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Nucleation is the initial step towards the formation of crystalline materi-
als from solutions. Various factors, such as environmental conditions,
additives, and external forces, can influence its outcomes and rates. In-
deed, controlling this rate-determining step towards phase separation
can affect the material structure and properties, and it is crucial in a range
of scientific fields. In this regard, atomistic simulation methods can be
exploited to gain insight into nucleation mechanisms - an aspect difficult
to ascertain in experiments - and estimate nucleation rates. However,
the microscopic nature of simulations affects the phase behaviour of nu-
cleating solutions when compared to macroscopic systems. Additionally,
a challenge in modelling nucleation from solution is associated with the
inadequacy of standard molecular simulations to access the timescales
necessary to observe crystal nucleation due to the inherent rareness of
these events. In recent decades, simulation methods have emerged to cir-
cumvent length- and timescale limitations. However, which simulation
method is most suitable for studying crystal nucleation from solution
is not always obvious. This review summarises the recent advances in
this field, providing an overview of the typical nucleation mechanisms
and the suitability of different simulation methods to study them. By
doing so, we aim to provide a deeper understanding of the complexities
associated with modelling crystal nucleation from solution and identify
areas for further research. Our review targets researchers across various
scientific fields, including materials science, chemistry, physics and engi-
neering, and will hopefully contribute to developing new strategies for
understanding and controlling nucleation.
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1 | INTRODUCTION: WHY SIMULATE CRYSTAL NUCLEATION FROM
SOLUTION?

Crystalline materials are solids composed of microscopic repeating units arranged in a regular, periodic array. At the

smallest scales, the repeat units are formed from just a handful of atomic/molecular ‘building blocks’ arranged with

a well-defined symmetry. Like construction bricks, these building blocks can assemble into a plurality of structures

(polymorphs), providing materials with different physical and chemical properties. A key characteristic of molecular

and ionic crystalline solids is that their building blocks are held together by non-covalent interactions, resulting

in a decoupling of material chemical properties from their physical and mechanical properties. Additionally, the

reversible self-assembly of these solids can often be carried out under mild conditions, in solution. This flexibility

facilitates endless possibilities towards material design with applications in, e.g., construction, pharmaceutical

manufacturing, separations, catalysis, and organic electronics. For instance, most active pharmaceutical ingredients

(APIs) are formulated as crystalline solids. [1, 2, 3]

A significant focus of the computational design of crystalline materials is dedicated to predicting a rigorous

thermodynamic stability ranking among all possible bulk phases that may result from crystallization. To this aim,

increasingly sophisticated approaches have emerged in recent years; these include accurate dispersion models

in electronic structure calculations[4] and the introduction of quantum effects[5] to calculate lattice energies; the

application of machine learning methods to accurately estimate the thermodynamic stability of crystal polymorphs

[6]; and the development of novel approaches for the calculation of relative lattice free energies[7, 8, 9, 10, 11, 12].

Establishing the relative stability of crystal polymorphs using computational calculations is extremely valuable in

identifying those which are thermodynamically plausible. This has proven particularly useful for the development of

APIs, and it is finding increasing applications outside academia [13, 14, 15, 16, 17, 18, 19]. These methods, however,

fail to capture the role played by components in a preceding crystal-forming fluid phase in directing phase separation

towards a specific outcome. In the case of crystallization from solution, the parent liquid often has a composition

radically different to the crystal itself, where solvent and other solution additives are often excluded. Even in the

simplest example of a single-component molecular crystal emerging from a two-component solution—comprising

the solute building blocks and solvent— varying the solute concentration can change the mechanism, rate and

polymorphic outcome of precipitation. Computational material discovery/prediction methods based solely on

thermodynamic assumptions, therefore, cannot identify how, or even if a thermodynamically favourable polymorph

can be obtained by crystallization from solution.

The key to understanding why thermodynamics alone cannot determine crystallization outcomes is related to

the fact that crystallization from an out-of-equilibrium solution is dominated by kinetic factors that are sensitive to

changes in the reaction environment.[20, 21, 22, 23, 24] Both of the mechanistic steps necessary for crystallization to

occur in metastable solutions—namely, the formation of a crystal embryo (nucleation) and its subsequent growth

into a bulk phase—are determined by the dynamics and frequency of transfer of building blocks from the solution

to the crystal. As such, the choice of solvent, temperature and solute concentration in particular, can change the

polymorphic outcome of precipitation. [25, 26, 27] Because the dynamics of building blocks assembly discussed

above are so important, molecular dynamics (MD) is typically the simulation tool of choice to investigate the

crystallization of molecular and ionic solids in silico. Through the lens of statistical mechanics, MD simulations

unlock both thermodynamic and kinetic information by tracing the motion of up to 109 atoms over simulation times

ranging from 10−9 to 10−6 s. Nevertheless, understanding and predicting how crystals with well-defined composition,

structure and properties assemble from a supersaturated solution remains a formidable task. The small time scales

probed by MD simulations are generally inadequate for studying the complex microscopic steps involved in crystal
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nucleation and growth. As we highlight below, however, advanced sampling schemes and theoretical treatments

can circumvent these limitations. In doing so, MD simulations can help to determine crystal nucleation and growth

rates, polymorphism, crystal habit and defect density as a function of solution composition, temperature and the

presence of additive/impurities and external forces. Indeed, a wealth of information can be gained by combining

complementary computational tools with studying different aspects of crystallisation from solution, but it is not

always apparent which tools are most appropriate for the specific task at hand.

In this review, we provide an extended summary of the key theoretical and methodological features associated

with atomic-scale modelling and simulation of crystallization triggered by homogeneous nucleation from solution.

In particular, we focus on the key differences and complementarities between simulation methods implying that

nucleation follows a classical mechanism and methods that enable us to ask questions about the mechanism itself. In

this process, we contrast simulation methods based on theoretical prior knowledge (e.g. seeding) with rare events

simulations methods based on the introduction of a bias potential (e.g. metadynamics) and methods based on

sampling nucleation trajectories in path space (e.g. forward flux sampling). Our review complements the overview

from Agarwal et al. [28], which delves into the theoretical background of rate theories applied to nucleation problems,

as well as the review by Sosso et al. [29] that provides a wider appraisal of simulation methods to investigate crystal

nucleation from liquids, without a specific focus on crystal precipitation from solution. We believe solutions deserve

particular attention because, even if crystallization from multicomponent liquids is extremely common, it presents

peculiar challenges associated with the fact that the product phase is usually characterised by a different composition

than the parent phase, and that the driving force of the process depends on solute concentration. After defining

the remits of applicability of atomistic simulations to nucleation problems, and highlighting the theoretical basis

associated with the main features of nucleation processes investigated by molecular simulations, we briefly review

the literature describing the methods that enable modelling nucleation from solution with atomistic detail. Finally,

we provide a critical comparison of the insight obtained from papers that investigate the nucleation of NaCl(s) from

an aqueous solution: a problem that has been tackled with approaches covering the entire spectrum of methods

reviewed in this work.

2 | CLASSIFYING NUCLEATION FROM SOLUTION.

Before delving into an overview of simulation methods to study crystal nucleation from multicomponent liquids, it

is important to discuss the additional adjectives that qualify the nucleation process in the scientific literature and

their meaning. This is essential to define the applicability domain of molecular simulation methods and to formulate

appropriate research questions that could emerge when different nucleation processes and mechanistic hypotheses

are being investigated.

Primary vs Secondary Nucleation

Primary nucleation is the spontaneous formation of new crystalline particles from a metastable solution phase

without any interplay with pre-existing crystalline particles. This happens due to rare fluctuations in local solute

order. Primary nucleation rates are usually low and can be influenced by factors such as solute concentration

and temperature. In contrast, secondary nucleation occurs when pre-existing crystals or crystal surfaces (of the

same nucleating substance) promote the formation of new crystals by attracting and attaching crystal growth units.

Secondary nucleation is often much faster than primary nucleation and can be influenced by external factors such as

agitation and shear forces that lead to particle attrition.
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F I G U R E 1 To gain insight into nucleation mechanisms and evaluate rates, an appropriate simulation
methodology must be chosen to investigate the system at hand. This flow diagram identifies where theory-based
simulation methods (based on CNT and its extensions) are most suitable. In particular we highlight that secondary
nucleation, typically involves interactions of crystalline particles with the fluid at a scale inaccessible to molecular
simulations and, with some notable exceptions [30] it is typically outside the scope of atomistic simulation studies.
Heterogeneous nucleation is only partly included in the applicability domain as, while most methods discussed in
this review are in principle applicable examples exist only for crystal nucleation from the melt [31].

Homogeneous vs Heterogeneous Nucleation

Homogeneous nucleation (HON) occurs in the bulk of a supersaturated solution and can be controlled by changing the

solution environment. As well as temperature and pressure control, solution additives and impurities may affect

the nucleation behaviour. While the rates for HON can be predicted using a suitable theory/model, the location

where nucleation occurs cannot be determined a priori. HON requires specific conditions for it to occur and is much

less prevalent in nature than heterogeneous nucleation (HEN). In HEN, crystal nucleation is facilitated by interfaces—

usually a solid submerged in the solution phase. Surfaces can act as nucleants to direct the site-specific crystallisation

of particular crystal polymorphs or, more generally, enhance the rates for crystallization. The direct simulation of

heterogeneous nucleation is a daunting task, as in general information on the local structure of the surfaces promoting

nucleation is not available. Hence, while the methods discussed in this review are in principle applicable to the study

of heterogeneous nucleation, as shown i.e. by the recent works on heterogeneous ice nucleation [32, 33, 34, 35, 36],
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examples of their application to HEN from solution are currently lacking. As such in Fig. 1 we report HEN ason the

edge of the applicability domain for molecular simulations of nucleation from solution.

