n of s if M(n,k)=x where k is 

neighbor of m. If no neighbor m can be found eliminate possibility M(s,k)

 Continue checking entries until no more possibilities can be removed

 After that perform standard backtracking, in each step updating and refining M

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 x x x

3 x x

4 x x

5 x x x x x

if atom s should be assigned to atom m it should also be possible to 
assign neighbors of s to neighbors of m



Ullmann Algorithm: Refinement

 The entries for atom 1 pass the test

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 x x x

3 x x

4 x x

5 x x x x x



Ullmann Algorithm: Refinement

 The entries for atom 1 pass the test

 The possibility 2→a  fails because although

- 1→b is a possibility for one neighbor of 2

- there is no possibility to map 3 to a neighbor of a

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 x x x

3 x x

4 x x

5 x x x x x



Ullmann Algorithm: Refinement

 The entries for atom 1 pass the test

 The possibility 2→a  fails because although

- 1→b is a possibility for one neighbor of 2

- there is no possibility to map 3 to a neighbor of a

 The possibility 2→c fails for the same reason

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 - - x

3 x x

4 x x

5 x x x x x



Ullmann Algorithm: Refinement

 The entries for atom 1 pass the test

 The possibility 2→a  fails because although

- 1→b is a possibility for one neighbor of 2

- there is no possibility to map 3 to a neighbor of a

 The possibility 2→c fails for the same reason

 The possibility 2→e remains valid because

- 1→d and

- 3→a are possibilities for the neighbors

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 - - x

3 x x

4 x x

5 x x x x x



Ullmann Algorithm: Refinement

 Completing the matrix eliminates further possibilities

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 - - x

3 x -

4 x -

5 - - x x -



Ullmann Algorithm: Refinement

 Checking the matrix a second time eliminates another possibility

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 - x

2 - - x

3 x -

4 x -

5 - - x x -



Ullmann Algorithm: Refinement

 Matrix after refinement

 A single assignment remains possible

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x

2 x

3 x

4 x

5 x x



Ullmann Algorithm: Summary

 Set up a feasibility matrix containing all possible 

assignments of substructure atoms to molecule atoms with 

respect to

- atom type

- bond order

 Refine the matrix 

- for each potential assignment check possible assignments of 

neighboring atoms

 Explore the search tree

- choose assignment for current atom from feasibility matrix

- update matrix & refine matrix

a. possibilities remain for every atom: continue exploration with next atom

b. no possibilities for at least one atom: choose different assignment & backtrack



Ullmann Algorithm: Summary

 Ullmann is a backtracking algorithm

 Compared to “standard backtracking” considerable work 

is done in each step to check feasibility

 Each step requires much more computation time than the 

standard approach

 However, much better “pruning” of search tree makes it 

much more efficient
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