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Importance of actin cytoskeleton
Dynamic cross-linked network of slender filaments
▶ Morphology ↔ mechanical properties of cell
▶ Dictate cell’s shape and ability to move and divide

Nature education, Herron et al. Nat Commun. (2022)
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Fluctuating actin filaments
Actin filament fluctuations used for

▶ Sensing

▶ Motility

▶ Stress release (untying knots!)

Key point: actin filaments are
semiflexible ℓp ≳ L

▶ In this sense, shapes are smooth

▶ Spectral methods!
L = 5 µm, ℓp/L ≈ 3

Pawlizak and Käs, University of Leipzig., Ward et al. (Dogic lab) Nat. Mat. (2015)
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Stationary probability distribution

X ∈ RN = finite dimensional DOFs with energy function E (X).

▶ Stationary distribution (probability of observing a state)

dµGB =
1

Z︸︷︷︸
Normalization

e−E(X)/kBT︸ ︷︷ ︸
Boltzmann weight

dX︸︷︷︸
Lebesque measure

Gibbs-Boltzmann distribution (stat. mech.)

▶ Prob. depends on ratio of energy with kBT (thermal energy)

▶ Dynamics must be time-reversible with respect to µGB
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Dynamics: (Overdamped) Langevin equations

Commonly-used model for micro-structures immersed in liquid

∂X

∂t
= −M (X)

∂E
∂X

(X)
︸ ︷︷ ︸

Deterministic

+
√
2kBT M (X) ◦M−1/2 (X)︸ ︷︷ ︸

Mixed Strato-Ito

W(t)︸ ︷︷ ︸
White noise

▶ M (X) is SPD mobility operator, encoding (hydro)dynamics

▶ Noise form & “kinetic” interpretation chosen to sample from
GB distribution & be time reversible at equilibrium

Converting to Ito form gives

∂X

∂t
= −M

∂E
∂X

+ kBT (∂X ·M)︸ ︷︷ ︸
Stochastic drift term

+
√
2kBT M1/2W(t)︸ ︷︷ ︸

Multiplicative noise

Goal is to write and solve such an equation for fibers
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Bead/blob-spring model for fibers

Create “fiber” out of beads (blobs) and springs

▶ DOFs: X{i} = bead positions

▶ No constraints

▶ Energy and Langevin equation straightforward

▶ Only drift terms from mobility (vanish for
triply-periodic systems)

Big problem: need small ∆t to resolve stiff springs

X{k}
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Blob-link model

Replace springs with rigid rods

▶ DOFs: τ {i} = unit tangent vectors + XMP

▶ Obtain positions of nodes X via

X{i} = XMP +∆s
i∑

MP

τ {k}

defines invertible map X = X
(

τ
XMP

)

▶ Constraint τ {i} · τ {i} = 1

Removes stiffest timescale BUT

▶ Slender fibers → small lengthscales

▶ Still have small ∆t!

▶ Small lengthscales come from hydrodynamics of
long blob-link chain

X{k}

⌧ {k}

XMP
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Big idea: mix continuum and discrete

Coarse-grain

Hydrodynamics/
Elasticity

Spectral 
(discrete)

Under-resolved
Blob-link
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Spectral method

Mixed discrete-continuum description

▶ Hydrodynamics uses a continuum curve → special quadrature

▶ Discrete spatial DOFs → Langevin equation (Brennan/Aleks)

▶ Spectral method: the spatial DOFs define the continuum
curve X(s) used for elasticity & hydro

Big idea: resolve hydrodynamics → reduce DOFs → increase ∆t

▶ Small problem: constrained motion

▶ τ = series of connected rigid rods

▶ Mix of new methods + existing rigid body methods
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Blob link and spectral
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Building spectral discretization

DOFs: τ at N nodes of type 1 (no EPs) Chebyshev grid, XMP

▶ Chebyshev polynomial τ (s) constrained ∥τ (sj)∥ = 1

▶ Obtain X(s) by integrating τ (s) on Nx = N + 1 point grid
(type 2, with EPs). Set X{i} = X(si ).

