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Zusammenfassung

In dieser Dissertation werden statistische und graphentheoretische Methoden fiir die
Analyse von fMRT-Daten (fMRT: funktionelle Magnetresonanztomographie) untersucht.
Dies beinhaltet sowohl die Vorverarbeitung der Daten als auch die Extrahierung von
Aktivitatskomponenten, sowie die Untersuchung von funktioneller Konnektivitdat und
analytische Ableitungen.

Der Hauptaugenmerk liegt dabei auf funktioneller Konnektivitéat, fiir deren Analyse
wir ein graphentheoretisches Verfahren entwickelt haben, das auf Korrelationsmatrizen
basiert. Das Verfahren ist vollstandig datengetrieben und bendtigt keine vorab definierten
Areale (ROI: regions of interest). Dariiber hinaus bezieht es sowohl gleichzeitige als auch
zeitverschobene Korrelationen mit ein, und identifiziert so zeitliche Beziehungen zwischen
funktionellen Einheiten. Der Ansatz ist nicht auf fMRT-Daten beschrankt, sondern kann
auch fiir Daten von anderen bildgebenden Modalitaten, z.B. der Elektroenzephalographie
(EEG) und der Magnetenzephalographie (MEG), verwendet werden. Es wird gezeigt, daf
es dieses Verfahren erlaubt, interessante Netzwerkstrukturen von funktionellen Einheiten
zu extrahieren, die eine Grundlage fiir die grofiskalige Modellierung von Hirnfunktionen
bilden konnten.

Der graphentheoretische Ansatz basiert auf lokalen Eigenschaften der Daten. Im
Gegensatz dazu stehen die multivariaten datengetriebenen Methoden, wie die Hauptkom-
ponentenanalyse (PCA) oder die Analyse der statistisch unabhéngigen Komponenten
(ICA), die globale Eigenschaften der Daten extrahieren. Diese werden am Anfang dieser
Dissertation ebenfalls beschrieben. Die multivariaten Methoden werden analysiert im
Hinblick auf ihre Kapazitit, identifizierbare Gehirnaktivitdt von Rauschen zu trennen
und werden verglichen mit haufig verwendeten stimulus-getriebenen Verfahren. Dartiber
hinaus wird die Analyse der Bildvektoren verglichen mit der Analyse der Zeitverlaufe
und im Fall der Hauptkomponentenanalyse werden analytische Bedingungen fiir die
Gleichheit der beiden Aspekte abgeleitet. Ferner wird die intrinsische Dimension der
Daten mit Hilfe der Theorie der Zufallsmatrizen (RMT) abgeschétzt.

Weitere Beitriage in dieser Dissertation sind ein halbautomatischer Algorithmus, der den
Bereich des Gehirns aus MRT-Bildern extrahiert, sowie ein Ansatz, um Kopfbewegungen
und Pulsationen des Gehirns zu quantifizieren, und eine analytische Ableitung der Stich-
probenkorrelation einer endlichen, statistisch unabhéngigen, identisch gauflverteilten
Stichprobe mit einem festen Referenzvektor unter Benutzung von hochdimensionalen
Kugelkoordinaten.
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Die Dissertation ist folgendermaflen gegliedert:

Kapitel 1 gibt einen kurzen Uberblick iiber die physikalischen Prinzipien und Techniken,
die die Grundlage der Magnetresonanztomographie (MRI) im allgemeinen und der
funktionellen Magnetresonanztomographie (fMRI) im speziellen bilden, und gibt eine
kurze Einfithrung in den BOLD-Effekt (BOLD: blood oxygen level dependent).

Kapitel 2 beginnt mit einer Diskussion der statistischen Eigenschaften der Daten. In
Abschnitt 2.2 werden Methoden zur Vorverarbeitung wie die Extraktion des Gehirn-
bereichs aus den Bildern und Ansatze zur Identifizierung von Kopfbewegungen und
Gehirnpulsationen abgeleitet. Schliesslich beschreibt Abschnitt 2.3 die Experimente, in
denen die Daten, die in dieser Dissertation analysiert werden, gewonnen wurden.

Kapitel 3 fithrt haufig verwendete stimulus-getriebene Verfahren ein wie Differenzen-
bilder in Abschnitt 3.1 und stimulus-getriebene Korrelationsanalyse in Abschnitt 3.2.
In letzterem Abschnitt wird auflerdem die analytische Form der Verteilungsdichte der
Stichprobenkorrelation einer endlichen, statistisch unabhéngigen, identisch gaufiverteilten
Stichprobe mit einem festen Stimulusvektor angegeben. Diese wird im Anhang Ap-
pendix A mit Hilfe von hochdimensionalen Kugelkoordinaten abgeleitet. Das Ergebnis
wird in Abschnitt 3.4 zur Schwellwertbestimmung benutzt, nach der Einfiithrung des
allgemeinen linearen Modells (GLM) in Abschnitt 3.3, das dem weit verbreiteten Ansatz
des ’statistical parametric mapping’ (SPM) zugrunde liegt.

Kapitel 4 diskutiert die Hauptkomponentenanalyse (PCA). Zusétzlich zu den Ergebnissen
der Anwendung der Hauptkomponentenanalyse auf fMRT-Daten wird in Abschnitt 4.1
ein Vergleich der zeitlichen und ortlichen Hauptkomponentenanalyse vorgestellt, der
auf der Visualisierung des Datenraums und analytischen Bedingungen fiir Gleichheit
beruht. Letztere werden im Anhang Appendix B abgeleitet. In Abschnitt 4.2 stellen wir
ferner eine Methode zur Dimensionsreduzierung vor, der die Theorie der Zufallsmatrizen
(RMT) zugrunde liegt.

Kapitel 5 fithrt die Analyse von statistisch unabhéngigen Komponenten (ICA) ein, indem
ein kurzer Uberblick tiber die Grundlagen dieses Verfahrens gegeben wird. Ferner werden
die Ergebnisse von ICA mit denen von PCA verglichen, sowohl im Hinblick auf zeitliche
und ortliche Eigenschaften als auch was die Dimensionalitat betrifft.

Kapitel 6 entwickelt ein graphentheoretisches Verfahren fiir die Untersuchung von funk-
tioneller Konnektivitat. In dieser Dissertation stellen wir das Verfahren hauptsachlich
unter Benutzung von Korrelationsmatrizen vor, es ist aber nicht auf letztere beschrankt.
Abschnitt 6.1 diskutiert funktionelle Konnektivitdt und bisher verwendete Ansatze.
In Abschnitt 6.2 wird die Beziehung zwischen Graphen und Korrelationsmatrizen
hergestellt, und ein datengetriebener graphentheoretischer Ansatz zur Reduzierung der
Korrelationsmatrix entwickelt. Verschiedene Eigenschaften von Untergraphen werden
in Abschnitt 6.3 analysiert und ihre Eignung als funktionelle Einheiten wird diskutiert.
In Abschnitt 6.4 wird die vorhergehende Methode auf zeitverschobene funktionelle
Konnektivitat verallgemeinert, indem zeitverschobene Korrelationen und das Konzept
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von Hypergraphen eingefithrt werden. Schliesslich werden in Abschnitt 6.5 andere Mafle
als die Korrelation fiir die funktionelle Konnektivitat diskutiert und Ergebnisse, die auf
der Benutzung dieser Mafle beruhen, vorgestellt.

Kapitel 7 faBt die Verfahren und Ergebnisse, die in dieser Dissertation entwickelt und
vorgestellt wurden, zusammen und gibt einen Ausblick auf mégliche Weiterentwicklungen.



VI




Abstract

In this thesis the perspectives of statistical and graph-theoretical methods for the analysis
of fMRI data are investigated. This involves preprocessing, extraction of components,
functional connectivity and analytical derivations.

The main emphasis is on functional connectivity for which we develop a graph theoretical
framework based on correlation matrices. The framework is completely data driven and
does not rely on previously defined regions of interest. Furthermore, it takes into account
both undelayed and delayed correlations, thereby identifying temporal relationships
between functional units. The approach is not restricted to fMRI but can be used also
in other imaging modalities, including EEG and MEG. It is shown that by using this
approach interesting network structures of functional units can be extracted, which could
provide a basis for the large scale modeling of brain function.

The graph theoretical approach is based on local properties of the data, in contrast to
global multivariate data driven methods such as principal and independent component
analysis, which are described earlier in this thesis. These methods are analyzed with
respect to their ability to separate identifiable brain activity from noise and compared
with commonly used stimulus-driven methods. Furthermore, the analysis based on image
vectors is compared with the analysis based on time course vectors, and in the case of
PCA analytical conditions for equality of the two aspects are derived. In addition, the
intrinsic dimension of the data is estimated by using random matrix theory.

Other contributions include a semi-automatized algorithm to extract the brain area
from MR images, an approach to quantify head movements and brain pulsations, and
an analytical derivation of the probability density of the sample correlation of a finite
Gaussian independent identically distributed (i. i. d.) sample with a fixed reference using
high dimensional spherical coordinates.

The thesis is organized as follows:

Chapter 1 gives a short overview of the physical principles and techniques underlying
magnetic resonance imaging in general and functional MRI in particular, and briefly
introduces the BOLD effect.

Chapter 2 begins with a discussion of the statistical properties of the data. In section 2.2
preprocessing methods are derived such as the extraction of the brain area from images
and approaches to identify head movements and brain pulsations. Finally section 2.3



VIII

describes the experiments from which the data in this thesis were taken.

Chapter 3 presents common stimulus driven methods, such as difference maps in sec-
tion 3.1 and stimulus driven correlation analysis in section 3.2. Also in this section the
analytical form for the probability density of the sample correlation of a finite i. i. d.
Gaussian distributed sample with a fixed stimulus is presented. This is derived in Ap-
pendix A using high dimensional spherical coordinates. The result is used in section 3.4
for thresholding, after the presentation of the general linear model in section 3.3, which
underlies the popular approach of statistical parametric mapping (SPM).

Chapter 4 discusses principal component analysis (PCA). In addition to showing results
of applying PCA to fMRI data in section 4.1, a comparison of spatial and temporal
PCA is presented which is based on the visualization of the data space and on analytical
conditions for equality. These are derived in Appendix B. In section 4.2 we present a
method for dimensionality reduction using random matrix theory.

Chapter 5 introduces independent component analysis (ICA) giving a brief overview
of the main approaches in the field and validates the results from ICA against those
from PCA, including a comparison of spatial and temporal features as well as aspects of
dimensionality.

Chapter 6 establishes a graph theoretical framework for functional connectivity based
on correlation matrices. Section 6.1 discusses functional connectivity and approaches
commonly used so far. In section 6.2 the relation between graphs and correlation matrices
is established, and a data driven graph theoretical method to reduce the size of the
correlation matrix presented. Various properties of subgraphs are analyzed in section 6.3
and their suitability as functional units is discussed. In section 6.4 the previous method
is extended to delayed functional connectivity by including delayed correlations and
introducing the concept of hypergraphs. Finally in section 6.5 the results of using other
measures than correlation for functional connectivity is discussed.

Chapter 7 sums up the approaches and results presented in this thesis and discusses
further developments.



Notational conventions

Notational convention: Unless otherwise stated matrices are indicated by upper case bold
letters (A, B, C), vectors by lower case bold letters (a, b, c), and scalars by lower case
italic letters (a, b, ¢) except for one-dimensional random variables which are indicated by
upper case italic letters (A, B, C'). No notational distinction is made between usual and
random vectors.

Notions of Probability: In the notion of probability distributions or probability densities
subscripts are omitted. It is understood from the context that p(x) is the probability den-
sity or distribution of the random variable X and the probability density or distribution
of the random variable Y denoted by p(y) may be a different function. The same applies
for the notion of joint and conditional probability distributions or densities.

m X k matrix A having the elements a;; where i =
1,....omand j=1,... )k

(m—1) x (k—1) matrix resulting from an m x k matrix
A by discarding the ith row and jth column of A

m X (k —1) matrix resulting from an m x k matrix A
by discarding the jth column of A

n X 2 matrix with the n-dimensional vectors a and b
as columns

the vectors a and b are collinear (not necessarily
pointing to the same direction)

m X k diagonal matrix having the diagonal elements
dy,. .., dg.

k x k identity matrix

m X m diagonal matrix where the upper left k x k
submatrix is the identity matrix and the m — k lower
diagonal elements are zero (m > k).
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V= (UZ)k

1y

[A,B] = AB — BA
p(x)

EEG
MEG
EVD
MRI
fcMRI
ICA
PCA
ROI
SVD
a. k. a.
iff

i 1. d.
l. h. s.
m. m.
r. h. s.
W. T. g.
w. r. t.

k x 1 column vector with the elements v; where i =
1,....k

constant k-dimensional vector 1, = (1,...,1)7
——
k

1 ifi=y

0 ifi#y

commutator of the matrices A and B

probability distribution of the discrete random vari-
able X or probability density, in case that X is a con-
tinuous random variable

electroencephalography

magnetoencephalography

eigenvalue decomposition

functional magnetic resonance imaging

functional connectivity magnetic resonance imaging
independent component analysis

principal component analysis

region of interest

singular value decomposition

also known as

if and only if

independent identically distributed

left hand side

mutatis mutandum

right hand side

without restricting generality

with respect to

Kronecker delta 4;; =
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Chapter 1

Principles of {MRI

Functional magnetic resonance imaging (fMRI) in neuroscience refers to imaging of brain
activity using MRI. In this chapter we give a short overview about the physical principles
and techniques underlying magnetic resonance imaging (MRI) in general and functional
MRI in particular. As sources were used mainly [10, 16, 58, 99].

Historical remarks

MRI is based on nuclear magnetic resonance (NMR), the word 'nuclear’ omitted because
it had negative connotations in the late 1970’s, at a time MRI technology was emerging
as a viable imaging technique. NMR refers to the phenomenon that when certain nuclei
are placed in a magnetic field they absorb energy in the radiofrequency range of the
electromagnetic spectrum, and re-emit this energy when the nuclei transfer to their
original state. NMR was first observed in the 1930’s by Isidor Rabi [62] in molecular and
atomic beam experiments. 1946 Felix Bloch [39] and Edward Purcell [38] independently
observed it in bulk material and Bloch gave a theoretical description [l4]. In 1971
Raymond Damadian [28] used NMR to detect tumor tissue. A backprojecting technique
for retrieving spatial information in an NMR experiment was developed in 1973 by
Paul Lauterbur [71] who also proposed frequency encoding. In 1975 Richard Ernst [1]
performed magnetic resonance imaging using phase and frequency encoding along with
the Fourier transform. This is the basis of current MRI techniques. A few years later, in
1977, Raymond Damadian demonstrated MRI of the whole body and Peter Mansfield [%1]
developed the echo-planar imaging (EPI) technique now frequently used in fMRI. FMRI
emerged at the beginning of the 1990’s [70, 97, 9, 44, 13] after the discovery that the level
of cerebral blood oxygenation can influence the signal intensity of MR images [90, ].

NMR

NMR is a resonance phenomenon of nuclei with a nonzero spin in a magnetic field. Nuclei
with an odd number of protons or neutrons have an angular momentum or spin Al that
is associated with a magnetic moment g which can be taken as parallel to I, i. e.

p=n~yhl (1.1)
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where the scalar ~ is called the gyromagnetic ratio and h is the Planck constant. Without
an outer magnetic field all spin orientations have the same energy. The application of a
magnetic field By = Bpe, which is assumed w. r. g. to be in z-direction leads to Zeeman
splitting of the otherwise degenerated energy levels. It produces an interaction energy of
the nucleus which can be described by the Hamiltonian

H=—pu-By=—h By, (1.2)
where I, is the spin component in z-direction. The eigenvalues of the Hamiltonian are
E = —yh Bym (1.3)

with m € {—I,—1 +1,...,1 — 1,1} being the eigenvalues of I, and I the eigenvalue of
I2. Using spectral absorption it is possible to detect the presence of such a set of energy
levels. The coupling most commonly used to induce an interaction that causes transitions
between the energy levels and hence magnetic resonances is an alternating magnetic field
B, applied perpendicular to the static field By. Let us take w. r. g. By = Bje, to be in
z-direction. The perturbing term in the Hamiltonian is then

Sﬁpert — _’)/hBl -[3: cos wt (14)

where I, is the spin component in z-direction. The allowed transitions can be derived to
be those between levels adjacent in energy, giving as resonance condition for w

hw = AE = vhB, (1.5)

The w satisfying the resonance condition is called the Larmor frequency. For protons the
energy difference AE at a magnetic field strength of 2.0 T is 0.35 peV which corresponds
to a resonance frequency of 85.2 MHz, which lies in the radio frequency range. The HF
excitation is therefore often called radio frequency (RF) excitation. Let us now consider
for simplicity the case of a proton where according to Equation 1.3 with I = % and hence
m = :t% there are two energy levels in the presence of a static magnetic field By. The
proton is the nucleus of 'H which has the highest natural abundance (99.985% [105])
and 0.63 biological abundance (calculated from [10%] by [58] )) and is therefore the one
mostly used in MRI.

B1:OZ

In thermal equilibrium with only the static magnetic field By present the energy levels
are populated according to Boltzmann distribution p(E) as

p(F) x eir (1.6)

where £ is the Boltzmann constant and 7' the temperature. For two energy levels this
leads to a population ratio at equilibrium of

— X e T (1.7)



where N, and N_ are the numbers of nuclei occupying the upper and lower energy level,
respectively. This leads to a net magnetization in z-direction, the direction of By. The
macroscopic magnetization M satisfies the equation

dM

which is true also for the expectation values of the spin magnetic moments.

B1 7é 0:

The alternating radio frequency (RF) field By induces transitions from the lower to the
higher energy level thereby diminishing the population difference which again leads to a
decrease in the longitudinal magnetization and the buildup of transversal magnetization
which is due to a phase coherence of the spins. Classically this can be described as tilting
the magnetization vector M such that it has a nonzero transversal component and is
hence precessing with larmor frequency around the direction of By. This is called free
precession. If there were no interaction between the spins and the surrounding lattice,
as are called the surrounding atoms, after switching off B; the precession of M would
simply continue, but because of the interaction the transversal part of M decays and
the longitudinal part relaxates to the equilibrium value M = Mye,. Without further
interaction occuring this is called the free induction decay (FID).

Relaxation:
The relaxation process of the free induction decay was phenomenologically included
to Equation 1.8 by Bloch leading to

dM, M,

o = 7 (MxBg), - T (1.9)
M, M,

= =7 (M x By), T, (1.10)
dM, My — M,

o= = 1(MxBy). + 0T1 (1.11)

where T7 and T, are the time constants of the decay of the longitudinal and transversal
magnetization, respectively. The longitudinal relaxation is due to spin-lattice interac-
tions and hence called spin-lattice relaxation. After switching off the excitation by the
RF-field B; more transitions from the upper to the lower energy level occur than vice
versa leading to an increase of the population difference and hence to an increase of the
longitudinal magnetization. The decay of the transversal magnetization is mainly due to
spin-spin interactions and hence called spin-spin relazation. It is due to the exchange of
energy within the spin ensemble which leaves the population difference of the energy levels
unaffected but leads to a dephasing of the spins and hence to a decrease in transversal
magnetization. Dephasing due to spin-lattice interactions are included in T5 as well. It is
always 75 < T7. In practical applications often the time constant 77 is encountered. This
time constant plays an important role in functional neuroimaging as will be seen below.
It includes the dephasing effect of inhomogeneities in the static magnetic field By which
leads to local differences in the resonance frequency and hence to a change in the phase
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relations of the spins which results in a signal loss. The relation between 75 and 75 is

L1, (1.12)
5 Ty Ty .

where T3, is the relaxation time from the inhomogeneous 75 effect. The relaxation
times 7T} and T, depend on factors as the motility of the spins and the lattice (temper-
ature, state of aggregation), their interaction probability (concentration), the magnetic
properties and the resonance frequency of the spins (magnetic field). T3 is determined
by macroscopic and microscopic magnetic field variations, e. g. inhomogeneities of the
static magnetic field, differences in susceptibility (particularly at tissue-air-boundaries)
or magnetic moments of other particles. Typical values for biological tissue at a magnetic
field strength of 2 T are 77 = 1000 ms and 75 = 100 ms. 75 and 73 weighted images can
be obtained using spin echo and gradient echo, respectively.

a0° 18(¢ SE
Ir_\l
1 ) A
RF [ signal .. ... "".""."""\"""":"'"”""”w"‘ﬂ?\l'.'f[}\“i." I;IL...||ll....I;:\._yr.m;_-_-w-.......
[N
= TEf2 e TE/2 1=

gradient

Figure 1.1: Illustration of the spin echo sequence (courtesy of [10], adapted). After the RF
pulse, the spins dephase due to local field inhomogeneities. Applying a 180° pulse flips the
spins in the directions which are illustrated in the third cartoon on the bottom of the figure.
This leads to a refocussing of the spins and a signal of opposite phase to that observed right
after the RF pulse. The gradients depicted are used to suppress remains of FID signals
resulting from non optimal flip angles.

Spin Echo:

The signal loss due to dephasing effects caused by magnetic field inhomogeneities can
be recovered when using a second RF excitation: an appropriate RF pulse applied at
a time TE/2 after the initial RF excitation flips the magnetization by 180° and thus
leads to refocussing after another time TE/2 (cf. Figure 1.1). The corresponding signal
ist called spin echo (SE), its amplitude depends on 75 because dephasing effects due to
spin-spin-interaction can not be compensated. TE is called the echo time. The method
of spin echo is used to obtain T, weighted images.

Gradient Echo:
T5-weighted images can be obtained by using a so called gradient echo instead of a RF-
refocussing echo. Here the refocussing of the spins is achieved by a reversal of the applied



field gradient. Since the local field inhomogeneities remain in their original direction the
gradient echo does not cancel out their effect. This results in a strong signal loss, e. g.
at tissue-air boundaries, but on the other hand provides sensitivity to local field changes
by blood oxygenation and hence can be used to visualize metabolic effects such as occur
in consequence of neural activity (see below). The gradient echo sequence is illustrated
in Figure 1.2.

data acquisition

gradient echo

HF [ signal L. LA a -

=+ echolime(TE) ————*

gradient o A e

P Pppppe

Figure 1.2: Illustration of the gradient echo sequence (courtesy of [10], adapted). After
the RF pulse, the spins dephase due to local field inhomogeneities. Reversing the direction
of the gradient field reverses the direction of precession and leads to a refocussing of the
spins.

Spatial encoding

For spatial encoding additional magnetic fields are used that point in the same direction
as the static magnetic field By the strength of which can be varied both temporally and
spatially. The spatial gradients of the additional magnetic fields, i. e. the gradients of
the magnetic field strength B, point to three orthogonal directions and can be combined
to constrain the excitation to a volume of arbitrary shape [10]. For simplicity here we
describe the spatial encoding of a plane perpendicular to the direction of By which was
defined as the z-direction. Spatial encoding is performed at different points in time and
can be divided into three steps as follows

1. RF-excitation (slice selection) — z-direction

2. before data acquisition (phase encoding)
x- and y-direction
3. during data acquisition (frequency encoding)
1: A RF-excitation which approximates the temporal profile of a sinc(t) = Sint(t) function
is used to define a sharp range of excitation frequencies. Together with a static magnetic
field having a gradient in z-direction which imposes a spatial modulation of the resonance
frequency this confines the excitation to an essentially two dimensional plane section.
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2 and 3: Frequency and phase of the transversal magnetization are used to encode the -
and y-direction by modulating the transversal magnetization by magnetic gradient fields,
the gradients of which point in  or y direction, respectively. The phase encoding gradient
is switched on after the termination of the RF-excitation and leads to a spatially varying
phase of the previously phase coherent magnetization. For frequency encoding a gradient
field is switched on during the data acquisition time which leads to a spatially dependent
change of the precession frequency. For the signal V(¢) in the receiver coil during data
acquisition we have

V(t) / M, (r,t) e @vtH92) gy (1.13)

where M (r,t) is the modulus of the transversal magnetization, and w and ¢ are the
space dependent precession frequency and phase, respectively, depending linearly on the
vector r = (z,y)”. Since the transversal magnetization outside the slice chosen by the
RF-excitation is essentially zero we have considered FEquation 1.13 as an integral over two
dimensions. Using the notation k(t) = (ky, k¢)” = (wt, )" we can write Equation 1.13
as

V(t) o M, (k. t) = / M, (r,t) & <O gy (1.14)

Thus for every point in time the signal is proportional to the spatial Fourier transform of
the modulus M (r,t) of the transversal magnetization. Since only k,, is time dependent
and k4 remains constant within one period of signal acquisition several cycles of RF-
excitation and signal acquisition using various strengths of the phase encoding gradient
are necessary to cover the two-dimensional k-space. After having sampled the k-space
the space dependent transversal magnetization M, (r,t) is retrieved by a two-dimensional
spatial Fourier transform and by this means an image created.

What was described above is essentially the principle underlying the FLASH (fast low
angle shot) sequence. Using only one RF-excitation and incrementing the phase encoding
gradient by a fixed value one arrives at the echo-planar imaging (EPI) sequence which
allows faster image acquisition at the expense of lower spatial resolution. Both sequences
are commonly used in fMRI and illustrated in Figure 1.3. The trajectories through
k-space are shown in Figure 1.4.

The total NMR signal (the reconstructed image) of a voxel is proportional to

_TR_ _TE

Mz(1—e Ti)e T (1.15)

where My is the equilibrium magnetization in z-direction (the direction of the static
magnetic field By). TR is the repetition time between the RF-excitation pulses and TE
the time between echo excitation. M is proportional to the proton density in the voxel.

BOLD

The blood oxygenation level dependent (BOLD) effect on the 7y relaxation time can
provide MR images with functional sensitivity. The BOLD effect is due to the different



FLASH sequence EPI sequence
data acquisition - data acquisition
o m T
f
| f I |
HF / signal \ III|| HF [ signal ____j | Al A\
/ signal .v‘ul e _._h,\/\f\lur Ull"wd_._ / signal ___ 'UI'JL]") ............ ——A llll.lll.gll{_ Pt
shce = :\\_/ ......................................... i slice / \_/
frequency ... L [ s i fraquency -l be
phase @ phase .. \ _____ / e S e i
L AL times L AL times
TR TR

(a) (b)

Figure 1.3: Illustration of the FLASH and EPI sequences (courtesy of [10], adapted). The
sequences in brackets are repeated L times during the experiment. In (a) « denotes the
flip angle of the macroscopic magnetization M. « is usually chosen to be low to prevent
saturation of the signal for short repetition times TR [53]. The gradients used for spatial
encoding are denoted by their encoding quantities, slice, frequency, and phase, respectively.
The slice and frequency encoding gradient are reversed before data acquisition to obtain a
gradient echo.

magnetic properties of oxyhaemoglobin (HbOs) and deoxyhaemoglobin (Hb). The
former is diamagnetic whereas the latter is paramagnetic leading locally to a shorter
T relaxation time and hence to a signal loss in T3 weighted images [53]. Haemoglobin
therefore can be used as a natural intrinsic contrast agent which is a considerable
advantage over functional imaging by Positron Emission Tomography (PET), where
slightly radioactive extrinsic contrast agents are required.

