

Life Science Informatics

Algorithms in Chemoinformatics Canonical Representations and Substructure Searching

Martin Vogt B-it Life Science Informatics Rheinische Friedrich-Wilhelms-Universität Bonn

15 May 2019

Classical Algorithmic Chemoinformatics Problems

- Identifying identical molecular structures
 - Two molecules are considered the same if they have the same molecular graph

- Identifying substructures in a molecule
 - A (fragment) structure is part of a molecule if it corresponds to a subset of atoms and their corresponding bonds

Classical Algorithmic Chemoinformatics Problems

- Identifying identical molecular structures
 - Two molecules are considered the same if they have the same molecular graph
 - Mathematical formulation

Graph isomorphism problem:

Two graphs are isomorphic (the same) if there is an edgepreserving one-to-one correspondence between their vertices

- Identifying substructures in a molecule
 - A (fragment) structure is part of a molecule if it corresponds to a subset of atoms and their corresponding bonds
 - Mathematical formulation

Subgraph isomorphism problem:

A graph S is a subgraph of a graph G if S is isomorphic to a subgraph of G

Canonical Representations of Molecules

- "Old" problem of chemistry
- Problem: How to uniquely identify molecular structures
- Molecules are not "linear" but graphs
- "Naming" molecules in a unique way:
 - Systematically derive a name from its structure
 - Allows identification, cataloging of molecules, i.e. makes databases searchable
- Identifying molecules is "the same as" identifying isomorphic graphs
- Even for small molecules identity might not be obvious from inspection:

strychnin, source: en.wikipedia.org

strychnin, source: ChemDraw

Linear Representations

Structural graphs

can be represented using linear representations

- Systematic name
 - 7-Chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-2H-1,4benzodiazepin-2-one
- Smiles
 - Clc3cccc3C/2=N/C(0)C(=0)Nc1c\2cc(Cl)cc1
- InChl
 - InChI=1S/C15H10Cl2N202/c16-8-5-6-12-10(7-8)13(19-15(21)14(20)18-12)9-3-1-2-4-11(9)17/h1-7,15,21H,(H,18,20)

Smiles Recap

- Acyclic molecules:
 - SMILES is a linear representation of the atoms and bonds of a molecule.
 - Atoms are represented by their chemical symbol
 - B, C, N, O, S, P, F, Cl, Br, I
 - Hydrogens are implicit
 - Adjacent atoms in a SMILES representation are connected by a bond.
 - Special symbols can be used to indicate the order of the bond

■ -, =, **#**, :

- Branches can be specified by enclosing them in parentheses
 - Isobutane: CC(C)C

Smiles Recap

- Cyclic molecules
 - Cycles are "broken" by removing a bond
 - Broken bonds are marked by numerical indices
 - The resulting tree is linearized
 - Atoms of broken bonds are annotated with the corresponding indices

Images from: http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

Smiles Recap

- Cyclic molecules
 - Cycles are "broken" by removing a bond
 - Broken bonds are marked by numerical indices
 - The resulting tree is linearized
 - Atoms of broken bonds are annotated with the corresponding indices

C12C3C4C1C5C4C3C25

Images from: http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

InChl

- InChI describe molecules in layers:
 - molecular formula
 - atom connectivity (topology)
 - hydrogen locations (bond orders)
 - charges
 - stereochemistry
- Atoms are numbered according to molecular formula
- Connectivity is described similar to SMILES:
 - each atom is defined by its number
 - no "ring-closure" numbers, instead numbers can be reused

InChl

InChI=1S/C15H10Cl2N2O2/c16-8-5-6-12-10(7-8)13(19-15(21)14(20)18-12)9-3-1-2-4-11(9)17/h1-7,15,21H,(H,18,20)

- InChI=1S
- C15H10Cl2N2O2
- 16-8-5-6-12-10(7-8)13(19-15(21)14(20)18-12)9-3-1-2-4-11(9)17
- h1-7,15,21H, (H,18,20)

Canonical Representations

- Representations like Smiles and InChI depend on the order of traversal of atoms, i.e.
 - What is the first atom of the representation?
 - At each branch-point: Which path to follow first?
- Idea for canonicalization: Assign priorities to atoms based on the topology
 - Priorities determine order of traversal
 - Numbering of atoms in InChI depends on priorities
 - Although there is no direct correspondence

Canonical Labeling: Basic Idea

- Assign initial invariants to atoms, encoding local information of the atoms
 - Number of neighbors
 - Atom type
 - Number of hydrogens
 - ..
- Update invariant based on neighboring invariant
- Repeat until atoms are disambiguated
- ... or no more atoms can be differentiated

- 1. Assign initial invariant of 1
- 2. New invariant: Sum of neighboring values
- 3. Determine number of values

Repeat summing of neighboring values

Repeat summing of neighboring values

Repeat summing of neighboring values

- Repeat summing of neighboring values
- Until number of values does not increase anymore

Assign priorities according to invariants

- Disambiguate ties by
 - atom type
 - bond order
- Construct Smiles according to invariants

Morgan Algorithm

- Invariants are very simple
- Not able to distinguish different atom types bond orders initially
- Numerical explosion
- Not all atoms can be distinguished sufficiently well...

