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Over the years, finite automata have been used effectively in the theory of infinite
groups to represent rational subsets. This includes the important particular case of finitely
generated subgroups (and the beautiful theory of Stallings automata for the free group
case), but goes far beyond that: certain inductive procedures need a more general set-
ting than mere subgroups, and rational subsets constitute the natural generalization. The
connections between automata theory and group theory are rich and deep, and many are
portrayed in Sims’ book [53].

This chapter is divided into three parts: in Section 1 we introduce basic concepts,
terminology and notation for finitely generated groups, devoting special attention to free
groups. These will also be used in Chapter 24.

Section 2 describes the use of finite inverse automata to study finitely generated sub-
groups of free groups. The automaton recognizes elements of a subgroup, represented as
words in the ambient free group.

Section 3 considers, more generally, rational subsets of groups, when good closure
and decidability properties of these subsets are satisfied.

The authors are grateful to Stuart Margolis, Benjamin Steinberg and Pascal Weil for
their remarks on a preliminary version of this text.

1 Finitely generated groups

Let G be a group. Given A ⊆ G, let 〈A〉 = (A ∪ A−1)∗ denote the subgroup of G
generated by A. We say that H 6 G is finitely generated and write H 6f.g. G if
H = 〈A〉 for some finite subset A of H .

Given H 6 G, we denote by [G : H] the index of H in G, that is, the number of right
cosetsHg for all g ∈ G; or, equivalently, the number of left cosets. If [G : H] is finite, we
write H 6f.i. G. It is well known that every finite index subgroup of a finitely generated
group is finitely generated.

We denote by 1 the identity of G. An element g ∈ G has finite order if 〈g〉 is finite.
Elements g, h ∈ G are conjugate if h = x−1gx for some x ∈ G. We use the notation
gh = h−1gh and [g, h] = g−1gh to denote, respectively, conjugates and commutators.

Given an alphabet A, we denote by A−1 a set of formal inverses of A, and write Ã =
A ∪A−1. We say that Ã is an involutive alphabet. We extend −1 : A→ A−1 : a 7→ a−1

to an involution on Ã∗ through

(a−1)−1 = a, (uv)−1 = v−1u−1 (a ∈ A, u, v ∈ Ã∗) .

If G = 〈A〉, we have a canonical epimorphism ρ : Ã∗ � G, mapping a±1 ∈ Ã to
a±1 ∈ G. We present next some classical decidability problems:

Definition 1.1. Let G = 〈A〉 be a finitely generated group.

word problem: is there an algorithm that, upon receiving as input a word u ∈ Ã∗, deter-
mines whether or not ρ(u) = 1?

conjugacy problem: is there an algorithm that, upon receiving as input words u, v ∈ Ã∗,
determines whether or not ρ(u) and ρ(v) are conjugate in G?
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membership problem for K ⊆ 2G: is there for every X ∈ K an algorithm that, upon
receiving as input a word u ∈ Ã∗, determines whether or not ρ(u) ∈ X?

generalized word problem: is the membership problem for the class of finitely gener-
ated subgroups of G solvable?

order problem: is there an algorithm that, upon receiving as input a word u ∈ Ã∗,
determines whether ρ(u) has finite or infinite order?

isomorphism problem for a class G of groups: is there an algorithm that, upon receiv-
ing as input a description of groups G,H ∈ G, decides whether or not G ∼= H?
Typically, G may be a subclass of finitely presented groups (given by their presen-
tation), or automata groups (see Chapter 24) given by automata.

We can also require complexity bounds on the algorithms; more precisely, we may
ask with which complexity bound an answer to the problem may be obtained, and also
with which complexity bound a witness (a normal form for the word problem, an element
conjugating ρ(u) to ρ(v) in case they are conjugate, an expression of u in the generators
of X in the generalized word problem) may be constructed.

1.1 Free groups

We recall that an equivalence relation ∼ on a semigroup S is a congruence if a ∼ b
implies ac ∼ bc and ca ∼ cb for all a, b, c ∈ S.

Definition 1.2. Given an alphabet A, let ∼ denote the congruence on Ã∗ generated by
the relation

{(aa−1, 1) | a ∈ Ã} . (1.1)

The quotient FA = Ã∗/∼ is the free group on A. We denote by θ : Ã∗ → FA the
canonical morphism u 7→ [u]∼.

Free groups admit the following universal property: for every map f : A → G, there
is a unique group morphism FA → G that extends f .

Alternatively, we can view (1.1) as a confluent length-reducing rewriting system on
Ã∗, where each word w ∈ Ã∗ can be transformed into a unique reduced word w with no
factor of the form aa−1, see [9]. As a consequence, the equivalence

u ∼ v ⇔ u = v (u, v ∈ Ã∗)

solves the word problem for FA.
We shall use the notation RA = Ã∗. It is well known that FA is isomorphic to RA

under the binary operation

u ? v = uv (u, v ∈ RA) .

We recall that the length |g| of g ∈ FA is the length of the reduced form of g, also denoted
by g.

The letters of A provide a natural basis for FA: they generate FA and satisfy no non-
trivial relations, that is, all reduced words on these generators represent distinct elements
of FA. A group is free if and only if it has a basis.
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Throughout this chapter, we assumeA to be a finite alphabet. It is well known that free
groups FA and FB are isomorphic if and only if #A = #B. This leads to the concept of
rank of a free group F : the cardinality of a basis of F , denoted by rkF . It is common to
use the notation Fn to denote a free group of rank n.

We recall that a reduced word u is cyclically reduced if uu is also reduced. Any
reduced word u ∈ RA admits a unique decomposition of the form u = vwv−1 with w
cyclically reduced. A solution for the conjugacy problem follows easily from this: first
reduce the words cyclically; then two cyclically reduced words inRA are conjugate if and
only if they are cyclic permutations of each other. On the other hand, the order problem
admits a trivial solution: only the identity has finite order. Finally, the generalized word
problem shall be discussed in the following section.

2 Inverse automata and Stallings’ construction

The study of finitely generated subgroups of free groups entered a new era in the early
eighties when Stallings made explicit and effective a construction [54] that can be traced
back to the early part of the twentieth century in Schreier’s coset graphs (see [53] and §24.1)
and to Serre’s work [46]. Stallings’ seminal paper was built over immersions of finite
graphs, but the alternative approach using finite inverse automata became much more
popular over the years; for more on their link, see [26]. An extensive survey has been
written by Kapovich and Miasnikov [20].

Stallings’ construction for H 6f.g. FA consists in taking a finite set of generators for
H in reduced form, building the so-called flower automaton and then proceeding to make
this automaton deterministic through the operation known as Stallings foldings. This is
clearly a terminating procedure, but the key fact is that the construction is independent
from both the given finite generating set and the chosen folding sequence. A short simple
automata-theoretic proof of this claim will be given. The finite inverse automaton S(H)
thus obtained is usually called the Stallings automaton ofH . Over the years, Stallings au-
tomata became the standard representation for finitely generated subgroups of free groups
and are involved in many of the algorithmic results presently obtained.

Several of these algorithms are implemented in computer software, see e.g. CRAG [2],
or the packages AUTOMATA and FGA in GAP [14].