The functional T3 signal depends on the balance of spatial and temporal alterations in
local concentrations of Hb and HbO, [106]. PET studies have shown that cortical activity
results in oxygenation changes due to an increase in local blood flow with relatively little
change in oxygen consumption, so that the venous blood becomes more oxygenated on
activation [12, 11]. This leads to a signal increase of T weighted images in the active
region. There is also a T3 effect of oxygenation, which could be used to distinguish
between large and small vessels [53], however the T effect is larger by a factor of 3-10 [106].

From what was stated above it is clear that fMRI does not measure neural activity directly
but rather the signal induced by the related hemodynamics and relative oxygenation.
The hemodynamic response to neural activity is nonlinear and yet not fully understood,
however recently Logothetis and co-workers [78] by simultaneous electrophysiology and
fMRI showed that the fMRI signal is more closely related to local field potentials than to
multiunit spiking activity suggesting that it reflects the input and intracortical processing
of a given area rather than its spiking output. Further a couple of models relating blood
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Figure 1.4: Trajectories through k-space for (a) FLASH and (b) EPI (courtesy of [10],
adapted). The filled vectors denote the sampling direction during data acquisition.

flow and oxygenation changes to brain activations have been proposed [18, 19, 76, 51].

The bold signal in response to brain activity using a single external stimulus reveals that
the maximum of the signal occurs at a time delay in the order of 6-8 seconds, whereas

the onset of the signal change occurs already after 1.5-2 seconds [16]. An undershoot of
the signal relative to the beginning of the stimulus occurs a few seconds after the end
of the stimulus. This is attributed to volume changes [77, 19, 15, 69]. The presence

of an initial dip in the signal which is believed to be due to blood deoxygenation right
after the onset of increased neural activity before the subsequent hyperoxygenation
is controversial [66, 47, 17]. Even very short activation elicits considerable response
as was shown in [18]. However local image intensity increases will also be dependent
on differences in haemodynamic (blood volume, flow and oxygenation) and vessel
architecture (radii, orientation, vascular openness).



Chapter 2

The data set

In this chapter in section 2.1 we discuss general statistical properties of fMRI data which
are to be taken into account in the choice and adaptation of processing algorithms.
In section 2.2 we derive preprocessing procedures that extract the brain area from fMR
images as well as approaches to cope for movement and brain pulsation effects. Finally
in section 2.3 we describe briefly the paradigms and methods of the experiments from
which the data used in this thesis were taken.

2.1 Properties of the data set

The point of view adopted in the following is a statistical one. This means that the
data X are considered as a sample drawn from a presupposed probability distribution
p (X), that is generally unknown. However, repetitions of fMRI experiments in different
sessions are comparable only to a very limited extent, and hence do not allow for an
interpretation as multiple realizations of an underlying probabilistic model. By averaging
the results over multiple subjects often a coarse localization of brain activity can be
obtained, if the images are appropriately aligned. Statistically, nonzero averages in this
context occur on the account of common properties of multiple underlying probabilistic
models. The lack of comparability is due to nonstationarities in metabolism, arousal and
attention in test subjects, as well as to readjustment of the measurement device between
the individual sessions. Because these nonstationarities are considered to be more severe
than inhomogeneities within a single trial, in this thesis the focus is on single subject
trials also allowing a more detailed analysis of the data.

A number of assumptions about properties of the probability distribution p are to be
made in order to be able to retrieve meaningful information. This essentially touches
the issues of stationarity, homogeneity, and independence of the data. In this respect
two features are particularly striking. First the data are strongly non-stationary in the
sense that a large fraction of the time courses of the individual voxels show an either
increasing or decreasing trend. Although these trends are easily removable, similar
trends may provide evidence that the areas represented by the respective voxels are
engaged in related processes (cf. chapter 6). Secondly, there is a clear difference between
the statistics of signals originating from the brain and those from extra-cranial regions.
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Marginal distributions averaging over both intra- and extra-cranial regions are generally
bimodal to such an extent that the extra-cranial voxels of the data images can be removed
reliably based on thresholding of appropriate histograms of the data (cf. section 2.2).

Homogeneity of the voxels within the brain is taken as a null-hypothesis, i.e. deviations
from homogeneity are interpreted as meaningful information which is then to be separated
into various processes presupposedly influencing the data. Thus a main assumption is
that the data are generated by a small set of partially separable processes such as respi-
ratory and cardiovascular rhythms, involuntary head movements, various brain-activity
related processes, and systematic effects of the measurement procedure. These processes
can be grouped into two classes: they either affect the BOLD signal directly or the brain
is moving relative to the measurement grid which leads to time-dependent spatial shifts
or to crosstalk among voxels. Further image distortions occur at tissue air boundaries
and on account of the Fourier reconstruction process from which the images are obtained
(cf. chapter 1). In section 2.2 approaches to eliminate movement related effects are
discussed that try to establish a unique correspondence of image voxels and positions
in the brain based on spatio-temporal continuity assumptions. Since it is reasonable
to assume that movement related processes are independent from cerebral information
processing they can be also separated using information theoretic methods such as
in chapter 5.

Formally the data are characterized by a spatio-temporally discrete set of voxels
forming a sequence of volume or slice images. Each image containing m voxels can
be considered as a vector in an m-dimensional vector space. Having measured k
images the data can be written into an m x k data matrix X the columns of which
correspond to the images and the rows of which represent the time courses of the
signal in the corresponding voxels. Figure 2.1 illustrates this concept. Emphasizing
either temporal or spatial aspects of the data one can deal with the row space IR*
or the column space IR™ of X. The intrinsic dimension of the data set is of course
independent of the representation, but the statistical properties of the sample vectors
may be different. In most cases the number of voxels highly exceed the number of images
measured, often by about one order of magnitude, therefore henceforth m > k is assumed.

Which representation of the data is to be favored depends on the questions to be answered
and on the assumptions that are made. Spatial localization of brain functions could be de-
termined by focusing on the the set of images, whereas for the identification of distributed
activity looking for time courses of interest may be more meaningful. The spatial and
temporal aspects of the data are closely interconnected since one cannot change one as-
pect without affecting the other. However, the relation of the information extracted from
the two representations is not obvious and will be discussed in some detail in Appendix B.

From a geometrical point of view the data set is simply a point cloud in an m- or
k-dimensional data space the location of the points being determined by the column or
row vectors, respectively. The shape of the data cloud is assumed to reflect features
of interest in the data, hence, we aim at determining its structure. Statistically the
data cloud can be interpreted as a realization of drawing m or k random vectors
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from an underlying probability distribution. The joint probability density of the data
as stated above is unknown and the sample size the data provides is far too small
for a reliable estimation. To illustrate this fact assume that we are given data from
k = 128 images having m = 1200 voxels, the signal x of which is in the range of
x € (0,200] binned at the integer values into n = 200 bins. To estimate the joint
probability density of the vectors in row space which are k-dimensional we have n* bins
and only mk data points to fill them, which with the values chosen gives a relation
of ’:—f ~ 107%° However assuming a maximum likelihood principle we can hope that
the realization provided by the measurement is typical in the sense that the data
has high probability to occur, i.e. it lies at the peaks of the underlying probability
density. We aim at extracting brain states that are reflected by activity patterns that
are interesting in some sense. The term activity pattern here is used for images or
time courses or more generally any spatiotemporal subset computed from the data matrix.

Statistical properties when they occur are introduced using a continuous formulation
however when computing them from the data we can compute only their discrete finite
sample counterparts. Statistical inferences on the data are based on various assumptions
about the underlying probability distributions. In the following chapters we will discuss
data analysis methods based on geometrical and on probabilistic viewpoints, respectively,
relating the two to each other where this is possible.

Since the data are subject to strong noise, which is in part independent for individual
voxels, the rank of X and thus the intrinsic dimension is generally equal to k. The
number of relevant dimensions, however, can be expected to be considerably smaller,
which is already suggestive from visual inspection of the first principal components
(cf. chapter 4), where except for about the first 20 no structure is apparent. Whether
or not this observation is justified can be tested by comparison of the statistics of
the components with components from a random matrix with independent entries,
cf. section 4.2. Other data reduction algorithms which also account for nonorthogonality
of the relevant subspaces (cf. chapter 5) or for nonlinearity of relevant submanifolds (such
as selforganizing maps, cf. [68]) or nonstationarity (temporally local selforganizing maps)
have been shown not to provide any conflicting evidence to this data reduction assumption.

More of a problem is the temporal resolution of fMRI data which is of the order of
one second. The relevant information-processing operations in the brain, however, are
expected to run on time-scales of less than 100ms. Even if the temporal resolution can be
increased in future the nature of the measured signal, i.e. the delayed BOLD-response,
amounts to a convolution with a kernel having a width of about six seconds. This
leads to a signal-to-noise ratio in temporal resolution of about one hundredth due
to covering of the fast cerebral activity by the slow metabolic processes. Therefore
operations on a neural time scale will generally not be identifiable, however, the nonlinear
nature of the hemodynamics leads to a measurable response also for very short stimuli
and for stimuli with an interstimulus time interval of less than six seconds [13]. The
variety of physiological interdependences and their influence on the signal suggest that
including models thereof probably could significantly improve the analysis of fMRI data,
particularly if applied to a concrete system (visual, motor, etc.), where appropriate
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Figure 2.1: Illustration of the data matrix X in which each column represents an image
vector and each row a voxel time course. The left hand side shows the image data measured
at k points in time. Rearranging the voxels of each image into a column vector gives the
data matrix X shown on the right hand side.

models exist. However this was beyond the scope of the thesis presented here. Yet,
in chapter 6 we will investigate the trace of repeated interactions among brain regions by
the analysis of time-delayed correlations which may be identified as effective functional
connectivity although this leaves fast interactions unrevealed.

2.2 Data preprocessing

Apart from neural activity there are various other influences on the signal, some of them
being unwanted. Head movement and brain pulsation, both influences impossible to
prohibit in the experimental setup, can cause leakage of the signal to neighboring voxels.
In this section we discuss possibilities of data preprocessing aiming at minimizing these
effects.

Brain extraction

For global data driven methods as they are discussed in this thesis each image is consid-
ered as a vector in a high dimensional vector space. Using a rectangular image including
voxels outside the brain can influence the results of the data driven methods. Further the
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amount of data may be prohibitive for some application as e. g. computing the temporal
correlation matrix, if the brain is not extracted. Here we present a semi-automatized
brain extraction method that relies on the temporal statistics of the voxel values.

The idea is that the histogram of the signal of extra-cranial voxels is highly peaked around
zero (or another baseline value), since it contains only noise whereas the signal of a voxel
in the brain has a broader distribution with a higher mean value. We chose the voxel
in the upper left edge of the rectangular (or square) data image as a reference since it
is extra-cranial in all data sets we analyzed. The histogram of its values accross time
is computed and its standard deviation ¢ used as a reference. A user defined number p
assigns to the brain all voxels for which the mean of their histograms exceeds po. Figure 2.2
illustrates the procedure for data from experiment 2. It would be easy to fully automatize
the procedure by fitting a unimodal density to the histogram and varying p such that the
fit becomes optimal.

Rigid body transformations

Head movements can be considered as rigid body transformations thereby neglecting
possible brain pulsations and physiological signal changes. By defining one image as a
reference and shifting the subsequent images by an amount that minimizes a distance
measure between the images the effect of head movements can be computationally
minimized. One could even expect to increase spatial resolution by this means. If the
head is moved by an amount that is smaller than the size of a voxel this shifts the voxel
boundaries as well. Imposing a continuity assumption the signal is taken to be essentially
constant from one time step to the next. A change in the signal then must be due to a
spill-over from neighbouring voxels. Interpolation using the continuity assumption can
be done to create an image where the voxels are resized to the finer grid provided by the
combination of the shifted and unshifted voxel boundaries.

When only one slice is measured, head movements most probable cause signal from areas
adjacent to the slice to spill into the image such that essentially the slice is shifted or
rotated from its original location in an uncontrolled way. In principle one could detect
the direction of the head movement by modeling it as a shift plus a rotation and fitting the
corresponding parameters under the assumption that the movement changes the spatial
structure of the image continuously. However the signal from the original slice cannot be
retrieved if the head movement does not occur in a direction parallel to the slice. Under
the assumption that they occur in-slice Figure 2.3 shows the directions of rigid body head
movements occuring on the spatial scale of fractions of the voxel size.

Pulsations

Pulsations in the vicinity of large vessels and at a global scale represent a further source
of spill-over of signals to neighbouring voxels. To detect the centers of pulsations the
direction of spill-overs can be stored in a vector field the locations of nonzero divergence
of which give the centers of pulsations. The direction of spill-over from one image to the
next is thereby computed by determining the voxel in a neighborhood of a given voxel
the signal of which has the least difference to that of the given voxel. Various weighting
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Figure 2.2: The method of brain extraction. Mean images and relative frequencies of the
voxel values before and after brain extraction.

techniques can be employed when defining the distance measure. Figure 2.4 shows the
result of the approach for data from experiment 2.

Another possibility to cope with pulsations is the use of the Fourier transform in time.
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Figure 2.3: Direction of head movements in the units of voxel size for data from experiment
2 under the assumption that the movement is in slice. A strong prevalence for the x-
direction can be observed, which corresponds to a forward-backward movement. Note that
the amplitude of the movement is very small being of about a fraction of 0.25 of the size of
one voxel.

Since it is reasonable to assume that the pulsations are related to heart beat and breathing
one can extract the voxels having the most significant signal contributions at the respective
frequencies. However this approach requires a temporal resolution which makes it possible
to resolve the heart rate in frequency space. Assuming a heart rate of about 1 Hz the
corresponding temporal resolution must be 0.5 s.

Spatial and temporal filtering and interpolation

In fMRI often prior to analysis the data are spatially or temporally filtered, sometimes
even both. This increases the robustness of the results, however, it further deteriorates
the spatial or temporal resolution. Temporally the data are given on a discrete time axis
with time bins of size At. The acquisition time of a single slice is given by %, where n
is the number of slices in the volume. Usually when acquiring volume images the odd
slices are measured first, followed by the even slice numbers (or vice versa) to minimize

interferences of spatially adjacent slices during the measurement.

A promising approach seems to us to spatio-temporally interpolate the data, particularly
in the case of volume images where the spatio-temporal resolution usually is low, but
the time in which one slice is acquired is high. Furthermore by temporal interpolation
the true temporal relation between the slices is preserved. The interpolation becomes
spatiotemporal by using information of the neighbouring slices which are rather far apart
in temporal respect, but spatially close together.

All preprocessing methods however implicitly rely on the suitability of the underlying
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Figure 2.4: Brain pulsations for data from experiment 2 overlaid the mean image of the
data. The red arrows indicate the mean vector field of voxel movements and the blue
boundaries indicate the standard deviation of the length and the angles of the arrows. The
values of the mean vector field are so small that they preclude a reliable computation of
the divergence. This could be done, however, using a sliding window and thus computing
the mean vector field from a smaller number of images. Further, including to the model an
elastic interaction term penalizing shearing strains between neighbouring voxels of the same
image would probably also ameliorate the results. From visual inspection it is apparent that
the centers of divergence are located along the gyri and sulci of the brain.
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model. The latter therefore should be carefully analyzed and the effects of the prepro-
cessing strategies studied before they can be used successfully, i. e. in a controlled rather
than ad hoc manner. Particularly useful would be a physical model of fMRI signal and an
improved image reconstruction scheme. However investigating the effects of preprocessing
was beyond the scope of this thesis and hence no preprocessing was used apart from brain
extraction described above.

2.3 The experiments

To illustrate the results of this thesis the data of two experiments were used, which
were performed at the Max-Planck-Institute of Biophysical Chemistry by the Biomedical
Nuclear Magnetic Resonance group headed by Prof. Frahm.

Both experiments involve a fingertapping paradigm. The subject was visually instructed
when to start and stop the fingertapping. In experiment 1 data from a 3-dimensional
volume was measured whereas in experiment 2 data from one slice was acquired. Experi-
ment 2 additionally contains data from a “resting brain” period as well as from imaginary
fingertapping.

Experiment 1

In experiment 1 volume images consisting of 16 oblique slices containing the motor cortex
were acquired in 160 time steps with a temporal resolution of 2 s. The measurement period
hence took 320 s. The first 5 images were discarded to ensure that the measurement setup
has reached a steady state. After a 80 s rest the subject was asked to tap fingers of both
hands for 20 s followed by a 20 s rest and repeat this cycle six times. The activity related
to finger tapping occured mainly in slice 3 the data of which was frequently considered
separately as well and for which the results are shown in this thesis. Each slice contained
voxels from a 128 x 112 matrix. The number of voxels in one volume image was reduced
by almost 85% using the brain extraction procedure from section 2.2.

Experiment 2

Experiment 2 consisted of three periods in each of which 560 slice images were acquired
with a temporal resolution of 0.5 s. The first 20 images corresponding to the first 10 s
were discarded for steady state reasons. In the first period the subject was told to stay
awake and refrain from moving. This was hence a so-called “resting brain” measurement
where no predefined external stimulus was given. In the second period after a 40 s rest
the subject was asked to tap fingers of both hands for 20 s and then rest again for 20 s,
repeating this cycle six times. The instructions were given visually on a computer screen
and projected into the eye field of the subject. The third part of the experiment was
identical to the second except that the subject was not supposed to actually perform the
finger tapping but only to imagine it according to the same time course as the actual
finger tapping. The comparatively high frequency of 2 Hz with which the images were
taken allows a frequency resolution of 1 Hz when Fourier transforming the time courses.
The heart rate which occurs approximately at this frequency could hence be resolved.
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However the finger tapping frequency of about 3 Hz was beyond this limit, but the finger
tapping cycle frequency of v = 1/40 s = 0.025 Hz was resolved. Each image contained
128 x 112 voxels and was reduced by an amount of approximately 80% using the brain
extraction procedure described above.



Chapter 3

Stimulus driven data analysis

In most fMRI experiments an externally controlled stimulus is used to evoke identifyable
brain activity. Since the stimulus related signal is hardly visible from the raw images
data analysis methods are used to extract it. In this chapter we discuss common stimulus
driven analysis methods such as difference maps in section 3.1 and stimulus driven
correlation analysis in section 3.2, where we also present the analytical form for the
probability density of the sample correlation of a finite i. i. d. Gaussian distributed sample
with a fixed stimulus which we derive in Appendix A. This result is used in section 3.4
dealing with thresholding, after in section 3.3 the general linear model which underlies
the popular approach of statistical parametric mapping (SPM) [96] was presented.

We distinguish between directly stimulus related data analysis methods and data driven
analysis methods. They differ in the point in time stimulus or other external information
is used when applying the method. Stimulus driven methods relate the stimulus directly
to the data as e. g. in correlation analysis, whereas data driven analysis methods are
independent of a priori stimulus information but use this information a posteriori to
identify stimulus related components as e. g. in Principal and Independent Component
Analysis (cf. chapters 4 and 5)

Most of the stimuli used in fMRI are on-off type stimuli. The brain images correspond-
ing to the 'on’-state of the stimulus are also referred to as the images of the active
state whereas the term resting state is often used for images corresponding to the
stimulus ’off’-state. On-off type stimuli can be modeled by a boxcar function which
is zero when the stimulus is ’off’ and one when the stimulus is ’on’. Many stimulus
protocols are periodic which allows to enhance the statistical power by averaging over
all periods. A drawback of periodic stimulus protocols is that the brain may adapt
to the regularity of the stimulus presentation and react with a decreased response
deteriorating the results of averaging. Therefore in the recent years increasingly so called
‘event-related’ stimuli are used, which can still be modeled by a boxcar function but are
randomized in their appearance and duration (cf. Figure 3.1). In this chapter we discuss
some of the most common stimulus driven analysis methods and compare their properties.

Probably the oldest and most straightforward analysis method in fMRI is the compu-
tation of difference maps (cf. section 3.1), i. e. the mean difference between the images
where the stimulus was ’on’ and those where the stimulus was ’off’. Obviously this
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Figure 3.1: (a) Periodic on-off type stimulus protocol modeled by a discretized boxcar
function. (b) Discretized boxcar function of an event related on-off type stimulus protocol.

method can be used only for on-off type stimuli (with possibly multiple ‘on’ states), but
not for continuous stimuli.

This restriction does not hold for correlation analysis, which is discussed in section 3.2.
It models the BOLD response to the stimulus by a reference function and correlates the
data with it. In the simplest case the reference function equals the stimulus protocol
but frequently more sophisticated reference functions aiming at mimicking the hemody-
namic response are used as well. The General Linear Model introduced in section 3.3
can be considered as an extension of correlation analysis in that it uses multiple reference
functions for a parametric fit of the data to extract multiple processes of interest and
eliminate nuisance processes at the same time. Thresholding procedures are discussed
in section 3.4. They are useful for visualization purposes defining a distinction between
active and non-active voxels w. r. t. the given stimulus.

3.1 Difference maps

Difference maps have been used from the beginning of fMRI for on-off type stimuli.
They are computed by subtracting the images corresponding to the resting state from
the images related to the active state. Figure 3.2 shows difference maps for the data of
experiment 2 for various shifts of the stimulus function to account for the hemodynamic
delay.

Often, e. g. if the activation is focal, most voxels of an image do not participate at the
active state in the sense that there is no significant signal change. Hence the voxel value
distribution of an active state image often cannot be distinguished from the voxel value
distribution of a resting state image. In the sequel we derive the conditions for which
difference maps can be expected to detect active voxels.

Let us denote by M, the set of voxels participating in the active state and by M, the
set of voxels 'neutral’ to the stimulus. Correspondingly p, and p, denote the probability
densities of the signal values of the voxels in M, and M, respectively. From a statistical
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point of view the value D = A — R of one pixel in a difference map is the result of a sum
of two random variables A and —R, where A denotes the value of the signal in the active
state and R the value of the signal in the resting state. The probability density of a sum
of two independent random variables is proportional to the convolution of the probability
densities of the two summands [91], thus

Pa(D) o< pa(A) * pa(—R) (3.1)

where p,(A) and p,(R) are the probability densities of the voxels in M, during the
active state and during the resting state, respectively. Of course, relation 3.1 holds
true for the probability density p, of the signals of non participating voxels as well,
where we have p,(A) = p,(R). To detect an active voxel the probability density p,(D)
must be clearly distinguishable from p, (D), e. g. in that the difference of the means is
larger than the respective variances hence enabling a distinction between p, (D) and p, (D).

By assuming gaussian densities for p,(A) and p,(R) as well as for p,(A) and p,(R) this
statement can be easily quantified. Thus for

(A—py)? (R—pp)? (R—pp)?

Pa(A) o e i po(R) oc e i, pu(A) =pa(R) o e > (3.2)

using the relation 3.1 results in

(D—(ua+up))? (D—2up)?

pa(D) x e 103 pn(D) x e 4 (3.3)

Here for simplicity we have assumed that p,(R) and p,(A) have the same variances o>
and differ only by their means. Further the mean pg of the voxels in M, during the
resting state was assumed to be the same as the mean of the neutral voxels. Defining the
detectability of active voxels by the condition that the intersection of p,(D) and p, (D) is
less or equal than the half maximum of the curves leads to the requirement

pa — pr > /4 log?2 (6, + 0,) (3.4)

Hereby we have assumed that g4 > pg, which is a reasonable assumption in fMRI, the
corresponding condition for s < g is straightforward. The percent signal change “A—£E
for fMRI is of the order of 1 — 10% [13, 78]. For experiment 2 the voxel values are not
approximately gaussian distributed (cf. Figure 2.2(d) in chapter 2) and hence Equation 3.4
not applicable. A coarse comparison of the signal of the stimulus related voxels during the
presence of the stimulus with the signal when the stimulus is not present gives a percent
signal change of about 3%.

3.2 Correlation analysis

What we refer to as correlation analysis is modeling the BOLD response to the stimulus
as a function which is then used as a reference for correlating each voxel time course
with. In this manner correlation images can be produced similarly to the difference
maps discussed in the previous section. The voxels highly correlated with the reference



22 CHAPTER 3. STIMULUS DRIVEN DATA ANALYSIS

10s 3.0s 50s 7

0s 9.0s

o e

0 10 20 30 40
shiftin s

(b)

Figure 3.2: (a) Difference maps for various shifts of the stimulus boxcar function (cf. Fig-
ure 3.4). The image with the maximum positive value is indicated by a red frame. It occurs
at a shift of 7 s from the onset of the stimulus. The delay is an effect of the hemodynamics
(cf. chapter 1).

(b) Color coded relative frequencies of the difference values in dependence of shifts rang-
ing from zero to the wavelength of the boxcar stimulus function. The red dotted curve
indicates the maximum difference value of the respective shift, the green dotted curve the
minimum difference value, and the black dotted curve denotes the mean difference value.
An orange line with a circle is drawn at the shift where the absolute maximum difference
value occured.

function are considered as activated by the stimulus. The simplest reference function for
on-off type stimuli is a boxcar function, occasionaly shifted in time to account for the
hemodynamic delay. Attempts have also be made to model the BOLD response more
precisely and to use this as a reference function [51]. Figure 3.3 shows the result of
correlating the data of experiment 2 with a boxcar reference function using various shifts.

FMRI data are discrete with an unknown underlying probability distribution and has
finite sample size. In this case the sample correlation is used as an estimation for the
'real” correlation. The sample correlation of the ith voxel’s time course with the reference
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Figure 3.3: (a) Correlation maps for various shifts of the stimulus boxcar function (cf. Fig-
ure 3.4). The maximum correlation occurs at a shift of 5.5 s (red frame). (b) Color coded
relative frequencies of the correlation values for the different shifts. The color code as well
as the curves are the same as in Figure 3.2 (b) to enable comparison. Obviously the dis-
tribution of the correlation values is slightly broader than the distribution of the difference
values and hence the correlation maps are more structured than the difference maps. The
curve of the maximum correlation is more peaked around its maximum than the curve of
the maximum difference value indicating a higher sensitivity to the shift.
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Figure 3.4: The unshifted and shifted stimulus boxcar function used to produce the
difference maps in Figure 3.2 and the correlation maps in Figure 3.3

function can be written using vector notation as

XiTV
C; =

Tl TV (3:5)
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with x; = (241, ..., za)? — [% Zle xij] (1,..., l)T being the centered time course of the
k
ith voxel, (i € {1,...,m}), and v = (vy,...,v0)" — [# Z§:1 v;](1,...,1)" denoting the

discretized reference function. The second terms of x; and v equal the respective sample
means. Note that centering finite samples results in the sample vector being orthogonal
to (1,...,1)T. From this and from Equation 3.5 follows that the sample correlation has a
geometrical interpretation as the cosine of the angle between two vectors in [(1,...,1)7]*,
which is the subspace of R that is orthogonal to (1,...,1)T. Effects of centering are
investigated in more detail in section 4.1 in the context of principal component analysis.

