
Algorithms in Chemoinformatics

Canonical Representations and

Substructure Searching

Martin Vogt

B-it Life Science Informatics

Rheinische Friedrich-Wilhelms-Universität Bonn

15 May 2019

Classical Algorithmic Chemoinformatics

Problems

 Identifying identical molecular structures

- Two molecules are considered the same if they have the same

molecular graph

 Identifying substructures in a molecule

- A (fragment) structure is part of a molecule if it corresponds to

a subset of atoms and their corresponding bonds

Classical Algorithmic Chemoinformatics

Problems

 Identifying identical molecular structures

- Two molecules are considered the same if they have the same

molecular graph

- Mathematical formulation

Graph isomorphism problem:

Two graphs are isomorphic (the same) if there is an edge-

preserving one-to-one correspondence between their vertices

 Identifying substructures in a molecule

- A (fragment) structure is part of a molecule if it corresponds to

a subset of atoms and their corresponding bonds

- Mathematical formulation

Subgraph isomorphism problem:

A graph S is a subgraph of a graph G if S is isomorphic to a

subgraph of G

Canonical Representations of Molecules

 “Old” problem of chemistry

 Problem: How to uniquely identify molecular structures

 Molecules are not “linear” but graphs

 “Naming” molecules in a unique way:

- Systematically derive a name from its structure

- Allows identification, cataloging of molecules, i.e. makes databases

searchable

 Identifying molecules is “the same as” identifying isomorphic graphs

 Even for small molecules identity might not be obvious from

inspection:

strychnin, source: en.wikipedia.org strychnin, source: ChemDraw

Linear Representations

Structural graphs

can be represented using linear representations

 Systematic name

- 7-Chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-2H-1,4-

benzodiazepin-2-one

 Smiles

- Clc3ccccc3C/2=N/C(O)C(=O)Nc1c\2cc(Cl)cc1

 InChI

- InChI=1S/C15H10Cl2N2O2/c16-8-5-6-12-10(7-8)13(19-

15(21)14(20)18-12)9-3-1-2-4-11(9)17/h1-

7,15,21H,(H,18,20)

Smiles Recap

 Acyclic molecules:

- SMILES is a linear representation of the atoms and bonds of a molecule.

- Atoms are represented by their chemical symbol

 B, C, N, O, S, P, F, Cl, Br, I

- Hydrogens are implicit

- Adjacent atoms in a SMILES representation are connected by a bond.

- Special symbols can be used to indicate the order of the bond

 -, =, #, :

- Branches can be specified by enclosing them in parentheses

 Isobutane: CC(C)C

C=CC(CCC)C(C(C)C)CCC

Smiles Recap

 Cyclic molecules

- Cycles are “broken” by removing a bond

- Broken bonds are marked by numerical indices

- The resulting tree is linearized

- Atoms of broken bonds are annotated with the corresponding

indices

Images from: http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

Smiles Recap

 Cyclic molecules

- Cycles are “broken” by removing a bond

- Broken bonds are marked by numerical indices

- The resulting tree is linearized

- Atoms of broken bonds are annotated with the corresponding

indices

C12C3C4C1C5C4C3C25

Images from: http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

InChI

 InChI describe molecules in layers:

- molecular formula

- atom connectivity (topology)

- hydrogen locations (bond orders)

- charges

- stereochemistry

- …

 Atoms are numbered according to molecular formula

 Connectivity is described similar to SMILES:

- each atom is defined by its number

- no “ring-closure” numbers, instead numbers can be reused

InChI

InChI=1S/C15H10Cl2N2O2/c16-8-5-6-12-10(7-8)13(19-15(21)14(20)18-

12)9-3-1-2-4-11(9)17/h1-7,15,21H,(H,18,20)

 InChI=1S

 C15H10Cl2N2O2

 16-8-5-6-12-10(7-8)13(19-15(21)14(20)18-12)9-3-1-2-4-11(9)17

 h1-7,15,21H,(H,18,20)

8

16

5

6
12 10

7

13

19

15

21

14

20

18

9

3

1

2
4

11

17

Canonical Representations

 Representations like Smiles and InChI depend on the

order of traversal of atoms, i.e.