2.1 Inverse automata

An automaton A over an involutive alphabet Ã is involutive if, whenever (p, a, q) is an
edge of A, so is (q, a−1, p). Therefore it suffices to depict just the positively labelled
edges (having label in A) in their graphical representation.

Definition 2.1. An involutive automaton is inverse if it is deterministic, trim and has a
single final state.

If the latter happens to be the initial state, it is called the basepoint. It follows easily



Rational subsets of groups 5

from the computation of the Nerode equivalence (see §10.2) that every inverse automaton
is a minimal automaton.

Finite inverse automata capture the idea of an action (of a finite inverse monoid, their
transition monoid) on a finite set (the vertex set) through partial bijections. We recall
that a monoid M is inverse if, for every x ∈ M , there exists a unique y ∈ M such that
xyx = x and y = yxy; then M acts by partial bijections on itself.
The next result is easily proven, but is quite useful.

Proposition 2.1. Let A be an inverse automaton and let p uvv−1w−−−−−→q be a path in A.
Then there exists also a path p uw−→q in A.

Another important property relates languages to morphisms. For us, a morphism be-
tween deterministic automata A and A′ is a mapping ϕ between their respective vertex
sets which preserves initial vertices, final vertices and edges, in the sense that (ϕ(p), a, ϕ(q))
is an edge of A′ whenever (p, a, q) is an edge of A.

Proposition 2.2. Given inverse automata A and A′, then L(A) ⊆ L(A′) if and only if
there exists a morphism ϕ : A → A′. Moreover, such a morphism is unique.

Proof. (⇒): Given a vertex q of A, take a successful path

→ q0
u−→q v−→t→

in A, for some u, v ∈ Ã∗. Since L(A) ⊆ L(A′), there exists a successful path

→ q′0
u−→q′ v−→t′ →

in A′. We take ϕ(q) = q′.
To show that ϕ is well defined, suppose that

→ q0
u′−→q v′−→t→

is an alternative successful path inA. Since u′v ∈ L(A) ⊆ L(A′), there exists a success-
ful path

→ q′0
u′−→q′′ v−→t′ →

in A′ and it follows that q′ = q′′ since A′ is inverse. Thus ϕ is well defined.
It is now routine to check that ϕ is a morphism from A to A′ and that it is unique.
(⇐): Immediate from the definition of morphism.

2.2 Stallings’ construction

Let X be a finite subset of RA. We build an involutive automaton F(X) by fixing a
basepoint q0 and gluing to it a petal labelled by every word in X as follows: if x =
a1 . . . ak ∈ X , with ai ∈ Ã, the petal consists of a closed path of the form

q0
a1−→ • a2−→· · · ak−→q0

and the respective inverse edges. All such intermediate vertices • are assumed to be
distinct in the automaton. For obvious reasons, F(X) is called the flower automaton of
X .
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The automaton F(X) is almost an inverse automaton – except that it need not be
deterministic. We can fix it by performing a sequence of so-called Stallings foldings.
Assume that A is a trim involutive automaton with a basepoint, possessing two distinct
edges of the form

p
a−→q, p

a−→r (2.1)

for a ∈ Ã. The folding is performed by identifying these two edges, as well as the two
respective inverse edges. In particular, the vertices q and r are also identified (if they were
distinct).

The number of edges is certain to decrease through foldings. Therefore, if we perform
enough of them, we are sure to turn F(X) into a finite inverse automaton.

Definition 2.2. The Stallings automaton of X is the finite inverse automaton S(X) ob-
tained through folding F(X).

We shall see that S(X) depends only on the finitely generated subgroup 〈X〉 of FA
generated byX , being in particular independent from the choice of foldings taken to reach
it.

Since inverse automata are minimal, it suffices to characterize L(S(X)) in terms of
H to prove uniqueness (up to isomorphism):

Proposition 2.3. Fix H 6f.g. FA and let X ⊆ RA be a finite generating set for H . Then

L(S(X)) =
⋂
{L ⊆ Ã∗ | L is recognized by a finite inverse automaton

with a basepoint and H ⊆ L} .

Proof. (⊇): Clearly, S(X) is a finite inverse automaton with a basepoint. Since X ∪
X−1 ⊆ L(F(X)) ⊆ L(S(X)), it follows easily from Proposition 2.1 that

H ⊆ L(S(X)) . (2.2)

(⊆): Let L ⊆ Ã∗ be recognized by a finite inverse automaton A with a basepoint,
with H ⊆ L. Since X ⊆ H , we have an automaton morphism from F(X) to A, hence
L(F(X)) ⊆ L. To prove that L(S(X)) ⊆ L, it suffices to show that inclusion in L is
preserved through foldings.

Indeed, assume that L(B) ⊆ L and B′ is obtained from B by folding the two edges
in (2.1). It is immediate that every successful path q0

u−→t in B′ can be lifted to a success-
ful path q0

v−→t in B by successively inserting the word a−1a into u. Now v ∈ L = L(A)
implies u ∈ L in view of Proposition 2.1.

Now, given H 6 FA finitely generated, we take a finite set X of generators. Without
loss of generality, we may assume that X consists of reduced words, and we may define
S(H) = S(X) to be the Stallings automaton of H .

Example 2.1. Stallings’ construction for X = {a−1ba, ba2}, where the next edges to be
identified are depicted by dotted lines, is
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q0F(X) =

ba

b

a a

a

q0 q0

= S(X)

b

b

a
a

a

b

a

b

a

A simple, yet important example is given by applying the construction to Fn itself,
when we obtain the so-called bouquet of n circles:

q0 q0 q0

S(F1) S(F2) S(F3)

a a b a b

c

In terms of complexity, the best known algorithm for the construction of S(X) is due
to Touikan [56]. Its time complexity is O(n log∗ n), where n is the sum of the lengths of
the elements of X .

2.3 Basic applications

The most fundamental application of Stallings’ construction is an elegant and efficient
solution to the generalized word problem:

Theorem 2.4. The generalized word problem in FA is solvable.

We will see many groups in Chapter 24 that have solvable word problem; however,
few of them have solvable generalized word problem. The proof of Theorem 2.4 relies on

Proposition 2.5. Consider H 6f.g. FA and u ∈ FA. Then u ∈ H if and only if u ∈
L(S(H)).

Proof. (⇒): Follows from (2.2).
(⇐): It follows easily from the last paragraph of the proof of Proposition 2.3 that, if

B′ is obtained from B by performing Stallings foldings, then L(B′) = L(B). Hence, if
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H = 〈X〉, we get

L(S(H)) = L(F(X)) = (X ∪X−1)∗ = H

and the implication follows.

It follows from our previous remark that the complexity of the generalized word prob-
lem is O(n log∗ n + m), where n is the sum of the lengths of the elements of X and
m is the length of the input word. In particular, once the subgroup X has been fixed,
complexity is linear in m.

Example 2.2. We may use the Stallings automaton constructed in Example 2.1 to check
that baba−1b−1 ∈ H = 〈a−1ba, ba2〉 but ab /∈ H .

Stallings automata also provide an effective construction for bases of finitely generated
subgroups. Consider H 6f.g. FA, and let m be the number of vertices of S(H). A
spanning tree T for S(H) consists of m − 1 edges and their inverses which, together,
connect all the vertices of S(H). Given a vertex p of S(H), we denote by gp the T -
geodesic connecting the basepoint q0 to p, that is, q0

gp−→p is the shortest path contained
in T connecting q0 to p.