Morgan Based Fingerprints...

- Morgan algorithm also contains the basic idea for some fingerprints
 - ECFP
 - Morgan fingerprints (RDKit)
- Initial invariants encode atom types, hydrogens, bonds
 - e.g. use Smarts patterns [CH2D1], [OH1D1]
- Each step combines the current invariant with those of the neighbors

Cangen Algorithm

- Weininger et al.¹ proposed Cangen algorithm to address shortcomings:
 - Improved invariants
 - "Stable" prioritization
 - Avoids ambiguities from combining invariants
 - Resolves "symmetric" atoms

1. D Weininger D et al., JChemInfCompSci 29, 1989, 97--101

Cangen – Initial Invariants

- Initial invariants encode atom type information
 - Number of neighbors
 - Sum of bond orders
 - Atom type
 - Charge
 - Number of attached hydrogens

Atom	#bds	Σ bds	At.Nr	Chg.	#H	
а	1	2	08	0	0	
b	1	1	08	0	1	
с	3	4	06	0	0	
d	3	4	06	0	0	
е	2	4	06	0	1	
f	2	4	06	0	1	
g	2	4	06	0	1	
h	2	4	06	0	1	
i	3	4	06	0	0	
j	2	2	06	0	0	
k	3	4	06	0	0	
I	1	1	06	0	3	
m	1	2	08	0	0	

Cangen – Initial Invariants

Initial invariants are transformed to ranks

Atom	#bds	Σ bds	At.Nr	Chg.	#H	rank
а	1	2	08	0	0	3
b	1	1	08	0	1	2
с	3	4	06	0	0	6
d	3	4	06	0	0	6
е	2	3	06	0	1	5
f	2	3	06	0	1	5
g	2	3	06	0	1	5
h	2	3	06	0	1	5
i	3	4	06	0	0	6
j	2	2	06	0	0	4
k	3	4	06	0	0	6
I	1	1	06	0	3	1
m	1	2	08	0	0	3

Cangen – Update Rule for Invariants

Rank is mapped to corresponding prime:

R	ank	1	2	3	4	5	6	
р	rime	2	3	5	7	11	13	

- New invariant:
 - primes of neighbors are multiplied

Atom	rank	prime	Nbors	New Inv.
а	3	5	С	13
b	2	3	с	13
c	6	13	a,b,d	195 = 5*3*13
d	6	13	c,e,i	1889 = 13*11*13
е	5	11	d,f	143 = 13*11
f	5	11	e,g	121 = 11*11
g	5	11	f,h	121 = 11*11
h	5	11	g,i	143 = 11*13
i	6	13	d,h,j	1001 = 13*11*7
j	4	7	i,k	169 = 13*13
k	6	13	j,l,m	70 = 7*2*5
I.	1	2	k	13
m	3	5	k	13

Cangen – Update Rule for Invariants

- New ranks are determined on the basis of:
 - Old ranks
 - New invariants

Atom	rank	New Inv.	(rk.,inv.)	New rank
а	3	13	(3,13)	3
b	2	13	(2,13)	2
c	6	195	(6,195)	8
d	6	1889	(6,1889)	10
е	5	143	(5,143)	6
f	5	121	(5,121)	5
g	5	121	(5,121)	5
h	5	143	(5,143)	6
i	6	1001	(6,1001)	9
j	4	169	(4,169)	4
k	6	70	(6,70)	7
I.	1	13	(1,13)	1
m	3	13	(3,13)	3

Cangen – Iteration

- Repeat until ranking is stable:
 - Calculate new invariants
 - Re-rank atoms

Atom	rank	prime	Nbors	New Inv.
а	3	5	С	19
b	2	3	с	-
с	8	19	a,b,d	-
d	10	29	c,e,i	-
е	6	13	d,f	319 = 29*11
f	5	11	e,g	143 = 13*11
g	5	11	f,h	143 = 11*13
h	6	13	g,i	243 = 11*23
i	9	23	d,h,j	-
j	4	7	i,k	-
k	7	17	j,l,m	-
I.	1	2	k	-
m	3	5	k	17