Single-step vs Multi-step Nucleation

Single-step nucleation refers to the direct formation of crystals from their primary building blocks in solution via

a single energy barrier in the free energy landscape (i.e., the induction time is associated with a single bottleneck

towards crystallization). In contrast, multi-step nucleation encompasses a variety of crystallization pathways, which

can involve the formation of intermediate precipitate phases, such as amorphous liquids or solids or other crystalline

phases. The pathway to the most stable crystal form from solutions may involve multiple intermediates occurring in

sequence reproducibly. If the relative stability of the intermediates increases with each step, this type of mechanism

is consistent with the Ostwald-Lussac empirical rule of stages [37, 38].

We specify that intermediates must be demonstrably involved in the formation of crystals to classify crystal-

lization as multi-step. The mere presence of intermediate structures before or even during crystallization does not

exclude the possibility that single-step crystal nucleation occurs (e.g., by a dissolution/re-precipitation reaction).

An archetypal example of multi-step nucleation is two-step nucleation, widely described as a process where

crystalline order emerges in dense liquid precursors formed during the first phase transformation in solution. [39, 40]

In this case, there are often two bottlenecks to crystallisation; [41, 42, 43] however, it may be that a single energy

barrier is involved in the formation of crystals from solution and that under certain conditions, traversing the lowest

energy pathway leads to amorphous solute cluster intermediates. [44, 45, 46] In other words, multi-step nucleation

does not necessarily refer to a cascade of single-step nucleation steps.

The process of nucleation in complex solutions may be dependent upon chemical reactions and changes in

species stoichiometry occurring locally. Several studies [47, 48, 49] have attributed the multi-step nature of nucleation

to these factors. Simulating reactive crystallization events is often beyond the scope of classical molecular simulations.

As such, this review focuses on simulating nucleation from building blocks which are already present in the parent

solution phase. These examples, however, highlight the importance of simulation practitioner’s understanding of the

chemical speciation and valency of molecular and ionic species involved in crystal formation.

Classical vs. Non-Classical Nucleation

In section 3.1 we briefly describe CNT, the thermodynamic and kinetic framework for classical nucleation. For the

purposes of classifying nucleation pathways, we stress that classical nucleation is a single-step process that takes

place through the attachment of monomers from solution to a cluster with an internal structure matching the bulk

crystal. Within the capillary approximation, the surface tension of the clusters of a new phase is independent of

cluster size and also matches the bulk; we should expect a sharp solid-solution interface and the same crystal faceting

observed at equilibrium and ignore any curvature effects on the surface tension for small clusters. [50] In terms of

kinetics, we assume an abundance of monomers in the solution phase and that the out-of-equilibrium growth of

nuclei occurs at a steady state.

It is highly unlikely that any single-step, homogeneous crystal nucleation occurs according to the above mecha-

nism. The capillary approximation is particularly problematic for crystal nucleation because the smallest clusters

are unlikely to display an interface structure with surface tension that matches highly faceted bulk crystals with

infinitely large planar surfaces. Furthermore, it may not be the case that the density and structure in the emerging

crystal are homogeneous throughout. The CNT framework also fails to account for the role that growth units beyond

monomers might play in the formation of crystal nuclei.

Some of the effects described above can be accounted for in frameworks which we label as extended classical
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nucleation. For example, models which depart from CNT include a surface tension term that is dependent on the

cluster size, 𝛾(𝑛), which in equation 1 would be included in 𝜎′(𝑛).[51, 52, 53] Other theoretical and simulation studies

have identified that the structure, particularly the density, of the smallest nuclei differs from the bulk and stated that

this should be accounted for in extensions of CNT. [54] Formulations based on classical density functional theory

provide corrections to the CNT nucleation rate derived from the excess system free energy that accounts for varying

cluster density. [55]

Given the description of two-step nucleation above, it may be perceived that this type of phase separation

mechanism is inconsistent with classical nucleation. However, theoretical studies have demonstrated that two-step

nucleation can be described using classical concepts adopting a composite cluster model [56, 45]. Changes to the

relative supersaturation of the system with respect to a dense liquid and crystal phase lead to changes in the pathways

to crystals from solutions [45]: a common observation in experimental studies.

Some nucleation theories predict mechanisms that are clearly different from those described by CNT and its

extensions and are thus termed non-classical. Because this classification encompasses a large family of different

nucleation frameworks, it is usually not a useful or informative description. A comprehensive review of nonclassical

nucleation is beyond the scope of this review, and we refer the reader to perspectives and reviews on the topic

[57, 58, 59, 60, 61].

A paradigmatic example of non-classical nucleation worth mentioning is the prenucnleation cluster pathway.

The prenucleation cluster (PNC) pathway was first proposed for CaCO3 [62] but has since been attributed to

phase separation in a diverse range of systems. [63] The PNC pathway suggests that the parent solution phase is

comprised of hydrated solute clusters in pseudo-equilibrium with solvated monomers. The population of PNC

sizes is determined by the equilibrium constant (𝐾) for the reaction (monomer)𝑥
+monomer
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

-monomer
(monomer)𝑥+1, which

is assumed to be equally independent of the value of 𝑥. PNCs are highly dynamic, evolving their structure and

topology over very short timescales (typically picoseconds).[64] The nucleation step in the PNC pathway involves

changes to the order and dynamics of monomers within PNC assemblies that renders them a new thermodynamic

phase and gives rise to an interface with the solution. [65] This rate-determining step typically produces a dense

liquid phase which contains a large amount of solvent. Subsequent transformations of this liquid are necessary to

produce crystals, which may include the further dehydration of dense liquids to form amorphous solid-like phases.

3 | DYNAMIC SIMULATIONS OF CRYSTALLIZATION FROM SOLUTION:
TIME- AND LENGTH-SCALE CHALLENGES

Gathering information on molecular-scale crystallization events, particularly nucleation, requires a high degree of

time and space resolution. This poses significant challenges for in situ experiments, often leading to only speculative

interpretations of molecular mechanisms. In contrast, modelling techniques based on MD simulations inherently

provide insight into the time evolution of systems with atomistic detail,[66] making them a powerful tool for

understanding complex processes such as nucleation.

In MD, the forces that determine atomic motion are modelled using classical mechanics [67]. Here, chemical

bonds are typically approximated as classical ‘springs’ whose displacement from an equilibrium bond distance

is modelled using Hooke’s law. Similar simple functions can be used to approximate bond and dihedral angle

rotation to capture the forces associated with intramolecular degrees of freedom. Intermolecular interactions can be

approximated using simple, classical interpretations of Van der Waals forces and Coulombic forces for point-charged

atoms. Importantly, all molecular species are assumed to be in their electronic ground state. As such, MD is not
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well-suited to simulate chemical reactions and dynamical changes to chemical speciation, though reactive force fields

[68] and the advent of machine learning methods to force field design [69, 70] make this a possibility. Particularly in

the case of ionic systems, polarisability can be simulated using a relatively cheap treatment of charge displacement

from atomic nuclei, e.g., using springs. By assigning a velocity (sampled from a Maxwell-Boltzmann distribution at

a defined temperature) to atoms at the beginning of a simulation, the Hamiltonian dynamics of the system can be

propagated according to a fixed temperature and the force field. [67, 71] This time integration is performed iteratively

using a small time step, typically on the order of 1 fs, to capture the fastest atomic displacements in the system,

usually molecular bond vibration.

The choice of force field can have important consequences for simulation observations. In terms of simulating

crystallisation, the force field should reproduce the structure, density and stability of the crystal phase as a mini-

mum requirement. Furthermore, the solubility of the crystal phase should be reasonably close to that determined

experimentally if a comparison to experiments is intended. The properties of the solution should also be modelled

accurately. For example, the free energy of solvation of solutes, their activity in solution as a function of concentration

and their mobilities in the solvent are all important properties necessary to accurately capture the thermodynamics

and kinetics of crystal nucleation.

Assuming a suitable force field is available (see Section 6), simulating crystallization from multicomponent

liquids using MD typically requires addressing two main system-specific limitations: timescale and finite size effects.

Despite the high space and time resolution capability of MD, which makes it suitable for understanding molecular-

scale processes, crystal nucleation in microscopic MD volumes can be very slow to realize. Therefore, many novel

simulation methods have been developed to efficiently overcome one or both of these limitations to modelling

crystallization.

3.1 | Timescale limitations

Simulating crystallization using MD, especially crystal nucleation, presents a significant challenge due to the

infrequency of many of the atomic and molecular scale elementary steps required for these processes to occur. For

instance, depending upon the thermodynamic state of the parent phase, crystal nucleation can occur on time scales

typically orders of magnitude larger than those accessible to brute-force simulations [72, 73]. The separation of these

timescales has made stimulating crystallization an ideal playground for the development of enhanced sampling

methods based on MD. Thanks to enhanced sampling, significant early progress was made to analyze the early stages

of crystallization in simple systems of uniform particles [44, 74, 75, 76, 77] and towards the in-depth investigation of

nucleation in monocomponent molecular systems, such as pure water [78]. In recent years, an evolution towards

systems with increased complexity and practical relevance has begun, enabling e.g., the study of solute precipitate

nucleation. These tend to focus on model systems [79, 28, 80], such as two-component Potts-lattice models, or

inorganic systems such as NaCl(aq) [81, 82, 83, 84, 85, 31, 86]. Attempts to simulate organic solids nucleating from

solution have been successful in highlighting the structural features of early-stage crystallization precursors[87, 88]

and to extract qualitative information on nucleation mechanisms.[89, 90] Significant progress was also made in

simulating crystal growth from solution by combining MD simulations, Kinetic Monte Carlo, and enhanced sampling

[91, 92, 93, 94].
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Origin of the timescale separation in nucleation: Nucleation Free Energy Barriers and Classical Nucleation
Theory.