Proposition 2.6. Let H 6f.g. FA and let T be a spanning tree for S(H). Let E+ be the
set of positively labelled edges of S(H). Then H is free with basis

Y = {gpag−1q | (p, a, q) ∈ E+ \ T} .

Proof. It follows from Proposition 2.5 that L(S(H)) ⊆ H , hence Y ⊆ H . To show that
H = 〈Y 〉, take h = a1 · · · ak ∈ H in reduced form (ai ∈ Ã). By Proposition 2.5, there
exists a successful path

q0
a1−→q1

a2−→· · · ak−→qk = q0

in S(H). For i = 1, . . . , k, we have either gqi−1
aig
−1
qi ∈ Y ∪ Y

−1 or gqi−1aig
−1
qi = 1,

the latter occurring if (qi−1, ai, qi) ∈ T . In any case, we get

h = a1 · · · ak = (gq0a1g
−1
q1 )(gq1a2g

−1
q2 ) · · · (gqk−1

akg
−1
q0 ) ∈ 〈Y 〉

and so H = 〈Y 〉.
It remains to show that the elements of Y satisfy no nontrivial relations. Let y1, . . . , yk

∈ Y ∪ Y −1 with yi 6= y−1i−1 for i = 2, . . . , k. Write yi = gpiaig
−1
ri , where ai ∈ Ã labels

the edge not in T . It follows easily from yi 6= y−1i−1 and the definition of spanning tree
that

y1 · · · yk = gp1a1g
−1
r1 gp2a2 · · · ak−1g−1rk−1gpkakgrk ,

a nonempty reduced word if k > 1. Therefore Y is a basis of H as claimed.

In the process, we also obtain a proof of the Nielsen-Schreier Theorem, in the case of
finitely generated subgroups. A simple topological proof may be found in [36]:

Theorem 2.7 (Nielsen-Schreier). Every subgroup of a free group is itself free.
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Example 2.3. We use the Stallings automaton constructed in Example 2.1 to construct a
basis of H = 〈a−1ba, ba2〉.

If we take the spanning tree T defined by the dotted lines in

q0
b

a

b

a

then #E+ \ T = 2 and the corresponding basis is {ba2, baba−1b−1}. Another choice of
spanning tree actually proves that the original generating set is also a basis.

We remark that Proposition 2.6 can be extended to the case of infinitely generated
subgroups, proving the general case of Theorem 2.7. However, in this case there is no ef-
fective construction such as Stallings’, and the (infinite) inverse automaton S(H) remains
a theoretical object, using appropriate cosets as vertices.

Another classical application of Stallings’ construction regards the identification of
finite index subgroups.

Proposition 2.8. Consider H 6f.g. FA.
(i) H is a finite index subgroup of FA if and only if S(H) is a complete automaton.

(ii) If H is a finite index subgroup of FA, then its index is the number of vertices of
S(H).

Proof. (i) (⇒): Suppose that S(H) is not complete. Then there exist some vertex q and
some a ∈ Ã such that q · a is undefined. Let g be a geodesic connecting the basepoint q0
to q in S(H). We claim that

Hgam 6= Hgan if m− n > |g| . (2.3)

Indeed, Hgam = Hgan implies gam−ng−1 ∈ H and so gam−ng−1 ∈ L(S(H)) by
Proposition 2.5. Since ga is reduced due to S(H) being inverse, it follows from m−n >
|g| that gaam−n−1g−1 = gam−ng−1 ∈ L(S(H)): indeed, g−1 is not long enough to
erase all the a’s. Since S(H) is deterministic, q · a must be defined, a contradiction.
Therefore (2.3) holds and so H has infinite index.

(⇐): Let Q be the vertex set of S(H) and fix a geodesic q0
gq−→q for each q ∈ Q.

Take u ∈ FA. Since S(H) is complete, we have a path q0
u−→q for some q ∈ Q. Hence

ug−1q ∈ H and so u = ug−1q gq ∈ Hgq . Therefore FA =
⋃
q∈QHgq and so H 6f.i. FA.

(ii) In view of FA =
⋃
q∈QHgq , it suffices to show that the cosetsHgq are all distinct.

Indeed, assume that Hgp = Hgq for some vertices p, q ∈ Q. Then gpg−1q ∈ H and so

gpg
−1
q ∈ L(S(H)) by Proposition 2.5. On the other hand, since S(H) is complete, we

have a path
q0

gpg
−1
q−−−→r
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for some r ∈ Q. In view of Proposition 2.1, and by determinism, we get r = q0. Hence
we have paths

p
g−1
q−−→q0, q

g−1
q−−→q0 .

Since S(H) is inverse, we get p = q as required.

Example 2.4. Since the Stallings automaton constructed in Example 2.1 is not complete,
it follows that 〈a−1ba, ba2〉 is not a finite index subgroup of F2.

Corollary 2.9. If H 6 FA has index n, then rkH = 1 + n(#A− 1).

Proof. By Proposition 2.8, the automaton S(H) has n vertices and n#A positive edges.
A spanning tree has n− 1 positive edges, so rkH = n#A− (n− 1) = 1 + n(#A− 1)
by Proposition 2.6.

Beautiful connections between finite index subgroups and certain classes of bifix codes
— set of words none of which is a prefix or a suffix of another — have recently been
unveiled by Berstel, De Felice, Perrin, Reutenauer and Rindone [6].

2.4 Conjugacy

We start now a brief discussion of conjugacy. Recall that the outdegree of a vertex q is the
number of edges starting at q and the geodesic distance in a connected graph is the length
of the shortest undirected path connecting two vertices.

Since the original generating set is always taken in reduced form, it follows easily that
there is at most one vertex in a Stallings automaton having outdegree < 2: the basepoint
q0. Assuming that H is nontrivial, S(H) must always be of the form

q0 q1

· · ·

· · ·

· · ·

u

where q1 is the closest vertex to q0 (in terms of geodesic distance) having outdegree > 2
(since there is at least one vertex having such outdegree). Note that q1 = q0 if q0 has
outdegree> 2 itself. We call q0

u−→ the tail (which is empty if q1 = q0) and the remaining
subgraph the core of S(H).

Note that S(H), and its core, may be understood as follows. Consider the graph with
vertex set FA/H = {gH | g ∈ FA}, with an edge from gH to agH for each generator
a ∈ A. Then this graph, called the Schreier graph (see §24.1) of H\FA, consists of
finitely many trees attached to the core of S(H).

Theorem 2.10. There is an algorithm that decides whether or not two finitely generated
subgroups of FA are conjugate.
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Proof. Finitely generated subgroups G,H are conjugate if and only if the cores of S(G)
and S(H) are equal (up to their basepoints).

The Stallings automata of the conjugates of H can be obtained in the following ways:
(1) declaring a vertex in the core C to be the basepoint; (2) gluing a tail to some vertex in
the core C and taking its other endpoint to be the basepoint.

Note that the tail must be glued in some way that keeps the automaton inverse, so
in particular this second type of operation can only be performed if the automaton is
not complete, or equivalently, if H has infinite index. An immediate consequence is the
following classical

Proposition 2.11. A finite rank normal subgroup of a free group is either trivial or has
finite index.