- What is the first atom of the representation?

- At each branch-point: Which path to follow first?

 Idea for canonicalization:

Assign priorities to atoms based on the topology

- Priorities determine order of traversal

- Numbering of atoms in InChI depends on priorities

 Although there is no direct correspondence

Canonical Labeling: Basic Idea

 Assign initial invariants to atoms, encoding local

information of the atoms

- Number of neighbors

- Atom type

- Number of hydrogens

- …

 Update invariant based on neighboring invariant

 Repeat until atoms are disambiguated

 … or no more atoms can be differentiated

Morgan Algorithm (Simple)

1. Assign initial invariant of 1

2. New invariant: Sum of neighboring values

3. Determine number of values

1 1
1

1
1

1
1 1

1
1

1

1

1

1 1
3

3
3

2
3 1

1
2

2

2

2

n=1
#values=1

n=2
#values=3

Morgan Algorithm (Simple)

 Repeat summing of neighboring values

3 3
5

8
7

6
4 3

3
5

4

4

5

1 1
3

3
3

2
3 1

1
2

2

2

2

n=3
#values=6

n=2
#values=3

Morgan Algorithm (Simple)

3 3
5

8
7

6
4 3

3
5

4

4

5

5 5
14

17
19

11
12 4

4
11

9

9

12

n=3
#values=6

n=4
#values=8

 Repeat summing of neighboring values

Morgan Algorithm (Simple)

14 14
27

43
39

31
19 12

12
28

20

21

26

5 5
14

17
19

11
12 4

4
11

9

9

12

n=5
#values=11

n=4
#values=8

 Repeat summing of neighboring values

Morgan Algorithm (Simple)

14 14
27

43
39

31
19 12

12
28

20

21

26

27 27
71

92
102

58
55 19

19
59

49

46

64

n=5
#values=11

n=6
#values=11

 Repeat summing of neighboring values

 Until number of values does not increase

anymore

Morgan Algorithm (Simple)

 Assign priorities according to invariants

14 14
27

43
39

31
19 12

12
28

20

21

26

2 2
7

11
10

9
3 1

1
8

4

5

6

n=5
#values=11

Priorities

Morgan Algorithm (Simple)

 Disambiguate ties by

- atom type

- bond order

 Construct Smiles according to invariants

2 2
7

11
10

9
3 1

1
8

4

5

6

Priorities

CC(=O)Oc1ccccc1C(=O)O

3 10 4 6

1 1 9 8 5 11 7 2 2

Morgan Algorithm

 Invariants are very simple

 Not able to distinguish different atom types bond

orders initially

 Numerical explosion

 Not all atoms can be distinguished sufficiently

well…

Morgan Based Fingerprints…

 Morgan algorithm also contains the basic idea for

some fingerprints

- ECFP

- Morgan fingerprints (RDKit)

 Initial invariants encode atom types, hydrogens,

bonds

- e.g. use Smarts patterns [CH2D1], [OH1D1]

 Each step combines the current invariant with

those of the neighbors

Cangen Algorithm

 Weininger et al.1 proposed Cangen algorithm to

address shortcomings:

- Improved invariants

- “Stable” prioritization

- Avoids ambiguities from combining invariants

- Resolves “symmetric” atoms

1. D Weininger D et al., JChemInfCompSci 29, 1989, 97--101

Cangen – Initial Invariants

 Initial invariants encode atom type information

- Number of neighbors

- Sum of bond orders

- Atom type

- Charge

- Number of attached hydrogens

a b
c

d
i

j
k l

mh
g

f

e

n=1
#ranks=6

Atom #bds Σ bds At.Nr Chg. #H

a 1 2 08 0 0

b 1 1 08 0 1

c 3 4 06 0 0

d 3 4 06 0 0

e 2 4 06 0 1

f 2 4 06 0 1

g 2 4 06 0 1

h 2 4 06 0 1

i 3 4 06 0 0

j 2 2 06 0 0

k 3 4 06 0 0

l 1 1 06 0 3

m 1 2 08 0 0

Cangen – Initial Invariants

 Initial invariants are transformed to ranks

a b
c

d
i

j
k l

mh
g

f

e

n=1
#ranks=6

Atom #bds Σ bds At.Nr Chg. #H rank

a 1 2 08 0 0 3

b 1 1 08 0 1 2

c 3 4 06 0 0 6

d 3 4 06 0 0 6

e 2 3 06 0 1 5

f 2 3 06 0 1 5

g 2 3 06 0 1 5

h 2 3 06 0 1 5

i 3 4 06 0 0 6

j 2 2 06 0 0 4

k 3 4 06 0 0 6

l 1 1 06 0 3 1

m 1 2 08 0 0 3

Cangen – Update Rule for Invariants

 Rank is mapped to corresponding prime:

 New invariant:

- primes of neighbors are multiplied

a b
c

d
i

j
k l

mh
g

f

e

n=1
#ranks=6

Rank 1 2 3 4 5 6 …

prime 2 3 5 7 11 13 …

Atom rank prime Nbors New Inv.

a 3 5 c 13

b 2 3 c 13

c 6 13 a,b,d 195 = 5*3*13

d 6 13 c,e,i 1889 = 13*11*13

e 5 11 d,f 143 = 13*11

f 5 11 e,g 121 = 11*11

g 5 11 f,h 121 = 11*11

h 5 11 g,i 143 = 11*13

i 6 13 d,h,j 1001 = 13*11*7

j 4 7 i,k 169 = 13*13

k 6 13 j,l,m 70 = 7*2*5

l 1 2 k 13

m 3 5 k 13

Cangen – Update Rule for Invariants

 New ranks are determined on the basis of:

- Old ranks

- New invariants

a b
c

d
i

j
k l

mh
g

f

e

n=2
#ranks=10

Atom rank New Inv. (rk.,inv.) New rank

a 3 13 (3,13) 3

b 2 13 (2,13) 2

c 6 195 (6,195) 8

d 6 1889 (6,1889) 10

e 5 143 (5,143) 6

f 5 121 (5,121) 5

g 5 121 (5,121) 5

h 5 143 (5,143) 6

i 6 1001 (6,1001) 9

j 4 169 (4,169) 4

k 6 70 (6,70) 7

l 1 13 (1,13) 1

m 3 13 (3,13) 3

Cangen – Iteration

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

a b
c

d
i

j
k l

mh
g

f

e

n=2
#ranks=10

Atom rank prime Nbors New Inv.

a 3 5 c 19

b 2 3 c -

c 8 19 a,b,d -

d 10 29 c,e,i -

e 6 13 d,f 319 = 29*11

f 5 11 e,g 143 = 13*11

g 5 11 f,h 143 = 11*13

h 6 13 g,i 243 = 11*23

i 9 23 d,h,j -

j 4 7 i,k -

k 7 17 j,l,m -

l 1 2 k -

m 3 5 k 17

Cangen – Iteration

a b
c

d
i

j
k l

mh
g

f

e

n=3
#ranks=12

Atom rank New Inv. (rk.,inv.) New rank

a 3 19 (3,19) 4

b 2 - (2,-) 2

c 8 - (8,-) 10

d 10 - (10,-) 12

e 6 319 (6,319) 8

f 5 143 (5,143) 6

g 5 143 (5,143) 6

h 6 243 (6,243) 7

i 9 - (9,-) 11

j 4 - (4,-) 5

k 7 (7,-) 9

l 1 - (1,-) 1

m 3 17 (3,17) 3

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

Cangen – Iteration

a b
c

d
i

j
k l

mh
g

f

e

n=3
#ranks=12

Atom rank prime Nbors New Inv.