▶ Defines set of nodes X{i} and invertible mapping

X = X
(

τ
XMP

)

▶ Can apply discrete blob-link methods (Brennan Sprinkle) for
constrained discrete Langevin equation

▶ Combine with continuum methods for elasticity and
hydrodynamics
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Continuum part: energy
Fibers resist bending according to curvature energy functional

Ebend [X(·)] =
κ

2

∫ L

0
∂2
sX(s) · ∂2

sX(s) ds

▶ κ = bending stiffness
▶ ℓp = κ/(kBT ) defines a “persistence length”
▶ Fibers bend on this length, shorter than this straight
▶ Hope for spectral methods when ℓp ≃ L (actin)
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Discretizing energy

Discretize inner product on Chebyshev grid

Ebend [X(·)] =
κ

2

∫ L

0
∂2
sX(s) · ∂2

sX(s) ds

=
κ

2

(
ENx→2NxD

2X
)T

W2N

(
ENx→2NxD

2X
)

=
κ

2

(
D2X

)T
W̃

(
D2X

)

= XTLX
▶ Upsampling to grid of size 2Nx to integrate exactly

▶ No aliasing

▶ Corresponds to inner product weights matrix W̃

▶ Force F = −∂E/∂X = −LX

▶ Force density f = W̃
−1

F (FEM: ⟨X, f⟩ = XTF)

Li et al. Geophys. J. Int. (2017).
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Continuum part: hydrodynamics
Goal is to approximate blob-link methods (radius â), which give
velocity U by

U{i} =
∑

j

MRPY

(
X{i},X{j}; â

)
F{j}

▶ MRPY= symmetrically regularized form of Stokeslet (RPY
tensor)

▶ Expresses velocity on one blob from force on another

Convert sum over blobs → integral over curve

U(s) =

∫ L

0
MRPY

(
X(s),X

(
s ′
)
; â
)
f
(
s ′
)
ds ′

▶ Have developed special quadrature schemes on spectral grid

▶ Mix of singularity subtraction + precomputations

▶ Requires O(1) points to resolve integral

▶ Compare to blob-link: O(L/â) points!
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Applying mobility

Chebyshev
interpolation

Special 
quadrature

fW�1

X

fMF

Ebend [X(·)]
X(s)

X{k=1,...N+1}

�
⌧ {k=1,...N}, XMP

�

M [X(·)]

F bend (X) fbend (X)
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Discrete part: inextensibility

Langevin equation must be modified because of inextensibility

▶ τ {i} remains unit vector, rotates as rigid rod (ang. vel. Ω{i})

∂tτ {i} = Ω{i} × τ {i} → ∂tτ = −CΩ

▶ Results in constrained motions for X

∂tX = X
(
−C 0
0 I

)(
Ω

UMP

)
:= X C̄α := Kα

▶ Discrete time: solve for α = (Ω,UMP), rotate by Ω∆t,
update midpoint
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Deterministic dynamics

Close system by introducing Lagrange multiplier forces Λ

▶ No work done for inextensible motions (principle of virtual
work)

▶ Constraint KTΛ = 0 (comes from L2 adjoint of K)

Results in saddle point system for α and Λ

Kα = M̃ (−LX+ Λ)

KTΛ = 0,

Deterministic dynamics (eliminate Λ)

∂tX = −N̂LX, N̂ = K
(
KTM̃

−1
K
)†

KT

N̂ expensive if done densely (if nonlocal dynamics). Apply via
iterative saddle pt solve with block-diagonal preconditioner (in
progress)
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Discrete Langevin equation
Deterministic dynamics + time reversibility → Langevin equation

∂tX = − N̂LX︸ ︷︷ ︸
Backward Euler

+ kBT∂X · N̂︸ ︷︷ ︸
Midpoint integrator

+
√
2kBT N̂

1/2

︸ ︷︷ ︸
Saddle point solve

W(t)