Classical Nucleation Theory (CNT) provides a quasi-mechanistic description of the nucleation process, connecting

crystallization equilibrium thermodynamics and nucleation kinetics.[50] First applied by Gibbs 150 years ago to

describe the formation of liquid droplets from saturated vapours, CNT was developed over the following century and

is now often applied to explain the emergence of ordered materials from liquids. In CNT, there are two contributions

to the free energy of a metastable system: a volume and a surface free energy both associated with the new, emerging

phase embedded in an out-of-equilibrium parent phase. Forming a stable phase is thermodynamically favourable,

but the resulting interface, which delimits the new phase from the parent one, carries an energy penalty. While the

free energy gain associated with the formation of a stable phase scales linearly with the volume of a nucleus, the free

energy cost of forming an interface scales with its surface area. This simple but general argument provides a rationale

for the barrier to nucleation and a definition for the transition state associated with the nucleation process [27, 95].

The size of the nucleus was originally described using a linear descriptor, i.e., its radius 𝑟. However, the number

of constituent monomers belonging to the nucleus, 𝑛, provides a variable which makes fewer assumptions about the

nucleus shape. In this context, the volume and surface free energy contributions lead to the following expression for

the nucleation free energy:

𝐹 (𝑛) = −𝑛Δ𝜇𝓁→𝑥𝑡𝑎𝑙 + 𝜎′𝑛2∕3 (1)

where Δ𝜇𝓁→𝑥𝑡𝑎𝑙 = 𝜇𝓁 − 𝜇𝑥𝑡𝑎𝑙 is the difference in chemical potential between the metastable liquid and the stable

crystal phase and is strictly positive in conditions where nucleation is thermodynamically favourable, and the system

is supersaturated. The surface term instead scales as 𝑛2∕3, where 𝜎′ is the product of a shape factor and the surface

tension, 𝜎.

By solving the derivative of the equation above with respect to 𝑛, we find that the free energy barrier associated

with the nucleation process Δ𝐹 ∗ can be computed as:

𝐹 (𝑛∗) = 4𝜎′3

27Δ𝜇2
𝓁→𝑥𝑡𝑎𝑙

= 1
2
Δ𝜇𝓁→𝑥𝑡𝑎𝑙𝑛

∗ (2)

where the critical size of the crystal nucleus is

𝑛∗ =
(

2𝜎′
3Δ𝜇𝓁→𝑥𝑡𝑎𝑙

)3
(3)

and CNT provides analytical solutions for the minimum work required to form a crystal nucleus. The addition of

monomers to the nucleus beyond 𝑛∗ reduces the free energy of the system.

CNT assumes, therefore, that a single energy barrier separates the parent liquid from a bulk crystal in equilibrium

with a solution. It also assumes that the interfacial energy for the smallest clusters of monomers representing the

new phase can be described by scaling the surface energy of the bulk phase at equilibrium. This means that the

surface tension and the shape factor equating 𝜎′ are unchanging as a function of 𝑛. This is the so-called capillary

approximation which likely fails for the smallest crystals whose shape and faceting are expected to deviate from that

of the bulk crystal. [38] Extensions of the theory can be made to account for varying surface tension.[51, 52, 53]

The crystal embryo growth is assumed to occur by the transfer of monomers from the solution to the crystal. [96]

This is justified by considering the probability of finding clusters of size 𝑛: 𝑝(𝑛) ∝ exp (−Δ𝐹 (𝑛)∕𝑘B𝑇 ), where 𝑘B is
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Boltzmann’s constant and 𝑇 is temperature. If Δ𝐹 (𝑛∗) ≫ 𝑘B𝑇 and 𝑛∗ is relatively small; it is reasonable to expect

the transfer of growth units from the solution to the crystal to be dominated by solute monomers. The rate, 𝐽 , of

formation of clusters of size 𝑛 per unit volume of the solution and per unit time takes an Arrhenius-type form: [97, 98]

𝐽 = 𝜌𝑓+Z exp
(

−Δ𝐹 ∗

𝑘B𝑇

)

; Z = 1
𝑛∗

(

Δ𝐹 ∗

3𝜋𝑘B𝑇

)
1
2

(4)

where 𝜌 is the volume density of solute monomers, and 𝑓+ is the rate of attachment of monomers to the nucleus.

Z is the Zeldovich factor for homogeneous nucleation, which accounts for the low probability of observing a large

population of supercritical clusters that progress to bulk crystals (and is determined by the shape of the free energy

barrier in 𝑛). [99, 50] Due to the exponential term in Eq. 4, small changes to Δ𝐹 (𝑛∗), as determined by Δ𝜇𝓁→𝑥𝑡𝑎𝑙 and

𝜎′, can result in orders of magnitude changes to crystal nucleation rates.

Following units for the rate as m−3 s−1, the characteristic time for a single nucleation event scales according to

𝑉 −1, the reciprocal volume of the solution. As described above, computational costs limit the total volume (number

of atoms) that can be simulated using standard MD. With this in mind, consider a hypothetical aqueous solution

system undergoing relatively fast nucleation with 𝐽 = 1020 m−3 s−1. In an MD simulation of this solution containing

around 105 water molecules, we can expect the mean simulation time required to observe one nucleation event to be

roughly one hour. This is far beyond the capabilities of MD, which typically achieves simulation times up to 10−6 s

on a powerful CPU/GPU. From this example, it is easy to appreciate why enhanced sampling simulations based on

MD are often essential to study phase separation in some solutions.

3.2 | Finite-size dependence of the crystallization driving force

Simulations of crystallization from solution are typically carried out in the canonical or isothermal-isobaric ensembles,

where the total number of atoms/molecules is constant. When dealing with out-of-equilibrium, multicomponent

liquid phases undergoing a phase transition, this constraint introduces a coupling between the number of solute

monomers available to a growing crystal nucleus and the time-dependent crystallization driving force, Δ𝜇𝓁→𝑥𝑡𝑎𝑙 .

[100, 101, 28, 89, 72] Indeed, nucleation can be completely inhibited in a microscopic, closed system, if the transfer of

monomers from the liquid to a critical cluster of the new phase renders the solution undersaturated.[89, 72, 102] In

a dense system, such as a liquid solution, this coupling cannot be efficiently removed by simulating in the grand

canonical ensemble (where the solute is replenished from an artificial, external reservoir to maintain a constant

solution chemical potential), due to a low probability for insertion of solute in the liquid phase. Instead, molecular

simulations using a constant number of molecules require either the application of theoretical corrections to account

for the change in Δ𝜇𝓁→𝑥𝑡𝑎𝑙 or the development of specialised methods to mimic open boundary conditions,[103, 104,

105, 106, 107] unless sufficiently large systems can be simulated to minimise the finite-size effects.

Nucleation free energy in small systems

A rationale for the effect of confinement on the phase behaviour of metastable liquids is provided by developing a

model for crystal nucleation in confined volumes analogous to the modified liquid droplet (MLD) mode developed

by Reguera et al. [108, 100] to describe depletion effects on the thermodynamics of nucleation of liquid droplets

[109, 89] Consider a two-component supersaturated solution, 𝓁. The chemical potential of solute in solution, 𝑖, can be
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written as,

𝜇𝓁 = 𝜇0 + 𝑘B𝑇 ln 𝑎𝑖 ≈ 𝜇0 + 𝑘B𝑇 ln 𝑥𝑖 (5)

where 𝜇0 is a reference chemical potential and 𝑎𝑖 is the activity of 𝑖, which is approximately equal to the mole fraction,

𝑥𝑖, assuming close-to ideal solution behaviour. When a crystal forms, the chemical potential of this phase equals the

chemical potential of the solution at equilibrium, such that,

𝜇𝑥𝑡𝑎𝑙 = 𝜇0 + 𝑘B𝑇 ln 𝑎𝑖,∗ ≈ 𝜇0 + 𝑘B𝑇 ln 𝑥𝑖,∗ (6)

and asterisks indicate the activity and mole fraction of the solute under coexistence conditions.

The transfer of monomers from the solution to the crystal during nucleation depletes the surrounding solution.

However, this effect is negligible in a macroscopic system, as the abundance of monomers in the bulk liquid quickly

replenishes the solution surrounding the nucleus (assuming that crystallisation is not diffusion limited). In a

simulation, however, where the total number of monomers is fixed (𝑁), the depletion changes the driving force for

crystallisation and must be accounted for in an additional term to Eq. 1:

Δ𝐹 (𝑛) = 𝑁(𝜇𝓁(𝑛) − 𝜇𝓁(𝑛 = 0)) − 𝑛(𝜇𝓁(𝑛) − 𝜇𝑥𝑡𝑎𝑙) + 𝜎′𝑛2∕3 (7)

Depending on the volume of the simulated system, and the supersaturation of the mother phase, the deviation

between a macroscopic and a finite-size nucleation free energy profile can be responsible for significant changes to

the outcome of nucleation simulations. On the other hand, one could take advantage of the limitations imposed by

finite size by performing simulations initiated with different 𝑁 and 𝑉 and then analysing the steady-state properties

of the system obtained from simulations to evaluate Δ𝐹 (𝑛). For example, Li et al.[110] performed a series of unbiased

MD simulations where they varied the concentration and total number of coarse-grained, intrinsically disordered

peptides in a continuum solvent. Starting from a homogeneous phase, spontaneous separation occurred when

simulations were sufficiently large and concentrated, resulting in dense liquid peptide droplets in equilibrium with

lean solutions. Fitting the steady-state simulation data to a model analogous to Eq. 7 allowed the authors to evaluate

𝑥𝑖,∗, 𝜎 and 𝑛∗ over a range of saturation levels and identify the conditions where nucleation is completely inhibited

by the system size [89, 90].

Practically, computational challenges mean this approach has yet to find applications to study crystal nucleation.

