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Introduction 
   

 

 

 

1  INTRODUCTION 
 

 

 

 
Tomatoes (Solanum lycopersicum L., syn. Lycopersicon esculentum Mill.) belong 

to the important fruit vegetables for human nutrition and are cultivated across all 

continents in fields or in protected culture. Early blight of tomato, caused by the 

necrotrophic fungus Alternaria solani (Ellis & Martin) Jones & Grout, is one of the 

most common foliar diseases of tomatoes. The disease can occur over a wide 

range of climatic conditions, but is most prominent in areas with heavy dew, 

rainfall and high relative humidity. On tomato it causes damping-off of seedlings, 

later collar rot, leaf spots, stem lesions and fruit rot. Infection of the plants can 

result in a complete loss of the crop as yields are reduced by destruction of foliage 

and the fruits are damaged directly by the pathogen and by sun blotch on 

defoliated plants (Rotem, 1994).  

 

No major gene resistance towards early blight is known, genetic sources for partial 

resistance have been identified within wild species of tomato. The resulting lines 

from crosses of tomato with these wild species have still no satisfying crop 

qualities. Therefore, disease control of early blight is mainly conducted with 

chemical protective agents. However, these agents do not always prevent the 

infestation of the fruits and severe losses can still occur. Additionally, the used 

agents are often strongly fish poisonous, resulting in an increased risk for the 

environment in case of inappropriate application or storage. 

 

An alternative to usual chemical plant protection methods could be to employ 

systemic acquired resistance (SAR) effects. These are processes whereby the 
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plant's own defence mechanisms are activated by biological or chemical 

resistance inducers. With SAR, the disease susceptibility of treated plants can be 

reduced for several weeks and the growing parts will also be protected. As SAR 

has only protective and no curing effects, it could be necessary to combine the 

resistance inducer with low-dosage of conventional fungicide application in order 

to stop pathogen development during the build-up of the induced resistance.  

 

A third approach of plant protection is investigated in this study. The basic idea is 

to strengthen the plant by a symbiotic relation with arbuscular mycorrhizal fungi 

(AMF). Mycorrhiza is the symbiosis between land plants and AMF of the order 

Glomales. The AMF colonise the root cortex of a variety of host plants, among 

them tomato, and enhance the uptake of relatively immobile nutrients like 

phosphate or zinc. Other advantages for the colonised plant are (i) the supply with 

water is optimised, (ii) the tolerance to abiotic stresses is increased, and (iii) 

resistance to several root pathogens is improved. In return, the plant shares 

assimilated carbon with the fungal partner which depends on these sugars to 

complete its life cycle.  

 

This work is part of a cooperative project with scientists of the National Centre for 

Agricultural and Livestock Health (CENSA) in La Habana, Cuba. In Cuba, 

Alternaria solani has far greater importance than in Central Europe because of the 

climatic conditions in the Caribbean region. Due to the political and economical 

situation of this country, modern fungicides and fertilisers are scarce and much too 

expensive for the majority of the farmers. Therefore, biological plant protection 

strategies are more commonly used and research for alternatives to chemical 

plant protection is very important.  

 

The objective of this work was to develop a plant protection strategy which 

effectively combines systemic induced resistance, plant restoratives, symbiotic 

organisms like AMF, and – if necessary – minimum quantities of chemical 

fungicides to control the early blight disease on a long-term basis in an 

ecologically friendly manner.  
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2  LITERATURE SURVEY 
 

 

 

 
This chapter provides an overview of the current state of research concerning (i) 

the examined pathogen of interest, Alternaria solani, (ii) its host plant tomato, (iii) 

the methods and achievements of chemical plant protection, (iv) induced 

resistance, and (v) improvement of plant health by symbiotic root colonising fungi. 

 

 

2.1  The pathosystem tomato – Alternaria solani 

 

The main focus of this section lies on the attributes of Alternaria solani (in the 

following Alternaria) and how they influence the infection process.  

 

Tomatoes (Solanum lycopersicum L., syn. Lycopersicon esculentum Mill.) are a 

major contributor to the fruit vegetable diet of humans. They are cultivated in 

essentially all countries either in fields or in protected culture. In 2004, an area of 

4,4 million ha was used for tomato production worldwide. The yield per ha differs 

widely: e. g. in Cuba an average yield of 13,4 t ha-1 is achieved, in Germany about 

145 t ha-1 and in the Netherlands in high-input horticulture 454 t ha-1 (FAOSTAT 

data, 2004). 