▶ Drift term captured in expectation via solving at the midpoint
(Brennan/Aleks)

▶ N̂
1/2

captured via saddle point solve

Kα = M̃ (−LX+ Λ) +

√
2kBT

∆t
M̃

1/2
W

KTΛ = 0,

⇒ α = Deterministic +

√
2kBT

∆t
N̂

1/2
W

▶ W ∼ N (0, 1)
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Implied GB distribution

The overdamped Langevin equation is in detailed balance wrt the
distribution

Peq (τ̄ ) = Z−1 exp (−Ebend(τ̄ )/kBT )
N∏

p=1

δ
(
τT
{p}τ {p} − 1

)

▶ For blob-link, physical

▶ Postulate that it extends to spectral (others possible)

▶ Justify through the theory of coarse-graining (in progress)

▶ Will present supporting numerical results
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Samples from GB: free fibers

Bias for finite N which disappears as N increases



21/30

Using the Langevin integrator to sample

Convergence to MCMC for smallest ∆t

▶ Reported in terms of longest relaxation timescale

▶ Goes as N−4 (not ideal); another reason to keep N low!

▶ Unchanged with ℓp (modes are stiffer, but fewer required)
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Relaxation of fiber to equilibrium

Blob-link vs. spectral

▶ Getting a good approximation to mean end-to-end distance?

▶ Is special quadrature doing what we want it to?
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Quantifying relaxation
(
ϵ̂ = 10−2

)

▶ Spectral results approach blob-link with increasing N

▶ Can extend spectral to smaller ϵ̂, but not blob-link!



24/30

Quantifying relaxation
(
ϵ̂ = 10−3

)
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Dynamics of bundling in cross-linked actin networks
Couple the fibers to moving cross linkers (CLs, elastic springs)
▶ CLs bind fibers, pulling them closer together
▶ Ratcheting action creates bundles
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Goals for bundling

Filaments move in three ways

1. Cross linking forces

2. Rigid body translation and rotation

3. Semiflexible bending fluctuations

Goal is to explore the role of the bending flucts

▶ Intuition: fluctuations increase binding frequency

▶ How small does ℓp have to be?

▶ Strategy: simulate fibers with #1 and #2 only, compare to
fluctuating
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Movie: ℓp/L = 10
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Movie: ℓp/L = 1
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Bundling statistics

Statistics confirm movies

▶ ℓp/L = 100: similar to rigid

▶ ℓp/L = 10: small difference from “RBD” filaments without
bending fluctuations

▶ ℓp/L = 1: speed-up due to semiflexible bending fluctuations

▶ Actin in vivo: ℓp/L ≈ 30



30/30

Conclusions

Spectral method as a way to coarse-grain blob-link simulations

▶ Resolve hydrodynamics and elasticity with continuum
interpolant

▶ Langevin equation over discrete collection of points

▶ Good accuracy with O(1) points, larger ∆t

Future challenges

▶ Incorporate nonlocal interactions between fibers
(hydrodynamic+steric)

▶ More rigorous justification of GB (continuum limit?)

▶ Apply to rheology of actin networks



31/30

Special quadrature vs. direct quadrature

Compare to direct quadrature on Chebyshev grid

Direct quadrature abysmal failure for ϵ̂ = 10−3
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Special quadrature vs. local drag

Local drag is other theory which scales with ϵ̂

Special quad better for ϵ̂ = 10−2
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Temporal convergence: local drag vs. special quad

Local drag requires time step 4–10 times smaller (ϵ̂ = 10−3)
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Coarse-graining: geometric perspective
Solve the quadratic programming problem
(

τ
XMP

)
= argmin

∥∥∥X(SB) − X(BL)
∥∥∥
2

2
=

∥∥∥∥ES→BX
(

τ
XMP

)
− X(BL)

∥∥∥∥
2

2

τT
{p}τ {p} = 1, p = 1, . . . ,N

where ES→B samples X(s) at the blob-link locations.