Moreover, a finite index subgroup H is normal if and only if its Stallings automaton
is vertex-transitive, that is, if all choices of basepoint yield the same automaton.

Example 2.5. Stallings automata of some conjugates of H = 〈a−1ba, ba2〉:

q0

S(H) =

b

a

b

a

q0

S(b−1Hb) =

b

a

b

a

q0

S(b−2Hb2) =

b

a

b

a

b

We can also use the previous discussion on the structure of (finite) Stallings automata to
provide them with an abstract characterization.

Proposition 2.12. A finite inverse automaton with a basepoint is a Stallings automaton if
and only if it has at most one vertex of outdegree 1: the basepoint.

Proof. Indeed, for any such automaton we can take a spanning tree and use it to construct
a basis for the subgroup as in the proof of Proposition 2.6.
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2.5 Further algebraic properties

The study of intersections of finitely generated subgroups of FA provides further applica-
tions of Stallings automata. Howson’s classical theorem admits a simple proof using the
direct product of two Stallings automata; it is also an immediate consequence of Theorem
3.1 and Corollary 3.4(ii).

Theorem 2.13 (Howson). If H,K 6f.g. FA, then also H ∩K 6f.g. FA.

Stallings automata are also naturally related to the famous Hanna Neumann conjec-
ture: given H,K 6f.g. FA, then rk(H ∩K)− 1 6 (rkH − 1)(rkK − 1). The conjec-
ture arose in a paper of Hanna Neumann [34], where the inequality rk(H ∩ K) − 1 6
2(rkH − 1)(rkK − 1) was also proved. In one of the early applications of Stallings’
approach, Gersten provided an alternative geometric proof of Hanna Neumann’s inequal-
ity [15].

A free factor of a free group FA can be defined as a subgroupH generated by a subset
of a basis of FA. This is equivalent to saying that there exists a free product decomposition
FA = H ∗K for some K 6 FA.

Since the rank of a free factor never exceeds the rank of the ambient free group, it is
easy to construct examples of subgroups which are not free factors: it follows easily from
Proposition 2.6 that any free group of rank> 2 can have subgroups of arbitrary finite rank
(and even infinite countable).

The problem of identifying free factors has a simple solution based on Stallings au-
tomata [50]: one must check whether or not a prescribed number of vertex identifications
in the Stallings automaton can lead to a bouquet. However, the most efficient solution, due
to Roig, Ventura and Weil [40], involves Whitehead automorphisms and will therefore be
postponed to §23.2.7.

Given a morphism ϕ : A → B of inverse automata, let the morphic image ϕ(A) be
the subautomaton of B induced by the image by ϕ of all the successful paths of A.

The following classical result characterizes the extensions of H 6f.g. FA contained
in FA. We present the proof from [32]:

Theorem 2.14 (Takahasi [55]). Given H 6f.g. FA, one can effectively compute finitely
many extensionsK1, . . . ,Km 6f.g. FA ofH such that the following conditions are equiv-
alent for every K 6f.g. FA:

(i) H 6 K;
(ii) Ki is a free factor of K for some i ∈ {1, . . . ,m}.

Proof. Let A1, . . . ,Am denote all the morphic images of S(H), up to isomorphism.
Since a morphic image cannot have more vertices than the original automaton, there are
only finitely many isomorphism classes. Moreover, it follows from Proposition 2.12 that,
for i = 1, . . . ,m, Ai = S(Ki) for some Ki 6f.g. FA. Since L(S(H)) ⊆ L(Ai) =
L(S(Ki)), it follows from Proposition 2.5 that H 6 Ki. Clearly, we can construct all Ai
and therefore all Ki.

(i) ⇒ (ii). If H 6 K, it follows from Stallings’ construction that L(S(H)) ⊆
L(S(K)) and so there is a morphism ϕ : S(H) → S(K) by Proposition 2.2. Let Ai
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be, up to isomorphism, the morphic image of S(H) through ϕ. Since Ai = S(Ki) is a
subautomaton of S(K), it follows easily from Proposition 2.6 that Ki is a free factor of
K: it suffices to take a spanning tree for S(Ki), extend it to a spanning tree for S(K),
and the induced basis of Ki will be contained in the induced basis of K.

(ii)⇒ (i) is immediate.

An interesting research line related to this result is built on the concept of algebraic
extension, introduced by Kapovich and Miasnikov [20], and inspired by the homonymous
field-theoretical classical notion. Given H 6 K 6 FA, we say that K is an algebraic
extension of H if no proper free factor of K contains H . Miasnikov, Ventura and Weil
[32] proved that the set of algebraic extensions of H is finite and effectively computable,
and it constitutes the minimum set of extensions K1, . . . ,Km satisfying the conditions of
Theorem 2.14.

Consider a subgroup H of a group G. The commensurator of H in G, is

CommG(H) = {g ∈ G | H ∩Hg has finite index in H and Hg}. (2.4)

For example, the commensurator of GLn(Z) in GLn(R) is GLn(Q).
The special case of finite-index extensions, H 6f.i. K 6 FA is of special interest,

and can be interpreted in terms of commensurators. It can be proved (see [20, Lemma
8.7] and [52]) that every H 6f.g. FA has a maximum finite-index extension inside FA,
denoted by Hfi; and Hfi = CommFA

(H). Silva and Weil [52] proved that S(Hfi) can
be constructed from S(H) using a simple automata-theoretic algorithm:

(1) The standard minimization algorithm is applied to the core of S(H), taking all
vertices as final.

(2) The original tail of S(H) is subsequently reinstated in this new automaton, at the
appropriate vertex.

We present now an application of different type, involving transition monoids. It
follows easily from the definitions that the transition monoid of a finite inverse automaton
is always a finite inverse monoid. Given a group G, we say that a subgroup H 6 G is
pure if the implication

gn ∈ H ⇒ g ∈ H (2.5)

holds for all g ∈ FA and n > 1. If p is a prime, we say that H is p-pure if (2.5) holds
when (n, p) = 1.

The next result is due to Birget, Margolis, Meakin and Weil, and is the only natural
problem among applications of Stallings automata that is known so far to be PSPACE-
complete [8].

Proposition 2.15. For every H 6f.g. FA, the following conditions hold:

(i) H is pure if and only if the transition monoid of S(H) is aperiodic.
(ii) H is p-pure if and only if the transition monoid of S(H) has no subgroups of order

p.

Proof. Both conditions in (i) are easily proved to be equivalent to the nonexistence in
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S(H) of a cycle of the form

p q (k > 1, p 6= q)

u

uk

where u can be assumed to be cyclically reduced. The proof of (ii) runs similarly.

2.6 Topological properties

We require for this subsection some basic topological concepts, which the reader can
recover from Chapter 17.

For all u, v ∈ FA, written in reduced form as elements of RA, let u ∧ v denote the
longest common prefix of u and v. The prefix metric d on FA is defined, for all u, v ∈ FA,
by

d(u, v) =

{
2−|u∧v|−1 if u 6= v
0 if u = v

It follows easily from the definition that d is an ultrametric on FA, satisfying in particular
the axiom

d(u, v) 6 max{d(u,w), d(w, v)} .