Cangen – Iteration

- Repeat until ranking is stable:
 - Calculate new invariants
 - Re-rank atoms

Atom	rank	New Inv.	(rk.,inv.)	New rank
а	3	19	(3,19)	4
b	2	-	(2,-)	2
с	8	-	(8,-)	10
d	10	-	(10,-)	12
e	6	319	(6,319)	8
f	5	143	(5,143)	6
g	5	143	(5,143)	6
h	6	243	(6,243)	7
i	9	-	(9,-)	11
j	4	-	(4,-)	5
k	7		(7,-)	9
I	1	-	(1,-)	1
m	3	17	(3,17)	3

Cangen – Iteration

- Repeat until ranking is stable:
 - Calculate new invariants
 - Re-rank atoms

Atom	rank	prime	Nbors	New Inv.
а	4	7	С	-
b	2	3	с	-
c	10	29	a,b,d	-
d	12	37	c,e,i	-
е	8	19	d,f	-
f	6	13	e,g	249 = 19*13
g	6	13	f,h	221 = 13*17
h	7	17	g,i	-
i	11	31	d,h,j	-
j	5	11	i,k	-
k	9	23	j,l,m	
I.	1	2	k	-
m	3	5	k	-

Cangen – Final Ranking

- Repeat until ranking is stable:
 - Calculate new invariants
 - Re-rank atoms
- Final ranking

Atom	rank	New Inv.	(rk.,inv.)	New rank
а	4	-	(4,-)	4
b	2	-	(2,-)	2
c	10	-	(10,-)	11
d	12	-	(12,-)	13
е	8	-	(8,-)	9
f	6	249	(6,249)	7
g	6	221	(6,221)	6
h	7	-	(7,-)	8
i	11	-	(11,-)	12
j	5	-	(5,-)	5
k	9		(9,-)	10
I	1	-	(1,-)	1
m	3	-	(3,-)	3

Cangen – Final Ranking

- Repeat until ranking is stable:
 - Calculate new invariants
 - Re-rank atoms
- Final ranking yields priorities

Atom	rank	New Inv.	(rk.,inv.)	New rank
а	4	-	(4,-)	4
b	2	-	(2,-)	2
с	10	-	(10,-)	11
d	12	-	(12,-)	13
е	8	-	(8,-)	9
f	6	249	(6,249)	7
g	6	221	(6,221)	6
h	7	-	(7,-)	8
i	11	-	(11,-)	12
j	5	-	(5,-)	5
k	9		(9,-)	10
1	1	-	(1,-)	1
m	3	-	(3,-)	3

Cangen – Generate Smiles

- Repeat until ranking is stable:
 - Calculate new invariants
 - Re-rank atoms
- Final ranking yields priorities
- Generate Smiles

Cangen – Ties

 In case of symmetric atoms not all atoms can be uniquely prioritized this way:

In this case a single tie is broken to be able to continue the algorithm

 If necessary, repeat breaking ties until all ambiguities are reolved

Remarks: Canonical Representations

- Limitations
 - Modifications are needed to handle stereochemistry
 - Different tautomers of a compound yield different Smiles
 - Canonicalization also depends on the aromaticity model
 - Different variations of the algorithms exist:
 - Canonical Smiles are only canonical with respect to a specific toolkit!
- InChI also uses a canonical atom labeling algorithm
 - Its algorithm is based on a mathematical group-theoretical formulation
 - The basic idea of iterative refinement of rankings by finer partitioning of the atoms into different ranks is similar
 - More complex
 - More robust
 - Standardized

Remarks: Canonical Representations

- Will CANGEN always provide unique representation?
 - The method works as long as the algorithm is able to distinguish between non-symmetric molecules.
 - The algorithm could fail if for each atom in a molecule there is another non-symmetric atom with the same local neighborhood.
 - This can happen

- ...although these molecules may be of little practical value

Images from: Carhart RE. JChemInfCompSci,1978,18,108--110

Remarks

- Canonicalization of molecular representations allows easy identification of identical molecules
- It solves the "graph isomorphism" problem
 - It is believed no efficient (polynomial-time) algorithm exists for solving this problem
 - Thus any algorithm for this problem
 - either is inefficient at least in some instances
 - or fails to yield a unique canonical representation in some instances
- Cangen algorithm is a practical, efficient algorithm for generating canonical Smiles but it can fail for some obscure molecules
- InChI algorithm is practical, correct, and efficient (all but in a theoretical sense)

Substructure Searching

- Finding canonical identifiers effectively solves the graph isomorphism problem
- The corresponding problem to substructure searching is the subgraph isomorphism problem
- The subgraph isomorphism problem is believed to be harder than graph isomorphism
 - (The former is NP-complete whereas the latter is not)
- Algorithms rely on (but in a smart way) exploring the search space

Substructure Searching: Basic Idea

Find mapping between all atoms of S and some atoms of M so that:

if there is a bond between two atoms in S there has to be a bond between the two corresponding atoms in M