a 4 7 c -

b 2 3 c -

c 10 29 a,b,d -

d 12 37 c,e,i -

e 8 19 d,f -

f 6 13 e,g 249 = 19*13

g 6 13 f,h 221 = 13*17

h 7 17 g,i -

i 11 31 d,h,j -

j 5 11 i,k -

k 9 23 j,l,m

l 1 2 k -

m 3 5 k -

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

Cangen – Final Ranking

a b
c

d
i

j
k l

mh
g

f

e

n=4
#ranks=13

Atom rank New Inv. (rk.,inv.) New rank

a 4 - (4,-) 4

b 2 - (2,-) 2

c 10 - (10,-) 11

d 12 - (12,-) 13

e 8 - (8,-) 9

f 6 249 (6,249) 7

g 6 221 (6,221) 6

h 7 - (7,-) 8

i 11 - (11,-) 12

j 5 - (5,-) 5

k 9 (9,-) 10

l 1 - (1,-) 1

m 3 - (3,-) 3

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

 Final ranking

Cangen – Final Ranking

n=4
#ranks=13

a=4 b=2
c=11

d=13

i=12

j=5
k=10 l=1

M=3h=8
g=6

f=7

e=9

Atom rank New Inv. (rk.,inv.) New rank

a 4 - (4,-) 4

b 2 - (2,-) 2

c 10 - (10,-) 11

d 12 - (12,-) 13

e 8 - (8,-) 9

f 6 249 (6,249) 7

g 6 221 (6,221) 6

h 7 - (7,-) 8

i 11 - (11,-) 12

j 5 - (5,-) 5

k 9 (9,-) 10

l 1 - (1,-) 1

m 3 - (3,-) 3

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

 Final ranking yields priorities

Cangen – Generate Smiles

a=4 b=2
c=11

d=13

i=12

j=5
k=10 l=1

M=3h=8
g=6

f=7

e=9

n=4
#ranks=13

CC(=O)Oc1ccccc1C(O)=O
lk m ji hgfed c a b

 Repeat until ranking is stable:

- Calculate new invariants

- Re-rank atoms

 Final ranking yields priorities

 Generate Smiles

Cangen – Ties

 In case of symmetric atoms not all

atoms can be uniquely prioritized this

way:

 In this case a single tie is broken to be

able to continue the algorithm

 If necessary, repeat breaking ties until

all ambiguities are reolved

1

2

3

3

4

4

1

2

4

3

5

5

Remarks: Canonical Representations

 Limitations

- Modifications are needed to handle stereochemistry

- Different tautomers of a compound yield different Smiles

- Canonicalization also depends on the aromaticity model

- Different variations of the algorithms exist:

 Canonical Smiles are only canonical with respect to a specific toolkit!

 InChI also uses a canonical atom labeling algorithm

- Its algorithm is based on a mathematical group-theoretical

formulation

- The basic idea of iterative refinement of rankings by finer

partitioning of the atoms into different ranks is similar

- More complex

- More robust

- Standardized

Remarks: Canonical Representations

 Will CANGEN always provide unique representation?

- The method works as long as the algorithm is able to distinguish

between non-symmetric molecules.

- The algorithm could fail if for each atom in a molecule there is

another non-symmetric atom with the same local neighborhood.