The completion of this metric space is compact; its extra elements are infinite reduced
words a1a2a3 . . . , with all ai ∈ Ã, and constitute the hyperbolic boundary ∂FA of FA,
see §24.1.5. Extending the operator ∧ to FA ∪ ∂FA in the obvious way, it follows easily
from the definitions that, for every infinite reduced word α and every sequence (un)n in
FA,

α = lim
n→+∞

un if and only if lim
n→+∞

|α ∧ un| = +∞ . (2.6)

The next result shows that Stallings automata are given a new role in connection with
the prefix metric. We denote by clH the closure of H in the completion of FA.

Proposition 2.16. If H 6f.g. FA, then clH is the union of H with the set of all α ∈ ∂FA
that label paths in S(H) out of the basepoint.

Proof. Since the topology of FA is discrete, we have clH ∩ FA = H .
(⊆): If α ∈ ∂FA does not label a path in S(H) out of the basepoint, then {|α ∧ h| :

h ∈ H} is finite and so no sequence of H can converge to α by (2.6).
(⊇): Let α = a1a2a3 · · · ∈ ∂FA, with ai ∈ Ã, label a path in S(H) out of the

basepoint. Let m be the number of vertices of S(H). For every n > 1, there exists some
word wn of length < m such that a1 · · · anwn ∈ H . Now α = limn→+∞ a1 · · · anwn
by (2.6) and so α ∈ clH .

The profinite topology onFA is defined in Chapter 17: for every u ∈ FA, the collection
{Ku | K 6f.i. FA} constitutes a basis of clopen neighbourhoods of u. In his seminal
1983 paper [54], Stallings gave an alternative proof of Marshall Hall’s Theorem:
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Theorem 2.17 (M. Hall). Every finitely generated subgroup of FA is closed for the profi-
nite topology.

Proof. Fix H 6f.g. FA and let u ∈ FA \ H be written in reduced form as an element
of RA. In view of Proposition 2.5, u does not label a loop at the basepoint q0 of S(H).
If there is no path q0

u−→· · · in S(H), we add new edges to S(H) to get a finite inverse
automaton A having a path q0

u−→q 6= q0. Otherwise just take A = S(H). Next add
new edges to A to get a finite complete inverse automaton B. In view of Propositions 2.8
and 2.12, we have B = S(K) for some K 6f.i. FA. Hence Ku is open and contains u.
Since H ∩Ku 6= ∅ yields u ∈ K−1H = K, contradicting Proposition 2.5, it follows that
H ∩Ku = ∅ and so H is closed as claimed.

Example 2.6. We consider the above construction for H = 〈a−1ba, ba2〉 and u = b2:

q0

S(H) =

b

a

b

a

q0

A =

b

a

b

a

b

q0

B =
a

b

a

b

b

a

b

a

If we take the spanning tree defined by the dotted lines in B, it follows from Proposi-
tion 2.6 that

K = 〈ba−1, b3, b2ab−2, ba2, baba−1b−1〉

is a finite index subgroup of F2 such that H ∩Kb2 = ∅.

We recall that a group G is residually finite if its finite index subgroups have trivial
intersection. Considering the trivial subgroup in Theorem 2.17, we deduce

Corollary 2.18. FA is residually finite.

We remark that Ribes and Zalessky extended Theorem 2.17 to products of finitely
many finitely generated subgroups of FA, see [38]. This result is deeply connected to the
solution of Rhodes’ Type II conjecture, see [37, Chapter 4].

If V denotes a pseudovariety of finite groups (see Chapter 16), the pro-V topology on
FA is defined by considering that each u ∈ FA has

{Ku | K �f.i. FA, FA/K ∈ V}
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as a basis of clopen neighbourhoods. The closure for the pro-V topology of H 6f.g FA
can be related to an extension property of S(H), and Margolis, Sapir and Weil used
automata to prove that efficient computation can be achieved for the pseudovarieties of
finite p-groups and finite nilpotent groups [28]. The original computability proof for the
p-group case is due to Ribes and Zalessky [39].

2.7 Dynamical properties

We shall mention briefly some examples of applications of Stallings automata to the study
of endomorphism dynamics, starting with Gersten’s solution of the subgroup orbit prob-
lem [16].

The subgroup orbit problem consists in finding an algorithm to decide, for givenH,K
6f.g. FA, whether or not K = ϕ(H) for some automorphism ϕ of FA. Equivalently, this
can be described as deciding whether or not the automorphic orbit of a finitely generated
subgroup is recursive.

Gersten’s solution adapts to the context of Stallings automata Whitehead’s idea to
solve the orbit problem for words [59]. Whitehead’s proof relies on a suitable decom-
position of automorphisms as products of elementary factors (which became known as
Whitehead automorphisms), and on using these as a tool to compute the elements of min-
imum length in the automorphic orbit of the word. In the subgroup case, word length is
replaced by the number of vertices of the Stallings automaton.

The most efficient solution to the problem of identifying free factors [40], mentioned
in §23.2.5, also relies on this approach: H 6f.g. FA is a free factor if and only if the
Stallings automaton of some automorphic image of H has a single vertex (that is, a bou-
quet).

Another very nice application is given by the following theorem of Goldstein and
Turner [17]:

Theorem 2.19. The fixed point subgroup of an endomorphism of FA is finitely generated.

Proof. Let ϕ be an endomorphism of FA. For every u ∈ FA, define Q(u) = ϕ(u)u−1.
We define a potentially infinite automaton A by taking

{Q(u) | u ∈ FA} ⊆ FA

as the vertex set, all edges of the form Q(u)
a−→Q(au) with u ∈ FA, a ∈ Ã, and fixing 1

as the basepoint. Then A is a well-defined inverse automaton.
Next we take B to be the subautomaton ofA obtained by retaining only those vertices

and edges that lie in successful paths labelled by reduced words. Clearly, B is still an
inverse automaton, and it is easy to check that it must be the Stallings automaton of the
fixed point subgroup of ϕ.

It remains to be proved that B is finite. We define a subautomaton C of B by removing
exactly one edge among each inverse pair

Q(u)
a−→Q(au), Q(au)

a−1

−−→Q(u)

with a ∈ A as follows: if a−1 is the last letter of Q(au), we remove Q(u)
a−→Q(au);

otherwise, we remove Q(au)
a−1

−−→Q(u).
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Let M denote the maximum length of the image of a letter by ϕ. We claim that,
whenever |Q(v)| > 2M , the vertex Q(v) has outdegree at most 1.

Indeed, if Q(v)
a−1

−−→Q(a−1v) is an edge in C for a ∈ A, then a−1 is the last letter of
Q(v). On the other hand, if Q(v)

b−→Q(bv) is an edge in C for b ∈ A, then b−1 is not the
last letter of Q(bv). Since Q(bv) = ϕ(b)Q(v)b−1 and |Q(v)| > 2|ϕ(b)|, then b must be
the last letter of Q(v) in this case. Since Q(v) has at most one last letter, it follows that
its outdegree is at most 1.

Let D be a finite subautomaton of C containing all vertices Q(v) such that |Q(v)| 6
2M . Suppose that p−→q is an edge in C not belonging to D. Since p−→q, being an edge
of B, must lie in some reduced path, and by the outdegree property of C, it is easy to see
that there exists some path in C of the form

p′−→p−→q−→r←−r′

where p′, r′ are vertices in D. Since there are only finitely many directed paths out of D,
it follows that C is finite and so is B. Therefore the fixed point subgroup of ϕ is finitely
generated.