Problem: the number of possible mappings can be huge

- e.g. n=30, k=7 there are ca. 10 billion (10.10^9) possible mappings

Naively exploring the search space is too time expansive

- Standard algorithmic solution: Backtracking

- Backtracking is a search strategy that traverses a search tree in depth-first order
- A search tree assigns atoms of S to all possible atoms of M in a systematic way

Life & Medical Sciences Institute

UNIVERSITÄT BONN

Life Science Informatics

b-it

- At each step of traversing the tree check whether the assignment is plausible, i.e.
 - atom types match and
 - bonds between already assigned substructure atoms match bonds of corresponding atom

Life & Medical Sciences Institute

UNIVERSITÄT BONN

Assign: 1→e

b-it

- Assign: $2 \rightarrow a$ -
 - Assignment is not possible
 - Skip branch

Life & Medical Sciences Institute

- Assign: 1→e
 - · ...
 - Assign: $2 \rightarrow b$
 - Assignment is not possible
 - Skip branch

- Assign: 1→e
 - · ...
 - Assign: $2 \rightarrow c$

Assignment possible

UNIVERSITÄT BONN

■ Assign: 1→e

- Assign: 1→e
 - Assign: $2 \rightarrow c$
 - Assign: 3 →f
 - Assign 4 →g
 - No viable assignment for 5

- Assign: 1→e
 - ...
 - Assign: $2 \rightarrow f$

Ullmann Algorithm

- For backtracking:
 - The earlier search tree traversal fails, the better
 - The order in which substructure atoms are assigned is arbitrary
 - However, starting with rare hetero-atoms might be good for efficiency because only few options are usually available for these
- Refined backtracking: Ullmann algorithm
 - Backtracking only checks if currently mapped atom yields plausible assignment
 - Idea:
 - In each step, keep track of all possible assignments for all substructure atoms
 - If no possible matches remain for any single substructure atom the branch can be skipped
 - Note, that the basic backtracking only check possibilities of the current atom to be assigned and not any later ones

Ullmann Algorithm: Feasibility Matrix

- Keep track of all possible matches for substructure atoms in a feasibility matrix
- Initially:
 - atom types must match
 - the corresponding atom in the molecule must have at least as many neighbors as the substructure atom
 - e.g., 3 cannot be assigned to e

Next, the matrix is refined by checking the plausibility of each entry:

if atom s should be assigned to atom m it should also be possible to assign neighbors of s to neighbors of m

- Thus, for M(s,m)=x check for all neighbors n of s if M(n,k)=x where k is neighbor of m. If no neighbor m can be found eliminate possibility M(s,k)
- Continue checking entries until no more possibilities can be removed
- After that perform standard backtracking, in each step updating and refining M

The entries for atom 1 pass the test

- The entries for atom 1 pass the test
- The possibility 2→a fails because although
 - 1→b is a possibility for one neighbor of 2
 - there is no possibility to map 3 to a neighbor of a

- The entries for atom 1 pass the test
- The possibility 2→a fails because although
 - 1→b is a possibility for one neighbor of 2
 - there is no possibility to map 3 to a neighbor of a
- The possibility $2 \rightarrow c$ fails for the same reason

- The entries for atom 1 pass the test
- The possibility 2→a fails because although
 - 1→b is a possibility for one neighbor of 2
 - there is no possibility to map 3 to a neighbor of a
- The possibility $2 \rightarrow c$ fails for the same reason
- The possibility $2 \rightarrow e$ remains valid because
 - $1 \rightarrow d$ and
 - $3 \rightarrow a$ are possibilities for the neighbors

Completing the matrix eliminates further possibilities

	а	b	С	d	е	f	g
1		x		x			
2	-		-		×		
3	x		-				
4		x		-			
5	-		-		x	x	-

• Checking the matrix a second time eliminates another possibility

- Matrix after refinement
- A single assignment remains possible

Ullmann Algorithm: Summary

- Set up a feasibility matrix containing all possible assignments of substructure atoms to molecule atoms with respect to
 - atom type
 - bond order
- Refine the matrix
 - for each potential assignment check possible assignments of neighboring atoms
- Explore the search tree
 - choose assignment for current atom from feasibility matrix
 - update matrix & refine matrix
 - a. possibilities remain for every atom: continue exploration with next atom
 - b. no possibilities for at least one atom: choose different assignment & backtrack

Ullmann Algorithm: Summary

- Ullmann is a backtracking algorithm
- Compared to "standard backtracking" considerable work is done in each step to check feasibility
- Each step requires much more computation time than the standard approach
- However, much better "pruning" of search tree makes it much more efficient

References

- Vogt M, de la Vega de León A & Bajorath J. Algorithmic Chemoinformatics in:
 - Varnek A (Ed.)
 - Tutorials in Chemoinformatics, 395-448 John Wiley & Sons Ltd, Chichester, UK, 2017