This is because the spontaneous decomposition of a highly supersaturated solution is unlikely to lead to crystals

due to the slow decay times for monomer relaxation to a lattice structure in a dense amorphous precipitate. Even

if sampling this monomer ordering were feasible over MD timescales, many more crystal geometries could result

from a rapid crystallisation step, making precise estimates of 𝜎 difficult. Based on the local density, alternative

formulations of CNT have also been constructed, [111] and the finite size effects can be included here to account for

the changing thermodynamic driving force. [102]

Simulating condensed matter systems with pseudo open boundaries

A limited number of simulation strategies have been developed to avoid the effects of solute depletion that shift the

thermodynamic driving force for steady-state crystallisation in simulations. The constant chemical potential MD

method (C𝜇MD)[112, 113, 114] employs a closed system that is segregated into a transition region (TR), housing the

process of interest; a control region (CR), representing a bulk fluid with fixed composition; and an internal reservoir
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that supplies the CR with solute monomers as they are removed from the liquid phase toward the growing crystal in

the TR. In doing so, steady-state crystal growth is maintained for relatively long simulation times, as was shown

in the case of, e.g., urea,[103] isoniazid [115] and naphthalene, [116] which demonstrate crystal facet and solvent

dependent growth rates. In addition, crystal nucleation can be studied using a spherical variant of C𝜇MD that was

applied to simulate NaCl crystallisation. [113]

Combining multiple, carefully prepared closed system simulations (representing steps on a nucleation reaction

coordinate) to maintain the solution concentration as solute molecules are transferred to a crystal nucleus, out-of-

equilibrium sampling in the so-called Osmotic ensemble can be performed to avoid solute depletion effects. [117].

This was successfully applied to understand the nucleation and polymorph selection of sulfamerazine. [107] Unlike

C𝜇MD, the reaction coordinate for crystallisation must be known a priori here to set up the initial configurations, and

dynamical information cannot be obtained using this approach.

Another promising simulation strategy to avoid solute depletion is the adaptive resolution scheme. [118] Here, a

closed system contains a high-resolution region of interest coupled to a low-resolution, coarse-grained representation

of solute/solvent. In the case of nucleation, for example, the crystal nucleus and its immediate environment can be

modelled with atomic detail. As the nucleus grows, a smooth transformation of the model for solute and solvent

molecules occurs by extending the region of the system modelled with high resolution. There are no known examples

of applying such approaches to study crystallisation. Both the coarse-grained model and the method by which the

molecule representations are transformed must be performed carefully to ensure the properties of the system are

maintained.

4 | MODELLING APPROACHES TO SIMULATE NUCLEATION FROM SO-
LUTION.

As highlighted in Sections 2 and 3, modelling nucleation from solution introduces unique theoretical and practical

challenges. As such, a range of different approaches have been applied to this problem, populating a variety of

methods that span epistemic interpretations of the role of simulations. On the one hand, there is the application

of molecular simulation methods to estimate physical parameters appearing within independently established

theoretical frameworks. On the other hand, molecular simulations can be utilised as computational experiments,

yielding a direct observation of the fundamental steps underpinning crystal nucleation from solution. These

types of simulations contribute to the assessment of existing theoretical frameworks and, if necessary, to the

development of new ones. The space between these two simulation extremes is populated by a plethora of different

approaches that vary not just in their technical implementation but also in the degree to which they rely on reference

theoretical frameworks to yield estimates of nucleation kinetics and mechanisms. In Figure 3, we provide a graphical

representation of the variety of such methods in relation to their reliance on CNT and its underpinning assumptions.

A somewhat arbitrary classification of nucleation from solution guides the structure of the core sections in our

review. In the following, we summarize the basics of different simulation approaches by grouping them into two

main categories: theory-based (Section 4.1.1) and exploration (Section 4.2) simulation methods. The latter rely on the

vast literature covering rare event sampling methods. We report on both biased and unbiased simulation methods,

prioritising those that have been applied to study crystal nucleation from multicomponent solutions. Finally, we

propose a global overview of the type of insight available from nucleation simulations by reporting results that have

accumulated in the last decade on the homogeneous nucleation of NaCl in an aqueous solution. For this system, we

have examples of many, if not all, possible implementations of nucleation simulation strategies. This unicum in the



FINNEY AND SALVALAGLIO 13

F I G U R E 2 A) The finite size effects of closed simulations manifest in a free energy minimum for the stable
thermodynamic phase resulting from nucleation. This is different to the macroscopic case due to a bounded partition
function and a depletion of crystal building blocks that transfer from the parent phase to the nucleating phase. B)
Crystal nucleation pathways from solution to crystal represented on a two-dimensional reaction coordinate
characterising cluster density and order. The diagonal marks the case for the concomitant increase in solute cluster
order with density, indicative of the capillary approximation adopted in CNT. Pathways which deviate from this
limiting case include two-step nucleation, where, for example, crystalline order is established in the core of
liquid-like precursors, as shown on the right of B. In the case of NaCl nucleation (discussed below), simulations
demonstrate a transition from one-step to two-step crystal nucleation that occurs when the supersaturation ratio, 𝑆,
is increased far into the metastable zone for phase separation.

literature provides an opportunity to compare different approaches, and at the same time offers an overview of the

field. Numerous studies of NaCl crystal nucleation using different simulation methods facilitates an assessment of

the suitability of these approaches to investigate crystal nucleation in silico more generally.

4.1 | Informing Theory with Molecular Simulations

4.1.1 | The Seeding Method

In the seeding method, introduced and popularised by the Espinosa, Vega, Valeriani, Sanz [119, 120], Quigley[80],

and Peters [86, 121] groups, molecular dynamics simulations are used to inform nucleation rate expressions based on

CNT. By construction, the seeding method relies on the a priori acceptance of a quasi-classical nucleation pathway and,

within this context, enables the calculation of nucleation rates. Importantly, as extensively discussed by Zimmerman

et al. [121], the seeding method is applicable when the size of the nucleus is the reaction coordinate for nucleation,

and the capillary approximation can be safely applied (see section 2).
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⅓

⅔

F I G U R E 3 The range of molecular simulation techniques that can be applied to study nucleation from solution
goes from completely theory based (left side) to exploration driven computational experiments (right side). The
insight available and its associated computational cost vary significantly across this range of methods highlighting
how an a-priori formulation of the research question to be addressed by simulation is essential to guide the selection
of the simulation method of choice.

The key expression in the seeding method is the CNT nucleation rate, i.e. Eq. 4. In this expression, CNT is used

to obtain estimates of both the free energy barrier Δ𝐹 ∗ appearing in the exponent and the prefactor 𝜌𝑓+𝑍, where 𝜌 is

the density of growth units in solution, 𝑓+ is the attachment frequency, and 𝑍 the Zeldovich factor, expressed as a

function of the crystallization driving force, as shown in Eq. 4 [119, 121, 120].

To solve the rate equations, the parameters that need to be estimated at a given 𝑇 are the solute density 𝜌,

the thermodynamic driving force Δ𝜇𝓁→𝑥𝑡𝑎𝑙 , the critical nucleus size 𝑛∗ and the attachment frequency 𝑓+. The

seeding method leverages unbiased MD simulations to estimate 𝑛∗ and 𝑓+ by averaging the dynamics of growth

or dissolution of nuclei that are prepared with initial size 𝑛0 and equilibrated in a solution with composition 𝜌 and

temperature 𝑇 . The rate is then evaluated according to an estimate of Δ𝜇𝓁→𝑥𝑡𝑎𝑙 , which has to be independently

obtained at the composition of interest.

The critical nucleus size 𝑛∗, for a specific value of 𝜌 and 𝑇 is obtained by performing ensembles of simulations

varying 𝑛0 and, by computing for each ensemble of trajectories initialised at the same 𝑛0, the ensemble average of the

initial drift velocity ⟨𝑛̇(0)⟩𝑛0 . The initial size 𝑛0 associated with ⟨𝑛̇(0)⟩𝑛0 = 0 is by definition the critical nucleus size 𝑛∗.

As such, seeding simulations can be performed using any MD engine that can handle the force field. Typically, for a

solute concentration, one performs at least five simulation campaigns for different values of 𝑛0 (where each seed is

carefully relaxed in the solution), each of which involves running a handful of independent simulations to obtain the

mean trajectory that indicates the relative stability of the cluster. Seeding methods can, therefore, be relatively cheap

and easy to perform in systems where the attachment of monomers from the solution to crystal occurs readily over

simulation timescales.
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The attachment frequency 𝑓+ can be obtained by considering that the dynamics of the nuclei obey the over-

damped Langevin dynamics; Zimmerman et al. [109, 121] have shown that the attachment frequency is limited by

the desolvation process. Under this condition 𝑓+ = 𝑓+
𝑑𝑒𝑠:

𝑓+
𝑑𝑒𝑠 = 4𝜋𝑘𝑠𝜎𝑠𝜌 (8)

where 𝑘𝑠 is a second-order rate constant and 𝜎𝑠 is the surface concentration of attachment sites. A more simulation-

driven approach to estimate the attachment frequency is instead proposed by Auer and Frenkel, as discussed by

Espinosa et al.[122]:

𝑓+
𝐴𝐹 =

⟨(𝑛(𝑡) − 𝑛(0))2⟩
2𝑡

(9)

These two approaches have been shown to lead to the same order-of-magnitude estimates of the attachment frequency

𝑓+ for NaCl nucleation from aqueous solution[120], a case study that will be further explored and discussed in

Section 5. A thorough discussion on the estimate of the attachment frequency is reported in Lifanov et al. [80].

It should be noted that, in the literature, we can find examples of applications where seeding-inspired approaches

are used to compute only the prefactor of Eq. 4, while enhanced sampling methods are used to independently

compute Δ𝐹 ∗[105].

Notable applications of the seeding method to the investigation of nucleation from solutions include, i.e., the

study of the nucleation of methane hydrates [123], and the study of urea nucleation from aqueous solution [124].

4.1.2 | Prenucleation Species

Many simulations studies seek to gain an understanding of nucleation without directly simulating the process.