- This can happen

- …although these molecules may be of little practical value

Images from: Carhart RE. JChemInfCompSci,1978,18,108--110

Remarks

 Canonicalization of molecular representations allows easy

identification of identical molecules

 It solves the “graph isomorphism” problem

- It is believed no efficient (polynomial-time) algorithm exists for

solving this problem

- Thus any algorithm for this problem

 either is inefficient at least in some instances

 or fails to yield a unique canonical representation in some instances

 Cangen algorithm is a practical, efficient algorithm for

generating canonical Smiles but it can fail for some

obscure molecules

 InChI algorithm is practical, correct, and efficient (all but in

a theoretical sense)

Substructure Searching

 Finding canonical identifiers effectively solves the graph

isomorphism problem

 The corresponding problem to substructure searching is

the subgraph isomorphism problem

 The subgraph isomorphism problem is believed to be

harder than graph isomorphism

- (The former is NP-complete whereas the latter is not)

 Algorithms rely on (but in a smart way) exploring the

search space

Substructure Searching: Basic Idea

Given: substructure S of k atoms and molecule of n atoms

Find mapping between all atoms of S and some atoms of M so that:

if there is a bond between two atoms in S there has to be a bond

between the two corresponding atoms in M

Problem: the number of possible mappings can be huge

- e.g. n=30, k=7 there are ca. 10 billion (10·109) possible mappings

Naively exploring the search space is too time expansive

- Standard algorithmic solution: Backtracking

S, k=6 M, n=8

Backtracking

 Backtracking is a search strategy that traverses a search tree in

depth-first order

 A search tree assigns atoms of S to all possible atoms of M in a

systematic way

1→e

2→a 2→b 2→c 2→f

3→b 3→c 3→f

4→d 4→g

… … …… … … … … …

… … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h
… … …

… … … … … …

Backtracking

 At each step of traversing the tree check whether the assignment is

plausible, i.e.

- atom types match and

- bonds between already assigned substructure atoms match bonds of

corresponding atom

- if not, skip this specific branch 1→e

2→a 2→b 2→c 2→f

3→b 3→c 3→f

4→d 4→g

… … …… … … … … …

… … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h
… … …

… … … … … …

Backtracking

 Assign: 1→e

- Assign: 2 →a
 Assignment is not possible

 Skip branch

1→e

2→a 2→b 2→c 2→f

3→b 3→c 3→f

4→d 4→g

… … …… … … … … …

… … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h
… … …

… … … … … …

XX

Backtracking

 Assign: 1→e

- …

- Assign: 2 →b
 Assignment is not possible

 Skip branch

1→e

2→a 2→b 2→c 2→f

… … …… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X

Backtracking

 Assign: 1→e

- …

- Assign: 2 →c
 Assignment possible

 …

 Assign: 3 →f

1→e

2→a 2→b 2→c 2→f

… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X
3→f3→b3→a

X X

Backtracking

 Assign: 1→e

- …

- Assign: 2 →c
 …

 Assign: 3 →f

- …

- Assign 4 →g 1→e

2→a 2→b 2→c 2→f

… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X
3→f

4→g

3→b3→a

X X

4→g

X

Backtracking

 Assign: 1→e

- Assign: 2 →c
 Assign: 3 →f

- Assign 4 →g

- No viable assignment for 5

1→e

2→a 2→b 2→c 2→f

… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X
3→f

… …

4→g
… …

Dead end

Backtracking

 Assign: 1→e
- …

- Assign: 2 →f

1→e

2→a 2→b 2→c 2→f

… … … … … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X
3→f

… …

4→g
… …

Dead end

X

Backtracking

 Assign: 1→e

- Assign: 2 →f
 Assign: 3 →c

- Assign: 4 →d

Assign: 5→b

Assign: 6→a

- Assign: 3 →c 1→e

2→a 2→b 2→c 2→f

… … …

S, k=6 M, n=8

1 3
2

4

5

6 a

b
c

d

e f

g

h

X X

3→c
… …

4→d

… …

X

5→b

6→a

Ullmann Algorithm

 For backtracking:

- The earlier search tree traversal fails, the better

- The order in which substructure atoms are assigned is arbitrary

- However, starting with rare hetero-atoms might be good for

efficiency because only few options are usually available for these

 Refined backtracking: Ullmann algorithm

- Backtracking only checks if currently mapped atom yields

plausible assignment

- Idea:

 In each step, keep track of all possible assignments for all substructure atoms

 If no possible matches remain for any single substructure atom the branch can

be skipped

 Note, that the basic backtracking only check possibilities of the current atom to

be assigned and not any later ones

Ullmann Algorithm: Feasibility Matrix

 Keep track of all possible matches for substructure atoms in a

feasibility matrix

 Initially:

- atom types must match

- the corresponding atom in the molecule must have at least as many

neighbors as the substructure atom
 e.g., 3 cannot be assigned to e

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 x x x

3 x x

4 x x

5 x x x x x

Ullmann Algorithm: Refinement

 Next, the matrix is refined by checking the plausibility of each entry:

 Thus, for M(s,m)=x check for all neighbors n of s if M(n,k)=x where k is

neighbor of m. If no neighbor m can be found eliminate possibility M(s,k)

 Continue checking entries until no more possibilities can be removed

 After that perform standard backtracking, in each step updating and refining M

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 x x x

3 x x

4 x x

5 x x x x x

if atom s should be assigned to atom m it should also be possible to
assign neighbors of s to neighbors of m

Ullmann Algorithm: Refinement

 The entries for atom 1 pass the test

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 x x x

3 x x

4 x x

5 x x x x x

Ullmann Algorithm: Refinement

 The entries for atom 1 pass the test

 The possibility 2→a fails because although

- 1→b is a possibility for one neighbor of 2

- there is no possibility to map 3 to a neighbor of a

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 x x x

3 x x

4 x x

5 x x x x x

Ullmann Algorithm: Refinement

 The entries for atom 1 pass the test

 The possibility 2→a fails because although

- 1→b is a possibility for one neighbor of 2

- there is no possibility to map 3 to a neighbor of a

 The possibility 2→c fails for the same reason

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 - - x

3 x x

4 x x

5 x x x x x

Ullmann Algorithm: Refinement

 The entries for atom 1 pass the test

 The possibility 2→a fails because although

- 1→b is a possibility for one neighbor of 2

- there is no possibility to map 3 to a neighbor of a

 The possibility 2→c fails for the same reason

 The possibility 2→e remains valid because

- 1→d and

- 3→a are possibilities for the neighbors

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 - - x

3 x x

4 x x

5 x x x x x

Ullmann Algorithm: Refinement

 Completing the matrix eliminates further possibilities

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x x

2 - - x

3 x -

4 x -

5 - - x x -

Ullmann Algorithm: Refinement

 Checking the matrix a second time eliminates another possibility

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 - x

2 - - x

3 x -

4 x -

5 - - x x -

Ullmann Algorithm: Refinement

 Matrix after refinement

 A single assignment remains possible

1
2

3

4

5

a

b

c

de

f g

a b c d e f g

1 x

2 x

3 x

4 x

5 x x

Ullmann Algorithm: Summary

 Set up a feasibility matrix containing all possible

assignments of substructure atoms to molecule atoms with

respect to

- atom type

- bond order

 Refine the matrix

- for each potential assignment check possible assignments of

neighboring atoms

 Explore the search tree

- choose assignment for current atom from feasibility matrix

- update matrix & refine matrix

a. possibilities remain for every atom: continue exploration with next atom

b. no possibilities for at least one atom: choose different assignment & backtrack

Ullmann Algorithm: Summary

 Ullmann is a backtracking algorithm

 Compared to “standard backtracking” considerable work

is done in each step to check feasibility

 Each step requires much more computation time than the

standard approach

 However, much better “pruning” of search tree makes it

much more efficient

References

 Vogt M, de la Vega de León A & Bajorath J.

Algorithmic Chemoinformatics

in:

Varnek A (Ed.)

Tutorials in Chemoinformatics, 395-448

John Wiley & Sons Ltd, Chichester, UK, 2017