The sample correlation ¢ in Equation 3.5 itself can be considered as a random variable
whose probability density is dependent on the sample size k. In section A.1 the probabil-
ity density p(c) of the sample correlation ¢ of a gaussian random vector x € R¥ having
i. i. d. elements with a deterministic vector v € R¥ in dependence of k is derived. This
is of interest for evaluating the results of correlation analysis, e. g. can it be useful in
the context of thresholding (cf. section 3.4). The probability density p(c) of the sample
correlation ¢ € [—1,1] of k i. i. d. gaussian distributed samples z; with fixed reference
values v; (i € {1,...,k}) computed according to Equation 3.5 is derived to be (cf. sec-
tion A.1, Equation A.25)

L((e+1)+0(c—1)) k=2
c)=1 2 _ 3.6
ple) {Oku—c?)k;* k>3 34)
Val(E-1) . .. . .
where C}, = p(&—i;) is a normalization factor ensuring that the integral over p(c) equals

unity. Figure 3.5 shows the probability density p(c) given by Equation 3.6 as a function
of the sample size k. Note that for values £ < 3 the density is peaked at 41, only for
k > 5 is it unimodal with decreasing width for increasing k.
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Figure 3.5: Analytical probability density p(c) of the sample correlation ¢ (cf. Equa-
tion 3.6) of an i. i. d. gaussian distributed sample with a fixed reference as a function of
the sample size k. Note that k& > 2 since for k£ = 1 no correlation is defined. For k € {2, 3},
p(c) is peaked around ¢ = +1, for k = 4, p(c) is a uniform density, and for k£ > 5, p(c) is
unimodal, becoming increasingly peaked around ¢ = 0 for growing k.
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3.3 General Linear Model

The General Linear Model (GLM) is a linear multiple regression model which can be used
to extract multiple processes of interest from the data and eliminate nuisance processes
at the same time. The prior information about the data, i. e. the processes of interest as
well as the nuisance processes, are modeled a priori and used as regression variables. An
introduction to GLM’s can be found in [2], from which here we review the basic facts.

The GLM has been widely used in fMRI [96].

For discrete finite data such as in fMRI the GLM can be written as a matrix equation

x=Gf+e¢ (3.7)
where x = (x1,...,2)7 is the data vector (e. g. the time course of a voxel in an fMR
image), G = (gij) kxp is the so called design matriz containing prior information about
the data in the form of the columns which are discretized functions of processes of interest
and nuisance processes; 3 = (By,...,/3,)" is a parameter vector and € = (ey,...,€;)7 is
a noise vector. The parameter vector (3 is estimated by the least squares (LS) principle,
i. e. by minimizing the cost function

S = |lel® (3.8)
The underlying assumptions thereby are that
1. the model is linear in the parameters. This is already ensured by Equation 3.7.

2. the noise is additive, which is implied by Equation 3.7 as well.

2

3. the noise has zero mean, is mutually uncorrelated with equal variances o, written

" E(e) =0, V(e) = 0?1, (3.9)

where F denotes the mean, V the covariance matrix and [ the k£ x k identity matrix.
This assumption is necessary for the estimators to have certain optimal properties

(cf. [2]).

4. the design matrix has full rank, so that GTG is positive definite. This is necessary
to ensure that the LS solution is unique. It further implies that for the number p of
processes, that are included in the design matrix G is p < k, which we shall assume
henceforth.

Given the model Equation 3.7 and the assumptions 1-4 the LS estimator for 3 is
f=(G'G)'GTx (3.10)
Further
E@B) = 8 (3.11)
and

V(3 = oXGTG)™ (3.12)
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thus § is an unbiased estimator with the covariance matrix V as in Equation 3.12 [2].

In fMRI the vector x in Equation 3.7 represents the time course of one voxel. Suppose we
have an fMRI experiment with an external stimulus. Then a simple example of a design
matrix for p = 3 is to set the first column of G to 1 = (1,...,1)T to allow for a constant
offset, the second column to a discretized stimulus reference function and the third column
to a discretized linear function to model the nuisance process of a linear drift which can
be considered as a nuisance process when related to the stimulus. Applying Equation 3.10
to each voxel time course results in a p X m parameter matrix

B=(G'G)'GTX" (3.13)

where X is the m x k data matrix. Each row of B reflects an image containing the coef-
ficients of the respective column in G. In principle up to k& functions can be written into
G, however the functions (columns) which can be added are constrained by assumption 4.
In our example with p = 3 the first row of B represents the mean image while the second
row indicates the amplitudes of the stimulus function for each voxel. A large amplitude
characterizes the voxels the time courses of which are reasonably well approximated by
the stimulus function and which hence can be assumed as being activated. The third
row of B, the amplitude image of the linear drift, often stems from head movements of
the subject, which is indicated by negative and positive amplitudes being contiguous in
the two-dimensional image. Figure 3.6 shows the results for applying the design matrix
described above to the data of experiment 2.

The quality of fit can be estimated by the correlation matrix K = (k J) s OF the noise
matrix E = X — GB. K should be essentially diagonal if the data is to "he explained by
the processes modeled in the design matrix G. This can be done by examining, if K is
diagonal dominant, i. e. if » . [ki;| < [kj;|. For the example given, K obviously is not
diagonal dominant, thus the three processes modeled are not enough to explain the data.
As a first step however the use of a design matrix can be useful to give a coarse grain view
on the data structure. For a more detailed view additional analysis methods particularly
those which are data driven as are presented in the following chapters are indispensable.

GLM and correlation analysis in comparison

Correlation analysis using a fixed reference function as introduced above is quite similar
to the use of a k x 2 design function G with the first column being 1y and the second being
equal to v as defined in Equation 3.5. Note that the two columns of G are orthogonal
if v is centered. Let by and by be the first and second row of B, respectively, i. e. the
mean image and the amplitude image related to the stimulus reference function. Then
comparing Equation 3.5 and Equation 3.13 under the assumption that v and x; are
centered (the latter implies that by is zero) we get

vl

¢ =
[l
where ¢; is the correlation value computed from Equation 3.5 and by; is the ith element

of by. The correlation maps are hence proportional to the parametric map where each
entry by; is weighted essentially by the norm ||x;|| of the voxel time course.

oy (3.14)
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Figure 3.6: Design matrix G and corresponding parameter maps with mean residual
temporal cross correlation using data from experiment 2.

(a) Design matrix G with p = 3. First column: constant offset, second column: stimulus
protocol shifted by 6 s to account for the hemodynamic delay, third column: linear drift.
(b) Parameter maps corresponding to the weight of the respective columns of G if the voxel
time course is modeled by a weighted sum of the columns of G in LS sense.

(c) Blue curve: Mean temporal cross correlation of the residual images. Red curve: Mean
temporal cross correlation of the original data. The curves are appropriately normalized to
prevent strong variations due to differences in the number of off-diagonal elements, from
which the mean is taken. The peak in the middle has height 1 and is cut at 0.1 to enable
better visibility of the curves. The side peaks arise because by considering each image
as a vector, some voxels contiguous in the two-dimensional image are not contiguous in
the image vector. Obviously the two curves are almost identical. Although the mean
temporal correlation is low, the residual cross correlation matrix is not diagonal dominant
(the absolute non-diagonal values sum up to about 100 whereas the diagonal values are 1)
indicating that the three columns of G did not capture all essential processes in the data.
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3.4 Thresholding

Thresholding procedures are needed if the voxels are to be partitioned into an activated
and a non-activated set. An overview over existing thresholding procedures can be found

in [93]. In [13] correlation values are thresholded by using a symmetrized distribution
of correlation values as a reference. For GLM common statistical tests, such as t-test,
F-test and x*-test, have been used [J6] along with more sophisticated approaches based

on characteristics of random fields [112, 113].

Here we used a thresholding procedure for correlation analysis based on the analytical
derivation of the probability density p(c) in Equation 3.6. We compare the histogram of
the correlation values in a correlation map with the theoretical probability density p(c) of
the correlation values of an i. i. d. gaussian distributed sample of the same size with a fixed
reference function. The histogram surface of sample correlations in correlation maps for
varying sample size is shown in Figure 3.7 along with the surface of the difference to the
analytic probability density p(c). As expected the correlation histograms of the data are
broader than the density p(c) the difference being largest at positive correlation values.
At the maximum sample size a fraction of about 18% of the positive and about 3% of
the negative correlation values in the correlation map made up for the positive difference
to the analytic density. However using these values for thresholding leads to spurious
activation assignment. Therefore we used a heuristic value of 5% of the fractions for
thresholding the correlation map in Figure 3.8(a) leading to the map in Figure 3.8(b).
The occurence of spurious activations when using the whole fraction of voxels accounting
for the positive difference can be due essentially to two reasons, first, the distribution of
voxel values from which the sample correlation was computed, is not gaussian and secondly
and more important, the samples are not independent, i. e. the voxel value at a given time
depends on the voxel values at previous points in time. Deriving the probability density
p(c) of sample correlations for non-independent samples, e. g. using a Markov assumption
of different order, hence should be useful in this context.
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Figure 3.7: Histogram and difference surfaces. (a) Histogram surface of correlation values
as a function of sample size for data from experiment 2 with a reference function shifted by
5.5 s. The minimum sample size was 12 since for smaller samples the remaining reference
function was constant. (b) Difference surface of the histogram in (a) and the appropriately
normalized function p(c) from Figure 3.5. The difference surface has positive parts at higher
absolute correlations because the histogram of correlation values of the data was broader
than the probability density p(c). The negative part in the center is due to normalization
resulting in the volumes enclosed by the positive and the negative fractions of the difference
surface and the zero plane being equal.

Figure 3.8: Unthresholded and thresholded correlation map. (a) Correlation map at
shift 5.5 s taken from Figure 3.3. (b) Mean image with activated voxels obtained by
thresholding the correlation map in (a). Red voxels: suprathreshold positive correlation
with the reference function. Blue voxels: suprathreshold negative correlation with the
reference function. See text for the details of thresholding.
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Chapter 4

Principal component analysis

Principal Component Analysis (PCA) is an orthogonal basis transform to the directions
of maximal variance of multivariate data. In this chapter in addition to showing
results of applying PCA to fMRI data we present a comparison of spatial and temporal
PCA, [31], which is based on the visualization of the data space and on analytical
conditions for equality, which are derived in Appendix B. Further, we present a method
for dimensionality reduction using random matrix theory.

Geometrically PCA is equivalent to fitting a high dimensional ellipsoid to the data. Its
half axes then correspond to the directions of maximal variance. Figure 4.1 shows an
illustration of the concept of PCA. As one can think of a data set as realization of a
multivariate probability density the geometrical and statistical point of view in this case
are equivalent. In terms of statistics PCA is a second order procedure. PCA is global in
that it determines the structure of the whole data. Where this gives already interesting
insight [30], PCA could also serve as a basis to extract local features by applying PCA
hierarchically thresholding the extracted features and repeat PCA on the so reduced
data set or in a nonlinear fashion as e. g. in [52].

PCA is performed by the eigendecomposition of the covariance matrix C of the
data. The eigenvectors of C are called principal vectors (PV) or principal azes and
provide a basis with respect to which the data is uncorrelated. Correspondingly the
data projected onto the eigenvectors are called principal components (PC). The eigen-

values of C are the variances of the data distribution in the direction of the principal axes.

We now shortly review some basic covariance related definitions needed in this chapter.
For continuous random variables X and Y their covariance is defined as

C(X,Y) = /p(X, V) (X —EX)) (Y —-EY))dX dYy (4.1)
where p(X,Y’) is the joint probability density of X and Y and
E(Z) = /p(Z) Z dZ (4.2)

is the expectation value of Z, (Z € {X,Y}), with the marginal probability density p(Z)
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Probability dersity Pz, y)

Figure 4.1: Illustration of the concept of PCA in two and three dimensions. PCA is an
orthogonal data transformation for which the new basis vectors correspond to the (orthog-
onal) directions of highest variance.

(a) Surface: Bivariate probability density P(x,y). Black dots: Realization of P(z,y) drawn
into the same axes to illustrate the relation with P(z,y). Blue arrows: Arbitrary original
coordinate system. Red arrows: Orthogonal directions of maximal variance providing a
new coordinate system. The different lengths of the vectors correspond to the different
variances in the directions they are representing.

(b) Realization (black dots) of a 3-dimensional multivariate density and the ellipse fitted to
the data by PCA. Blue arrows: Axes of the original coordinate system. Red arrows: Half
axes of the fitted ellipse.

of Z. The variance of a random variable Z is defined as
V(2) = [02) (2~ B@) iz (43)

and can be interpreted as the covariance of the random variable with itself, hence V(Z) =
C(Z,7). The correlation between two random variables X and Y is defined by

C(X.Y)

V(X) V(Y)
For discrete random variables the integrals are replaced by discrete sums and the
probability densities by probability distributions. Note that R, C', V and E are not

functions of X and Y in the usual sense as is suggested by the above notation, rather,
due to the definition of random variables (cf. [91]), they are functionals.

R(X,Y) = (4.4)

If we have random vectors rather than one-dimensional random variables the covariance
structure is expressed in the covariance matriz C which contains the covariance of each

pairs of elements of the random vector x = (X1, ..., X,,)? thus
C = (C(X,, X,) (4.5)

Obviously C is symmetric and its diagonal equals the variance of the random vector x
on the account of which C is sometimes termed the variance-covariance matrix.

mxXm
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PCA can be also considered in the context of neural networks [05], where it can be
used to adaptively decorrelate the data. Here we concentrate on batch PCA which is
performed by an eigenvalue decomposition of C. Since C is symmetric its eigenvectors
are orthogonal. The eigenvalues usually are arranged in descending order, thereby
imposing an order on the principal components and principal axes. Commonly the large
eigenvalues are interpreted as due to data features of interest while the small eigenvalues
are assigned to noise. If this interpretation holds true PCA can be used to improve
the signal to noise ratio and to reduce the dimension of the data by projecting it onto
the most relevant PV’s spanning the so called signal space. The data space is hence
considered to be the direct sum of the signal space and the noise space the latter of
which is spanned by the remaining PV’s. “In-plane-noise”, i. e. noise within the signal
space, however, cannot be removed by PCA. The problem of determining the dimension
of the signal space is discussed in section 4.2.

As for real data sets the underlying probability density usually is not known, PCA in
these cases is performed on the sample covariance matrix computed from the data matrix
X. Each column of X is thereby considered as a realization of a random vector. This
is for temporal PCA where is assumed that the processes of interest are characterized
by mutually uncorrelated time courses. The other possibility is spatial PCA where the
processes of interest are characterized by mutually uncorrelated activity patterns, i. e.
images. In this section we consider only temporal PCA, a comparison of temporal and
spatial PCA being presented in section 4.1.

The temporal sample covariance matrix of the data writes

1
Cz = %zzT (4.6)
where Z is the m x k temporally centered data matrix having the elements z;; = x;; —
% Zle x4. The result of an EVD on Cz is equivalent to those obtained by performing an
SVD on Z. However, the SVD also provides the activity patterns corresponding to the
uncorrelated time courses and hence in this thesis is preferred. The SVD of Z reads [97]

Z =UDV” (4.7)

where U and V are m x m and k X k orthogonal matrices, respectively, and D is a
m X k rectangular diagonal matrix the diagonal elements of which are called the singular
values. Note that apart from the ambiguity regarding the order of the columns of U and
V, which m. m. occurs in EVD as well there is an additional ambiguity in SVD regarding
U and D, in that chosing U as a rectangular m x k matrix with orthogonal columns and
D as a k£ x k square diagonal matrix leads to the same result in Equation 4.7. However,
throughout this thesis we take U to be square and orthogonal and D to be rectangular.
The last m — k columns of U then form an orthogonal basis of the nullspace and are not
unique, if the nullspace has more than one dimension, i. e. if the multiplicity of zeros in
the diagonal of DD exceeds one. Note that for symmetric (and hence square) matrices
SVD is equivalent to EVD. For non-symmetric but diagonalizable matrices, however, the
relation between eigenvalues and singluar values is not clear, apart from the fact that
the number of nonzero eigenvalues equals the number of nonzero singular values, which
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again equals the rank of the matrix. Note further that the noise space is different from
the nullspace, the latter occuring due to rank deficiency or rectangularity of X whereas
the former is the space of low variance.

From the SVD of Z in Equation 4.7 follows that the EVD of Cgz is

Cz = UDjU” (4.8)

where D2 = %DDT. Thus the columns of U are the principal vectors and the variances
of the data in the direction of the PV’s are essentially given by the square of the diagonal
elements in D. The principal components are obtained by projecting the centered data

matrix Z onto the columns of U. They thus read
U’z =DV’ (4.9)

From Equation 4.9 it is obvious that the principal components are essentially equal to
the columns of V (up to scalar factors consisting in the singular values in D, and up
to additive constants when using the uncentered data matrix X rather than Z, these
constants disappear due to centering when computing the sample correlation matrix).
For discrete finite data the PC’s and PV’s hence represent the orthogonal matrices of the
SVD of the centered data matrix. Note also, that the PC’s are k-dimensional since from
orthogonality considerations it is not possible to have m > k uncorrelated time courses
of length k. We will show below (cf. section 4.1) that due to centering there are only
k — 1 uncorrelated time courses.

Figure 4.2: (next page) PCA results for data from experiment 2. Left hand side: principal
axes (images in this case), middle: principal components (time courses), right hand side:
Fourier spectrum of the principal components normalized to the total power. The finger
tapping cycle frequency 0.025 Hz is marked by an arrow.

(a) Third PC of both hand finger tapping. A strong peak is visible at the finger tapping
cycle frequency and at its first harmonic. The image shows weak activations in the area of
the motor cortex and otherwise is dominated by what appear to be blood vessels.

(b) Fourth PC of imaginary finger tapping. An activation is visible in an area which can be
attributed to the supplementary motor cortex, which is believed to be involved in planning
and memory retrieval of movements. Apart from slower variations the spectrum is peaked
at the stimulus cycle frequency, but also shows contributions from higher frequencies which
can be attributed to breathing.

(c) Second PC of the resting state. The brain shaped boundaries visible indicate head
movement. The direction of the head movement is consistent with the direction determined
by rigid body preprocessing in section 2.2. The spectrum shows a broad peak at about
0.25 Hz and smaller peaks at its harmonics. The value of the peak frequency indicates that
the head movement occurs due to breathing.

(d) Fourth PC of the resting state. The image contains essentially the sagittal sinus along
with another blood vessel in the left frontal region. The time course is dominated by a slow
variation. The strong peak at almost zero frequency in the spectrum could be the aliased
heart rate.
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(d) Fourth PC of the resting state.



36 CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS

In fMRI for each PC time course we have a PV image which represents the related
activity pattern. Figure 4.2 shows principal components from experiment 2 along with
the corresponding images and the Fourier spectra of the time courses which help identify
periodic components such as the stimulus time course and cardiac as well as respiratory
processes. PCA captured essential features in the data, however we will see in chapter 5
that ICA improves the separation. See also Figure 4.3 for a PCA of the data from
experiment 1. In the case the stimulus time course is much better reproduced. The
details are given in the figure captions.

4.1 Temporal versus spatial PCA

In the previous section we discussed temporal PCA, which yields the uncorrelated time
courses underlying the data together with the corresponding images. Sometimes [$6] one
is interested in the uncorrelated activity patterns, i. e. images, that underly the data.
This corresponds to spatial PCA, in which the roles of PV’s and PC’s are interchanged
w. r. t. temporal PCA. Formally the difference between temporal and spatial PCA is
due to the different centering of the data matrix. In temporal PCA the data is centered
such that the mean of each voxel time course is zero, wheras in spatial PCA centering is
performed such that the mean of each image is zero. Hence for the temporally centered
data the mean image is zero whereas for the spatially centered data the mean time course
is zero. Note the difference between the mean of an image and the mean image. The
former is up to normalization equivalent to summing up the elements of a single column
of the data matrix X wheras the latter is computed from the sum of the elements of all
rows of X. Similar statements apply for the relation between the mean of a voxel time
course and the mean time course.

The elements of the temporally and spatially centered data matrices Z = (Zij)mx , and
Y = (9is) . 27
1o 1 &
Zij = xij — E TZ:; Lir and yij = .CEij — E SZ:; LCsj (410)
where X = ('Iij)mx . is the uncentered data matrix. In matrix notation Equations 4.10
read
Z = XPy and Y =P,X (4.11)
where P,, with n € {m, k} is the n X n projection matrix
11 _1 _1
1 T : . .
P,.=1,——-1,1, = (4.12)
e

which projects onto the space orthogonal to 1, = (1,...,1)T. Obviously P, has rank
n — 1 which is also the multiplicity of the eigenvalue 1 and 1, is the eigenvector to the
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eigenvalue 0.

The question now arises how the differences in centering affect the results of PCA.
Figure 4.3 shows the results for spatial and temporal PCA of fMRI data from experiment
1. There is a striking similarity between the nth temporal and the (n + 1)th spatial
PC’s and PV’s for the vast majority of the n € {1,...,k}. Further the first spatial
PC is essentially equal to the mean image of the data. As similarity measure the inner
products of the normalized PV’s and PC’s were computed. Their histogram is shown
in Figure 4.4.

To understand the finding of high similarity we analyze the data space, i. e. row and
column space of the centered data matrices Y and Z. A visualization of the data space is
given in Figure 4.5. We see that centering results in a dimension loss about one dimension,
since for temporally and spatially centered data we have, respectively,

k

i Yij =0 and Z zij =0 (4.13)
i=1

=1

where ¢ € {1,...,m} and j € {1,...,k}. Equations 4.13 define hyperplanes orthogonal
to 1, and 1y, respectively. Thus the rows of the temporally centered data matrix Z lie
on a k — 1 dimensional hyperplane and hence rank(Z) < k — 1. The spatially centered
data matrix Y, however, in general is not rank deficient. According to Equation 4.13
the k£ columns of Y lie on an m — 1 dimensional hyperplane, of which the k-dimensional
column space is a subspace (recall that we have assumed m > k throughout this thesis).
Thus spatially centered data in general are k dimensional whereas temporally centered
data are k — 1 dimensional provided that the uncentered data matrix X is of full rank
k. Note that the columns of Z and the rows of Y do not lie on hyperplanes defined by
the Equations 4.13 instead they are centered around the origin and span the £ — 1 and
k dimensional column and row spaces of Z and Y, respectively. See Figure 4.5 for an
illustration.

Analytical conditions for equality

In Appendix B we derive the analytical conditions for equality of the time courses resulting
from temporal and spatial PCA. The conditions involve a number of case differentiations
of which here we state only those for the typical and general case, where C = X*X is
of full rank, has no degenerate eigenvalues, and is not diagonal. Then the conditions for
equality of the time courses of spatial and temporal PCA are

(A). Pz is an eigenvector of C = XTX, 1y is contained in a subspace spanned by

eigenvectors of C with eigenvalues being either 0 or S?C, and

(a) Zz L 1y or
(b) dp = %(SC - Zf:l d1y7).

(B). Z || 1x and 1y is an eigenvector of C.
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Figure 4.3: Results of spatial and temporal PCA in comparison. The first spatial PC is
essentially equal to the mean image, subsequently the similarity occurs between the nth
temporal and the (n + 1)th spatial components, respectively.
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Figure 4.4: Frequency histogram of the inner products between the normalized images and
time courses, respectively, of temporal and spatial PCA. About 80% of the inner products
had values > 0.8, the value 1 standing for equality. Note that in the context of similarity
the sign of the inner product is not of interest and hence the absolute values were taken.

Here the y; are the inner products of 1, = (1,...,1)T with the eigenvectors of C
and Sc is the sum of all elements of C. z = (1>, xij)kxl is the mean time
course of the data. Note that z | 1y implies that Z is centered, i. e. has zero
mean. Equivalent conditions must hold for the equality of the images. In Appendix B

is shown that the equality of the time courses implies equality of the images and vice versa.

We also investigated the similarity of spatial and temporal PCA numerically. From the
results thereof it seems that similarity, however, not equality, of spatial and temporal PCA
occurs frequently. However there is a multitude of effects which can cause similarity and
hence the single effects as well as their connection is cumbersome to check. On the other
hand it could be this multitude of effects that is responsible for the fact that similarity of
spatial and temporal PCA is encountered so often.

4.2 Dimensionality reduction using random matrix
theory

As stated at the beginning of the chapter PCA is often used to divide the data space into
two orthogonal subspaces, the signal space and the noise space. The assumption thereby
is that the intrinsic dimension of the data is smaller than the rank of the data matrix
X. In this section we use criteria from random matrix theory to determine the intrinsic
dimension of the data, which amounts to the dimension of the signal space. The signal
space is characterized by large variances. Thus to separate the signal space from the noise
space the eigenvalue spectrum of the covariance matrix of X is analyzed. In this section
we use random matrix theory to extract the number of relevant dimensions which make
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Figure 4.5: Visualization of the data space of the temporally and spatially centered data
matrices Z and Y, respectively. Subfigures (a) and (b) show the column spaces of Z and Y
whereas subfigures (c¢) and (d) show the respective row spaces. The red circles indicate the
origins, the lines ending in blue circles in (a) and (b) represent the data vectors in the m
dimensional space and the lines ending in green circles the vectors 1, and 1y, respectively.
The data in (c) and (d) is represented by coloured circles. For illustrative reasons k = 3
was assumed together with an arbitrary value m > 3. In this case only the row spaces can
be visualized properly, the column spaces represented by coloured surfaces are subspaces
of a higher than three dimensional space. However, choosing m = 3 and k = 2 would
not have been very intuitive either, since then the row space of Z is one-dimensional. The
visualizations of the column spaces are included to illustrate the formal similarity of the
column space of Z (a) and the row space of Y (d) on one hand and the row space of Z
(c) and the column space of Y (b) on the other. Note that only the data in (a) and (d)
are centered around the origin which reflects the fact that the mean image of temporally
centered data and the mean time course of spatially centered data equal zero. The data
in (b) and (c) lie in m — 1 and k£ — 1 dimensional hyperplanes, respectively, defined by
Equations 4.13.

up the signal space.

Wigner’s semi-circle law

In random matrix theory (cf. e.g. [37]) statements about generic properties of ensembles
of random matrices are derived. Most prominent in this context is the Wigner semi-circle
law

p(p) = -1 —p? (4.14)

which describes the density p(u) of eigenvalues p of an ensemble of random matrices. The
eigenvalues thereby are uniformly scaled to the interval [—1, 1]. The random matrices
are assumed to have independent Gaussian entries [109, |, but Equation 4.14 applies
also to more general cases [101].