These types of simulations are usually the cheapest as the steady state solution behaviour can be achieved readily in

standard MD simulations. Often, though, enhanced sampling techniques (see section 4.2) are also used to determine

the thermodynamic stability of associated species. In complex solutions, simulations have provided information

on the species potentially involved in nucleation; careful analysis of these species and their assembly can aid the

classification of nucleation pathways. [64, 46, 125]

For example, Demichelis et al.[126] performed metadynamics simulations (described in section 4.2) to confirm the

relative stability of calcium phosphate complexes as the first associates to form in solution and thought to be directly

involved in mineral nucleation from experiments.[127] Simulations have also shed light on structural building units

that act as precursors in the nucleation of metal-organic frameworks [128, 129, 130] and the complexes that assemble

to form inorganic functional materials.

It was hypothesised that the structural motifs of API dimers in solution encode the polymorphic outcomes of

crystal nucleation. As such, MD simulations of organic molecules in solutions have focused on the association of

monomer building blocks to support experimental studies. [131, 132, 133, 134, 135] In simple 2D models of flexible

chiral molecules, Carpenter and Grünwald [136] recently demonstrated how bulk crystal structures are related to the

organisation of building blocks prior to nucleation and the importance of kinetics in predicting polymorphism.

Investigating prenucleation species is particularly useful to identify systems that may phase separate following

the PNC pathway and other nonclassical crystallisation routes. In particular, many studies have considered the

structure and stability of CaCO3 assemblies that emerge in solution and the effects of additives and solution

environment on their properties. [64, 137, 138, 139, 140, 141, 142, 143] These studies have demonstrated that entropy
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drives the formation of PNCs [139] and questioned the realtionship between PNCs and microscopic precursors to

dense liquids [140, 143].

Predicting the phase behaviour in systems that follow PNC separation requires evaluation of the equilibrium

constant for monomer association, as discussed in section 2. [65] Enhanced sampling simulations, particularly

Umbrella Sampling and metadynamics, [142, 144, 138] have been successfully applied to evaluate these constants

which corroborate experimental measurements. [139] Both biased and unbiased MD simulations were informative in

predicting the structure and dynamic properties of the PNCs and determining the thermodynamic driving forces for

their formation. [64, 141, 143] In this regard, the application of simulations has been critical to understanding and

evolving theories for the PNC pathway.

4.2 | Molecular Simulations as Computational Experiments

As discussed in section 4.1.1, the seeding method provides information on the nucleation kinetics, implying a

nucleation process that closely follows the nucleation pathway postulated in classical nucleation theory. By construc-

tion, seeding methods cannot answer research questions pertaining to the nucleation mechanism itself. In order

to discover and investigate mechanisms deviating from the one postulated in CNT and its extensions, unseeded

nucleation simulations are necessary. In unseeded nucleation simulations, the assembly of crystalline nuclei is

explicitly sampled, starting from a clear solution where a nucleus is absent. As such, in unseeded simulations, the

mechanism of nucleation is not a priori defined and emerges from the collective evolution of the system, thus allowing

for an open-ended exploration of the nucleation process. This can be useful for studying systems that exhibit complex

behaviour involving intermediates along the nucleation pathway or that can yield different crystal structures upon

nucleation.

In order to sample nucleation events in unseeded simulations, enhanced sampling methods are key. Under

conditions of supersaturation of interest for practical applications, spontaneous fluctuations across the nucleation-free

energy barriers are too rare to be observed over timescales accessible with standard MD simulations (see Section 3.1).

Enhanced sampling methods can thus be used to overcome this limitation. Broadly speaking, enhanced sampling

methods used to investigate nucleation from multicomponent liquid phases can be classified depending on whether

they introduce a bias potential as a perturbation of the system’s Hamiltonian - such as metadynamics and umbrella

sampling - or are based on efficiently sampling the space of reactive paths using techniques such as Transition

Path, Transition Interface, and Forward Flux Sampling, or the construction of Markov State Models from unbiased

trajectories. Biased enhanced sampling methods typically aim to estimate the free energy barrier associated with the

nucleation and to discover nucleation pathways. Nucleation rates are usually obtained by complementing the free

energy barrier information with estimates of the rate prefactor, often carried out using approaches similar to those

adopted in the seeding method. A direct calculation of nucleation rates is only practical in simple cases [72].

4.2.1 | Biased enhanced sampling approaches

Biased enhanced sampling methods in the context of crystal nucleation are typically deployed to achieve two aims:

the calculation of the free energy barrier associated with the nucleation process and the enhanced exploration of

the nucleation mechanism. Typically, the former objective can be achieved by either static or history-dependent

biasing strategies while the second objective is pursued by the deployment of adaptive, history-dependent biasing

methods. In the following, we briefly recap the methodological bases of two biased enhanced sampling methods

representative of the static and adaptive categories: Umbrella Sampling (US) and metadynamics (MetaD). Here we
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F I G U R E 4 MetaD simulations of crystal nucleation from solutions. A) Combining C𝜇MD [105, 114] and
WTMetaD Karmakar et al compute the free energy surface associated to NaCl nucleation from solution limiting the
finite-size effects due to confinement. Here the CV used enhanced the sampling of crystal structures following with a
rocksalt structure, and the method was focussed on the calculation of the free energy barrier to nucleation. Adapted
from Ref. [105]. B) Nucleation of urea from solution. Different solvents induce different nucleation mechanisms:
while MeOH and EtOH promote a single-step classical-like process, Water and ACN lead to a two-step process.
Adapted from Ref. [90]. C) Metadynamics enables the discovery of a two-step nucleation mechanism for the
synthesis of Methylammonium Lead Iodide Perovskites from solution. Adapted from Ref [145].

do not report on sampling methods based on constrained dynamics such as the string method in CV space, used by

Santiso et al. to model crystallization both from the melt [146] and from solution [117], and we refer the interested

reader to the original publications for an overview of this method, related to US and MetaD. Biased enahnced

sampling methods depend crucially on the choice of low-dimensional descriptors of the system configuration - i.e.

the collective variables (CVs) - that in biased sampling are used to define the bias potential [147, 43? ]. We briefly

discuss this point at the end of this section and for a comprehensive overview, we refer the interested reader to

reviews on this topic from Giberti et al. [84] and Neha et al. [148]. These types of simulations are typically expensive,

especially if multiple CVs are biased. Very many (US) and/or very long (MetaD) simulations may be necessary to

obtain convergent thermodynamics and kinetics. However, the computational cost is much lower than if one were to

observe crystal nucleation spontaneously in such systems. US can be performed in the most commonly available MD

engines that allow for implementation of harmonic restraints; though the CVs typically used to simulate nucleation

are unlikely to be available in standard MD codes. A useful and noteworthy plugin is the PLUMED software[149]
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which interfaces with most MD engines and offers a wide range of CVs, including the ones applicable to study crystal

nucleation and discussed in this review. PLUMED also allows the practitioner to perform US and MetaD as well, as

other types of biased enhanced sampling, in their favourite MD engine that has been patched with PLUMED.

Umbrella Sampling

Umbrella Sampling is a computational method used in MD simulations to calculate the free energy profile associated

with an activated transition[150, 151, 152]. The method involves performing a number of independent simulations,

or windows, where a harmonic bias potential, defined as a function of a CV 𝐬 as 𝑉𝑖 = 𝑘𝑖(𝐬 − 𝐬𝑖)2 is added to the

Hamiltonian of the system. In the 𝑖𝑡ℎ window, the bias potential is designed to sample configurations that, in 𝐬, are

projected in the vicinity of 𝐬𝑖. Performing simulations for 𝐬𝑖 values describing a pathway between reactants and

products allows collecting configurations distributed between a supersaturated solution and a crystalline nucleus.

Within each window, the biased probability density can then be reweighted using Zwanzig perturbation theory[153],

and a global free energy profile is then obtained by employing either the weighted histogram analysis (WHAM)

[154, 151] the multiple Bennett Acceptance Ratio (mBAR) [155], or Umbrella Integration (UI) [156]. US is routinely

used to compute free energy surfaces associated with activated processes and its most common application in

nucleation studies is the calculation of the free energy barrier to nucleation, i.e. Δ𝐹 ∗, without resorting to a theoretical

formulation of the barrier dependence on thermodynamic parameters such as the solubility and surface tension

[157]. For the calculation of nucleation rates US calculations are complemented by estimates of the nucleation rate

prefactor. This can be obtained by using CNT-inspired expressions [122] following an approach similar to seeding

simulations or, more generally, by drawing from the Bennett-Chandler formulation of the kinetic prefactor associated

with a rare-event transition [158, 109].

Metadynamics

Metadynamics (MetaD) is a molecular simulation technique to study the thermodynamics and mechanism of rare

events [159, 160]. It involves introducing a time dependent bias potential to the system being simulated, which acts

to push the system out of local energy minima and explore a wider range of possible configurations. This helps

uncover poorly-explored regions of configuration space that might not be easily accessible using traditional molecular

dynamics simulations. MetaD is one among many methods in which sampling is enhanced by adaptively perturbing

the original Hamiltonian of the system by introducing a bias potential, a seminal idea historically introduced with

Umbrella Sampling.[150, 159, 161, 162] In MetaD such a potential is adaptively constructed as a sum of Gaussian

kernels defined in a low-dimensional set of collective variables (CVs), usually indicated as 𝐬. CVs are formulated

as continuous and differentiable functions of the microscopic coordinates of a system.[160, 163, 84, 164] In recent

years, several adaptations of MetaD have been proposed, the most relevant being Well-Tempered metadynamics

(WTmetaD) introduced by Barducci et al. [160] In WTmetaD, the external repulsive potential is iteratively updated

as:

𝑉𝑛(𝐬) = 𝑉𝑛−1(𝐬) + 𝐺(𝐬, 𝐬𝐧) exp
[

−
𝑉𝑛−1(𝐬𝐧)
𝑘𝐵Δ𝑇

]

(10)

where 𝑛1 and 𝑛 refer to consecutive iterations of bias deposition, 𝐬𝐧 defines the position of the system in CV

space 𝐬 at iteration 𝑛, 𝑉𝑛−1 is the total bias potential at iteration 𝑛 − 1, 𝑘𝐵 is the Boltzmann constant and Δ𝑇 is a

parameter homogeneous to a temperature. A key feature of the WTmetaD algorithm is the fact that the scaling factor

exp
[

− 𝑉𝑛−1(𝐬𝐧)
𝑘𝐵Δ𝑇

]

decays as 1∕𝑛 leading to a convergent behaviour. WTmetaD convergence was demonstrated initially

for infinitesimally narrow kernel functions and more recently for any 𝐺(𝐬, 𝐬𝐧). By changing the parameter Δ𝑇 , a
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controlled enhancement of the fluctuations in 𝐬 can be achieved, leading to the asymptotic convergence of the bias in

the long-time limit: 𝑉 (𝐬, 𝑡 → ∞) = − Δ𝑇
𝑇+Δ𝑇 𝐹 (𝐬) + 𝑐(𝑡), where 𝐹 (𝐬) is the free energy in the set collective variables 𝐬, and

𝑐(𝑡) is a time-dependent constant [165].