Note that this proof is not by any means constructive. Indeed, the only known al-
gorithm for computing the fixed point subgroup of a free group automorphism is due to
Maslakova [31] and relies on the sophisticated train track theory of Bestvina and Han-
del [7] and other algebraic geometry tools. The general endomorphism case remains
open.

Stallings automata were also used by Ventura in the study of various properties of
fixed subgroups, considering in particular arbitrary families of endomorphisms [57, 30]
(see also [58]).

Automata also play a part in the study of infinite fixed points, taken over the continuous
extension of a monomorphism to the hyperbolic boundary (see for example [49]).

3 Rational and recognizable subsets

Rational subsets generalize the notion of finitely generated from subgroups to arbitrary
subsets of a group, and can be quite useful in establishing inductive procedures that need
to go beyond the territory of subgroups. Similarly, recognizable subsets extend the notion
of finite index subgroups. Basic properties and results can be found in [5] or [43].

We consider a finitely generated groupG = 〈A〉, with the canonical map π : FA → G.
A subset of G is rational if it is the image by ρ = πθ of a rational subset of Ã∗, and is
recognizable if its full preimage under ρ is rational in Ã∗.

For every group G, the classes RatG and RecG satisfy the following closure proper-
ties:

• RatG is (effectively) closed under union, product, star, morphisms, inversion, sub-
group generating.

• RecG is (effectively) closed under boolean operations, translation, product, star,
inverse morphisms, inversion, subgroup generating.
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Kleene’s Theorem is not valid for groups: RatG = RecG if and only if G is finite.
However, if the class of rational subsets ofG possesses some extra algorithmic properties,
then many decidability/constructibility results can be deduced for G. Two properties are
particularly coveted for RatG:
• (effective) closure under complement (yielding closure under all the boolean oper-

ations);
• decidable membership problem for arbitrary rational subsets.

In these cases, one may often solve problems (e.g. equations, or systems of equations)
whose statement lies far out of the rational universe, by proving that the solution is a
rational set.

3.1 Rational and recognizable subgroups

We start by some basic, general facts. The following result is essential to connect language
theory to group theory.

Theorem 3.1 (Anisimov and Seifert). A subgroup H of a group G is rational if and only
if H is finitely generated.

Proof. (⇒): Let H be a rational subgroup of G and let π : FA → G denote a morphism.
Then there exists a finite Ã-automaton A such that H = ρ(L(A)). Assume that A has m
vertices and let X consist of all the words in ρ−1(H) of length < 2m. Since A is finite,
so is X . We claim that H = 〈ρ(X)〉. To prove it, it suffices to show that

u ∈ L(A)⇒ ρ(u) ∈ 〈ρ(X)〉 (3.1)

holds for every u ∈ Ã∗. We use induction on |u|. By definition of X , (3.1) holds for
words of length < 2m. Assume now that |u| > 2m and (3.1) holds for shorter words.
Write u = vw with |w| = m. Then there exists a path

→ q0
v−→q z−→t→

in A with |z| < m. Thus vz ∈ L(A) and by the induction hypothesis ρ(vz) ∈ 〈ρ(X)〉.
On the other hand, |z−1w| < 2m and ρ(z−1w) = ρ(z−1v−1)ρ(vw) ∈ H , hence z−1w ∈
X and so ρ(u) = ρ(vz)ρ(z−1w) ∈ 〈ρ(X)〉, proving (3.1) as required.

(⇐) is trivial.

It is an easier task to characterize recognizable subgroups:

Proposition 3.2. A subgroup H of a group G is recognizable if and only if it has finite
index.

Proof. (⇒): In general, a recognizable subset of G is of the form NX , where N �f.i. G
and X ⊆ G is finite. If H = NX is a subgroup of G, then N ⊆ H and so H has finite
index as well.

(⇐): This follows from the well-known fact that every finite index subgroup H of G
contains a finite index normal subgroup N of G, namely N =

⋂
g∈G gHg−1. Since N

has finite index, H must be of the form NX for some finite X ⊆ G.
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3.2 Benois’ Theorem

The central result in this subsection is Benois’ Theorem, the cornerstone of the whole
theory of rational subsets of free groups:

Theorem 3.3 (Benois).
(i) If L ⊆ Ã∗ is rational, then L is also rational, and can be effectively constructed

from L.
(ii) A subset of RA is a rational language as a subset of Ã∗ if and only if it is rational

as a subset of FA.

We illustrate this in the case of finitely generated subgroups: temporarily calling
“Benois automata” those automata recognizing rational subsets of RA, we may convert
them to Stallings automata by “folding” them, at the same time making sure they are in-
verse automata. Given a Stallings automaton, one intersects it with RA to obtain a Benois
automaton.

Proof. (i) Let A = (Q, Ã, E, I, T ) be a finite automaton recognizing L. We define a
sequence (An)n of finite automata with ε-transitions as follows. Let A0 = A. Assuming
that An = (Q, Ã, En, I, T ) is defined, we consider all instances of ordered pairs (p, q) ∈
Q×Q such that

there exists a path p aa
−1

−−→q in An for some a ∈ Ã, but no path p 1−→q. (P)

Clearly, there are only finitely many instances of (P) in An. We define En+1 to be the
union of En with all the new edges (p, 1, q), where (p, q) ∈ Q×Q is an instance of (P).
Finally, we define An+1 = (Q, Ã, En+1, I, T ). In particular, note that An = An+k for
every k > 1 if there are no instances of (P) in An.

Since Q is finite, the sequence (An)n is ultimately constant, say after reaching Am.
We claim that

L = L(Am) ∩RA . (3.2)

Indeed, take u ∈ L. There exists a sequence of words u = u0, u1, . . . , uk−1, uk = u
where each term is obtained from the preceding one by erasing a factor of the form aa−1

for some a ∈ Ã. A straightforward induction shows that ui ∈ L(Ai) for i = 0, . . . , k,
since the existence of a path p aa

−1

−−→q inAi implies the existence of a path p 1−→q inAi+1.
Hence u = uk ∈ L(Ak) ⊆ L(Am) and it follows that L ⊆ L(Am) ∩RA.

For the opposite inclusion, we start by noting that any path p u−→q in Ai+1 can be
lifted to a path p v−→q inAi, where v is obtained from u by inserting finitely many factors
of the form aa−1. It follows that

L(Am) = L(Am−1) = · · · = L(A0) = L

and so L(Am) ∩RA ⊆ L(Am) = L. Thus (3.2) holds.
Since

RA = Ã∗ \
⋃
a∈Ã

Ã∗aa−1Ã∗

is obviously rational, and the class of rational languages is closed under intersection, it
follows that L is rational. Moreover, we can effectively compute the automaton Am and
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a finite automaton recognizing RA, hence the direct product construction can be used to
construct a finite automaton recognizing the intersection L = L(Am) ∩RA.

(ii) Consider X ⊆ RA. If X ∈ Rat Ã∗, then θ(X) ∈ RatFA and so X is rational as
a subset of FA.

Conversely, if X is rational as a subset of FA, then X = θ(L) for some L ∈ Rat Ã∗.
Since X ⊆ RA, we get X = L. Now part (i) yields L ∈ Rat Ã∗ and so X ∈ Rat Ã∗ as
required.