Correlation matrices are positive definite or, in case of rank deficiency, positive semi-
definite as e. g. the temporal correlation matrix Cz. However the rank deficiency here
is not of importance, particularly, when only one eigenvalues is zero, as is the case for
Cgz, thus w. r. g. we restrict our considerations to positive definite matrices. A positive
definite matrix has only positive eigenvalues and can be written as C = AT A with a real
matrix A. Because | ,u\2 is an eigenvalue of C if u is an eigenvalue of A, the semi-circle
law becomes a quarter-circle law

4
p(A) = =vV1— )2 (4.15)

™
with A = |u| > 0, provided that Equation 4.14 holds and A is a symmetric square root
of C = ATA = A? satisfying the conditions for Equation 4.14. The correlation matrices
C = BTB are constructed from asymmetric or rectangular matrices B, which are related
to the quadratic symmetric matrix A by an orthogonal projection R and the eigenvalues
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of A equal the singular values of B. The relation between A and B reads
A=RY =VU'B (4.16)

where B = UDVT is the SVD, which in contrast to the previous sections here is
assumed to consist of an m x k matrix U, the columns of which are orthogonal and
a square k X k diagonal matrix D. The orthogonal projection R can be interpreted
as an orthogonal transform of the m-dimensional column vectors in B to a basis
where the spurious m — k elements in the vectors are zero such that they can be
written as k-dimensional vectors. From Equation 4.16 it is easily seen that the sin-
gular values of B equal the eigenvalues of A for which random matrix theory is applicable.

For real data we expect A to be only partly random. When testing whether Equa-
tion 4.15 holds, eigenvalues of large modulus appear to be responsible for deviations from
Equation 4.14: if they are included in the rescaling of the spectrum Equation 4.15 fails
completely. If a number of large eigenvalues is excluded Equation 4.14 is reproduced
reasonably well, but the excluded eigenvalues become outliers. We are arguing here that
these outliers form the extractable information from an underlying noise and are hence to
be assigned to the signal space. We assume thus Equation 4.15 as a null-hypothesis and
will now review criteria for the detection of significant deviations from random matrix
theory.

The density p(\) in Equation 4.15 allows only for qualitative statements, because his-
togram techniques are required, which are bound to be inaccurate here. A more robust
quantity is the integrated density of eigenvalues (a.k.a. integrated density of states; re-
mind that we are considering positive matrices)

P(A) = /0 b da (4.17)

which in the case of Equation 4.15 becomes

P(A) = % (A\/l — A%+ arcsin(A)) (4.18)

Equation 4.17 allows for more robust results, because it can be directly compared with
the empirically obtained ordered sequence of eigenvalues by [37]

P (%) =\, (4.19)

where A, are the eigenvalues and n € {1,...,N} with N being the total number of
eigenvalues.

Fluctuations

There is a number of results on large deviations from the theoretically predicted curves,
which allow to determine the significance of the deviations from random matrix theory. A
reasonable estimate is [33] that for a matrix with entries in the interval [0, 1] the probability

of A\, to deviate from its median by A\ is at most 4 exp (— (A)‘)2>, where s € {1,...,N}.

1652
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Thus e. g. deviations of the first eigenvalue for more than 10 occur with probabixlity of
less than 0.01. Taking into account that the mean and median of the largest eigenvalue of
a matrix with entries from {0, 1} are of order n/2 we should expect deviations deviations
of less than 13% for N = 150, such that the 100% deviation in the data is apparently
significant. Although the above bound is less tight when taking further eigenvalues into
account it is not implied that these are of larger variance, rather they may be expected
to vary less under certain conditions [38].

Fitting the eigenvalue distribution

In order to quantify the deviation from random matrix theory, we define the discrete
function N¢ (A,) = n for all eigenvalues {\1,... Ay} of C. Note that the curve of Neo(\,,)
is obtained by interchanging the axes when plotting the eigenvalues )\, in descending
order. To compare N¢ and Equation 4.18 the latter is generalized to

n(A) = % (A;“) \/1 - (A;“)Q + aresin (A;“> (4.20)

by introducing a shift a and scale factors b and c¢. To fit the scales is necessary, because
any straight-forward scaling would depend on the large eigenvalues which are expected
not to obey the Wigner law. The parameters a, b, and c are optimized by gradient descent
with respect to the energy function

ni

Eno (CL, b’ C) = Z (TL ()‘n> — N¢ (An))27

n=ng

where ny < N in order to exclude errors that occur due to the inclusion of small eigen-
values, and ng € {1,...,neu} With ney < my such that a, b, and ¢ still can be reliably
optimized. Thus 1 < ng < neyr < np < N, e. g. we may choose N —n; = 40 for N = 150.
The results presented below show that the interesting region in the sense of large devia-
tions is found for ny < 30 such that we can use n; — ne, = 60, i. e. ne = 50. For each
no optimal parameters a, b, and ¢ are determined and the individual errors

Enn, = (n (An) — Ne ()‘n))Q

for each eigenvalue are determined for 1 < ng < nq, for ng < n < nq, and as an extrap-
olation also for n < n;. Several regions of £}, ,, can be distinguished the boundaries of
which are shown in Figure 4.6. We find a region of valid random matrix theory (region
(1) in Figure 4.6) which is bounded by two types of critical values: If ng < ng it where
5 < noeit < 10 is a data-dependent value, the fit of the parameters a, b, and c is very
poor, i.e. the 5 to 10 largest eigenvalues clearly do not obey the relations implied by ran-
dom matrix theory (region (2) in Figure 4.6). This leads also to a failure of the first few
n to satisfy the conditions for applicability of the fit, due to the arcsin-function (region
(3) in Figure 4.6). On the other hand, for the first 20 to 25 eigenvalues, there is a signifi-
cant elevation of the error (region (4) in Figure 4.6) which is more or less independent of
N > Noerit; 1. €. Nerig 1S around 20.
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Figure 4.6: Contour plot of E, ,, for data from experiment 1, layer 9, eigenvalues from
spatial PCA. The contour line is given by the lowest bound of the error level The regions
(1) - (4) refer to the situations described in the text.

We may hence conclude that a most 25 eigenvectors are sufficient to represent the
non-random contributions in the data.

The theory of random matrices provides a number of other results which might be of
relevance here. E. g. Wigner’s surmise on the distribution P(s) of spacings s between
neighboring eigenvalues

P(s) = Asexp (—Bs?)

with constants A and B, might be checked, but would require density estimation or
smoothing which leads to results of little robustness in the present case. But, for the
purpose of justifying the dimension reduction of the data to about the first 20 principal
vectors, the above procedure seems to be sufficient.
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Figure 4.7: The error values E, ,, as a function of n for data from experiment 1. The
traces for all layers and for ng € {10,...,30} are plotted on top of each other. The dotted
horizontal line indicates a maximal noise level which was chosen identical for all four plots.
Note that the traces for layer 1 do not significantly surpass the noise threshold determined
over all layers, which is probably due to the number of brain voxels in the layer being small.
It is apparent that where the brain has been extracted prior to the analysis (cf. chapter 2)
more components ((a) 20 temporal, (b) 21 spatial) of potential relevance are separable from
the noisy background than in the full image including both brain and extracranial regions
((c) 13 temporal, (d) 13 spatial). The values left of 10 on the x-axis could not be obtained
by the fit used here. The terms temporal and spatial refer to the underlying eigenvalues
resulting from temporal and spatial PCA.
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Chapter 5

Independent component analysis

Independent component analysis (ICA) is an approach which aims to extract from the
data the presumably statistically independent underlying processes. ICA is a special case
of Blind Source Separation (BSS) where the aim is to separate the underlying sources from
a mixed signal according to various criteria, the one of ICA being statistical independence.
In contrast to principal component analysis (PCA) it is an approach which accounts for
the statistical properties higher than second order. In the case of multivariate gaussian
distributed data, uncorrelated components, i. e. components independent up to the second
order, are statistically independent and hence in this case PCA is equivalent to ICA. In a
similar way as the principal components the independent components provide a basis of
the data space, however in contrast to PCA the basis is in general not orthogonal. In this
chapter we discuss the main approaches in the field of ICA and present a comparison of
spatial and temporal ICA, at the same time analyzing the effect of prior dimensionality
reduction of the data. An overview over various approaches to ICA can also be found
in [1, 59]. Historical reviews are provided in [23] and [57]. Results of separating fMRI
data into spatially independent components can also be found in [105].

5.1 Linear ICA model

The basic assumption of independent component analysis is, that the data is a linear
superposition (also called mixing in the following) of statistically independent processes
and can hence be written as

x(t) = As(t) (5.1)

where x(t) € R™ is a vector of measurements, A is a time-independent m X n mixing
matrix, s(t) € R™ is a random vector the components of which are statistically indepen-
dent and ¢ indicates time. Also ICA using a nonlinear model has been considered as e. g.
in [60]. Often the elements of x are called sensors and the elements of s sources, for ICA
has been developed in the field of signal processing [27, 23].

Statistical independence of the elements of s(t) = (sy(¢), ..., s,(t))" means that
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where p(s(t)) is the joint probability density of s and p(s;(t)) is the marginal probability
density of the elements s;(t), i € {1,...,n}. All that is known a priori in this ICA model
is the measurement vector x(t), whereas the matrix A, the number n of columns of A,
the random vector s(t) as well as the probability densities p(s(t)) and p(s;(t)) are unknown.

For most applications the assumption of s(f) being non-stationary and hence the
probability density p(s(t)) being time-dependent is not tractable, since the measurement
vector must be used to infer informations about p(s(¢)). In the following is thus assumed
that s is stationary and hence p(s) and the p(s;) are time independent. As for n it is
often assumed that n = m and A is invertible. Approaches where the number of sources
is different from the number of signals can be found in [5, 72, 22].

For the solution of Equation 5.1 two main classes of approaches can be distinguished,
information theoretic and cumulant based. Information theoretic approaches are used
e. g. in [61, 6]. The information theoretic quantities derived from p(s) require implicit
assumptions about p(s) whereas cumulant based approaches, such as in [03, 73], are
equivalent to estimating p(s) up to a certain order. On the basis of the chosen criterion
a so called contrast or objective function F(x,A) is defined which is to be extremized
w. 1. t. the elements of A.

In the context of fMRI measurements ¢ is discrete and there is only a finite number of
measurements. Hence we can write the model in Equation 5.1 as

X = AS (5.3)

where X is the m x k data matrix, A is as in Equation 5.1 and S is a n x k random matrix
the columns of which consist of statistically independent elements. Note that A and S are
defined only up to permutation and scaling, since A’ = APA~! multiplied by S’ = APS,
where A is a (diagonal) scaling matrix and P a permutation matrix, leaves the data matrix
X invariant. In contrast to PCA for ICA there is no inherent order of the components. An
illustration of ICA in contrast to PCA is given in Figure 5.1(a). However, there are cases
where the model assumption is not valid. Such a case is illustrated in Figure 5.1(b) by the
example of a bivariate probability density which cannot be composed of two independent
probability densities.

5.2 Prewhitening

The first step in ICA usually consists in a prewhitening of the data. This is done in order to
remove second order statistical dependencies from the data, since in ICA one is interested
in the higher order statistical properties. In addition to decorrelation, the data is rescaled
to unit variance, which has the advantage that in this case the mixing matrix is orthogonal.
Prewhitening can be achieved by PCA. If UAU? denotes the eigendecomposition of the
covariance matrix C = E(xx?) of the data then the prewhitened data reads

y=A:UTx (5.4)
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Figure 5.1: Illustration of ICA of a bivariate data distribution (a) and an example where
the ICA model is not valid (b).

(a) The surface depicts the joint probability density p of a 2-dimensional random vector y.
The point cloud represents the data (realizations of p). Each coordinate y; of a realization
is a linear superposition of the realizations of two statistically independent random vari-
ables s; and sg, since the joint probability density p was created by multiplying the two
marginal probability densities p;(s1) and pa(s2) shown along the two axes. PCA reveals the
orthogonal directions with respect to which the data is uncorrelated (blue arrows). ICA re-
veals the directions with respect to which the data is statistically independent (red arrows).
Referring to our data the coordinates of each point would reflect an image (consisting of
only two voxels) and the PCA vectors would indicate the images which have uncorrelated
time courses whereas the ICA vectors indicate the images having statistically independent
time courses.

(b) The bivariate probability density P(x,y) shown in (b) cannot be the result of a product
of two marginal probability densities.

The covariance matrix of the whitened data y equals the identity matrix I and thus the
data distribution is spherical. It is assumed here that the covariance matrix has full
rank, which is not the case for finite sample size. This was discussed in the context of
PCA in section 4.1, however, since we performed ICA on a subspace of the data space
(cf. section 5.4) this is not critical here.

For ICA is now used the fact that prewhitening is only defined up to an orthogonal trans-
formation. If R is an orthogonal matrix, left multiplying x by RA2U7 prewhitens the
data as well as can be easily seen by inserting this term into Equation 5.4 and computing
the covariance matrix. Thus in ICA for prewhitened data the indeterminacy up to an
orthogonal transform is used to determine the “right” transform for source separation
according to a chosen criterion. For prewhitened data Equation 5.3 is written as

Y = RS (5.5)

with the prewhitened data matrix Y and an orthogonal mixing matrix R. Now we need
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a criterion w. r. t. which R is to be determined. This is dealt with in section 5.3, but
before that, in the next section some useful basics of information theory are given.

ICA model is not valid. The bivariate probability density P(z,y) shown cannot be the
result of a product of two marginal probability densities.

5.3 Criteria for statistical independence

In this section we discuss some of the approaches derived from the two main criteria
for statistical independence used in ICA, namely minimizing mutual information and
joint-diagonalizing higher order cumulants. First we need some information theoretical
definitions.

5.3.1 Definitions from information theory

Information theory is of great importance in ICA, since the aim of ICA can be understood
as separating the information flow of the underlying sources. Information theory provides
useful criteria for statistical independence such as the widely used mutual information.
Also other BSS related criteria such as the interestingness of a probability distribution in
the sense of quantifying its non-gaussianity can be derived from information theory. In
this section some information theoretical definitions necessary to understand most of the
criteria used in ICA are given and some of their properties shortly sketched. Figure 5.2
shows an illustration of the relation of the quantities defined below.

Statistically independent random variables thus do not exchange information in the sense
of information theory. In information theory the term information is equivalent to the
term entropy in statistics [20)].

Definition: (Entropy, Joint Entropy, Conditional Entropy) [104]
The entropy of a discrete random variable X is defined by

H(X)=— > plx)logp(x) (5.6)

where p(z) is the probability distribution of X and Ox is the set of values that X can
assume. The joint entropy H(X,Y') of a pair of discrete random variables (X,Y") with a
joint distribution p(x,y) is defined as

HX,Y)==>" Y plx,y)logp(z,y) (5.7)
€O x yEOY

The conditional entropy is defined by

HY|X) = Y p@)H(Y|X =)
€O x
= = p(x) > plylr)logp(z|y)
€Oy yEOY

= =Y Y plx,y)logp(ylz) (5-8)

IE@X y€@y
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It is the remaining uncertainty of Y if X is known. The relation of the joint entropy and
the conditional entropy is governed by the chain rule [104]

H(X,Y)=H(X)+ H(Y|X) (5.9)

Definition: (Relative Entropy or Kullback Leibler (KL) Distance, Negentropy) [104]
The relative entropy or Kullback Leibler (KL) distance between two probability distribu-
tions p(x) and ¢(z) is defined as

Dol = 3 pla)log 2] (5.10)
T€EOx

The Kullback Leibler distance is a measure of discrepancy between two distributions,
however it is not a metric. The KL distance is always non-negative and zero iff p = ¢
almost everywhere, but it is not symmetric and in general does not satisfy the triangle
inequality. It is invariant under invertible transformations, if the densities p and ¢ are
defined on the same space. The KL distance D(p,o2||N(i,0?)) between an arbitrary
density p, 2 having mean p and variance 0 and the Gaussian density N (u,0?) is called
negentropy [01].

We now introduce mutual information, which can be interpreted as a symmetrized version
of the KL distance. Mutual information is a measure of the amount of information that
one random variable contains about another, and hence the reduction in the uncertainty
of one random variable due to the knowledge of the other [104]. Mutual information is
an important quantity for ICA as it equals zero, iff the random variables from which it
is computed are statistically independent.

Definition: (Mutual information) [104]
The mutual information between two random variables X and Y with the joint probability
distribution p(z,y) and the marginal probability distributions p(z) and p(y) is defined as

IXY)=> > play) logpp<x—7y) (5.11)

oeyiipree) (z)p(y)

It can be interpreted as the uncertainty of X that is due to the uncertainty of Y or vice
versa. The mutual information 7(X,Y’) is the KBD between the joint distribtuion and
the product distribution p(z)p(y)

I(X,Y) = D(p(z,y)|[p(x)p(y)) (5.12)

An important relation between statistical independence and entropy is given by the
independence bound on entropy [104]:

Let X1, ..., X, be random variables with the joint probability density p(x1,...,z,). Then

H(X:,...,X,) < iH(Xi) (5.13)

with equality iff the X, are statistically independent. From this can be derived that
I(Xy,...,X,) >0 (5.14)
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Figure 5.2: Venn diagram illustrating the relations among the important information
theoretical quantities joint entropy H(X,Y'), entropy H(X), H(Y), conditional entropy
H(X|Y), H(Y|X), and mutual information I(X,Y") (from [51]).

5.3.2 Mutual information

The previous section introduced the mutual information as the information one random
variable contains about the other. Intuitively it is obvious that statistically independent
random variables should not contain any information about each other and hence the
mutual information should be zero, which is indeed true (cf. Equation 5.13 and Equa-
tion 5.14), statistical independence and zero mutual information being even equivalent.
Under the assumption of the linear model Equation 5.1 the mutual information between
the elements of the measurement vector x equals the KL distance of the joint probability
density of the sources and the factorized probability density of the measurements.
Minimizing this w. r. t. to the elements of the mixing matrix A leads to the “true”
mixing matrix for the linear model.

Approaches related to information theory are given e. g. in [23] where the negentropy is
related to mutual information. Maximizing negentropy minimizes mutual information.
In [61] ICA is performed by maximizing an approximation of negentropy up to the fourth
order as objective function. In [27] a maximum likelihood approach is performed which
can be shown to be equivalent to minimizing mutual information. Another approach is the
so called “infomax” principle [74, 75, 6] which occurs in the development of information-
theoretic unsupervised learning rules for neural networks. There the aim is to maximize
the mutual information between inputs and outputs in a neural network. In [39] is shown
that under certain conditions the infomax principle is equivalent to minimizing mutual
information.

5.3.3 Cumulant diagonalization

Another class of approaches to ICA is based on cumulant diagonalization. These ap-
proaches rely on the fact that for statistically independent random variables the cumu-
lant tensors are diagonal, and at least for bivariate random variables the reverse is also
true, provided that the joint distribution is determined by its moments ([$2], p. 36). The
n-th order cumulant s of a one dimensional random variable Y is given by the n-th
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derivative of the cumulant generating function Ky (7) at 7 =0 [3]:

Ky(t) = In / e (y)dy (5.15)
oK
(n) _ _an Y

K (—1) g | (5.16)

with p being the probability density of the random variable Y. The first and second
order cumulants correspond to the first and second order moments, respectively. For
higher dimensional random variables the nth order cumulant ™ is a contravariant
tensor of the order n [32]. The algorithm in [63] aims at diagonalizing the fourth
order cumulant tensor. The goal is to determine an orthogonal matrix R such that
the fourth order cumulant tensor of R’y is diagonal, where y is the prewhitened data
vector in Equation 5.4. In [63] an approach is taken which is based on the following
two properties: First it can be shown that R jointly diagonalizes so called ’cumulant
matrices’, matrices resulting from a weighted sum over two dimensions of the fourth order
cumulant tensor with arbitrary weights. Second, an orthogonal data transformation
does not affect the total sum of the squared elements of the fourth order cumulant
tensor, so the latter can be diagonalized by maximizing the sum of squares of its
diagonal elements with respect to R. This is essentially the approach taken in [23]. The
approach in [63] maximizes the sum of of squares of the cumulant tensor elements having
identical first and second indices. This is equivalent to jointly diagonalizing a set of n?
cumulant matrices. This set can again be reduced to the n 'most significant’ cumulant
matrices by diagonalizing an n? x n? matrix. While having the appealing relation to
diagonalization as in PCA and showing good results in separation the diagonalization
of an n? x n? matrix restricts the applicability of the approach to a small number of sources.

The third order cumulant tensor could have been used as well in the above approach,
although then the algorithm would fail in the important case of symmetrical source dis-
tributions, where the third order cumulant is zero. However recently an approach for
simultaneous diagonalization of the third and fourth order cumulant tensor [73] has been
proposed which seems to work reasonably well.

5.4 Results from ICA

We used the cumulant based approach in [63], the algorithm of which is publicly available,
to perform ICA on fMRI data. As the diagonalization of an n? x n? matrix is prohibitive
for high dimensional fMRI data, a reduction down to about 30 dimensions of the data
is necessary which can be achieved by projecting the data onto the first principal axes.
This is justified since one can assume that the higher principal components mainly
reflect Gaussian noise. Gaussian components are a nuisance in ICA anyway, because
their higher order cumulants are zero, which makes the diagonalization of the fourth
order cumulant tensor difficult. Further we showed in section 4.2 of chapter 4 that the
dimension of the signal space of the data for the experiments considered is most probable
less than 30 except for one case where it is 32.
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Figure 5.3: PCA of actual finger tapping.

Left hand side: Images corresponding to the PC’s 2, 3, 4 and 7. These PC’s were the ones
with the highest peaks at the finger tapping cycle frequency of 0.025 Hz.

Middle: PC’s (time courses) indicating the strength with which the PC is present in the
measured image at the respective point in time.

Right hand side: Square root of the power spectrum of the PC’s time course normalized to
enable comparison. The finger tapping cycle frequency is indicated by arrows and dotted
lines.

5.4.1 Actual and imaginary fingertapping

Successfull application of ICA can be characterized by the merging of features that
occur in several principal components into one independent component [32, 33]. In
PCA on data from experiment 2 the frequency of 0.025 Hz related to the stimulus
cycle shows up in the Fourier spectrum of several components indicating suboptimal
separation. Figure 5.3 shows the four PC’s in which the stimulus cycle frequency was
most prominent. The “brain-like” pattern in PC 2 most likely indicates head movements
due to breathing an assumption which is also supported by the broad peak at the
frequency around 0.3 Hz. The stimulus time course is best reproduced by the third PC,
but with a weak activation in the motor cortex. Note that another weak activation is
visible in an area which can be identified as the supplementary motor cortex, which is
active also in imagined finger tapping (cf. Figure 5.5). The most prominent activation
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Figure 5.4: ICA of actual finger tapping.

Independent Components obtained by ICA of the projection of the data onto the PC’s
numbered 2, 3, 4 and 7. For simplicity the IC’s are numbered as well although no intrinsic
order exists for independent components. Obviously the first IC contains most of the finger
tapping cycle frequency and also an activated area in the motor cortex is visible. This
indicates that indeed by ICA the stimulus related activity has been separated into one
component. However the second independent component contains stimulus related activity
as well however not as pronounced as in the first component. From the activity distribution
which apparently includes the supplementary motor cortex and some blood vessel this could
indicate a secondary stimulus related process which was separated from the first.

of the motor cortex is present in PC 7. The corresponding independent components
are shown in Figure 5.4. As a result of using the stimulus to chose the components for
dimension reduction performing ICA leads to a far better, however not total separation
of the stimulus. The first independent component is clearly stimulus related, however
exhibiting an increasing noise level towards the end of the time course, and shows a
localized activation in the primary motor cortex. The activation is essentially unilateral
which could be due to the slice only partially including the contralateral part of the
primary motor cortex. In the second independent component the relatedness to the
stimulus is less pronounced and also the activity distribution does not show activation of
the primary, but of the supplementary motor cortex, which is also present on imaginary
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fingertapping (Figure 5.5, [33]). Also the activation pattern of the second independent
component is similar to the one of the third principal component which is the one most
closely related to the stimulus and includes an activated region near the scull which is
most probably a blood vessel that could be engaged in the blood supply in response to the
stimulus. A similar, slightly less concentrated result is obtained by projecting the data
onto up to the first 30 principal components regardless of their relatedness to the stimulus.

Figure 5.5 shows the stimulus related principal components of the imaginary fingerapping.
The results of performing an ICA on the data projected thereon are shown in Figure 5.6.
In this case ICA did not lead to a visible improvement which could indicate that in
a sense the data from imaginary finger tapping are more gaussian than the data from
actual fingertapping. It could be speculated that the imagination of fingertapping is a
more complex task than actual fingertapping involving more independent processes the
sum of which tend to be more gaussian distributed, stressening the central limit theorem.
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Figure 5.5: PCA of imagined finger tapping.

PC’s 4, 5 and 7 with the highest peaks at the tapping cycle frequency. In the fourth PC
an activated area which can be identified as the supplementary motor cortex is visible.
The other two PC’s have prominent peaks at 0.025 Hz, however they exhibit less spatial
structure. In the fifth PC the sagittal sinus seems to be involved as well a small area in the
left forebrain. The seventh PC shows more of a distributed activation with the same small
area present.
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Figure 5.6: ICA of imagined finger tapping.

Independent Components obtained by ICA of the projection of the data onto the PC’s
numbered 4, 5 and 7. The second IC contains most of the finger tapping cycle frequency,
however the activated areas are not so clearly visible as in the fourth PC in Figure 5.5. It
seems that in this case ICA did not yield an improvement over PCA though the peak at
0.025 Hz is very pronounced in the second IC compared with the others.

5.4.2 Temporal vs. spatial ICA

So far in our analysis using PCA and ICA we have assumed that the interesting factors
are characterized by a time course which is uncorrelated to or independent of time
courses resulting from other influences on the data. However, one could also assume
that the factors of interest are characterized by a certain independent or uncorrelated
activity distribution. These factors could then be revealed by spatial PCA and ICA.
In Figure 5.7 we show a comparison of temporal and spatial ICA for various numbers of
principal axes used for preprojection together with the respective time courses plotted on
top of each other. Only the stimulus related component is shown. The time courses of
the spatial ICA reflect the stimulus more closely than the ones from temporal ICA and
also the images show more structure than the ones for temporal ICA. Thus in contrast
to PCA where temporal and spatial results are very similar, for ICA differences occur,
which provide evidence in favor of spatial ICA [31, 35].

For completeness all four possible combinations of temporal and spatial PCA and ICA,
respectively, were performed, although the mixed combinations are hardly interpretable
from a theoretical point of view. The optimum number of 12 for PV’s to preproject the
data onto that is indicated by the figure could reflect the fact that the stimulus has a
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strong influence which is increasingly shaded by including more than 12 PV’s as would
be suggested from the results in the previous chapter. Note, however, that although the
third PC is most closely stimulus related the optimum number of PV’s suggest that the
stimulus related influences were distributed over the first 12 PC’s and are best recovered
by projecting on them and separating the stimulus from other processes by ICA.