 

Early blight of tomato, caused by Alternaria solani (Ellis & Martin) Jones & Grout, 

is economically the most important disease of tomatoes in the USA, Australia, 

Israel, the UK, and India, where significant reductions in yield (35 up to 78 %) have 
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been observed (Datar & Mayee, 1972; Basu, 1974; Jones et al., 1993). On tomato 

it causes damping-off of seedlings in the juvenile plant stage, on older plants collar 

rot, leaf spots, stem lesions and fruit rot. Typical symptoms for early blight disease 

are dark spots with concentric rings of spores surrounded by a halo of chlorotic 

leaf area (see Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Tomato leaf with typical Alternaria solani symptoms. The dark brown necrotic 
spots have concentric rings in which new spores are produced and are surrounded by a 
chlorotic halo caused by the secreted toxins. 
 

Infection of the plants can result in a complete loss of the crop as yields are 

reduced by the destruction of foliage and the fruits are damaged directly by the 

pathogen and by sun blotch on defoliated plants (Rotem, 1994). The disease 

progressively weakens the plant and increases its susceptibility to infection by 

reducing the photosynthetic leaf area and increasing the imbalance between 

nutrient demand in the fruits and nutrient supply from the leaves (Rowell, 1953). 

Alternaria has the ability to grow over a wide range of temperatures from 4 to 36 

°C (Pound, 1951) and requires only a short wet period of at least four hours for 

successful infection (Vloutoglou & Kalogerakis, 2000). The disease is less frequent 

and less damaging on pepper, eggplants, and some other species of Solanaceae 

and other families (Rands, 1917; Neergaard, 1945). Typically, weakened plant 

tissues, either due to stress, senescence, or wounding, are more susceptible to 

Alternaria infection than healthy tissues (Thomma, 2003). Alternaria is a 

necrotrophic pathogen, i.e. that the invading fungus kills plant cells in order to feed 
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on the cell contents, instead of developing haustoria and keeping the plant tissue 

alive as biotrophic pathogens do.  

 

Alternaria spp. has no known sexual stage or overwintering spores, but the fungus 

can survive as mycelium or spores on decaying plant debris for a considerable 

period of time, or as a latent infection in seeds (Rotem, 1994). The two major 

features of Alternaria species are the production of melanin, especially in the 

spores, and the production of non-specific as well as host-specific toxins in the 

case of pathogenic species (Thomma, 2003). One of the earliest identified non-

specific toxins is alternaric acid, identified by Brian et al. (1952). This toxin, 

isolated from lesions or from culture filtrate, caused chlorosis and necrosis when 

introduced in tomato plants and also damaged nonhosts of Alternaria like 

cabbage, radish, spinach, pea, bean, and others, thus pointing to its nonspecificity 

(Pound & Stahmann, 1951). Germination fluids of Alternaria contain alternaric acid 

as well as a nontoxic substance that acts as susceptibility-inducing factor 

(Langsdorf et al., 1990). It was concluded that alternaric acid alters the 

morphological and physiological characteristics of plasma membranes near 

plasmodesmata and thereby causes a permeability change which leads to a 

leakage of electrolytes (Langsdorf et al., 1991). 

 

 

 

 

 

 

 

 

A B 

Figure 2.2 A and B: Germinated Alternaria solani spores on a tomato leaf surface. A: A 
single germinated spore and to the left dead, brownish epidermal cells that have been 
killed by toxins prior to penetration. B: Two spores and several mycel pieces with lots of 
new formed mycel (blue) ramifying on the surface of the leaf. Thick blue mycel dots could 
be appressoria for possible penetration but intracellular mycel is not visible. Note that 
toxins have already killed by some epidermal cells in the background. 

 

Under favourable conditions, Alternaria spores germinate within hours and can 

produce more than one germ tube per spore as the spores consist of several cells. 
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The ability to penetrate the cuticule, stomata, and wounds has been described for 

most Alternaria species (Rotem, 1994). In case of less virulent strains or young 

and therefore resistant leaves, the germinating hyphae of A. cassiae and A. 

alternata tend to spread over the intact leaf surface and the only sites of infection 

are dead cells, suggesting that penetration is preconditioned by the secretion of 

toxins (von Ramm, 1962; van Dyke & Trigiano, 1987). This observation is consis-

tent with our own microscopic examinations of Alternaria solani (see Figure 2.2). 

 

Improving the resistance of tomato cultivars seems to be a promising option for 

control of early blight. But the lack of single-gene resistance and the complex 

patterns of inheritance have resulted in the availability of no commercial tomato 

cultivar that possesses adequate levels of resistance to Alternaria (Nash & 

Gardener, 1988). No genetic source of early blight resistance is known within the 

cultivated species of tomato (Martin & Hepperly, 1987; Foolad et al., 2000). 

However, resistant accessions have been identified within related wild species of 

tomato, in particular the green-fruited species Lycopersicon hirsutum (Barksdale & 

Stoner, 1977; Maiero et al., 1989) and the red-fruited species Lycopersicon 

pimpinellifolium (Martin & Hepperly, 1987; Kalloo & Banerjee, 1993). Resistant 

lines and cultivars provide a moderate resistance that enables the plants to 

tolerate an extended fungicide spray interval. This may contribute to a reduction in 

chemical inputs for early blight control in tomato (Gardner & Shoemaker, 1999). 