In the context of the study of nucleation processes from solution, metadynamics has been applied to explore

the configurational landscapes associated with the nucleation of small organic molecules from liquid solutions

[89, 90, 88, 166, 167], the nucleation of salts from aqueous solution [168, 105, 46], the nucleation of methane clathrates

[169], and the assembly of perovskites [145]. In all of these cases, metadynamics enables the calculation of continuous

reactive trajectories for crystal nucleation and often enables estimates of the free energy landscape associated with

such pathways.

4.2.2 | Unbiased enhanced sampling approaches

In this review, we indicate with the adjective unbiased those rare event sampling methods that are not based

on the perturbation of a system’s Hamiltonian by introducing any biasing potential or any artificial force, yet

achieve an enhancement of the sampling of activated events by efficiently sampling trajectories obtained using

standard MD. Such techniques are based on efficiently sampling the Transition Path Ensemble (TPE) and have been

spearheaded by Transition Path Sampling (TPS). After briefly introducing TPS, hereafter, we focus on reporting

only techniques that have recently been used to model nucleation from multicomponent liquids, such as Transition

Interface Sampling[170, 171] and Forward Flux Sampling [172, 158] that has recently been used to simulate NaCl

nucleation from aqueous solution at moderate supersaturations[173] (see Section 5).

Transition Path and Transition Interface Sampling

Transition path sampling (TPS) leverages a Monte Carlo algorithm to sample the TPE starting from a single reactive

trajectory that connects reactants and products. In the context of homogeneous nucleation, this trajectory connects a

supersaturated solution to a solution containing a crystal particle. This initial reactive trajectory is often generated

using biased sampling techniques. New trajectories are then sampled by implementing a shooting algorithm. While

multiple shooting algorithms exist, a typical approach consists of perturbing a configuration sampled by the initial

reactive trajectory i.e., by slightly modifying the momenta, thus generating a new trajectory via a backward and

forward propagation in time. If the new trajectory, proceeding through the set of configurations 𝑥 in 𝑛 steps, connects

reactants and products, it is accepted with a path weight that depends on the equilibirum phase space probability

density of the initial point in the trajectory 𝜌(𝑥0) as:

𝑃 [𝑥] = 𝜌(𝑥0)
𝑛−1
∏

𝑖=0
𝑝(𝑥𝑖 → 𝑥𝑖+1) (11)

where 𝑝(𝑥𝑖 → 𝑥𝑖+1) is the probability to transition from configuration 𝑥𝑖 to configuration 𝑥𝑖+1. The calculation of the

rate constant associated with the 𝐴𝐵 transition is based on the estimate of the correlation function 𝐶(𝑡) = ⟨ℎ𝐴(𝑥0)ℎ𝐵 (𝑥𝑡)⟩
⟨ℎ𝐴(𝑥0)⟩

,

where ℎ𝑖 is a characteristic function that is equal to one in state 𝑖, and null everywhere else. As discussed in detail in

Refs. [174, 158, 175] the calculation of the kinetic constant requires the generation of trajectories targeting intermediate

states between A and B, typically generated using an order parameter, or CV. It should be noted that, while the

sampling of trajectories is independent from the choice of CVs, the rate calculation does depend on the CV choice.

Transition interface sampling (TIS) was introduced to improve the efficiency of the rate calculation, associated

with TPS. In TIS, configuration space is sectioned into non-intersecting interfaces based on a CV (usually indicated
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with 𝜆 in the TPS/TIS literature). The order parameter lambda should enable a mutually exclusive partitioning of

the configuration space between a reactant basin, where 𝜆 < 𝜆𝐴 = 𝜆0 and a product basin where 𝜆 > 𝜆𝐵 = 𝜆𝑛. The

reaction rate constant 𝑘𝐴𝐵 is then obtained as[171]:

𝑘𝐴𝐵 =
Φ𝐴,0

ℎ𝐴

𝑛−1
∏

𝑖=0
𝑃 (𝜆𝑖+1|𝜆𝑖) (12)

where: Φ𝐴,0 is the steady state flux of trajectories leaving the reactant state which can be easily evaluated by a

brute-force MD simulation of the system in the reactant state; ℎ𝐴 is a function that is equal to unity if a trajectory was

more recently in the reactant state than in the product state; while
∏𝑛−1

𝑖=0 𝑃 (𝜆𝑖+1|𝜆𝑖) = 𝑃 (𝜆𝑛|𝜆0) is the probabilty that a

trajectory crosses the product interface 𝜆𝑛, when starting from reactant interface 𝜆0. In order to improve the efficiency

of the computational evaluation of 𝑃 (𝜆𝑛|𝜆0), further developments of the TIS algorithm, such as replica exchange

TIS (RETIS [176, 175]), have been proposed, introducing exchange moves between interface ensembles in order to

enhance the ergodicity of the sampling. As for TPS, in TIS the CV 𝜆 is used to conveniently partition configuration

space, and does not affect the sampling of reactive trajectories.

Forward Flux Sampling

Forward flux sampling (FFS) is a computational method used to study rare events in complex systems. Unlike

TPS and TIS, FFS does not require the system to be at equilibrium, and can thus be applied to out-of-equilibrium

processes. Similarly to TIS, FFS is based on sampling transitions between non-intersecting interfaces defined in

a low-dimensional order parameter space describing the transition from a reactant state, 𝐴, to a product state, 𝐵.

Analogously to TIS, the initial interface 𝜆𝐴 marks the boundary in CV space between the reactants and all other

configurations, and 𝜆𝐵 indicates the boundary between the products and all other configurations. The pathway from

𝐴 to 𝐵 is described by crossing a series of intermediate interfaces 𝜆 ∶ 𝜆𝑖 ... 𝜆𝑛−1, with 𝜆𝑖+1 > 𝜆𝑖+1 for every value of 𝑖.

FFS uses the same expression proposed by TIS for the calculation of the transition rate between 𝐴 and 𝐵, namely

Eq: 12. However, it differs in the computational approach adopted for the calculation of the term 𝑃 (𝜆𝑖+1|𝜆𝑖), a key

difference that provides the attibute forward to the method’s name. In FFS the probability of crossing interface 𝜆𝑖+1
starting from interface 𝜆𝑖 is obtained from the forward-only integration of the system’s dynamics. This term is

obtained as the fraction of trial runs initiated in 𝜆𝑖 that reach 𝜆𝑖+1.[76] Different implementations of the FFS algorithm

differ in the specifics of the algorithm implemented to generate configurations at interfaces and thus in the details

associated with the calculation of the 𝑃 (𝜆𝑖+1|𝜆𝑖), and additional information can be found in the original publications

and in a number of reviews covering the specifics of the method. Particularly important in the context of nucleation,

where the size of the largest nucleus is typically a good choice of order parameter (see section 4.2.3), is the fact

that jumpy order parameters require a specialized treatment in order to consistently yield estimates 𝑃 (𝜆𝑖+1|𝜆𝑖) as

discussed in detail by Haji-Akbari[177]. Furthermore, Hall et al. [172] provide a practical guide and comparison

between the RETIS and FFS methods.

The need to spawn many MD trajectories (typically, more than 100 crossings are required to achieve good

statistical accuracy in the probabilities) along many points (the density of intersections must be high if the free energy

barrier to nucleation is large) in a reaction coordinate make FFS particularly expensive. As FFS requires unbiased MD,

it can be done with all MD packages and using script to automate the spawning and analysis of trajectories. Of course,

the CV must be implemented in order to use the method. In this regard, SSAGES [178] is software that interfaces

with popular MD engines and facilitates FFS simulations with several FFS protocols implemented. Though several

CVs are available, they are not typically used to study nucleation; however, a guide is provided in the software
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documentation on how to add CVs to the code.