Figure 5.7: (next two pages) (a) Actual and (b) imaginary fingertapping in experiment 2.
Results of temporal and spatial ICA for various numbers of PV’s onto which the data were
projected prior to performing ICA. The time courses resulting from ICA are plotted on top
of each other. The stimulus related components were extracted by Fourier analysis. Spatial
ICA leads to considerably better results than temporal ICA. The time courses of spatial
ICA better reflect the stimulus time course than the time courses of temporal ICA and the
images of spatial ICA show focal activations in the motor and supplementary motor cortex,
whereas the images of temporal ICA are rather noisy. The optimum number of PV’s for
preprojecting seems to be around 12. Note that in the images of spatial ICA of the actual
fingerapping the area on the left occipital cortex which was strongest in the stimulus related
PCA image of PC 3 in Figure 5.3 and could be interpreted as a blood vessel has disappeared
in the ICA images for a preprojecting number of PV’s > 8. For the imaginary fingertapping
results this area disappeared more slowly. Further, the influence of the sagittal sinus was
not separated from the supplementary motor cortex activity. The result that spatial ICA
outperforms temporal ICA was found consistently over the data sets.
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Chapter 6

Functional connectivity and graph
theory

In this chapter we derive a graph theoretical approach to functional connectivity which
is based on correlation matrices. The structure of the correlation matrices is revealed by
analyzing the structure of a graph which is extracted from the correlation matrix and
the subgraphs of which are determined and identified with functional units. Delayed
correlation matrices along with the concept of hypergraphs are used to include time
delayed, possibly causal functional connectivity.

6.1 Functional connectivity

Functional connectivity between brain regions affects cross-correlations of time series of
voxel activities in fMRI. In order to reveal relevant activity the latter must be separated
from vegetative processes, artefacts and noise. On a global scale components of brain
activity can be identified automatically by independent component analysis, but this
technique does not clarify the mutual relationships between the activated regions. For
this purpose we propose a graph-theoretical clustering method which is based on the
assumption that pairs of voxels could be considered as functionally connected if the
temporal cross-correlation of their signal is high. The method proposed here is completely
data driven and involves the identification of correlational structures among voxels using
general graph theoretical properties. Further, we include time-delayed correlations and
the concept of hypergraphs to identify delayed functional connectivity between brain
regions.

Cross-correlations have been widely used as measure of functional connectivity in fMRI.
Functional connectivity MRI, in short fcMRI, is usually based on resting state images,
however there is evidence that the functional connectivity and task activation MR signal
changes arise from the same BOLD-related origins [92] and further that functional
connectivity of regions unrelated to task activation seems to be unaffected by the
presence of activated areas [7]. These findings also suggest that the distinction between
activation and rest in functional brain imaging is mainly gradual as should be expected,
since the concept of a resting brain is somewhat artificial in a living brain.
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The first approaches to reveal functional connectivity in the context of fMRI appeared
in [, 12], where ROI’s were defined by conventional methods during task activation and
regions functionally connected to them were determined by correlations among the voxels
inside and outside the ROI's during a resting state measurement. This approach is used
frequently to date, e. g. [30, 20], sometimes slightly varied in the choice of the ROT as e. g.
in [103]. Functional connectivity is often computed by low-pass filtering the time course.
This restricts the considerations to low frequency fluctuations which are believed to arise
from spontaneous BOLD oscillations [92]. A combination of correlation measures and
frequency content of the voxels done in [25] found evidence that low frequency oscillations
(< 0.1 Hz) contributed to more than 90% of the correlation coefficient. However in the
present context we did not impose any constraints or preprocessing on the time courses,
which in the light of [92, 7] appears reasonable. Our framework does not rely on any
assumptions about preprocessing or the absence thereof and hence filtering could be
easily included.

Further approaches to determine functional connectivity include hypothesis building [56],
multidimensional scaling using definitions of functional connectivity as its metric [50],
partial least squares [35], prediction [19], image based funcional connectivity using ran-
dom field theory [21, |, structural equation modeling [33, 84], modeling by replicator
dynamics [79] and various types of clustering [11, 10, 24]. Approaches to relate functional
connectivity to anatomical connectivity have been made e. g. in [67] using diffusion tensor
imaging and in [102] based on anatomical connectivity matrices. An approach related
to the one presented here has been independently suggested in [115] where complete
graphs from a region of interest (ROI) defined by conventional stimulus-driven methods
are determined and extended to complete graphs including voxels outside the ROI.

In our approach we do not rely on predefined ROI’s, but use the correlation structure
of the voxel time courses as a whole. Relating the correlation structure to graphs,
we analyze subgraphs based on various criteria to define functionally connected areas.
The basic idea of our approach is to consider the voxels of an image as the vertices
of a graph and the temporal correlation matrix of their time courses as the weight
matrix of the edges between the vertices. For zero delay the correlation matrix is
symmetric and the corresponding graph is undirected. An unweighted graph can be
extracted from the weighted graph by deleting all edges that have weights below a
certain threshold. Subgraphs of the so extracted graph can be identified with undelayed
functionally connected units. We compare various subgraph definitions with respect to
their suitability for definiting functional units.

Delayed correlation matrices can be used to identify delayed, i. e. possibly causal,
functional connectivity. Since delayed correlation matrices in general are not symmetric,
the corresponding weighted graphs are directed. It is not appropriate for determining
delayed functional connectivity to simply extend the subgraph formalism to directed
graphs, since delayed functional connectivity is not independent of the previous definition
of functional units. On the other hand, however, for the evaluation of the approach,
it could be of interest to investigate the structure of the directed graph and define the
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functional units from there. A consistent definition should lead to the same results. To
analyze delayed functional connectivity we use the concept of hypergraphs where the
hypervertices consist of the previously defined functional units and the hyperedges are
the multiple directed edges between the voxels of each pair of functional units. The
weights of the hyperedges are taken from the delayed correlation matrices. Figure 6.1
illustrates the concept of functional connectivity.

Figure 6.1: Illustration of the concept of functional connectivity. The areas A and B are
considered as functional units (to be determined w. r. t. a similarity measure of the voxels
e. g. subgraphs of a graph extracted from the undelayed correlation matrix (see text)). A
possibly causal relationship between A and B is indicated by an arrow. By possibly causal
is meant that the behaviour of area B is similar in a certain sense to the behaviour of area
A with a time delay, so that it cannot be precluded that area A exhibits an influence on
area B. The aim in this chapter is to both determine functional units and their mutual
relationships by defining a time delayed similarity measure between the units.

Outline of the approach:

e Identify functionally connected voxels by the unshifted (7 = 0) cross-correlation of
their time courses (section 6.2).

e Use graph theory to cluster functionally connected voxels into cortical areas (sec-
tion 6.3)

e Use time-delayed (7 # 0) cross-correlations and a more general graph theoretical
framework (hypergraphs) to identify possibly causal relationships between clusters
(section 6.4).

6.2 From correlation matrices to graphs

In this section the approach of constructing graphs from correlation matrices is presented.
In the following two subsections we review some definitions of correlation and from graph
theory before deriving the correlation graph concept in more detail. Part of this work was
published in [36, 37]
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6.2.1 Definitions of correlation
Correlation for continuous stochastic processes and for deterministic functions

FMRI data can be considered as a stochastic process, i. e. as a function whose values are
random variables [114]. A stochastic process X (t) with a time variable ¢ is determined by
its probability densities

Dty (T1, - 2) = p{X(0) = 21, ..., X (t) = 20 }) (6.1)

(n € N, z; € R). The probability densities must satisfy a symmetry condition and a
compatibility condition, according to which the probability densities must be invariant
under simultaneous permutations of the indices of ¢t and x and, respectively, integrating
the probability density p:, . 4, (21,...,2,) over the variable z,, must result in the
probability density py,. 4, ,(%1,...,xn-1) (cf. [L11]).

Since for a given experiment we only have the experimental data to make inferences about
the probability densities, it is reasonable as a first approach to assume that the underlying
stochastic processes are stationary. Stationarity in the strong sense means that the finite-
dimensional probability densities p;, . ; remain the same if the whole group of points
t1,...,t, is shifted along the time axis by a fixed amount 7 [I11]. A weaker assumption
is stationarity in the wide sense, which requires that the mean of the process is constant
over time and the covariance is a function of the time difference 7 only, which amounts
to stationarity up to second order. Thereby the mean and the covariance of stationary
processes are defined as

u(t) = /xpt(:c)da: (6.2)
D(tty) = / / (w(t) — (1)) (walte) — plta)) pos(r,a2) dmndes  (6.3)

The correlation function of a stochastic process is defined as [94]

[(ty,t2)

()0 (1) &4)

p<t17t2> =

where

() = / (2(t) — a(t))? pu() i (6.5)

is the variance. In the sequel we assume wide sense stationarity, and hence the correlation
function reads
I'(7)

o2

(6.6)

p(7) =

where 7 is a time difference. For p, (21, 22) = 0(7) and p(t) = 0, Equation 6.3 is equivalent
to the correlation of two deterministic functions g, h € L?, which is defined as [97]

Con(7) = Ny / G(Bh(t + 7)dt (6.7)
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where Ny, = (ng(t)dtth(t)dt)_% is a normalization factor which makes Cy,(0) = 1.
The correlation theorem [95] states that the Fourier transform of the correlation Cyy(7)
is equal to multiplying the Fourier transform of one function with the complex conjugate
of the Fourier transform of the other, thus

() ox / G H(f) eI df (6.8)

where G(f) and H(f) are the Fourier transforms of g(t) and h(t), respectively, and H(f)
is the complex conjugate of H(f). Obviously from Equation 6.8 follows immediately the
Wiener-Khinchin theorem, which states that the autocorrelation of a function and the
squared modulus of its Fourier transform act as a Fourier pair [95].

Correlation for discrete and finite samples of stochastic processes

Since fMRI data is discrete in time and for a given experiment we have only a finite
number of measurements the definition of correlation has to be adapted accordingly.
The discreteness can be handled by substituting the integral by a summation and the
probability density by a discrete probability. The finiteness of the data however requires
some considerations about normalization.

Let x = (xq,...,7)7 and y = (y1,...,yr)? be the signal time courses of two voxels. The
delayed sample correlation is determined by

N
k—T1

pxv(r) = = ((x(r), ¥(0)) = (k = )M (6.9)

where N is a normalization factor yet to be defined, M is given in Equation 6.12. and
the delayed and undelayed time courses x(7) and y(0), respectively, are given by (cf. Fig-
ure 6.2)

x(1) = (21,...,76_,) €RFT (6.10)
y(0) = (o) €RFT (6.11)

unless Equation 6.9 is determined by using the Fourier transform. In this case the vectors
x and y are to be supplemented by zero padding to vectors in R?* since otherwise the use
of periodic boundary conditions in the context of the Fourier transform leads to artifacts.

The term M is the product of the mean values of x(7) and y(0):
1 k—1 k
M=— 5SS s 6.12

=1 %

For simplicity in the following we assume that the mean values of x(7) and y(0) are zero
and hence we disregard M. The delayed sample correlation in Equation 6.9 is computed
only from k — 7 elements of x(7) and y(0) as is illustrated in Figure 6.2.

As for the normalization factor N there are three more or less natural choices:

o N = [x(0)[l[ly (0)]
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Figure 6.2: Illustration of the shifted and unshifted time courses x(7) and y(0), respec-
tively, and the k — 7 elements in the common subspace R¥~7, from which the sample
correlation in Equation 6.9 is computed.

o N = |x(m)lllly (0)]
o N=(k—7)2 [x(n)]ly(0)]

The first choice of N makes Equation 6.9 equivalent, up to centering, to a discretized
version of Equation 6.7. For the second choice of N Equation 6.9 is the sample correlation
of two vectors in R*~" (note that y(0) € R for the first choice of N wheras for the second
and third y(0) € R¥=7). For 7 = 0 the second choice of the normalization is equivalent
to the first. The third choice of N takes into account that the variance of the sample
correlation for i. i. d. gaussian distributed finite samples scales with the square root of
the sample size and hence this choice of N aims at supressing the variations due to small
sample size. In the following for small values of 7 we will use the second choice for N
as it has the convenient geometrical interpretation as the cosine of the angle between
two vectors in R¥=". When considering the dependence on 7 we will use the correlation
theorem, i. e. the discretized Fourier transform, in the case of which the vectors are in
R?* and the first normalization is employed.

6.2.2 Definitions from graph theory

The temporal correlation matrix R(7) along with a threshold 6, can be used to relate
fMR images to undirected (7 = 0) and directed (7 # 0) graphs. In this section some
basic graph theoretical definitions are reviewed which will be needed later on.

Definition (Graph) [29]

A graph is a pair G = (V, E) of sets satisfying £ C V x V. The elements of V' are the
vertices of the graph G, the elements of E are its edges. The number of vertices of the
graph G is its order denoted by ord(.S), the number of edges is its size denoted by sz(G).
A graph G is undirected if (v;,v;) € E <= (vj,v;) € E for each pair of vertices v; and v;.
The adjacency matriz A = (aij)me of a graph G having order m is defined by

1 if (v;,v; E
A5 = ! (U vj) < (613)
0 otherwise

A graph G is weighted, if each edge e € E is associated to a weight w € R. This case can
be considered as a graph G for which the elements of the adjacency matrix A assume
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more than two values. For an undirected graph the matrix A is symmetric.

In the sequel we will define functional units by subgraphs of the graph extracted from
the fMRI data.

Definition: (Subgraph, maximum spanning tree)

A subgraph S = (Vg, Eg) of a graph G = (V, E) is a subset S C G which is a graph
itself. A spanning subgraph is a subgraph for which Vs = V. A tree is a graph
containing no cycles, i. e. no edge sequences {(v;,,vs,), (Viy, Vi)s .-, (vi,_,,v;,)} with
i, = 11. Trees of order n have size n — 1. A set of disjoint trees is a forest. A tree of
order n is a spanning tree. A maximum spanning tree is defined for a weighted graph
as the spanning tree having the highest possible weights of all spanning trees of the graph.

An important concept in the context of subgraphs is their graph theoretical connectiv-
ity. Functional units should be subgraphs with a high graph theoretical connectivity
but since the edge weights are noisy, the subgraph definition should not be too sen-
sitive to noise. Connectivity in a graph theoretical context is defined as follows [15, 29, (4]

Definition: (Connectivity)

A walk W in a graph G is an alternating sequence of vertices and edges, say
(Vi1 (Vig, Vin), Uiy« -+ (05,5 0i ), 05, ] A walk is called a path if all its vertices are distinct
and a trail, if all its edges are distinct. A graph is connected if there is a walk between
every pair of its vertices. A graph G is k-vertex-connected, if at least k vertices must be
deleted to render the graph disconnected, and it is [-edge-connected, if at least | edges
must be deleted to make it disconnected. The wvertez-connectivity and edge-connectivity
of a graph G are denoted by k(G) and A(G), respectively. If £(G) = 1 the graph is said to
have a cut verter, if \(G) = 1 the graph has a bridge. In these cases there exist a vertex
or an edge, respectively, the deletion of which leads to a disconnected graph. The number
of edges of a given vertex is called the degree of the vertex. The minimum degree of the
graph is denoted by §(G). Vertex-connectivity, edge-connectivity and minimum degree
satisfy the following relation

K(G) < A(G) < 6(G) (6.14)

Intuitively it is clear that the vertex-connectivity must be less or equal than the edge-
connectivity, since with every vertex deleted at least one edge is deleted as well. Figure 6.3
shows a graph for which the inequality 6.14 strictly holds.

)

Figure 6.3: Example of a graph for which k(G) < A(G) < §(G). k(G) =1, AMG) = 2,
i(@Q) = 3.
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6.2.3 Correlation graphs

Using Equation 6.9 along with the second normalization the undelayed correlation matrix
for an fMRI experiment where m is the number of voxels and £ is the number of images
reads

— ( x1(0.x5(0)
R(0) = (”Xi(")“lixﬂmll)mm (6.15)
with x;(0) = (21, ...,74)" € R* being the centered time course of voxel i. Obviously

R(0) is symmetric and its diagonal elements equal unity.

() (b)

Figure 6.4: Illustration of the graph extraction leading to the graph G(#). (a) Simplified
example of an unshifted correlation matrix R(0). It is symmetric and has unit diagonal elements.
(b) The same matrix as in (a) but with the elements exceeding 6 marked in red and the diagonal
elements set to zero as they do not contribute to the graph structure of G(6).
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Figure 6.4: (continued) (c) Graph G(0) extracted from the matrix R(0) in Figure 6.4(b)
by taking only the red elements of R(0) as edges together with the associated vertices. The
structure of G(0) is to be analyzed to define the functional units.
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The correlation matrix R(0) can be considered as the continuous adjacency matrix of a
weighted graph the vertices of which correspond to the voxels. In the following we will
use the terms voxels and vertices interchangeably, also, when referring to the correlation
between two voxels it is understood that is meant the temporal cross-correlation of their
time courses.

Instead of investigating the whole weighted graph we use a threshold 6 € (—1, 1) to extract
an unweighted graph G(6) from R(0). Figure 6.4 illustrates this process. The graph G(6)
has the vertex and edge sets

Vo= {ilie{l,....m} A 3j+£i:(i,j) € E} (6.16)
E = {(i,j) | r;(0) = 6} (6.17)

where m is the number of voxels in the image and the second constraint for the elements
in V' discards isolated vertices. Strictly speaking each voxel is connected to itself since the
diagonal elements of R(0) equal unity and hence always exceed the threshold § € (—1,1),
but this self-connection is of interest only in the delayed case R(7 # 0), where the
diagonal is not always unity. In the undelayed case a voxel connected only to itself is
discarded, so that the unweighted correlation graphs G(6) do not contain isolated vertices.

To cluster the voxels into functional units we investigate the structure of G(6) and deter-
mine subgraphs of it according to criteria suitable for the definition of functional units.
But before that we discuss methods of reducing the order of G(#) by defining a submatrix
R(0) from which the graph G(0) is then extracted.

6.2.4 Graph reduction

The reason for not using all voxels is that for small values of the threshold 6 the
computation of some subgraphs becomes untractable in terms of computation time
and that with all voxels included some of the subgraphs are not of interest, anyway.
In this paragraph we analyze general properties of G(6) in dependence of the thresh-
old 6 to extract voxels of interest thereby reducing the size of the correlation matrix R(0).

Threshold dependencies of the following properties are fast to compute and suited to
indicate the coarse structure of G(0):

1. The order ord(G(9))

2. The size sz(G(#)) relative to the maximum size of a graph of the same order (i. e.
normalized by (O”l(g;(@))))

3. The degree distribution

By contrasting the graph structure of G(6) against the structure of graphs that are random
in a sense to be defined below, a value 6 is determined and a submatrix Ry, (0) of R(0)
extracted, which contains only the rows and columns corresponding to the voxels in G(6y).
Graph extraction for the reduced graph is then performed as described in subsection 6.2.3.
For 6 > 0y the reduced extracted graphs G(6) are equal to the unreduced, only for 6 < 6,
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they differ, because no further voxels can occur with decreasing 6. Each of the contrast
graph definitions below leaves invariant different properties of the matrices from which
G(0) is defined. Graphs based on the following matrices were investigated to find an
appropriate contrast:

1. Surrogate data from a random permutation of all elements in the data matrix X.
This leaves the distribution of the values in X constant but changes the values in
the correlation matrix R(0).

2. Surrogate data from a random permutation of the elements in each row of the data
matrix X. This in addition leaves the distribution of the values in each row of X
invariant and otherwise has the same properties as the previous contrast.

3. Surrogate data from permutation of the elements in each column of the data matrix
X. This leaves the distribution of the values of each column of X invariant and
otherwise has the same properties as the first contrast.

4. Random permutation of the entries in the correlation matrix R(0). This leaves the
distribution of the values in R(0) invariant and corresponds to a random graph
as it is usually defined in random graph theory. However, it is not ensured that
the resulting graphs are correlation graphs, i. e. that permuting the entries of R(0)
results again in an correlation matrix.

5. Restriction of the permutations of the entries of R(0) in 4 to those that result again
in a correlation matrix, i. e. contrasting against correlation graphs.

It turns out that the properties of 1-3 are essentially equal so that in this paragraph
we show only the properties of contrast 1. However, easy to compute and suited to
determine a value 6y for graph reduction seems to be only the graph from a random
permutation of the elements of R(0), i. e. contrast 4. This graph will be called random
graph in this paragraph, if no other specifications of random graphs are given. Further
the graph from 1 will be called the surrogate graph and the graph from the original
correlation matrix R(0) will be referred to as data graph. The data underlying the
graphs in this section are from experiment 1.

In contrast 5 we aimed at taking into account the special structure of our graphs
as “correlation graphs” due to their extraction from correlation matrices. Therefore
contrast 5 would be of particular interest, however, to estimate the proportion of
correlation graphs from the number of random graphs with a given weight distribution
is cumbersome. A short sketch of the steps to determine the correlation graphs from
a given distribution of correlation values is presented in Appendix C. Also it can
be expected that if the distribution of correlation values is broad and includes high
correlations, the fraction of the set of all graphs from permuting the elements in
R(0) of correlation graphs may be very small such that it has to be discussed whether
the occurence of a correlation graph of this type may be considered as significant by itself.

Figure 6.5 shows in dependence of 6 the graph order of the data graph, the surrogate
graph, and the random graph relative to their maximum possible order. The graph from
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Figure 6.5: Order relative to the maximum possible graph order in dependence of . Cyan
curve: surrogate data from a random permutation of all elements in X. Equal results were
found for permuting the rows and columns of X seperately. Blue curve: random graph from
a random permutation of the elements of the correlation matrix. Red curve: Extraction
graph G() from the correlation matrix R(0) of the data.

surrogate data exhibits a relatively sharp threshold for values 6 € (0.2,0.4) from all
vertices to almost none. This is probably due to the presence of only low correlations in
the correlation matrix as it is expected for surrogate data. The random graph exhibits a
more steep descent than the data graph from all vertices present to none, but for higher
values 6 € (0.5,0.81) than the surrogate graph. A steep threshold from all vertices to
none is also what is expected for random graphs [98]. The surrogate graph hence seems
to behave more like a random graph which is also indicated by the further properties
investigated below. This could be interpreted as a hint that graphs from correlation
matrices with low values may most often be correlation graphs and the distinction
between random graphs and correlation graphs for low value correlation matrices may
not be of interest.

Note that the size of the data graph equals the size of the random graph for every value of
6, since the size of an extracted graph depend only on the values in the correlation matrix
R(0), not on their configuration in the matrix. The fact that the order of the data graph
decays more slowly than the order of the random graph indicates that the former is more
dense than the latter. This can also be seen in Figure 6.6, where the size of the graphs
relative to their maximum size for a given 6 in dependence of # is shown. The relative
size is given by

s:(G(9))

SZ'rel(G(e)) = W

(6.18)

ord(R(0))

The maximum of the ratio ord(G(0))

between the order of the random graph R(f) and the
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Figure 6.6: Size relative to the maximum size of a graph of the same order, cf. Equa-
tion 6.18. Not that here the range of 6 is [—1,1]. Cyan curve: Surrogate graph. Blue curve:
Random graph. Red curve: Data graph. The high values at the tails occur because there
the graphs consist only of very few vertices and edges and hence are complete or close to
complete. Note that the difference between the data graph and the random graph occurs
only in the range 6 € (0.25,0.8).

order of the data graph G(f) can be used to define 6y, since it indicates in a sense the
distance of the data graph from the random graph, without of course formally being a
metric. Figure 6.7 shows the ratio of the orders and the ratio of the relative sizes of the
random graph and the data graph. The maximum occurs at a value of 8y = 0.65 which
was then used for graph reduction. The ratio of the relative sizes gives a more pronounced
maximum than the ratio of the relative order at the same value 8,. This is because both
curves are equivalent, since the sizes of the graphs are equal and the ratio of their relative
sizes hence given by

sza(R(0))  (TUH)
s2a(G(0)) (Drd(G(G)))

2

(6.19)

Finally we investigated the degree distribution of the various graphs in dependence of 6.
They are shown in Figure 6.8. The degree distribution of the data graph is significantly
different from the degree distribution of the random graph and of the surrogate graph.
The degree distribution of the surrogate graph exhibits a steeper threshold for decreasing
0 than the degree distribution of the random graph, but apart from this is similar. For
both graph types the vertices for a given value of # have essentially the same degree.
The degree distribution of the data graph in contrast indicates a diverse structure of the
graph, where vertices with a high degree coexist with vertices having a low degree for
each value of 6 except for values near zero. The latter is also confirmed when computing
the difference and the ratio of the degree distributions of the data graph and the random
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Figure 6.7: Ratio of the relative sizes and ratio of the orders of the data graph and the
random graph. The black dotted lines indicate the location of the maximum at a value
Ao = 0.65 which was then used for graph reduction.

graph as is shown in Figure 6.9. Furthermore the maximum of the ratio of the degree
distributions occurs at a value of # = 0.68 which is similar to the value § = 0.65 which
was found for the maximum of the order ratio in Figure 6.7. The latter value was used
for graph reduction since the measure of relative order is more robust than the relative
degree distribution. However to investigate all properties such as order, size and degree
distribution is useful to get information about the coarse structure of the graph G(6).
Some subgraphs of the reduced graph shall now be determined to analyze the structure
in more detail and as a basis for defining functionally connected units.
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Figure 6.8: Degree distribution of G(#) in dependence of 6 for a data graph, a random
graph, and a surrogate graph. Each vertical line in color code denotes the relative degree
of a vertex, i. e. the proportion of vertices in G(#) to which the vertex is connected, in
dependence of #. The vertices are ordered appropriately to show the structure of the
degree distribution. The voxel indices on the abscissa are not labeled, since the relation to
individual voxels is not of interest here. Obviously the degree distribution of the data graph
significantly differs from the degree distribution of the random graph and the surrogate
graph. In the latter two each vertex has essentially the same degree for a given value of
whereas in the data graph for values of about |#| > 0.1 there is a strong diversity of degrees
leading to a more structured graph.
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(a)

Figure 6.9: (a) Difference and (b) ratio of the relative degree distributions showed in Fig-
ure 6.8 of the data graph and the random graph. Near # = 0 the difference map shows
that the degree distributions of the data graph are almost the same as for the random
graph. The maximum of the ratio occurs at a value of § = 0.68 which is similar to the
value of 6§ = 0.65 at which the maximum ratio shown in Figure 6.7 between the orders of
the respective graphs occured and which was used for graph reduction.
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6.3 Subgraphs of G(f) as functional units

6.3.1 Connectivity components and cliques

The concepts of connectivity components and cliques form the two extremes of subgraph
definitions in that connectivity components have the minimum and cliques the maxi-
mum possible connectivity w. r. t. the number of voxels. See Figure 6.10 for an illustration.