Example 3.1. Let A = A0 be depicted by

a

a
b b

a−1

b−1

We get

A1 = a

a

1

b b

a−1

b−1

A2 = A3 = a

a

1
1

b b

a−1

b−1

and we can then proceed to compute L = L(A2) ∩R2.

The following result summarizes some of the most direct consequences of Benois’
Theorem:

Corollary 3.4.
(i) FA has decidable rational subset membership problem.

(ii) RatFA is closed under the boolean operations.

Proof. (i) Given X ∈ RatFA and u ∈ FA, write X = θ(L) for some L ∈ Rat Ã∗.
Then u ∈ X if and only if u ∈ X = L. By Theorem 3.3(i), we may construct a finite
automaton recognizing L and therefore decide whether or not u ∈ L.

(ii) Given X ∈ RatFA, we have FA \X = RA \ X and so FA \ X ∈ RatFA by
Theorem 3.3. Therefore RatFA is closed under complement.

Since RatFA is trivially closed under union, it follows from De Morgan’s laws that it
is closed under intersection as well.

Note that we can associate algorithms to these boolean closure properties of RatFA in
a constructive way. We remark also that the proof of Theorem 3.3 can be clearly adapted to
more general classes of rewriting systems (see [9]). Theorem 3.3 and Corollary 3.4 have
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been generalized several times by Benois herself [4] and by Sénizergues, who obtained
the most general versions. Sénizergues’ results [44] hold for rational length-reducing
left basic confluent rewriting systems and remain valid for the more general notion of
controlled rewriting system.

3.3 Rational versus recognizable

Since FA is a finitely generated monoid, it follows that every recognizable subset of
FA is rational [5, Proposition III.2.4]. We turn to the problem of deciding which ra-
tional subsets of FA are recognizable. The first proof, using rewriting systems, is due
to Sénizergues [45] but we follow the shorter alternative proof from [48], where a third
alternative proof, of a more combinatorial nature, was also given.

Given a subsetX of a groupG, we define the right stabilizer ofX to be the submonoid
of G defined by

R(X) = {g ∈ G | Xg ⊆ X} .

Next let
K(X) = R(X) ∩ (R(X))−1 = {g ∈ G | Xg = X}

be the largest subgroup of G contained in R(X) and let

N(X) =
⋂
g∈G

gK(X)g−1

be the largest normal subgroup of G contained in K(X), and therefore in R(X).

Lemma 3.5. A subsetX of a groupG is recognizable if and only ifK(X) is a finite index
subgroup of G.

In fact, the Schreier graph (see §24.1) of K(X)\G is the underlying graph of an
automaton recognizing X , and G/N(X) is the syntactic monoid of X .

Proof. (⇒): If X ⊆ G is recognizable, then X = NF for some N �f.i. G and F ⊆ G
finite. Hence N ⊆ R(X) and so N ⊆ K(X) since N 6 G. Since N has finite index in
G, so does K(X).

(⇐): If K(X) is a finite index subgroup of G, so is N = N(X). Indeed, a finite
index subgroup has only finitely many conjugates (having also finite index) and a finite
intersection of finite index subgroups is easily checked to have finite index itself.

Therefore it suffices to show that X = FN for some finite subset F of G. Since N
has finite index, the claim follows from XN = X , in turn an immediate consequence of
N ⊆ R(X).

Proposition 3.6. It is decidable whether or not a rational subset of FA is recognizable.

Proof. Take X ∈ RatFA. In view of Lemma 3.5 and Proposition 2.8, it suffices to show
that K(X) is finitely generated and effectively computable.

Given u ∈ FA, we have

u /∈ R(X)⇔ Xu 6⊆ X ⇔ Xu ∩ (FA \X) 6= ∅ ⇔ u ∈ X−1(FA \X),
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hence
R(X) = FA \ (X−1(FA \X)) .

It follows easily from the fact that the class of rational languages is closed under reversal
and morphisms, combined with Theorem 3.3(ii), that X−1 ∈ RatFA. Since RatFA is
trivially closed under product, it follows from Corollary 3.4 that R(X) is rational and
effectively computable, and so is K(X) = R(X) ∩ (R(X))−1. By Theorem 3.1, the
subgroup K(X) is finitely generated and the proof is complete.

These results are related to the Sakarovitch conjecture [42], which states that every
rational subset of FA must be either recognizable or disjunctive: a subset X of a monoid
M is disjunctive if it has trivial syntactic congruence, or equivalently, if any morphism
ϕ :M →M ′ recognizing X is necessarily injective.

In the group case, it follows easily from the proof of the direct implication of Lemma
3.5 that the projection G→ G/N recognizes X ⊆ G if and only if N ⊆ N(X). Thus X
is disjunctive if and only if N(X) is the trivial subgroup.

The Sakarovitch conjecture was first proved in [45], but once again we follow the
shorter alternative proof from [48]:

Theorem 3.7 (Sénizergues). A rational subset of FA is either recognizable or disjunctive.

Proof. Since the only subgroups of Z are the trivial subgroup and finite index subgroups,
we may assume that #A > 1.

Take X ∈ RatFA. By the proof of Proposition 3.6, the subgroup K(X) is finitely
generated. In view of Lemma 3.5, we may assume that K(X) is not a finite index sub-
group. Thus S(K(X)) is not complete by Proposition 2.8. Let q0 denote the basepoint of
S(K(X)). Since S(K(X)) is not complete, q0 ·u is undefined for some reduced word u.

Let w be an arbitrary nonempty reduced word. We must show that w /∈ N(X).
Suppose otherwise. Since u,w are reduced and #A > 1, there exist enough letters to
make sure that there is some word v ∈ RA such that uvwv−1u−1 is reduced. Now
w ∈ N(X), hence uvwv−1u−1 ∈ N(X) ⊆ K(X) by normality. Since uvwv−1u−1 is
reduced, it follows from Proposition 2.5 that uvwv−1u−1 labels a loop at q0 in S(K(X)),
contradicting q0 · u being undefined. Thus w /∈ N(X) and so N(X) = 1. Therefore X
is disjunctive as required.

3.4 Beyond free groups

Let π : FA � G be a morphism onto a group G. We consider the word problem sub-
monoid of a group G, defined as

Wπ(G) = (πθ)−1(1). (3.3)

Proposition 3.8. The language Wπ(G) is rational if and only if G is finite.

Proof. If G is finite, it is easy to check that Wπ(G) is rational by viewing the Cayley
graph of G (see §24.1) as an automaton. Conversely, if Wπ(G) is rational, then π−1(1)
is a finitely generated normal subgroup of FA, either finite index or trivial by the proof
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of Theorem 3.7. It is well known that the Dyck language DA = θ−1(1) is not rational
if #A > 0, thus it follows easily that π−1(1) has finite index and therefore G must be
finite.

How about groups with context-free Wπ(G)? A celebrated result by Muller and
Schupp [33], with a contribution by Dunwoody [13], relates them to virtually free groups:
these are groups with a free subgroup of finite index.