4.2.3 | Collective Variables

Crystal nucleation from solution is a collective process of assembly that involves, by definition, an ensemble of

growth units (molecules, ions, atoms, particles ...) that are inherently equivalent and that come together to form a

nucleus of a new phase characterised by a well-defined structural arrangement. In order to describe and ultimately

understand the salient features of the assembly process, it is necessary to develop low-dimensional descriptors of the

system characterising the transformation. In the theoretical and computational literature on phase transitions, such

descriptors take the name of order parameters (OPs). In the context of enhanced sampling, OPs fall into the broader

category of Collective Variables (CVs, often indicated as 𝐬(𝐫⃗)). These are functions of the atomic coordinates that are

used to define the bias potential added to the Hamiltonian in biased enhanced sampling or that are used to mark the

progress between reactants and products in unbiased enhanced sampling and MD. In this context, it is important

that CVs approximate the reaction coordinate associated with the nucleation process and therefore distinguish

important states along the reaction path, such as reactants, products and, ideally, configurations belonging to the

transition state ensembles.[179] Moreover, to be used in biased enhanced sampling simulations, CVs should be

continuous and differentiable functions of the atomic coordinates. As demonstrated by Peters et al. for single-step,

classical nucleation mechanisms, CVs should approximate the size of the largest crystalline nucleus in solution,

which is often an excellent approximation of the reaction coordinates for these types of systems[83, 179]. In two-step

processes, a two-dimensional CV space representing the extent of the largest cluster and of the largest ordered domain

in the nucleating phase have also emerged as good descriptors of the reaction coordinate[43, 46, 89, 90], which also

lend themselves to a theoretical description of two-step nucleation[45]. More recently, the application of Machine

Learning methods and the data-driven identification of low-dimensional reaction coordinates for nucleation has

emerged as a viable strategy to identify combinations of CVs that enable an effective, low-dimensional description of

nucleation processes[43, 148, 180, 181, 182], that allows for the application of biased enhanced sampling by driving

the polymorph-specific crystal nucleation.[167]

The definition of effective CVs for describing and enhancing the sampling of complex nucleation processes in

solution also hinges on our ability to define order parameters that can resolve well the atomic environments that

are characteristic of specific crystalline structures. While this is routinely done for atomic or sing-particle-based

crystals using bond-orientational OPs such as the Steinhardt order parameters[183, 184, 148, 84] it remains a challenge

for molecular crystals. Approaches based on the calculation of generalised pair distribution functions[185] or on

the calculation of properties of the distributions of order parameters [186, 187, 188] demonstrate promise but still

require significant improvements in terms of computational efficiency, generalisability to molecular systems with

a significant degree of conformational complexity [189] and with hundreds of putative polymorphs[190, 191]. All

these aspects limit their current applicability to study nucleation from solution and represent one of the most limiting

bottlenecks in the current applicability of systematic nucleation studies in molecular systems.

5 | COMPARING APPROACHES: NACL NUCLEATION FROM AQUEOUS
SOLUTION

As anticipated in section 4, here we report on the results obtained for the nucleation of NaCl in aqueous solution by

different researchers over the previous decade. NaCl(aq) is arguably one of the simplest mineralising solutions and
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F I G U R E 5 Rates for NaCl crystal nucleation from aqueous solution taken from the literature. Here, BF refers to
brute force MD simulation of in which crystal nuclei emerge spontaneously. The limit of solution stability is
indicated by the vertical dashed line at 𝑆 = 4.05. The rate for Bulutoglu was evaluated using their literature rate
value of 4 × 103 s−1 and with an ionic density for NaCl(aq) of 6.5 nm−3 at 15 mol/kg. Crosses indicate experimental
literature values taken from Lamas et al. [120]. All simulations are performed at 298 K, except in the case of
Karmakar et al. [113], where simulations were performed at 350 K. The data reported in this plot is available at
://github.com/mme-ucl/NaCl_water_Nucleation_Rates.git

represents one of the earliest case studies for crystallisation [85, 192], instrumental for our understanding of crystal

nucleation from solution and for assessing simulation methods applied to this problem. The examples we report are

representative of the methods that we briefly introduced in the previous sections and show how different approaches

can yield complementary information on NaCl nucleation kinetics and mechanisms from aqueous solutions spanning

a wide range of compositions. Many of the studies conducted on this system employ the same solute and solvent

forcefield combination and can thus be quantitatively compared, such as in Fig. 5. The forcefield of reference in the

studies described in this section, unless otherwise stated, is the NaCl Joung-Cheatham (JC) force field coupled with

the SPC/E water model.

Importantly, for this system, consensus on the room temperature solubility has been reached by multiple

groups, using a range of different approaches based both on free energy calculations and direct coexistence methods

[193, 194, 195, 196, 197, 198, 199, 200, 122]. An accurate determination of the solubility enables the correct assessment

of Δ𝜇 that is used to evaluate rates in the seeding method (see section 4.1.1) [86, 121, 120], and to consistently

attribute a supersaturation level to simulations performed with theory-agnostic methods such as FFS, and MSM.

[201, 157, 173, 46]. The accepted solubility for JC NaCl in SPC/E water at 298.15 K and 1 bar is 3.7 m, which we label

𝑏𝑠𝑎𝑡. [202] As discussed in detail by Zimmermann et al. [121], this estimate is based on the values independently

://github.com/mme-ucl/NaCl_water_Nucleation_Rates.git
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estimated by Moucka et al. (3.64±0.2 m), Mester et al. (3.71±0.04 m), Benavides et al. (3.71±0.20 m), Kolafa et al.

(3.6±0.4 m) and Espinosa et al. (3.7±0.4 m), and is the product of a process that has seen the refinement of simulation

approaches and correction of earlier inaccurate estimates.

Nucleation kinetics and mechanisms at moderate supersaturation with Forward Flux Sampling

Employing Forward flux Sampling (see Section 4.2), Jiang et al. have investigated the nucleation of NaCl from

brine at supersaturation ratios (𝑆 = 𝑏∕𝑏𝑠𝑎𝑡) ranging between 2.1 and 4.5 [173]. FFS allows evaluation of both the

nucleation mechanism and nucleation kinetics at these conditions. Concerning the former, the authors observe that

nuclei tend to assemble directly into an FCC-like rocksalt structure, independently of their size, and that the level of

crystallinity of the nuclei has a strong influence on their lifetime and probability of growing. This suggests that the

nucleation process at moderate supersaturations follows a mechanism that can be described by CNT. The nucleation

kinetics obtained by FFS tend to underestimate experimental measurements, possibly due to an overestimation

of the crystal/solution interfacial tension[173]. Nevertheless, this dataset provides an important benchmark for

studying nucleation from solution as rates here are computed independently from any theoretical interpretation of

the self-assembly process.

Nucleation Kinetics within the remits of CNT

The quality of the dataset provided by Jiang et al. [173] comes with a significant computational cost. Hence there

is a strong incentive to test this result against less computationally intensive methods such as seeding (see 4.1.1).

Two papers [121, 120] have provided independent attempts at comparing nucleation kinetics of seeding with the FFS

dataset. Zimmerman et al. [86, 121] exploit that the ion attachment frequency 𝑓+ is dominated by ion desolvation

and adopt the theoretical expression of the nucleation rate prefactor reported in Eq. 8). Moreover, in contrast

with other seeding studies, [122] the authors adopt the Girshick-Chiu correction [203] Γ = exp
(

𝐹 (1)∕𝑘𝐵𝑇
)

(where

𝐹 (1) corresponds to the free energy associated to the formation of a monomer in a crystalline configuration) in the

prefactor to the rate expression. Adopting the consensus value of Δ𝜇𝓁→𝑥𝑡𝑎𝑙 [121], allowed Zimmerman et al. to

estimate nucleation rates in a range of supersaturations overlapping with the Jiang dataset. A similar simulation

strategy was recently employed by Lamas et al. [120] who adopted the Auer and Frenkel expression of the attachment

frequency 𝑓+ (see Eq. 9) and did not explicitly introduce the Girshick-Chiu correction in their working expression for

the calculation of the nucleation rates, yielding a set of results slightly less reliant on theoretical considerations than

those of Zimmermann et al.

As shown in Fig. 5, these two approaches yield substantial discrepancies in the estimate of the nucleation

rates, which can only partly be attributed to subtle differences in the expressions adopted for the nucleation rate

prefactor. The discrepancy appears to originate, instead, from the classification criteria used to estimate the number

of crystalline particles in the evolving seeds. The classification problem is discussed at length by both Zimmerman et

al. [121] and Lamas et al. [120]. In particular, Zimmerman et al. show that nucleation rates are extremely sensitive

to the number of crystal-like neighbours necessary to consider an ion part of the crystal nucleus. In this case, their

conservative choice of having at least five crystalline neighbours leads to underestimating the critical nucleus size,

thus overestimating the nucleation rate. Lamas et al., instead, resort to developing a systematic approach for the

classification of the ions as part of a crystalline particle based on the analysis of the overlap of distributions of the

local 𝑞4 order parameter for a bulk crystalline phase and a bulk solution. The identification of the optimal threshold

yields nucleus size estimates resorting to nucleation rates in good agreement with FFS results.



24 FINNEY AND SALVALAGLIO

Overcoming solution depletion

Karmakar et al. [113], compute the nucleation barrier at two distinct supersaturation conditions from unseeded

simulations (see section 4.2) by coupling WTmetaD[160] with C𝜇MD[112]. This approach allows a decoupling of

the size of the nucleus from the chemical potential of the parent phase by mimicking an open boundary system

at constant composition, therefore overcoming the depletion issues that typically affect both the qualitative and

quantitative behaviour of nucleating systems in small volumes (see section 3.2)[89, 31]. Depletion artefacts affect the

shape of the nucleation free energy profile, the estimate of the critical nucleus size, and in severe cases, can even

completely inhibit nucleation. Depletion effects are also present in regular seeding simulations. However, depletion

only affects the estimate of nucleation rates when the critical nucleus size 𝑛∗ << 𝑉 (𝑐 − 𝑐𝑠𝑎𝑡)[86], where 𝑐𝑠𝑎𝑡 is the

concentration of a saturated solution. For systems where 𝑐𝑠𝑎𝑡 is large, satisfying this equation may require very large

simulation volumes.

Karmakar et al. use the nucleation barriers estimated via WTmetaD and C𝜇MD to compute the exponential term

of the nucleation rate expression (Eq. 4). The prefactor is then estimated with the approach adopted by Espinosa

et al. [122]. The values of the nucleation rates obtained by Karmakar et al. following this route are reported in

Fig. 5. It should be noted that while the forcefield used in this study is the same adopted in the seeding papers

discussed above, the results are not directly comparable as calculations were performed at 350 K, rather than at room

temperature.

NaCl nucleation mechanism is supersaturation-dependent.

As mentioned in the introductory section, an important feature of nucleation from solutions is the fact that both the

rates and the mechanism (or pathway) for nucleation depends on the composition of the mother phase[90], and in

particular on its degree of supersaturation. Studies based on seeding by construction cannot lead to the discovery of

pathways departing from CNT-compliant ones.In contrast, unseeded simulations can reveal departures from CNT

(see section2).