Definition: (Connectivity components and cliques)

A connectivity component S of a graph G = (V, E) is a maximal connected subgraph,
where the term maximal is defined in the sense of inclusion. A cligue C' of a graph G
is a complete, i. e. fully connected, subgraph of G. A mazimal clique is a clique which
is not contained in any other clique. A mazimum clique is a maximal clique of largest size.

Connectivity components S form a partition of a graph GG. Cliques C' are possibly over-
lapping subgraphs of the connectivity components S, i. e.

UC:OS:G (6.20)

The edge-connectivity [ of a clique C' is related to the order of C' by {(C) = ord(C) — 1.
Note however that the edge-connectivity for a small clique can be lower than the
edge-connectivity of a larger graph which is not fully connected.

() (b)

e

Figure 6.10: Illustration of the concept of connectivity components and cliques. (a) Graph
with two connectivity components. (b) The cliques of the graph in (a) drawn seperately
for better visibility. Light blue vertices and dashed lines indicate vertices and edges that
are shared by more than one clique.

Some of the mutually exclusive properties of cliques and connectivity components are
listed in the table below, the desirable of them in terms of suitability for defining
functional units are written in italic style:
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connectivity components cliques

minimal connectivity all-to-all connectivity

structure loss by a giant component emerging

for lower values of 0 revealing structure details

robust to noise noise prone

disjoint largely intersecting

The properties of connectivity components and cliques make intermediate cluster defini-
tions desirable, which preferably combine the advantages of both. The term intermediate
hereby refers to the connectivity constraints which are to be chosen between all-to-all and
plain connectedness. A tuning parameter between the two extremes could be the edge-
connectivity defined in subsection 6.2.2. However as for the cliques where for a given graph
G(6) we extracted cliques of all orders, extracting all clusters with a given l-connectivity
is an NP-hard problem. In subsection 6.3.2 we analyze threshold dependencies of cliques
and connectivity components. It turns out that the data graph is dominated by two large
connectivity components exhibiting a complex edge structure as can be seen from so called
overlap matrices of cliques. The stability of the two large connectivity components along
with the complexity of their clique structure, makes the definition of an intermediate sub-
graph cumbersome, if not unnecessary. For the time being we therefore stick with cliques
and connectivity components.

Connectivity components and cliques for data from experiment 1

Figure 6.11 and Figure 6.12 show the connectivity components and cliques of the reduced
graph for data from experiment 1 for the values 6§ = 0.74 and # = 0.65, respectively,
together with the time courses and the overlap matrix of the cliques. Each element in
the overlap matrix indicates the fraction of vertices a clique has in common with another
clique relative to the number of its own vertices. In the paragraph overlap matri-
ces, p. 87 we consider overlap matrices of cliques in more detail. The time courses
were taken as the mean of the time courses of the voxels which represent the vertices
of the subgraphs. Prior to taking the mean the time courses were centered and linearly
detrended to better show their structure.

A pronounced linear trend was present for most of the cliques and connectivity compo-
nents. Apart therefrom mainly two interesting temporal features occured. One is the
stimulus related time course which is found at 8 = 0.65 mostly for small subgraphs, such
as the first three connectivity components in Figure 6.12(c) which correspond to trivial
cliques, i. e. cliques of order 2, but also in the fifth component, which has order 6. The
stimulus related time courses of the subgraphs exhibit phase shifts with respect to each
other indicating differences in stimulus processing. Further some of the subgraphs such
as the first two connectivity components only partly participate at the stimulus time
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course. This could be due to head movements or again due to processing differences.
There are more stimulus related cliques than stimulus related connectivity components
reflecting the coarser structure of connectivity components in comparison to cliques
and the fact that cliques are subgraphs of connectivity components. When considering
various thresholds it appears that stimulus related subgraphs are found up to a value of
about 6§ = 0.71.

The other prominent temporal process is a slower apparently periodic time course the
maxima of which roughly coincide with the maximum of the first and the fifth stimulus
cycle as it occurs in the time course of the second connectivity component for § = 0.74
in Figure 6.11(c) and in the time courses of numerous cliques for § = 0.74 as well as
for # = 0.65, shown in in Figure 6.11(d) and Figure 6.12(d), respectively. The overlap
matrices in Figure 6.11(e) and in Figure 6.12(e) show a cluster of comparatively large
large overlapping cliques that exhibit this time course. Considering the time courses of
the voxels in these cliques in more detail reveals that the prominent temporal process is
mostly due to a few voxels contiguous to the stimulus-related region. The appearance of
this process could hence be a signature of head movements of brain pulsations, but also
of an only partly stimulus related process.

In Figure 6.13 stimulus related connectivity components and cliques for § = 0.65 are
shown separately. For periodic stimuli as in the experiment considered, the relatedness
to the stimulus could be found by using the Fourier transform of the time courses and
extracting those with the highest contributions at the stimulus cycle frequency as it was
done in chapter 4 and chapter 5. However, to include also time courses only partly related
to the stimulus for this figure the stimulus related subgraphs were chosen by hand. For
0 = 0.65 only trivial cliques, i. e. cliques of order 2, are related to the stimulus. Partial
relatedness occurs e. g. in the fifth and the eighth clique time course in Figure 6.13(d).
This partial relatedness however is not similar to the second prominent temporal process
described above, indicating different underlying processes. This is confirmed by the
observation that the voxels exhibiting a time course according to the second prominent
temporal process belong to a different connectivity component than the stimulus related
voxels (for @ > 0.41, where there is more than one component). In Figure 6.12(b)
some single voxels occur that are located far away from the voxels of the connectivity
components in Figure 6.12(a). They are part of only partially stimulus related cliques.
More detailed analysis yields that their time courses are not related to the stimulus.
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(a) Connectivity components overlaid the
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(b) Cliques overlaid the mean image data.
Note that due to overlap not all vertices
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Figure 6.11: Connectivity components
and cliques for § = 0.74 together with
their mean time courses and the over-
lap matrix. (e) The (asymmetric) overlap
matrix of the cliques. Most of the cliques
are trivial and only partly overlapping ex-
cept for a cluster of strongly overlapping
larger cliques. For a further discussion of
the results shown, see text.
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Connectivity components Cliques
6 = 0.65

0.699]

0.696

0.695]

0.693]

0.687]

0.683]

0.674

0.666]

0.656]

(a) Connectivity components overlaid the (b) Cliques overlaid the mean image data.
mean image data from experiment 1.
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Figure 6.12: Connectivity components
and cliques for # = 0.65 together with
their mean time courses and the over-
lap matrix. (e) The (asymmetric) over-
lap matrix of the cliques. For a further
discussion of the results shown, see text.
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Figure 6.13: Stimulus related connec-
tivity components and cliques for 6§ =
0.65. The stimlus related connectivity
components are located at areas which
are also found by correlation analysis,
PCA or ICA. The cliques include vox-
els lying far away from these areas and
the individual time course of which does
not show stimulus relatedness (cf. text).
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6.3.2 Revealing subgraph structures from threshold dependen-
cies

In a similar way as in the previous section threshold dependencies of various graph prop-
erties were used to reduce the graph, also threshold dependencies of subgraph properties
further reveal their structure. In this paragraph we determine the threshold dependen-
cies of properties of data subgraphs and contrast them to the threshold dependencies
of subgraphs from random graphs. The properties discussed in this paragraph are the
following;:

1. Number of subgraphs.
2. Mean order of the subgraphs.
3. Mean size of the subgraphs.

4. Mean correlation of the subgraphs, where the intra correlation of a subgraph is given
by the mean intra correlation of its voxels including only the edges that are present
for the given threshold.

5. Histogram of the subgraph order.

6. Tree- and pseudotree structures relating the subgraphs for different values of 6.
7. Overlap matrices of cliques.

8. Spanning trees

Figure 6.14 shows the properties 1-4 of connectivity components and cliques from data of
experiment 1 in comparison to the respective subgraphs from random graphs.

Number, mean order, size, and correlation of the connectivity components

For high values of # there are many though small connectivity components from the ran-
dom graphs whereas for the data graphs the number of connectivity components reaches
its maximum for lower values of 6 (cf. Figure 6.14(a),(c)). Comparing Figure 6.14(a)
and Figure 6.14(c) it seems that the curves in Figure 6.14(c) are strongly related to the
derivative of the curves in Figure 6.14(a).

The lower mean size of the data graph connectivity components in Figure 6.14(e) is
consistent with their higher number in Figure 6.14(a). For the random graph connectivity
components the mean size is given by the total number of edges for a given value of 6
and hence is equal to the integrated histogram of edges in the graphs.

The seeming equality of the mean size in the connectivity components of random graphs
and data graph for high values of 6 is an effect of the low resolution of the plot in this
area, the true differences there being of the order of 10, where the data graph connectivity
components have a larger mean size than the random graph connectivity components.
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Figure 6.14: Properties of connectivity components and cliques of the data graph and
random graphs. The red curves denote the properties of the data graph and the blue curves
with various markers show the results for three realizations of random graphs. Note that the
range of 6 is different for the connectivity components and cliques since computing cliques
for smaller values of # was computationally untractable. The properties are discussed in
the text.

The mean correlation of the data connectivity components in Figure 6.14(g) is slightly
higher than that of the random graph connectivity components except for the interval 6 €
(0.6,0.7). This might be due to the fact that in this region the connectivity components
are rather small and hence a low xcorrelation value has more effect on the mean correlation
of the connectivity component.

Number, mean order, size, and correlation of the cliques

The number of random graph cliques is higher than that of data graph cliques and they
are of lower order than the data graph cliques as is expected for random graphs. The
order of the random graph cliques does not exceed the trivial order of 2 for § > 0.6.
The mean number of vertices n, and the mean number n, of edges for cliques are related
through ny, o¢ 3~ yigues 07d(c) and ne < 37 ivues (O’"‘é(c)). The mean correlation of data
cliques slightly exceeds the mean correlation of cliques from random graphs for 6 < 0.73,

the differences becoming significantly more pronounced for 6 < 0.68.

Histogram of the subgraph order

Color coded histograms of the orders of connectivity components and cliques are shown
in Figure 6.16. An interesting feature is exhibited by the connectivity components of
the data graph. For 6 > 0.43 there are essentially two large connectivity components.
One of them is stable in its order for 6 € [0.66,0.43], which means that in this range it
becomes denser and does not acquire new vertices. The voxels of the two components
for # = 0.43, i. e. just above their merging into one giant component for § < 0.42,
are shown in Figure 6.17. The stable component is the one exhibiting the second
prominent temporal process referred to in the previous paragraph. The voxels of the
two large components are frequently contiguous to each other and are grouped around
tissue boundaries. Since at tissue boundaries the signal change due to head movement is
expected to be particularly high it could be that this is the main cause for high correlation.

The order of the connectivity components of random graphs exhibit a phase transition
at § ~ 0.7 from small orders to essentially one giant component. This is consistent with
random graph theory, where for ¢ = £ with n being the graph order and p the edge
probability there is a component of the order ac with a constant a if a = 1 — e™*¢. The

relation between edge probability in random graph theory and the threshold @ is

s2(G(0))

= ) (6.21)

where G(6) is the graph extracted from the reduced correlation matrix and G(—1) is
the complete graph occuring for § = —1. Figure 6.15 shows the relation 6.21 for the



6.3. SUBGRAPHS OF G(0) AS FUNCTIONAL UNITS 85

correlation matrix used. The two bumps are due to the reduction of the correlation
matrix yielding a bimodal histogram of the correlation values.
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Figure 6.15: Threshold 6, edge probability p, and relative orders of the random graph
connectivity components in dependence of # and p, respectively.

(a) Relation between 6 and edge probability p. The values # < 0 are shown for com-
pleteness, though they were not used for graph extraction. The bumps are due to graph
reduction and the resulting bimodality of the histogram of correlation values in the reduced
correlation matrix.

(b) Nonzero histogram values of the orders of connectivity components of random graphs
as shown in Figure 6.16(b). The orders are normalized to the maximum order. The red
curve represents an interpolation of the values.

(¢) The same interpolation curve as in Figure 6.15(b) but in dependence of p instead of 6.
For p ~ 0.0098 the relative order of the connectivity component is 0.5 and for p ~ 0.0296
the relative order is 0.99. This is consistent with results from random graph theory (see
text).

The color coded histograms of the clique orders in Figure 6.16(c) and Figure 6.16(d)
show that for the data graph at high values of 6 the clique orders are mainly trivial,
the highest clique order increasing roughly linearly with decreasing #, approaching more
and more a uniform distribution. For random graphs for # > 0.71 there are only trivial
cliques. At 6 ~ 0.61 the mode of the order histogram switches from 2 to 3, the maximum
clique order does not exceed 4 for the range # > 0.6 considered here.

Trees and pseudotrees

Tree- and pseudotree structures are obtained, when relating the connectivity components
and cliques for different values of 6. This is shown in Figure 6.18. A tree structure emerges
for connectivity components which obey the inclusion relation
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Histogram of the orders of connectivity components
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Figure 6.16: Color coded histograms of the order of connectivity components and cliques.
The histograms are normalized to the total number of subgraphs for a given value of 6 such
that the color codes the relative frequency of subgraphs of a particular order. The random
graph histograms are the result of averaging over three realizations. The properties are
discussed in the text.

where S(6;) and S(f;) are connectivity components of the extracted graphs G(6;) and
G(0;), respectively. For a clique C,(6;), r € {1,..., Ny, }, the inclusion relation is

‘v’&, > 0]' ds e {1, .. .,Ngj} : C’T(Ql) - C'S(GJ) (623)

where Ny, is the number of cliques of G(6;). Thus a given clique may be contained in more
than one clique of an extraction graph of lower threshold. Therefore in general no tree
structure can be defined for cliques, however, a pseudotree structure as in Figure 6.18(b)
can be employed to visualize the clique structure for various thresholds. Note that
because of their frequently occuring overlap the branches of the pseudotree may not be
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0.595

0.549

Figure 6.17: Voxels of the two large connectivity components of which the data graph
consists for § = 0.43 before merging into one large connectivity component for 6 < 0.43.
The order of the blue connectivity component equals 85, the order of the red connectiv-
ity component equals 57. The blue connectivity component contains the stimulus related
voxels whereas the mean time course of the red connectivity component is dominated by
the second prominent temporal process also underlying the red connectivity component
in Figure 6.11(a) and (c).

independent (see caption).

Overlap matrices

For a given value of # overlap matrices of cliques are helpful to give insight to the clique
structure. Figure 6.19 shows the overlap matrices for different values of 8, thereby showing
the evolution of the chqgue structure in dependence of #. The entries of the overlap matrices
are of the form 24° S viicay > where C;(0) and Cj(0) are the ith and jth clique of G(6)
ordered by size and by mean 1ntra—correlation. The normalization makes the overlap
matrices non-symmetric. Values near one can occur only for large clique orders, their
number of vertices sampling the interval [0, 1] more closely. For # > 0.66 the overlap
matrices are characterized by a number of overlapping larger cliques and a bunch of small
cliques some of which are appended to the larger ones. For 6 < 0.64 the overlap matrix
starts to be dominated by the two large connectivity components present in the graph.
The stability of one connectivity component that was seen in Figure 6.16(a) shows up in a
cluster of cliques that becomes denser for decreasing 6. The other connectivity component
is of larger order and exhibits smaller cliques. Therefore the two connectivity components
show up as essentially separated structures in the overlap matrix. Figure 6.20 shows
the clique overlap matrices for the two large connectivity components separately. The
differences in the edge density of the connectivity components is obvious. Both overlap
matrices, however, show a complex structure of more or less intersecting cliques, reflecting
the complex edge structure of the underlying graph.

Spanning trees

Spanning trees were computed successively starting from the whole graph at # = 0 and
removing the edge with the lowest weight after each time a maximum spanning tree
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(b) Tree of random graph connectivity
components

(a) Tree of data connectivity components
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Figure 6.18: Trees and pseudotrees relating connectivity components and cliques for dif-
ferent values of . The width of the horizontal bars at the trees in (a) and (b) indicate the
order of the respective component. The tree structure of the data connectivity components
reflects the graph structure consisting of essentially two components, whereas the tree of the
random graph connectivity components exhibits branches only for very small components.
The pseudotrees in (c) and (d) relate cliques for which one clique is included in the other.
Since a given clique can be included in multiple cliques of a lower value 6 in general no
tree structure is obtained. The dotted black lines in the pseudotree of the data cliques
indicates the boundaries of the two main components. The pseudotree of the data cliques
has more merging branches than the pseudotree of the random graph cliques. Most of the
latter are trivial and scattered through the graphs and hence remain relatively stable for
varying #. The random graph pseudotree is thus almost a tree, in contrast to the data
graph pseudotree, which is clearly not a tree.

was computed. This leads to a tree structure similar to the trees of the connectivity
components, the difference, however is, that the maximum spanning tree structure reflects
the edge structure, a stable branch indicating a high number of edges with large weights.
Figure 6.21 shows the spanning tree structure of the data graph and a random graph.
The ordinate shows both, the iteration number and the corresponding minimum 6 which



6.3. SUBGRAPHS OF G(0) AS FUNCTIONAL UNITS 89

was present in the spanning tree. The random graph spanning tree structure is essentially
composed of one large and many small spanning trees whereas the spanning tree structure
of the data graph reflects the two large connectivity components which are stable with only
a few small components being separated. The left branch of the data tree also reflects
the stable connectivity component that does not acquire new vertices for decreasing 6
(cf. Figure 6.16(a)).
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Figure 6.19: Overlap matrices for various values of 8 in decreasing order. In each matrix
the clique order is increasing from left to right and from top to bottom. Further, cliques
having the same order are sorted by their mean intra correlation. A growing cluster of
largely overlapping high order cliques is apparent as an increasingly red square on the
bottom right of the matrices. Note that the number of cliques in the matrices increases for
decreasing 6, such that the overlapping cluster of overlapping may appear smaller although
it is larger in absolute size. Appart from the shrinking proportion of small cliques the overlap
matrices also exhibit the signature of the two large connectivity components discussed in
the text. For decreasing 6 a second square appears for cliques of slightly lower order. This
second square belongs to the “unstable” large connectivity component which grows for
decreasing 6 as was concluded also from Figure 6.16(a). Only in the stable connectivity
component cliques of the highest order for a given 6 occur, whereas the other connectivity
component exhibits a greater variety of clique orders, which is shown also in Figure 6.20.
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Figure 6.20: Overlap matrices of the cliques for § = 0.6 in the two large connectivity
components. The numbers at the matrices denote the first occurence of the respective
clique order in the matrix. The large cluster which was visible also in the overlap matrix
of the total graph dominates the structure of the stable connectivity component, whereas
the other shows a cluster of larger cliques as well, however less overlapping and of smaller
clique orders than the former. Further this connectivity component has a second cluster
with cliques of the order of about 6 which is loosely overlapping with the cluster of larger
cliques.
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Spanning tree structure
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(b) Spanning tree structure of the random graph.

Figure 6.21: Spanning tree structure of the data graph and the random graph. The
horizontal bars indicate the order of the spanning tree.
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6.4 Delayed functional connectivity

In the previous section we derived subgraphs from G(6) the underlying voxels of which
can be considered as functional units. Assuming the (possibly transient) existence of
functional units in the brain, it is of interest to determine their mutual temporal relation-
ships, in particular possibly causal influences of one unit on the other. Causality, however,
is hard to prove, therefore usually properties are considered which would appear in this
case and are taken as a hint of its presence. A useful property in this context is delayed
correlation. If the temporally shifted signal time course of one functional unit has a high
correlation with the signal time course of another, it can be conjectured that the two
exhibit delayed functional connectivity. This is true in general of course only for a linear
interaction between the units, which we will assume henceforth as a first approximation.

6.4.1 Delayed correlation matrices

Analogously to definition 6.15 for small values of 7 we use the definition of the delayed
correlation matrix of the data that reads

[ balnxg(o)
R(r) = (IIXa<T>||HxJ-<o>H)mxm (6.24)

with x;(7) = (zi1, -, Tix—r)? € R*¥7 and x5(0) = (zir41,.--,2ix)] € R¥7 being the
centered time course of voxel ¢ temporally shifted by an amount of 7 and the unshifted
centered time course of voxel j, respectively. Each element in R(7) is thus the sample
correlation of two random processes of sample size k — 7 (cf. paragraph on p.65).
Obviously R(7) in general is not symmetric. The diagonal is not unity as in the
undelayed case, but in most cases decreases in absolute value with increasing delay.

Figure 6.22(a) shows in color code and ordered according to the value of the most stimu-
lus related spatial PC the evolution of the diagonal elements of R(7) in dependence of 7
computed by using the correlation theorem. In Figure 6.22(b),(c), some of the autocor-
relation curves along with the respective location of the voxels in the brain are depicted.
Essentially three classes of curves occur. One is a damped oscillation corresponding to
the autocorrelation of the signal time courses of stimulus related voxels, reflecting the
periodic nature of the stimulus. The second is a curve peaked at zero where the auto-
correlation is trivially one and for values 7 > 0 it essentially fluctuates around zero. The
third curve exhibit a slow decay and an undershoot for large values of #. This class of
curves correspond to the autocorrelation of a linear signal, the undershoot being a finite
size effect which occurs when Fourier transforming a discretized linear function that is
padded with zeroes at the end. From Figure 6.22 it can be seen that only a small part of
the autocorrelation of the time courses of the data from experiment 1 is stimulus related
whereas the large majority falls to about equal parts into the other classes. The voxels
with long lasting autocorrelations are most likely located in more or less homogeneous
regions whereas the voxels the autocorrelation of which decays immediately probably are
located at tissue boundaries.
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Figure 6.22: Shifted autocorrelation in of selected voxels in dependence of 7. (a) Selected
voxels in magenta are chosen from stimulus related areas wheras voxels in cyan are randomly
chosen to display the contrast. (b) Shifted autocorrelation in dependence of 7 for the
respective voxels sets. The curves are appropriately normalized to suppress fluctuations for
large values of 7 due to small sample size. (c) Color coded autocorrelation curves for voxels
ordered according their absolute values in the most stimulus related spatial PC. See text
for futher information.

6.4.2 Hypergraphs

Since for 7 # 0 the correlation matrix R(7) is in general is not symmetric the equivalent
weighted graph is directed. Delayed functional connectivity defined on the basis of
correlation is characterized by a high undelayed (7 = 0) correlation within the functional
units and a high delayed (7 # 0) correlation between the functional units. Thus we need
information from both, R(0) and R(7 # 0). Therefore instead of using a straightforward
generalization of the definition of subgraphs as in the undelayed case we use the concept
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of hypergraphs. There are several definitions of hypergraphs. We take the following

Definition: (Hypergraph)

A hypergraph H = (Sy,Sg) is a family Sy of sets of vertices v € V and a family
SE = Sy X Sy of sets of edges e € E. The elements of Sy and Sg are called hypervertices
and hyperedges, respectively.

The relation to the correlation matrices R(0) and R(7) can be set up in defining H (6, 0,)
as a hypergraph the hypervertices of which are subgraphs of the graph G(6,) extracted
from R(0) and the hyperedges of which are the directed edges the weights in R(7) of
which exceed the threshold 6,. E. g. a clique hypergraph in this context is a hypergraph
the hypervertices of which consist in cliques. An illustration of a clique hypergraph
is given in Figure 6.23. The hypergraphs from other subgraphs, such as connectivity
components, are defined correspondingly.

Figure 6.23: Illustration of the hypergraph concept. The cliques drawn in color form the
hypervertices and the black lines between two vertices of different cliques the hyperedges.

6.4.3 De-autocorrelation

Figure 6.24 shows the “pathways” correlation between two voxels can be mediated. To
preclude that the delayed correlations were essentially due to high autocorrelations we also
de-autocorrelated the data. Thereby the autocorrelation of each time course was removed
by projecting the shifted time course vector v(7) to an orthogonal of the unshifted time
course vector v(0) by
v(0)v(0)"
vae(T) = (I OIE ) v(7) (6.25)

where vy, is the de-autocorrelated time course. In terms of Figure 6.24 by de-
autocorrelation essentially one pathway is cut constraining the correlation to be mediated
directly.
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Figure 6.24: Correlation “pathways” between two voxels. Delayed correlation between
voxel j and voxel i can occur directly (solid arrows) or be due to high non-delayed cross-
correlation and a high autocorrelation (dashed arrows). De-autocorrelation precludes the
latter by “cutting” the autocorrelation pathway C(X;(0)X;(7)).

By de-autocorrelation the absolute delayed correlations are decreased, however for de-
autocorrelated data the delayed correlation is slightly more independent from a possible
overlap of the hypervertices as they occur in clique hypergraphs. Figure 6.25 shows the
clique overlap vs. the mean delayed correlation before and after de-autocorrelation for
data from experiment 1 and # = 0.65. Before de-autocorrelation the largest delayed
correlations are exhibited by overlapping cliques whereas after de-autocorrelation the
largest delayed correlations occur for non-overlapping cliques.
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Figure 6.25: Clique overlap vs. mean delayed correlation for non-deautocorrelated and
deautocorrelated data. Note the different ranges on the abscissae. After de-autocorrelation
the maximum delayed correlation is exhibited by non-overlapping cliques. The horizontal
peaks at %, é, %, %, etc. are due to overlap values of smaller cliques, which occur more

frequently than the larger ones.
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6.4.4 Delayed intra-correlations

In addition to the delayed correlations among the voxels of the hypervertices, we con-
sidered also the delayed intra-correlations among the voxels within the hypervertices. It
turned out that for connectivity components and cliques as hypervertices the delayed
intra-correlations within a given hypervertex were essentially either all positive or all neg-
ative, even for de-autocorrelated data. The effect was strongest for large # but persisted
also for decreasing 6, even to a high degree for connectivity components. The latter is a
signature of a certain homogeneity of the connectivity components which by their weak
connectivity constraints is not obvious. Figure 6.26 shows the mean lateralized histograms
of delayed intra-connectivity within connectivity components and cliques for data from
experiment 1 and a threshold ¢ = 0.65. Further information as to how the lateralized
histogram was computed can be found in the caption.