As usual, we focus on the case of G being finitely generated. We claim that G has a
normal free subgroup FA of finite index, with A finite. Indeed, letting F be a finite-index
free subgroup of G, it suffices to take F ′ =

⋂
g∈G gFg−1. Since F has finite index, so

does F ′, see the proof of Lemma 3.5. Taking a morphism π : FB → G with B finite, we
get from Corollary 2.9 that π−1(F ′) 6f.i. FB is finitely generated, so F ′ is itself finitely
generated. Finally, F ′ is a subgroup of F , so F ′ is still free by Theorem 2.7, and we can
write F ′ = FA.

We may therefore decompose G as a finite disjoint union of the form

G = FAb0 ∪ FAb1 ∪ · · · ∪ FAbm, with b0 = 1. (3.4)

Theorem 3.9 (Muller & Schupp). The language Wπ(G) is context-free if and only if G
is virtually free.

Sketch of proof. If G is virtually free, the rewriting system implicit in (3.4) provides a
rational transduction between Wπ(G) and DA.

The converse implication can be proved by arguing geometrical properties of the Cay-
ley graph of G such as in Chapter 24; briefly said, one deduces from the context-freeness
of Wπ(G) that the Cayley graph of G is close (more precisely, quasi-isometric) to a
tree.

It follows that virtually free groups have decidable word problem. In Chapter 24, we
shall discuss the word problem for more general classes of groups using other techniques.

Grunschlag proved that every rational (respectively recognizable) subset of a virtually
free group G decomposed as in (3.4) admits a decomposition as a finite union X0b0 ∪
· · ·∪Xmbm, where theXi are rational (respectively recognizable) subsets of FA, see [18].
Thus basic results such as Corollary 3.4 or Proposition 3.6 can be extended to virtually
free groups (see [18, 47]). Similar generalizations can be obtained for free abelian groups
of finite rank [47].

The fact that the strong properties of Corollary 3.4 do hold for both free groups and
free abelian groups suggests considering the case of graph groups (also known as free par-
tially abelian groups or right angled Artin groups), where we admit partial commutation
between letters.

An independence graph is a finite undirected graph (A, I) with no loops, that is, I is a
symmetric anti-reflexive relation on A. The graph group G(A, I) is the quotient FA/ ∼,
where ∼ denotes the congruence generated by the relation

{(ab, ba) | (a, b) ∈ I}.

On both extremes, we have FA = G(A, ∅) and the free abelian group on A, which cor-
responds to the complete graph on A. These turn out to be particular cases of transitive
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forests. We can say that (A, I) is a transitive forest if it has no induced subgraph of either
of the following forms:

• •

• • • • • •
C4 P4

We recall that an induced subgraph of (A, I) is formed by a subset of vertices A′ ⊆ A
and all the edges in I connecting vertices from A′.

The following difficult theorem, a group-theoretic version of a result on trace monoids
by Aalbersberg and Hoogeboom [1], was proved in [23]:

Theorem 3.10 (Lohrey & Steinberg). Let (A, I) be an independence graph. ThenG(A, I)
has decidable rational subset membership problem if and only if (A, I) is a transitive for-
est.

They also proved that these conditions are equivalent to decidability of the member-
ship problem for finitely generated submonoids. Such a ‘bad’ G(A, I) gives an example
of a finitely presented group with a decidable generalized word problem that does not
have a decidable membership problem for finitely generated submonoids.

It follows from Theorem 3.10 that any group containing a direct product of two free
monoids has undecidable rational subset membership problem, a fact that can be directly
deduced from the undecidability of the Post correspondence problem.

Other positive results on rational subsets have been obtained for graphs of groups,
HNN extensions and amalgamated free products by Kambites, Silva and Steinberg [19],
or Lohrey and Sénizergues [22]. Lohrey and Steinberg proved recently that the rational
subset membership problem is recursively equivalent to the finitely generated submonoid
membership problem for groups with two or more ends [24].

With respect to closure under complement, Lohrey and Sénizergues [22] proved that
the class of groups for which the rational subsets form a boolean algebra is closed under
HNN extension and amalgamated products over finite groups.

On the negative side, Bazhenova proved that rational subsets of finitely generated
nilpotent groups do not form a boolean algebra, unless the group is virtually abelian [3].
Moreover, Roman′kov proved in [41], via a reduction from Hilbert’s 10th problem, that
the rational subset membership problem is undecidable for free nilpotent groups of any
class > 2 of sufficiently large rank.

Last but not least, we should mention that Stallings’ construction was successfully
generalized to prove results on both graph groups (by Kapovich, Miasnikov and Weid-
mann [21]) and amalgamated free products of finite groups (by Markus-Epstein [29]).

3.5 Rational solution sets and rational constraints

In this final subsection we make a brief incursion in the brave new world of rational
constraints. Rational subsets provide group theorists with two main assets:
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• A concept which generalizes finite generation for subgroups and is much more fit
to stand most induction procedures.

• A systematic way of looking for solutions of the right type in the context of equa-
tions of many sorts.

This second feature leads us to the notion of rational constraint, when we restrict the set
of potential solutions to some rational subset. And there is a particular combination of
circumstances that can ensure the success of this strategy: if RatG is closed under inter-
section and we can prove that the solution set of problem P is an effectively computable
rational subset of G, then we can solve problem P with any rational constraint.

An early example is the adaptation by Margolis and Meakin of Rabin’s language and
Rabin’s tree theorem to free groups, where first-order formulae provide rational solution
sets [27]. The logic language considered here is meant to be applied to words, seen as
models, and consists basically of unary predicates that associate letters to positions in
each word, as well as a binary predicate for position ordering. Margolis and Meakin used
this construction to solve problems in combinatorial inverse semigroup theory [27].

Diekert, Gutierrez and Hagenah proved that the existential theory of systems of equa-
tions with rational constraints is solvable over a free group [11]. Working basically on
a free monoid with involution, and adapting Plandowski’s approach [35] in the process,
they extended the classical result of Makanin [25] to include rational constraints, with
much lower complexity as well.

The proof of this deep result is well out of scope here, but its potential applications
are immense. Group theorists are only starting to discover its full strength.

The results in [22] can be used to extend the existential theory of equations with ra-
tional constraints to virtually free groups, a result that follows also from Dahmani and
Guirardel’s recent paper on equations over hyperbolic groups with quasi-convex rational
constraints [10]. Equations over graph groups with a restricted class of rational constraints
were also successfully considered by Diekert and Lohrey [12].

A somewhat exotic example of computation of a rational solution set arises in the
problem of determining which automorphisms of F2 (if any) carry a given word into a
given finitely generated subgroup. The full solution set is recognized by a finite automa-
ton; its vertices are themselves structures named “finite truncated automata” [51].
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Abstract. This chapter is devoted to the study of rational subsets of groups, with particular em-
phasis on the automata-theoretic approach to finitely generated subgroups of free groups. Indeed,
Stallings’ construction, associating a finite inverse automaton with every such subgroup, inaugu-
rated a complete rewriting of free group algorithmics, with connections to other fields such as
topology or dynamics.

Another important vector in the chapter is the fundamental Benois’ Theorem, characterizing
rational subsets of free groups. The theorem and its consequences really explain why language
theory can be successfully applied to the study of free groups. Rational subsets of (free) groups can
play a major role in proving statements (a priori unrelated to the notion of rationality) by induction.
The chapter also includes related results for more general classes of groups, such as virtually free
groups or graph groups.
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