Using unseeded simulations, Panatgiotopoulos and coworkers [157] discovered that also in the case of NaCl

nucleation from aqueous solution, the mechanism of nucleation depends on supersaturation. By employing large-

scale MD simulations and free energy calculations, they identified the limit of stability for aqueous NaCl solutions

with respect to a liquid/amorphous phase separation (reported in Fig. 5 as a vertical dashed line). The dense

amourphous salt clusters observed beyond the limit of solution stability act as intermediates in the crystallization of

NaCl, where crystalline order emerges within these disordered clusters following a two-step nucleation pathway[157]

(see section 2). Nucleation rates in this region of the phase diagram were obtained by Jiang et al. by estimating

Mean First Passage times (MFPTs) from brute force sampling of nucleating trajectories and by performing Umbrella

Sampling simulations to estimate nucleation barriers. Lamas et al. [120] corroborate these values of nucleation

rates in the proximity of the limit of solution stability by constructing survival probability distributions from brute

force simulations that yield nucleation rates within the same order of magnitude (see Fig. 5). An overview of both

the MFPT and survival probability methods for the calculation of nucleation rates from brute force simulation is

provided by Chkonia et al.[204].

The fact that at the limit of solution stability, the nucleation of NaCl follows a non-classical, multi-step pathway

has been further corroborated by the work of Bulutoglu et al.[205], where the nucleation mechanism of NaCl is

analysed by performing free energy calculations and by developing a theoretical approach based on the composite-

cluster model [206] able to interpret the atomistic simulation results. Most notably, fitting the composite-cluster

model to simulation data revealed that beyond the limit of solution stability, the amorphous salt clusters are

thermodynamically favoured compared to the aqueous solution, thus further validating the existence of a two-step
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nucleation pathway for NaCl at high supersaturation.

Discovering nucleation mechanisms by combining biased and unbiased simulations

Motivated by the observation of dense liquid-like ionic clusters emerging in the double layer in simulations of a solid-

liquid interface [207] at supersaturation levels significantly lower than the limit of solution stability discovered by

Jiang et al. [157], and by recent experimental and simulation observations suggesting significant ion-ion correlations

occurring in supersaturated NaCl; [125] we have recently investigated the emergent nucleation mechanism for NaCl(s)

in supersaturated solutions below the limit of solution stability. To this aim, we performed multiple metadynamics

simulations where we enhanced fluctuations in the local ion density to explore the configuration space of the nuclei

forming in an aqueous solution. By mapping the nuclei configurations as a function of two order parameters

indicative of the size of a dense cluster and of the size of a dense cluster with a crystalline structure, we collected

configurations able to describe the emergence of crystalline NaCl nuclei without prescribing a specific pathway[46].

By initialising hundreds of brute force MD simulations from uniformly distributed configurations in the 𝑛, 𝑛(𝑞6)
space, we then constructed a Markov State model able to yield model-free estimates of the nucleation rate of the

committor surface in order parameter space, thus providing a quantitative description of the emergent nucleation

mechanism. The MSM reveals that when 𝑆 = 3.7, both one and two-step nucleation mechanisms are indeed accessible,

with the two-step nucleation pathways being slightly more favourable. Interestingly, the analysis of the committor

probability surface in the 𝑛, 𝑛(𝑞6) space suggests that at these conditions, one may need need to extend the attribute

‘critical’ to an ensemble of clusters that, despite displaying a broad range of structures, include sizeable disordered

domains and have an equal probability of evolving towards a macroscopic crystal or dissolving.

As well as characterising the nucleation mechanisms far into the metastable solution zone, we also ruled out the

PNC pathway for NaCl. Using umbrella sampling, we computed the equilibrium constant 𝐾 for ion pair association

in the dilute limit. Despite the significant ion association that occurs in solutions across all of the metastable solutions

investigated 𝑆 = 1 − 4, the result that 𝐾 < 1 means that ion dissociation is thermodynamically favourable in dilute

solutions and ion assembly into liquid-like clusters is due to non-idealities in the solution phase. These liquid-like

entities can reach significant sizes, containing up to hundreds of ions at the high end of concentration, and evolve

their topology rapidly over simulation timescales.

Uncovering multi-step processes involving crystal polymorphs.

Using simulations as computational experiments, involves methods that enable the discovery of nucleation mechanisms

as emergent, collective evolution of systems. The nucleation of NaCl from aqueous solution offers an interesting case

study in this regard, showcasing the potential of simulation approaches while contextually providing a cautionary

tale about the quality of the models used to explore nucleation [168]. Performing WTMetaD simulations of NaCl

nucleation from an aqueous solution, where the NaCl ions were modelled with the GROMOS forcefield,[208] Giberti

et al. discovered that small NaCl clusters might preferentially adopt structures that differ from that of bulk rock

salt.[168] By employing a CV designed to enhance local density fluctuations without favouring a specific crystal

structure[168, 43], the authors discovered that - for the model adopted - there is a competition between hydrated

amorphous NaCl, rocksalt nuclei, and nuclei of a new wurtzite-like phase. An analysis of the CNT nucleation free

energies of the rocksalt and wurtzite phases revealed that indeed, according to the molecular model, wurtzite-like

arrangements are more favourable than rocksalt at small sizes. While this result is not representative of the real

NaCl nucleation mechanism, due to the fact that the GROMOS model for NaCl strongly underestimates its aqueous

solubility[173] and overestimates the stability of the wurtzite structure at the supersaturation conditions sampled by

Giberti, it nevertheless provides a very important observation pertaining to simulation methods. This study in fact,
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demonstrates that unexpected pathways can be discovered as emergent collective processes from a direct sampling

obtained with enhanced MD techniques.

6 | PERSPECTIVES AND CONCLUSIONS

Molecule and particle base simulation methods provide useful tools to gain mechanistic insight into the nucleation

of crystals from solutions. With proper sampling, quantitative thermodynamics and kinetics can be obtained to

compare with experiments and test theories for crystal nucleation. In this review, we have highlighted state-of-the-art

techniques to gain such information. These can be broadly categorised as methods which rely on theory with a

well-defined reaction coordinate—mainly CNT—and those which are truly explorative.

Simulating nucleation in multicomponent solutions has been facilitated by the advent of enhanced sampling

techniques and novel approaches to simulate nucleation using standard MD e.g., seeding. Exemplary studies of

NaCl crystal nucleation, which we have discussed, highlight the range of methods available to overcome time- and

length-scale challenges associated with the direct simulation of crystal nucleation in microscopic, closed systems.

Alongside the referenced simulations to study a wide range of nucleating systems, these works demonstrate the

capability of molecular simulations to predict crystallisation outcomes and determine rates.

Figure 5 presents NaCl crystal nucleation rates evaluated from simulations and measured in experiments.

Accepting that the 𝑦-axis spans 45 orders of magnitude, and given the known intricacies associated with nucleation

rate calculations [209], there appears to be reasonable consensus in the rates from unbiased and biased simulation

strategies. In the small range of 𝑆 where simulations overlap with experiments, a comparison of the rates leaves

much to be desired. While it is clear from Zimmerman et al. [121] that the vast difference in the rates from seeding

simulations depends on the definition of the order parameter (OP), this issue is addressed by the mislabelling analysis

of Lamas et al. [120]. Taking the latter seeding results along with the forward flux sampling (FFS) rates from Jiang

et al. [173], the force field predicts crystal nucleation rates that are approximately 20 orders of magnitude lower

than experiments. This discrepancy may indicate inaccuracies in the molecular model; however, we note that there

is even a discrepancy in the experimental data, spanning around five orders of magnitude. This example, simple

system typifies the challenge of matching simulation and experimental studies of crystal nucleation. The moonshot

challenge, therefore, is to develop simulation and experimental strategies that consistently reproduce rates that can be

confidently compared to one another. Mechanistically, the outlook is less bleak, as both simulations and experiments

indicate one- and two-step crystal nucleation according to the solution supersaturation. [125, 46, 205, 157]

Impressive advances in simulation capabilities were made over the previous decade; however, it is undoubtedly

evident to the reader that the studies we highlight where quantitative thermodynamics and kinetics have been evalu-

ated apply to very simple systems. Even so, the determination of nucleation rates requires exhaustive computational

resources. Sampling crystal nucleation pathways in more complex systems, such as in solutions of molecules with

conformational freedom that are so important to the pharmaceutical industry, is still a major challenge that is yet

to be realised beyond small molecules. Nevertheless, increasing computational power and the progress made in

machine learning techniques may make the routine simulation of crystal nucleation realisable in the near future.

Assuming that computational resources are abundant, we doubt that a one-size-fits-all simulation approach will

be achieved any time soon. This is principally due to the many different crystallisation pathways that are evident in

different systems. Indeed, simulations are utilised to support perspectives regarding the invalidity of established

theories to describe nucleation generally. Adopting the most suitable simulation strategy can therefore be of critical

importance. When departing from CNT-compliant methods, it is far less obvious what reaction coordinate should be
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sampled. As we have discussed, even in the CNT framework, how the cluster size is determined can drastically affect

the predicted nucleation rates. While methods based on transition path sampling are less susceptible to errors in

rates due to inappropriately defined reaction coordinates, a rigorous mechanistic understanding requires appropriate

variables to describe crystal nucleation and countless examples are found in the literature. Unfortunately, there is

no silver bullet when it comes to quantifying the emergence of order, though perhaps, this is good for explorative

purposes.

Simulating crystal nucleation in some systems might never be achieved at the atomic level. For instance, some

systems, such as proteins, are just too big; others have such low solubility that simulating crystallisation directly

from monomers in solution at experimental concentrations requires system’ sizes that are simply beyond our reach.

However, with continued advances in simulation techniques and an increased understanding of the factors that

govern nucleation from solution, we believe that the next step will be to systematically extend nucleation studies to

systems where the growth units are conformationally flexible organic molecules. In turn, this will enable accounting

for crucial out-of-equilibrium effects in computationally-assisted material design.
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