Mean lateralized histograms of delayed intra-correlations
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(a) connectivity components (b) cliques

Figure 6.26: Mean lateralized histograms of the delayed intra-correlations in connectivity
components and cliques for de-autocorrelated data. Lateralizing in this context means
that the histogram of the delayed intra-correlations of each connectivity component or
clique which had a negative mean value was flipped around the ordinate before taking the
mean of all histograms. The reason for doing so was to check if the visual impression
that all histograms had essentially either positive or negative support was true, which
is confirmed, if the lateralized histogram has only positive support. Here in both cases
the lateralization is almost complete which is particularly surprising for the connectivity
components considering the weak connectivity constraints they are based on. Note that the
delayed correlations between all voxel pairs in a given subgraph were counted, even if in
case of the connectivity components for the given threshold they were not connected by an
edge. Further the histograms are normalized to the sum of the total number of voxel pairs
considered, which in the case of cliques amounts to a weighting by the number of cliques in
which a given voxel pair is present.
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6.4.5 Results for hypergraphs from cliques and connectivity
components

We used clique hypergraphs and connectivity component hypergraphs to determine the
delayed functional connectivity for 7 = 1. To be consistent with the threshold § = 0.65
for which the connectivity components and cliques were shown in Figure 6.12 of subsec-
tion 6.3.1 we use the same threshold in this section. Figure 6.27 shows the matrices of
the mean delayed correlations between connectivity component hypergraphs and clique
hypergraphs, respectively. The values in the matrices are are not thresholded except to
cope for the clique overlap (cf. caption). Using a threshold of 6; = 0.19 for connectiv-
ity components and of 6; = 0.35 for cliques a network structure emerges that is shown
in Figure 6.28, which reflects the temporal relationships between the functional units.

Delayed correlation structure of hypergraphs

1

(a) Connectivity component hypergraphs (b) Clique hypergraphs

4 56780 1112134

Figure 6.27: Mean delayed correlation for connectivity component and clique hyper-
graphs. The hypervertices are the connectivity components and cliques determined in sub-
section 6.3.1 and for the given value of § = 0.65 are shown in Figure 6.12. Here the mean
delayed correlation between the respective hypervertices is depicted. In (b) the delayed
correlation between overlapping cliques was set to zero. The numbers at the bottom of the
matrix indicate the first occurence of the respective clique order. Positive delayed correla-
tions are found for clique orders up to 4. The negative delayed correlations between large
cliques reflect probably the fact that they belong to different connectivity components. Note
that the delayed correlation values for the cliques are larger than the ones for connectivity
components.

6.5 Graphs from other matrices

In the previous sections we investigated functional connectivity on the basis of graphs from
correlation matrices. Instead of using correlation as a measure of functional connectivity,
we could also have used other measures as e. g. the covariance or the euclidean distance
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Figure 6.28: Network structure for connectivity component hypergraphs (a) and clique
hypergraphs (b). The clique hypergraphs are divided reflecting the two connectivity com-
ponents which are negatively correlated. A striking feature of the clique network is the
emergence of centers from or to which most of the connections point.

of the time course vectors in R* as well as information theoretic measures. Figure 6.30
shows the histograms of the correlation values, covariances and euclidean distances in
comparison. To follow the same approach as in the previous sections the covariances
and euclidean distances would be rescaled to the interval [—1, 1], however, in case of
the euclidean distances which to not reflect negative correlations or covariances, negative
values could be included by weighting the euclidean distances with the sign of the inner
product of the time course vectors. The covariances exhibit a very narrow distribution
with long tails. From the shape of the covariance histogram can be expected that the
subgraphs do not exhibit much structure for different values of 6, if the latter are small.
This expectation is indeed confirmed by the results of using rescaled covariances instead
of correlations in the graph extraction and subgraph derivation approach of the previous
sections. Graph reduction here was performed at an optimal value of § = 0.22 for the
rescaled covariances. Figure 6.29 shows the results for covariance connectivity components
and cliques for § = 0.19. Only two large connectivity components were found for § < 0.22,
which resemble the two large connectivity components found when using correlations. A
striking difference are exhibited by the covariance cliques for which the overlap matrix
in the overlapping regions is almost homogeneous. Remember that the different colors
essentially are due to the normalization of the overlap. Thus as expected the covariance
graphs are much less structured than the correlation graphs.
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Covariance connectivity components

0.256 H
K}
L]
0.245 L o®
2
o0

(a) Connectivity components overlaid

6 =0.19

mean image data from experiment 1.

45}

50|

100

the

(¢) Mean time courses of the connectivity com-

ponents.

Figure 6.29:

Covariance connectivity

components and cliques for § = 0.19 to-
gether with their mean time courses and
the overlap matrix. See text for a discus-
sion of the results shown.
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Figure 6.30: Histogramms of correlation values, covariances and euclidean distances of
data from experiment 1.
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Chapter 7

Discussion

In this thesis we have discussed data driven approaches which are only recently finding
their way into fMRI, the vast majority of the data being analyzed by conventional
stimulus- or task driven approaches. Where these methods are useful to give a hint as to
which brain areas are involved in the processing of a stimulus or the performance of a
task, they may mask by the way of modeling the stimulus time course processes that are
related to the stimulus but do not have the same time course. In contrast, data driven
methods are based on generic criteria that do not depend on the particular data set. If a
stimulus or task can be characterized by such a criterion, corresponding features will be
appear in the results. Along with the stimulus, additional processes are identifyable.

Data driven methods produce a variety of potentially interesting aspects of the data, e. g.
PCA (although being similar to correlation analysis) identifies a number of components
related to the stimulus whereas correlation analysis yields a single activity distribution
only. Hence, additional criteria need to be employed to chose those that are most
appropriate or interesting. If a stimulus has been present it provides of course the most
natural criterion. For periodical stimuli the stimulus related component can easily be
identified by the power spectrum of the respective time course. This is of course true
also for periodically changing non-stimulus-related factors, e. g. many physiological
influences. By this means we identified stimulus-related as well as non-stimulus-related
components such as blood vessels, head movements and breathing. Note, however, that
the employment of the stimulus to chose the most relevant result is not equivalent to a
stimulus driven approach. The stimulus in data driven methods is used only to chose
from a class of results, whereas in stimulus-driven methods it is used to generate the class
itself. The criteria used in the data driven approaches involve the properties of the data
including possible interactions among themselves, whereas in stimulus driven approaches
the data are compared with an external reference.

Analysis of real data must rely on background knowledge, while being based on general
criteria at the same time. In the preprocessing section we have quantified the extend
of known possible disturbances in the data, such as head movements and pulsations.
Diminishing the effect of such influences in the data makes way for the application of
more genereal approaches.
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Stimulus-driven approaches are often based on correlating the data with a fixed reference
based on the stimulus time course. We derived analytically the probability density of
the sample correlation of a finite sample with a fixed reference. For i. i. d. Gaussian
distributed samples this probability density assumes a closed form and can be used for
thresholding.

Principal and Independent Component Analysis

In this thesis we dealt with two multivariate global data driven methods, principal and
independent component analysis. Both of them can be considered from a statistical and a
geometrical point of view. In principle multivariate data can be thought of as a realization
of a probability distribution in a high-dimensional vector space. Usually, however, the
underlying probability distribution is unknown such that the only information on it is
contained in the data. In high dimensions an estimation of the underlying probability
distribution is a hopeless venture, so we must rely on the assumption that the given
data structure is typical in the sense that it occurs with high probability. Under this
assumption the geometry of the data in the high dimensional space conveys information
about the coarse structure of the probability distribution.

For finite samples the measurements can be stored in a data matrix. Due to noise, this
matrix usually will have full rank, however, the intrinsic dimension, i. e. the dimensions
into which the data extend considerably, may be smaller. The number of the relevant
dimensions in this thesis was determined by constrasting the variances occuring against
those that would be expected from random matrix theory. For approaches to determine
possible fractal dimensions, such as delayed emdedding or box-counting the sampling of
the data was too coarse.

Principal component analysis provides an orthogonal transform to the basis of the most
relevant direction in the sense of extent, or in terms of statistics, variance, of the data.
The criterion in PCA is uncorrelatedness, resulting in the uncorrelated components
making up the data. There are two manners to characterize the data - by their time
courses or by their images. Both characterizations are in a sense dual since for finite
data they span the row and column space of the data matrix, respectively. We first
performed temporal PCA as it seemed a reasonable assumption to us that the various
processes occuring during an fMRI experiment are characterized by uncorrelated time
courses. When determining the uncorrelated images with spatial PCA, however, they
were visually indistinguishable from the images corresponding to uncorrelated time
courses, except for the first image which was equivalent to the mean image. From a
formal perspective the difference between temporal and spatial PCA consists in the
centering of the data matrix. Centering the columns of the data matrix also affects
the rows and vice versa. In the data space the centered vectors are grouped around
the origin such that their sum equals zero. The vectors in the corresponding other
space (row space of the data matrix if the columns were centered, or reverse) lie on a
hyperplane orthogonal to a vector with all entries being identical. We have analytically
derived the conditions for equality of spatial and temporal PCA. Combining the
particular conditions for column and row vectors leads to multiple possibilities for equal-
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ity and provides thus an explanation for the numerically observed abundance of similarity.

Independent component analysis provides an extension of PCA in that also statistical
properties of higher than second order are involved. It provides a transform of the data
space to a basis of statistically independent directions which need not be orthogonal.
The validity of the underlying model, i. e. that the data consists of a linear superposi-
tion of statistically independent components, however, is usually impossible to know.
Therefore applying ICA will result in a basis that minimizes statistical independence
according to a certain criterion. There is a vast number of ICA algorithms using various
criteria, which often are derived from information-theoretic properties, particularly
based on the minimizations of mutual information. A more geometrical approach is
the diagonalization of sample cumulants, which we have used here, since in contrast
to the former methods it does not rely on implicit assumptions about source distributions.

In many cases we found ICA to be useful for additional separation of features that could
not be separated by PCA alone. However, the strong assumptions contained in the ICA
model are not always fulfilled and usually impossible to verify. We therefore propose
to use ICA rather with care and use additional criteria to validate the results such as
e. g. by comparing whether by ICA factors that were present in more than one PC have
merged. The merging could be quantified e. g. by the mutual inner products of the
vectors resulting from PCA and ICA.

Comparing the results of spatial and temporal ICA evidence is found that spatial ICA
performs clearly better than temporal ICA. An explanation could be that the fraction
of stimulus related images from the total number of images is larger than the fraction
of the stimulus related voxel time courses from the total number of time courses. Hence
the sampling of the image is better than the sampling of the time course. This is at
least expected in the case of a periodic stimulus and focal activation. This interpretation
could be checked by varying the number of voxels in the image and holding the number
of stimulus related voxels constant. Also in case of the cumulant based approaches a
geometrical interpretation in a similar way as was performed in the previous chapter for
temporal and spatial PCA could be developed.

Functional Connectivity and Graph theory

As a main part of this thesis we developed an approach to determine functional
connectivity in a graph theoretical framework, and applied it to data from fMRI. The
approach extracts a network of functional units in which the connections represent their
mutual temporal relationships. As paradigm for functional connectivity is used the
temporal correlation among the time courses of the voxels. A high undelayed correlation
is interpreted as the voxels reacting to a common input in a similar way, so that it
appears justified to consider them as a functional unit. A high delayed correlation is a
measure of similar, but temporally shifted behaviour and can be interpreted as a hint of
causality.
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The framework is completely data driven and does not rely on any stimulus based
previously defined regions of interest. The pairwise correlations of each two voxel time
courses constitute the correlation matrix, which from a graph theoretical point of view
can be considered as the adjacency matrix of a weighted graph, which in case of delayed
correlation matrices are directed. For undelayed correlations the correlation matrix is
symmetric with unit elements on the diagonal. Delayed correlations lead to a correlation
matrix which in general is not symmetric, the elements on the diagonal being the
delayed autocorrelations of the voxel time courses, the off-diagonal elements the delayed
cross-correlations.

Delayed connectivity among functional units can be characterized by high undelayed
intra-correlation, i. e. a high correlation among the voxel time courses within the
functional units, along with high delayed cross-correlation between the functional units.

To define functional units we analyzed the graph structure of the undelayed correlation
matrix by imposing a threshold 6 thereby extracting an unweighted undirected graph.
The subgraphs of the extracted graph were determined according to certain graph
theoretical connectivity criteria and defined as functional units. The relations among the
functional units were then determined on the basis of the delayed autocorrelation matrix.
Formally this was done by using the generalized graph concept of hypergraphs, where the
hypervertices consisted of the previously defined subgraphs and the (directed) hyperedges
of the edge-set between the vertices of the subgraphs. The hyperedges are weighted by
their delayed cross-correlation. A second threshold #; was imposed to extract the most
significant hyperedges.

Prior to the graph extraction from the undelayed correlation matrix the latter was
reduced to include only voxels that were significant in a certain sense. This so called
graph reduction was performed by contrasting various graph properties of the extracted
data graph against the same properties determined for random graphs. Analyzing these
properties in dependence of 8, a threshold 6, was derived, for which the data graph was
“least random” in the sense that its properties differed most from those of a random
graph. The threshold 6y was used to include only voxels with at least one undelayed
cross-correlation > 6, thereby reducing the size of the correlation matrix. The various
graph properties considered led to consistent thresholds 6,. The extracted graphs the
structure of which was analyzed by determining their subgraphs were then based on
the reduced correlation matrix. Apart from 6, there are essentially two parameters
involved in the presented approach, # and 6, which threshold the undelayed and delayed
correlations, respectively. Because longer delays are likely to be irrelevant in the data
sets considered we concentrated on the case 7 = 1, which for the data shown corresponds
to a shift of 2 s.

The subgraphs used to define functional units were characterized by their edge-
connectivity. The two extremal subgraph definitions in this respect, connectivity
components and cliques, which are characterized by plain and complete connectedness,
respectively, were analyzed w. r. t. their suitability as functional units. Neither of
them was optimally suited, e. g. connectivity components exhibiting structure loss for
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decreasing threshold and cliques being sensitive to noise, both extremal definitions had
beneficial properties which were usually not present in the other making the definition of
intermediate subgraphs desirable that preferably inherit the advantages of both. However
both extreme cases agreee in a number of respects upon the structural details in the data,
thus, they still provide useful insight. Analyzing the evolution of the subgraph structures
in dependence of 6 revealed that for the data considered the extracted graph is essentially
composed of two large disjoint components each of which exhibited a complex structure of
intersecting cliques, making an intermediate subgraph definition cumbersome. Additional
information, which could be provided by the delayed correlation, is hence needed to
separate intermediate subgraphs from the complex graph structure.

However, taking the time delayed correlations into account using the hypergraph
approach reveals interesting structures for both types of hypervertices, connectivity
components and cliques, as well. De-autocorrelation was used to enhance the significance
of the delayed correlation. The delayed intra-correlations of hypervertices exhibited a
strong homogeneity in that essentially all delayed intra-correlations within a hypervertex
had the same sign. This was true even for connectivity components from the weak
connectivity constraints of which that could not be expected. By thresholding the
hyperedges the network structure of the hypergraph are visualized. In doing so a striking
fact is the occurence of central cliques from or to which most of the connections point.
This indicates brain areas which can be expected to assume a central role in the ongoing
information processing or locations of systematic physiological effects.

In addition to correlations also other quantities could be used as a paradigm of functional
connectivity. Natural quantities to consider in this context are the covariance and the
euclidean distance of the time courses. The covariances depend on the absolute values
which affect the rescaling that is necessary for thresholding. The results based on the
covariance matrix were similar to the results from the correlation matrix in the voxels
that were extracted, but due to the narrow distribution of the rescaled covariance values
the corresponding graphs were less structured. As for the euclidean distance to include a
feature corresponding to negative correlations a sign could be imposed on the euclidean
distance, e. g. by including the sign of the inner product of the time courses. Also
measures including higher-order statistics are of interest, but are more promising for
larger data samples.

The presented framework can serve as a starting point for multiple generalizations, e. g.
imposing dynamics on the extracted network. Of spectial interest in this context is the
approach in [102] where networks built from anatomical connectivity matrices were func-
tionally and structurally compared with networks generated by an evolutionary approach
using various information theoretic measures. Imposing dynamics which are based on
models approximating the underlying processes, such as the hemodynamic response in
fMRI, the framework could be used to build large scale models of brain function. Also
including multiple delays with an appropriate weighting into the hyperedges could be
useful, this however being more promising for data having higher temporal resolution.

Extracting networks on the basis of hypergraphs reflecting the structure of undelayed and
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delayed correlations in the data establishes a novel approach to determine temporally
delayed functional connectivity from fMRI data. It could be argued that functional con-
nectivity reflecting interactions of areas at small time scales cannot be resolved by present
fMRI devices, but will appear as coactivation. This being undoubtedly true, there are
however examples where causal interactions can be expected to occur at timescales of sec-
onds such as e. g. on the emergence of 3-D vision when looking at stereoscopic images or
at higher cognitive tasks such as mental computations. The presented approach is quite
general and therefore applicable also to data from other imaging modalities, particularly
for such with high temporal resolution as well, allowing to detect functional connectivity
also on short time scales, such as e. g. in EEG and MEG.



Appendix A

Mapping probability densities

When a function is applied to a random variable it is of interest how the corresponding
probability density is mapped. An application related to this problem is histogram
equalization where the goal is to find a function which makes the mapped probability
density of a random variable as close as possible to a uniform density. In this section the
rules relating the probability density of the mapped random variable to the probability
density of the original random variable are derived for the one dimensional case as well
as for random vectors of higher dimensions.

For the one dimensional case the relation between original and mapped probability density

is proven in [91] to be
-1

df

L n) (A1)

py(f(2)) =

where f : R — R, y = f(x) is a strictly monotone function and p,, p, are the probability
densities of x and y, respectively. Equation A.1 can be generalized to piecewise strictly
monotone functions as well (cf. [91]).

Proceeding to higher dimensions let f : RY > U — R be a function which maps a
random vector x € U to a vector y € RM. Since x is a random vector so is y. We wish
to determine the probability density py(y) in terms of the probability density px(x). We
first state the results in the cases N > M, N = M and N < M as well as for the special
case 1 = M < N which is of importance in section A.1. Then a proof is given for the
result in the case N > M which can be easily extended to include the other cases as well.
In any case we assume that f is invertible.

Case N > M:
p) = [ pelole) ] do (A2)
g(z)
Here z = (z1,...,ZN_a,¥Y1,---,yn) and g(z) is the inverse mapping f~'(y) resolved
with respect to {Zn_pr41,- -, Zn}.|Jgz)| is the Jacobian of g(z).
Case N = M:

py(y) = px(£(y)) 1J¢ ' (y)] (A.3)
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Equation A.3 implies that coordinate transforms for which |J;'(y)| = 1, as e. g.
orthogonal transforms, leave the probability densities invariant.

Case N < M:

This case can be solved by interchanging the parts of x and y in Equation A.2. This
leaves us with an integral equation for py,. However this case is not very common in
practical applications and is mentioned here only for the sake of completeness.

Case ]l = M < N:

99 _
n) = [ aslata) 52 @ (A4)
9(z) Yy
where z = (x1,...,7x_1,y) and ¢(z) is the inverse mapping f~!(y) resolved with respect

to zy (again it is assumed that f is such that this is possible).
Proof of Equation A.2:

Let G C RM be the range of f. Obviously we have

/G p) d = [ pel) da¥ =1 (A5)

U

Find an appropriate coordinate transform such that the integral over U in Equation A.5
can be splitted into two integrals one of which is over G. Consider

fx)=y (A.6)

for a fixed vector of y = (y1, .. ., Y ). The vectors x for which Equation A.6 hold represent
a subset of U and we have U = |J f7!(y). Then we can write

Lomwrat=[ [ o) el d=" (A7)

where gy (z) is a parametrization of the set £~'(y) C U for fixed y. As we assumed that f
is invertible we can w. r. g. solve Equation A.6 w. r. t. the set {xnx_pr41,..., 2N} leaving
us with the following coordinate transform g(z)

(A.8)

where z = (21, ..., TN_ar, Y1, - - -, yn)? and 4(z) is the solution of f(x) =y w. r. t. x; for
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N — M +1<i< N. The Jacobian matrix of g in Equation A.8 is

1 o . . . . . . 0 0 oL 0
1
. 1 0 ) .

Jg = 0 .. ... 1 0 0 (A.9)
OrN_nm11(2) Orny_m11(2) Orn_my1(z) OrN_r41(2)
Pewomir oo D B o T

Oz N (z) Oz N (2z) Oz (z) Oz (z)
Don et R Brn T oL Duar
M

the determinant of which equals the determinant of the lower right submatrix consisting
of the last M rows and columns of Jg indicated by the curly braces.

Substituting Equation A.8 into Equation A.7 yields

/G py(y) dy" = /G / pelg(2)) [Tg| dz M dy™ (A.10)

and hence

pyly) = / pel9(2)) Tat] dz (A11)

z

A.1 The probability density of the sample correlation

The sample correlation ¢ between a random vector x and a fixed vector y can be considered
as the image of a function of the random vector x which is describing a surface in the
N-dimensional real space (we identify the function ¢ with its image ¢(x) if there is no
danger of confusion):

c: RN — -1,1] CR
Tx Zivzl YiTi (A12)

T 5 y =
(17 ,N) Iy [I]] N 2 N 2%
( i=1Y; z':l“*’z')

Here as in Equation 3.5 is assumed that x and y are centered

S wi=> yi=0 (A.13)

i=1 =1

This constraint results in a loss of one dimension the effects of which are examined in sec-
tion 4.1 in chapter 4. Equation A.13 constraints the surface to lie in an (N —1)-dimensional
hyperplane of RY. With the appropriate orthogonal transform we can write x and y as
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(N — 1)-dimensional vectors. This leaves the probability density py(x) and hence also
pe(c) invariant as is shown in Appendix A, Equation A.3. In the following we assume that
this transformation has been applied. Now let A be an orthogonal matrix which maps
y onto the (N — 1)-st basis vector. We thus have y = Ay = (0,...,0,|ly||)". Then ¢
simplifies to

ZN—
c= (A.14)
\/ 2R+ $?
where z = (21,...,2y_1)7 = Ax and s* = 25\22 z?. Note that in the new coordinate

frame c is not the sample correlation between z and ¥ since they are not centered any more.
Again as A is orthogonal, it leaves the probability densities px(x) and p.(c) unaffected.
In the previous section was shown how probability densities are transformed when their
corresponding random vectors are mapped by invertible functions. Equation A.14 as a
function of zx_; is monotone and therefore can be inverted leading to

52 2
1—c2 ¢ Z 0 : (9ZN,1 s2
zy-1(c) = s with 2t =\ Ty (A.15)

e ¢< 0

Equation A.4 represents the general formula for the transformed probability density for a
function like ¢ given by Equation A.12. Inserting Equation A.15 into Equation A.4 thus
yields the probability density p.(c) in dependence of the probability density px(z)

(A.16)

1 o0 oo
pC(C) = T 3 / T / px(Zl, <oy ZN-2, ZN71(C))
(]- - 02)2 —00 —00
N-2

In the following subsection we will explicitly consider the dependence of p.(c) on the
sample size N for i. i. d. gaussian samples.

Independent identically Gaussian distributed samples

In this subsection we derive the sample size dependence of the correlation probability den-
sity for i. i. d. gaussian distributed samples. Consider N identically gaussian distributed
samples with zero mean and variance 2. In this case Equation A.16 reads

pe(c) = UN(_217T()1__202)§ Q’E

Since the distribution is spherical the integral is solved most easily by changing to gener-
alized spherical coordinates (cf. section A.2). Using these Equation A.17 becomes

oN=1(1 = ¢2)

(2m)~"F e N, T [k
pe(c) = 3 e2o2 (=) rN 72 dr H sin" " ¥ dv (A.18)
270 k=2 V0
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This holds for N > 4. The cases N < 4 are dealt with in Equation A.26-Equation A.28.

In the following we derive a simplified expression for Equation A.18. Integrating over r
we get ([10])
o= _ o N—-1
/ 22 (=) pN=2 gp = 275 ~1gN-1 (1— 02))Tl I'(——) (A.19)
0

where T refers to the Gamma function. The integrals over sin*~! ¥ are ([57])

/W sin® 19 di) B(%, §> (A.20)
where (2 T
B(z,y) = % (A.21)

refers to the Beta function alias Euler’s integral of the first kind. The explicit formula
for Equation A.20 reads

4 k even
/ sin® =1 9 di) = o) (A.22)
~— 7 k odd
0 21 (B2
Multiplying Equation A.22 from for £ = 2 to N — 3 we get
N—-4
N-3 n . —(E ' N even
H / Sin -1 79145 dﬁk - N274 .N—5 N-—5 (A23)
5 Jo O v odd
k=2 Gy 0
Inserting Equation A.19 and Equation A.23 into Equation A.18 yields
N Myt
or) =z +1 - _ N1 N even
pele) = 20 ey 2N (A=) T I(R) 0 LT s (A2Y)
11 _ 22 N_5y -
N (1 —c . N odd
qulat;;l A.19 Equatitjn A.23
which can be simplified to the final result for N > 4
(N=3)! N
— even
_ N—-4 N—
pelc) = (1= - (](V : )) 2((; ) (A.25)
2N=5 (N—3) ((X=2 )1
SN N odd

w (N—4)!

where the terms on the right of the curly brace are normalization factors ensuring that
the integral over p.(c) equals unity.

The cases N < 4:
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N = 3:

For N = 3 we have N — 2 = 1 independent coordinates. In this case Equation A.17 reads

(271_)71 /oo 222
(c) = ———— 202 (=c?) (/2 dz
) = i ag ) va
1
= — A.26
TV1—¢c? ( )
N =2:
For N = 2 the sample correlation reduces to
c= % = sign(z) for z #0 (A.27)
For any symmetric probability density of z this results in
1
pe(c) == (0(c+ 1)+ d(c—1)) (A.28)

2
N =1:

For N =1 centering makes all random variables equal to zero for which no correlation is
defined.

The shape of p.(c) exhibits a “phase transition” at N = 4. For N € {2, 3} the probability
density p.(c) is strongly concentrated on ¢ = 1 and ¢ = —1, in fact it is infinite at these
points. For N = 4 we have a uniform density p.(c) whilst for N > 4, p.(c) is unimodal
with its mode at zero becoming sharper and sharper for increasing N. An illustration
of p.(¢) in dependence of N for i. 1. d. gaussian samples is given in Figure 3.5 in section 3.2.

Another interesting feature of p.(c) is that it is independent of the variance o2 and also
independent of the original fixed vector y with which the random vector x was correlated.

A.2 Generalized spherical coordinates

In three dimensions changing from cartesian to spherical coordinates involves the well
known equations

Ty = 71 cos¢ sinv
Ty = rsing sind (A.29)
T3 = 71 cosv

with the ranges r € [0,00), ¢ € [—m, ), and ¥ € [0,7). Going on with the principle
underlying the construction of spherical coordinates for three dimensions we arrive at the
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generalized spherical coordinates for N dimensions

N-1
ry = r sin ¥y,
k=1
N-1
v = rcosty [ sinvy 2<i<N-1 (A.30)
k=i
rny = 71 cosIn_

where for consistency the parts of ; and x5 in 3-dimensional spherical coordinates were
interchanged and the replacements ¢ = ¢; and ¥ = 1 made. The ranges here are
r € [0,00), ¥ € [-m,m), and ¥; € [0,7) for 2 < i < N — 1. The Jacobian matrix for the
transform to spherical coordinates in matrix form reads

Hfj:_ll sin ¥y, r cos Hff:_; sind, . . . . . . r cosUn_1 Hfj:_f sin ¥y,
cos Hg;zl sin Uy, —r H,i\:ll sin Uy, rcosIy_; costh H]k\f:? sin Uy,
cos Uy Hiv:_; sin Uy, 0 . rcosVn_; cos sy Hg:_; sin Uy,

J =
cosIn_1 0 . . 0 —r sindy_;
(A.31)
The determinant of J is
N-1
TN = (=N T sin® o, (A.32)
k=2

Proof of Equation A.32:
Equation A.32 is valid for N € {1,2,3}. For N = 2 the coordinates are known as polar
coordinates and for N = 3 as spherical coordinates. The proof for N > 3 is by induction.
We thus want to show that

TM)| = —psin™¥29y_y [JE-Y) (A.33)

Using the Laplace expansion along the last row we get

TN = (=1)N cos Iy [T0| — r sin 9y [JN-D)| (A.34)
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where we used that det(AA) = AV det(A) for a N x N matrix A and A € R. For
Equation A.33 to hold the following equality needs to be shown

|J§§1)| = (=) sinV 29y cosIy_y | TNTY)| (A.35)

where n € Z. The following two relations can be seen from Equation A.31 or shown
formally from Equation A.9:

(J%))ﬂvq =7 cosIy_1 (JN7V);, I<j<N-1 (A.36)
and
AWk =sinn (AN V) 1<j<N-1, 1<k<N-2  (A37)

That is the last row of Jg\l,\? equals the first row of J™N-1 multiplied by the factor
r costny_1 and the remainders of the respective matrices are equal up to the factor
sin ¥y_1. These factors are such that Equation A.35 holds true for n = —1.
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Equality of temporal and spatial
PCA

B.1 Equality of the time courses

In this section we provide detailed conditions for equality of the time courses of temporal
and spatial PCA.

Let C = X”X # 0 have the eigenvalues d; > O withi € {1,...,k}. 2" = (L 3" | x),
is the mean time course of the data, i. e. the mean row of X. Py is the projection 4.12
which projects the row vectors of X to the subspace orthogonal to 1. Further, y; are
the inner products of 1 = (1,...,1)T with the eigenvectors of C and S¢ is the sum of
all elements of C. Finally, if 1x and PyZ are eigenvectors of C, then d; and d, denote

the respective eigenvalues.

PRrROPOSITION: The time courses obtained by temporal and spatial PCA are equal, iff
any of the following conditions hold:

(A). PyZ is an eigenvector of C, 1y is contained in a subspace spanned by eigenvectors
of C with eigenvalues being either 0 or STC, and
(a) z L 1y or

(b) dy = 1(Sc = iy diy?)-
(B). Z || 1x and 1y is an eigenvector of C.

Before proving the proposition a few remarks are in order. If the subspace mentioned
in (A) is one-dimensional, i. e. if 1y is itself an eigenvector, the requirements are more
specifically that d; =0 and Z L 1x or d, = Sf, or alternatively that d; = STC and z 1 1y
or d, = 0. Further, note that in (B) there are no constraints on the eigenvalues such
that (B) can be checked much easier than (A). In particular for the data sets used here,
spatial and temporal PCA produce similar time courses because (B) is approximately
satisfied, which can be considered to reflect a homogeneity property of the data. On the

other hand, condition (Ab) appears to be a rather unlikely special case and (Aa) will not
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be relevant for the present data set, because some coordinates of Z would be negative if
this case applied.

The conditions in the proposition are sufficient and necessary, i. e. the equality of the
two sets of time courses is equivalent to the disjunction of the conditions. The proof will
proceed as follows. First the obvious necessary and sufficient condition for equality of the
time courses B.1 will be condensed into the simpler condition B.9. Then by a lemma a
further reduction is achieved, cf. Equation B.10, before necessity and sufficieny are shown
for Equation B.9.

ProoF: The PC time courses are equal (i. e. Vz = Vy in section 4.1) if and only if

[Cy, Cy] =0 (B.1)
where [, ] is the commutator and
cy = 7'z
Equatién 4.11 PkXTXPk
Equation 4.12 1 1
e g — S L) XX (e — 1)
1 1
= C— Elkﬁc - EC1k1§ + |18]1* 151 (B.2)
Cy = Y'Y
Equati:on 4.11 XTPmX
uation 4.1% 1
Equation 4.12 X7 (I — —~1,017)X
m
= C-mzz" (B.3)

where 5 = (1 Zle i), ., is the mean image (mean column of X). [[5[|* can be written

as
k k
S,
LD ST SEUEES 30 ) SR (B4

=1 = =1 t=1 =1

Since C(Zt) and Cy are both symmetric, condition B.1 is equivalent to the condition that
the product CZCy is symmetric as well: If the matrices A and B are symmetric, we have
(AB)T BTAT BA and hence AB = BA < (AB)” = AB . Using Equation B.2
and Equation B.3 the symmetry condition reads

1 1 Se
Cy/Cy = (C— LI(C- EClle o li) (C —mzz")

1 Sc

_ 2 T 2 T T

= C —§1k1kcj k(31k1 C+ E “11LC

symm. a. rzq Sy;nrm ar. eq.
S,
—m Czz’ + ? 1,17 Czz" A " c1,17z2" —m k—01k1k“T/
(1) a.r.eq. (2) a.r.eq.

= (CYcy)” (B.5)
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Here a. r. eq. stands for “all rows equal” which is a property of the so labeled matrices.
Obviously the sum of a. r. eq. matrices is an a. r. eq. matrix as well and can be symmetric
only if it is constant, i. e. the matrix elements are all equal, which is meant henceforth
when referring to a matrix as being constant. A k x k matrix with identical rows can
be written as 1xa’ where a is the row vector of the a. r. eq. matrix. For the a. r. eq.
matrices in Equation B.5 the corresponding vector a reads

1
a= ﬁ(c —mzz" )(Scl — kC)1y (B.6)

Furthermore the sum of (1) and (2) can be written as

(1) +((2) = bz' (B.7)
b = —mCPyz (B.8)

where, again, Pyz is the part of z which is orthogonal to 1.
Thus, Equation B.1 can be replaced by the equivalent condition

bz’ + 1,a’ =zb’ + ali (B.9)
A property of the set of the four vectors occurring in Equation B.9 is stated in the following

LEMMA: Equation B.9 is equivalent to the relation
(z,a) = (b,1x) K (B.10)

where K is a symmetric 2 X 2 matrix and (Z, a) and (b, lk) are the k£ x 2 matrices with
the columns z, a and b, 1y, respectively.

Note that condition B.10 is equivalent to the equality of the signed areas of the parallel-
ograms spanned by a and 1, and b and z, respectively, as this relates to a conservation
law of symmetric transformations.

PROOF OF THE LEMMA:  First we show that Equation B.9 implies span(b,1y) =
span(z,a), i. e. b and 1y span the same subspace as Z and a. Then it is demonstrated how
Equation B.10 follows from Equation B.9 and finally the reverse implication is proven.
For the span of two pairs of vectors b, 1 € R¥ and z,a € R*, k > 4, with b }f 1. and
Z Jf a, there are the following possibilities

(a). span(b,1x) N span(z,a) = {0}.
(b). span(b, 1y) N span(z,a) = span(v) for a vector v € R*.
(c). span(b,1y) = span(z,a).

The matrix bz? + 1xa” in Equation B.9 projects onto the span of b and 1. Hence
the rank of bz” + 1,a’ is < 2. The same holds true for the rank of zb” + alg, which
projects onto the span of zZ and a. It is easy to see that bz’ + 1,a’ has rank 1iff b || 1,
which is true m. m. also for zb” + al]. In the case of rank 1 (c) is equivalent to (b)
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and holds trivially with K in Equation B.10 being a scalar. Now w. r. g. let us assume
rank(bz’ + 1a”) = rank(zb” + all) = 2 and write the vectors a and Z in terms of b
and 1y as

a = ab+asl+at (B.12)

where a*+, zt | span(b, 1)) are the parts orthogonal to the span of b and 1. In matrix
form Equation B.11 and Equation B.12 read

(z,a) = (b, 1x) K+ (z",a") (B.13)
where
f1 ax
K= B.14
<ﬂ2 Qg ( )
Multiplying both sides of Equation B.9 from the right by an arbitrary vector w = z1b +
291y + wt and writing the result in a similar form as Equation B.13 yields

(b, 1) (Ax +x") = (z,a)Bx (B.15)

where x = (21, 25)T and

_ <Z,b> <Zalk>
A - <<a’b> <a71k>) (B.16)

b (b
B = <<1k,b> ||1k||2) (B.17)

xt = <<zi’wii) (B.18)

Inserting Equations B.11 and B.12 into Equation B.16 yields
A=K'B (B.19)
which by inserting Equations B.19 and B.13 into Equation B.15 leads to the result
(b, 1) (K"Bx + x*) = (b, 1)) KBx + (z",a")Bx (B.20)

Since the vectors on the left hand side are contained in span(b,1y), from the choice of
z- and a* to be perpendicular to b and 1y it must be

(z*,a")Bx =0 (B.21)

which is fulfilled if
[11i[[?[[b] = [(b, 1,0)]? (B.22)

(z",a") = (0,0) (B.23)
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Equation B.22 is equivalent to b || 1y and rank(bz” + 1,a”)= 1. Since we assumed
rank(bz? + 1al)= 2, Equation B.23 remains and, hence, from this and Equation B.21,

x =0 (B.24)

Inserting Equation B.24 and Equation B.23 into Equation B.20 leads to the requirement
that
K =K” (B.25)

i. e. K must be symmetric. In the following we will write
K — (5 7) (B.26)
v o«

For the reverse implication of the lemma, we start from Equation B.10 with symmetric
K, i. e. we have

Z = Bb+lk (B.27)
a = b+ aly (B.28)

Multiplying Equation B.27 from the right by b? and the transpose of Equation B.27 from
the left by b we obtain

zb” = pbb? + 41 b" (B.29)
bz’ = pbb? + b1’ (B.30)

such that
zb” — bz’ = y(1,b" — b1, ") (B.31)

Analogously, we find from Equation B.28
lkaT — alkT = ’7(1ka - b].kT) (B32)
Condition B.9 then follows by equating Equation B.31 and Equation B.32 .
|

PROOF OF THE PROPOSITION (NECESSITY): We now show that the above conditions (A)
and (B) can be obtained from Equation B.10.

In the following we will need the basic fact that rescaling a matrix C and adding a multiple
of T does not change the eigenvectors of C. Namely, let C = VDV? be the EVD of C
then V p, 0 € R, (pC — ol) = V(pD + oI)VT is the EVD of (pC + ol). Note that this
assertion can be proven analogously for nonsymmetric matrices and for p, o € C.

As was shown in the above lemma the relation between b, 1 and Zz, a can be written as

z = (b4l (B.33)
a = b+ aly (B.34)

where the scalars 3, v and « are as in Equation B.26. Further we can write

zZ = Pyz + puly (B.35)
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with pu = <z’;k>. We restate the equations for b and a, Equation B.6 and Equation B.8:
_ C 77" )(Sc1 C
a = ﬁ( —mzz )(Sclk — kC)1x
b = —mCPyz

Inserting Equation B.6, Equation B.8, and Equation B.35 into the Equations B.33
and B.34 yields

(v — ) lx = (mBC +Iy)Pyz (B.36)
1

[@C(Scﬂk — kC) — (pu + a)li] 1k = (plk — myC)Pyz (B.37)

where we used the abbreviation p = mz” (—2C + 2¢I) 1.

We first show that we must have v = p. If PxZ = 0 this is obvious. Thus let us assume
Pz # 0. Under the assumption that v # p inserting Equation B.36 into Equation B.37
yields

1 .1
According to the above notice this can hold only if PyZ is an eigenvector of C or if 30 > 0
so that C = ol. In these cases Equation B.36 reads

(v — )1k = (mBd, + 1)PiZ (B.39)

where d, is the eigenvalue to PxZ or d, = o as above. For nonzero scalar factors (v — )
and (mpBd, + 1) Equation B.39 implies 1y || PxZz which cannot hold for Pz # 0 since
the matrix Py projects onto the subspace orthogonal to 1x. Therefore in any case v = p,
thus Equation B.36 becomes

0= (mﬁC + Hk)PkZ (B40)

Equation B.40 requires any of the following three statements to hold:
I. PyZz is an eigenvector of C.
II. Pz =0.
III. C = ol with 8 = —mo~ L.

[T can be checked directly with Equation B.5 which is satisfied in this case if 1y and z
are orthogonal or parallel. Note that the second part of III follows from the first and is
no additional requirement. Thus III produces special cases of the first two conditions.
A third possibility, namely that 2k = SmS¢, can be realized only for (m3)~! = 0 since
Sc = k/Bm. C = 0 was excluded, however, in the assumptions of the proposition.

The proof of necessity is completed by inserting I-II into Equation B.37 which reveals the
following additional constraints which will be derived below.

(A-I) (a) 1k is an eigenvector of C to the eigenvalue d; = 3¢ and furthermore y = 0
ord,=0. Or
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(b) 1k is an eigenvector of C to the eigenvalue d; = 0 and furthermore = 0
or d, = STC Or

(c) 1k is contained in a subspace spanned by eigenvectors to eigenvalues €
{0, 22} and furthermore 1 = 0 or d, = +(S¢c — Sy diy?)

(A-II) 1 is an eigenvector of C. In this case there are no constraints of the corre-
sponding eigenvalue.

(A-Ia) and (A-Ib) are special cases of (A-Ic) and will, hence, not be further considered.
(A-Ic) together with I and (A-II) together with IT make up the two conditions of the
proposition. It remains to show that (A-Ic) and (A-II) follow from I and II.

(A-I). If PyZ is an eigenvector of C, Equation B.37 can be written as

1

[EC(SCHk — kC) — (pp + o) Ik|1x = (p — mud,)PyZ (B.41)

where d, is the eigenvalue to Pyz. Inserting the EVD C = VDV into Equa-
tion B.41 and multiplying by VT from the left yields

Aw =0 (B.42)

with
A = %D(Scﬂk — kD) — (pp + o)y (B.43)
w o= y-— (/)_A—WHP@H e (B.44)

where e, = (0,...,0,1,0,...,0)7, y = (yZ )kxl = VT1,, and A is a diagonal matrix
P

with the diagonal elements

1

di(Sc — kd;) — (pp + a) (B.45)
fori e {1,...,k}. Note that y, = 0 because 1x L PyZ and we assumed that PyZ is
an eigenvector of C. A necessary and sufficient condition for Equation B.42 is that
both

(p — mudy)|[Piz] = 0 (B.46)

and
Ji, i #p, with A=0 (B.47)

hold. It is easy to see that Equation B.46 must hold independently of the value of
Ap, thus also in case of A\, = 0. However if A\, = 0 is the only zero diagonal element
of A then Ay = (p — mud,)||PxZ||ep must hold for item B.41 to be true, but since
yp=0and 3i#p : y; # 0 and (ep)i = 0 Vi # p this is impossible to fulfill. Hence
the requirement B.47 is needed.
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The number of nonzero elements in y determines the number of diagonal elements
of A that must be zero. This leads to a system of quadratic equations of the
form B.45 for the eigenvalues d; of C. Since the equations are quadratic there
are two possible solutions for each d; for which A; = 0 should hold, namely
d; = $(Sc £ /5% —4(a— pp)). Note that p and « depend on the d; as well.
Taking this into account the possible solutions become d; = 0 and d; = STC which
is shown below. Since the number of nonzero elements in y equal the number of
eigenvectors that are needed to cast 1y this proves the first part of A-Ic. The
second part of A-Ic follows from item B.46.

Let us now prove that A\; = 0 resolved w. r. t. d; has only the two solutions d; = 0
or d; = STC We can express a and p in terms of y as

1,8 i 1< mS
_ C 2 2 2 2 C 2
@ = E(ﬁ +mu”) ?:1 diy; — 72 ?:1 diyy — M (B.48)
m k
po= (Sc=>_ diyt) (B.49)
=1

Inserting Equation B.48 and Equation B.49 into item B.45 and setting A\; = 0 yields

1
0 = 5di(Sc—kd;) k32 dy (S — kdy) y? (B.50)
=1

Obviously d; = 0 and d; = S—C are solutions of Equation B.50 also in the case
where the latter is a system of equatlons and the d; assume one of the two possible
values € {0, STC}, but not necessarily all d; the same. It can be proven that {0, STC}
are the only possible solutions of Equation B.50 by considering N equations of the
form Equation B.50 as a matrix equation

Ar=0 (B.51)

with the matrix A = (5 (d;;— ky?))NxN and the vector r = (d;(Sc —kd;) ) . Using
the Laplace expansion and complete induction leads to

det A = Hy”2) £0 (B.52)

(L

and hence r = 0 is the only solution of item B.51, thus it must be d; € {0, STC} for
all ¢ for which A\; = 0 must hold.

Inserting Equation B.49 into item B.46 yields

=z Z dy? —d,) [|Pwz| =0 (B.53)
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and since we assumed ||Pyz|| # 0 we must have u = 0 or
1 k
— } : 2
dp = E (SC - 2 dl yl) (B54)

(A-II). follows immediately from Equation B.37 by inserting II. Because the right hand
side of Equation B.37 is zero, 1y is an eigenvector of C. Inserting Equation B.48
and Equation B.49 we further find that the eigenvalue d; equals STC, which follows
already from z being parallel to 1y, i. e. no further restriction to C is imposed.

PROOF OF THE PROPOSITION (SUFFICIENCY):  For the proof of the sufficiency of
the conditions we can check directly that Equation B.5 holds. In case I, if Z = Pyz
is an eigenvector of C, the first two “a. r. eq”’-terms cancel out because of the spe-
cific eigenvalues of the subspace which contains 1y, while the remaining terms are
symmetric or even zero. If the condition (Ab) holds the first two of the not obvi-
ously symmetric terms in Equation B.5 cancel out as before. Out of those remain-
ing, namely m (—C + ;11" C + CLi 1" — i—g1k1kT) zz! the second and the fourth
cancel in the same way, while the other two sum up to zero because of the condition
d, = £(Sc — SO, dyy?). In case II, where Z is parallel to 1, and both are eigenvectors
of C it is obvious that all terms in Equation B.5 are symmetric.

B.2 Equality of the eigenimages

Since the interpretation of the rows of X as time courses was not explicitely used in the
above considerations, we may state conditions for images analogously as a corollary of
the proposition in the previous section. Although for the dimensionalities occurring in
the presently analyzed data sets, C = XX can be assumed to have full rank %k, such an
assumption has not been used in the proof. Therefore, the fact that the matrix K = XX”
is m x m, but has the same rank as C is not critical. Thus we can adapt the conditions
of the proposition as follows.

(C). P,s is an eigenvector of K, 1, is contained in a subspace spanned by eigenvectors
of K with eigenvalues being either 0 or SFK, and

(a) s L1, or
(b) dX = L(Sk — X7, dff yf?).

(D). s || 1 and 1, is an eigenvector of K.

where df is an eigenvalue of K, y/ denotes the scalar product of 1,, and the I-th eigen-

vector of K, and 87 = (% Zle ZL‘Z'T>.
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B.3 Equality of both time courses and images

It remains to be studied what consequences follow from the requirement that both time
courses and images obtained as eigenvectors by temporal and spatial PCA being equal.
Concerning the propositions in section B.1 and section B.2 both [(A) V (B)] and [(C) V
(D)] must be satisfied.

Obviously, the sums of the components of Z and S, respectively, are related via the sum
over all entries of X

m

1 Tem . 1T
SX:—%;;:UU—E;%—EZ& (B55)

i=1

Therefore, the criteria zZ || 1x and § L 1,, are incompatible unless Sy = 0, since for
S 1 1, the components of § sum up to zero. The same holds for s || 1, and z L 1.

In the following we show that both the criteria (Aa) and (Ca) as well as (B) and (D) are
in fact equivalent. If, according to (B) both Z || 1x and 1y is eigenvector of C we find
that, because of X1 = 8, 1y is an eigenvector of C iff § is an eigenvector of K. Since
Z || 1x was incompatible with § L 1,,, (B) is equivalent to (D). Equivalently, because
XT1,, = 7, 1,, is an eigenvector of K, iff Z is an eigenvector of C, thus (Aa) and (Ca)
are equivalent.

Finally we do not assume that z and 1y are parallel or orthogonal, i. e. we consider
condition (Ab). We first note that if Pyz is an eigenvector of C then PX1,, is an
eigenvector of K with eigenvalue d,, where PXK = K — %ééT. In the same way, the
representation of 1y in terms of the eigenvalues of C transfers to a decomposition of
§ which together with the condition on d, in (Ab) implies that the eigenvalues of K

obey (Cb). Combining these results it can be easily shown that P,S is an eigenvector of K.

Thus we have shown that for the cases (Aa) and (Ca) as well as for (B) and (D) the
equality of the eigenimages for spatial and temporal PCA implies the equality of the
eigen time courses and vice versa.



Appendix C

Correlation graphs

Correlation graphs occur in chapter 6, where correlation matrices are identified with adja-
cency matrices of weighted graphs, from which again by thresholding unweighted graphs
are extracted. To analyze the significance of properties of the extracted graphs it would
be of particular interest to contrast them against properties of correlation graphs, which
are extracted from a random permutation of the elements of the correlation matrix. How-
ever, not all random permutations conserve the property of being a correlation matrix.
To estimate the proportion correlation graphs from the number of graphs from random
permutations is cumbersome. In this section we present a short sketch of the steps to
determine the number of correlation graphs from a given distribution of correlation values.

First, it is convenient to map the correlation values into euclidean distances. This is
possible with the interpretation of the correlation as the inner product of centered and
normalized vectors. These vectors lie on a k — 1-dimensional hypersphere and form the
edges of a tetrahedron. Basic geometrical considerations then give the relation

d=+/2(1-c) (C.1)

where d € [0,2] is the euclidean distance and ¢ € [—1,1] is the correlation value. The
problem of how many permutations of elements of a given correlation matrix result in a
correlation matrix again is thus equivalent to the question of how many high-dimensional
tetrahedra can be built of a set of given distances d,;, 4,5 € {1,...,k}. Thereby we
are not interested in isomorphic tetrahedra, since they are equivalent to isomorphic
correlation graphs, which are not useful as contrasts. The maximum possible number of
permutations leading to non-isomorphic tetrahedra is ((’;))' /k!. The question is now, for
a given distribution of d;;, how many permutations lead again to tetrahedra.

The Cayley-Menger determinant [100]

0 1 1 1 1

10 d%2 d%:a d%k

) (_1)k 1 di, 0 diy - d3;
V dii) = . C.2
1 () =1 ((k—1)))? | 1 diz di (©2)

1 dlk d2k T dkfl,k 0
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allows to calculate the squared volume of a (k — 1)-dimensional tetrahedron from the
mutual distances d;; of its k corner points. Heron’s formula appears as special case for
k = 3. The result of Equation C.2 is negative if any of the distances do not obey the
triangular equation d;; + dj, > dip,, i.e. when no volume can be defined by the respective
distances. Thus the number of tetrahedra that can be built by permutation is equal
to the number of permutations for which the Cayley-Menger determinant is positive.
Unless Equation C.2 is not significantly simplified, this is only a restatement of the
problem, however, it could be used to determine a contrast correlation graph numerically,
by permuting the elements of the correlation matrix and checking, if the corresponding
Cayley-Menger matrix is positive.

Suppose that we are given a sample d;; for which Equation C.2 is positive. Then for each
triple of distances, d;, d;,, d;j, two of them being in the same row, and two of them being
in the same column of the Cayley-Menger matrix, the triangular inequality must hold,
i. e. we must have

|diy — djr| < dij < dir + dj, (C.3)

The requirement of the particular arrangement of the triple of distances in the Cayley-
Menger matrix ensures that there are three corners to which the distances belong.

Each permutation can be written in terms of successive transpositions. From Equation C.3
we know that, if Equation C.2 is positive, two arbitrary distances dq, and d.s lie in the
intervals

dab S [Mabamab] = dab .
dey € [Mep,mes] = Iy (C.5)

with My, = max{|d,, — dp-|} and mgy, = min{d,, + dp-} and the same notations m. m.

for dey. If dap,dey € Iy N Ies, the triangle inequalities hold also after transposition.

If Vi,j : diy € [M,m] A [M,m] # 0 with M = m%x{Mab} and m = rnibn{mab}, all

transpositions and hence permutations lead again to tetrahedra. Let d = min{d;;} and
Zhj

D = max{d,;}. Then
i.j

D—-d<M and m < 2d (C.6)
From [M, m] # () we must have M < m and hence
D > 3d (C.7)

Thus if the minimum distance d is smaller than one third of the maximum distance
D all permutations lead again to tetrahedra. It is not clear, however, how the
proportion of correlation graphs is affected, if Equation C.7 is almost fulfilled, as it
is the case for the graphs of the data considered in chapter chapter 6. One could,
however, conjecture that if D — 3d ~ 0 almost all graphs with the given weight distri-
bution are correlation graphs and it is hence reasonable to use random graphs as contrast.
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A rough estimate of the number of tetrahedra can be derived from a probabilistic point
of view, i. e. if we do not restrict ourselves on the given realization of the d;;, but consider
their underlying probability density p(z) with p(z) = 0 for z < 0, from which they are
assumed to be taken as i. i. d. samples.

We are interested in the probability that k sampled distances ds, s € {1,...,k}, satisfy
the triangle inequality, i. e. that Equation C.3 holds. From Equations Equation C.5 we
have, that Equation C.3 holds if

d, € [M,m] vd, (C.8)

thus, if d, lie in the interval [M, m|, where M = max{|d,, —ds,|} and m = min{d,, +d,,}.

m and M are distributed according to the maximum and minimum of a set of random
variables. With the respective integrated distributions P this writes

Puin(m) = 1—(1—P(m))* (C.9)
Prax(M) = P(M)* (C.10)
where Pp;,(m) is the probability, that the minimum of a set of random variables is less
or equal m, and the definition of P. (M) reads correspondingly for the maximum. m

is a sum and M a difference of random variables. The sum of two independent random
variables is proportional to the convolution of the individual probability densities, and

hence we have
/ / p(y)p(r — y)dydx (C.11)

/ / p(lz + y|)dydx (C.12)

Thus the probability for a value ds to be in the interval [M,m] can be written as

W (M, m) / / / 2)d P (M) d P () (C.13)

Now we have to take into account that the relation C.8 has to be satisfied for all rows
and columns of the (symmetrical) matrix (di]‘) oxne We arrive thus at the result

k
H (M, my,). (C.14)

which is the probability of k samples of size k forming a tetrahedron (assuming that the
validity of all triangular inequalities is a sufficient condition for the distances forming a
tetrahedron). Note that we have made assumptions of independence, which in general do
not hold, such as independence of one sample of the next and independence of m, M from
the samples. Thus W can only be an approximation for the distribution of tetrahedra.
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