However, many of the more resistant lines are late-maturing or low-yielding, and/or 

the level of resistance is insufficient under field conditions (Foolad et al., 2000).  

 

 

2.2  Chemical plant protection 

 

Currently, the following three early blight control measures are the most common 

in tomato production: (i) sanitation, (ii) long crop rotation to reduce the spore con-

centration on decaying plant material, and (iii) routine application of fungicides 

(Zhang et al., 2003). The chemical control is conducted mainly with protective 

agents like MANEB® (in the following referred to as Maneb) or PROPINEB® and 

with inorganic fungicides (e.g. copper-hydroxide). Maneb is a dithiocarbamate 

which inhibits spore germination and penetration of the leaves. Since this agent 
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has only a preventive and no curative effect, leaf accession is not protected and 

the infestation of the fruits cannot be prevented so that crucial losses still occur. As 

Maneb is also easily washed off by rainfall, optimal plant protection requires re-

peated applications. A waiting period of three weeks between spraying and 

harvest has to be followed in order to ensure the degradation of the chemical 

remainders. Additionally, this plant protectant is strongly fish poisonous, which 

results in an increased risk for the environment in case of inappropriate application 

or storage. 

 

In practice, different fungicides are often combined in mixtures. This approach is 

preferable mainly for three reasons: (i) to widen the spectrum of antifungal activity 

to control several diseases occurring simultaneously in a crop; (ii) to exploit 

additive and synergistic interactions between fungicides, by which the overall 

activity is increased and the concentrations of the compounds can be reduced 

without loss of activity; and (iii) to delay the selection process of resistant 

individuals in a pathogen population to one component of the mixture (Gisi, 1996).  

 

In combination with the resistance inducer ASM, the fungicide Maneb could be 

added in very small dosages that could be sufficient to protect the plant until the 

build-up of induced resistance is completed. The interactions can be synergistic, if 

the combination has a greater activity than the activity of both agents applied 

alone. Also additive or, in the unfavourable case, antagonistic interactions are 

possible. All interactions can be demonstrated by special experimental designs 

and statistical analysis. The appropriate statistical approach has to be chosen 

depending on whether these agents function with the same or with different modes 

of action. Different action occurs if each pesticide affects a different physiological 

activity or vital system in the pest (Wadley, 1945), in this case, the Abbott 

procedure is proposed to determine synergism. As Maneb affects Alternaria solani 

and ASM activates the plant without direct activity against the pathogen, the 

modes of action are clearly different and the Abbott procedure (Abbott, 1925) the 

appropriate statistical method. 
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2.3  Induced resistance 

 

An alternative to usual chemical plant protection agents could be the use of 

induced resistance. Two kinds of induced resistance are distinguished: (i) the 

systemically acquired resistance or SAR, and (ii) the rhizobacteria-mediated 

induced resistance, or ISR for short. 

 

SAR is activated after infection by a necrotising pathogen or other biotic and 

abiotic stresses, rendering distant, uninfected plant parts resistant towards a broad 

spectrum of pathogens (Kuć, 1982). Generally, the SAR mechanism is effective 

against many types of pathogens including viruses, is associated with the 

production of pathogenesis related (PR) proteins and is mediated via a salicylic 

acid dependent process (Hammerschmidt, 1999). After an acquisition period that 

ranges from few hours to several days, this effect lasts for weeks and also protects 

the growing plant section in dicotyle plants.  

 

The systemic signal prepares the tissue to react more rapidly and more efficiently 

to an infection challenge by a virulent pathogen. This phenomenon is often 

referred to as "conditioning" (Métraux et al., 2002) or also "sensitising" (Sticher et 

al., 1997). Since SAR protects the plants against a variety of diseases, it is 

assumed that the use of general chemical plant protection agents could be 

substantially reduced if substituted by SAR. It is likely that a combination of the 

resistance inducer with a fungicide in low dosage would give best results. This 

fungicide addition would stop the further development of attacking pathogens 

during the resistance build-up when the plants are still susceptible. 

 

SAR can also be induced by a variety of chemicals which do not act systemically 

but cause lesion-like tissue damage at the points of application, suggesting that 

these chemicals mimic the biological SAR induction by necrotising pathogens. 

Examples for these chemicals are various salts, unsaturated fatty acids, harpin 

proteins, elicitin peptides, and sublethal concentrations of certain herbicides, as 

reviewed by Oostendorp et al. (2001). All these compounds share that they do not 

have direct antimicrobial effects on the pathogens. 
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Exogenous application of salicylic acid or structural analogues of SA such as 

benzo(1,2,3)thiadiazole-carbothioic-acid-S-methylester (BTH) and 2,6-dichloroiso-

nicotinic acid (INA) that appear to act similarly to salicylic acid can induce SAR 

(Hammerschmidt, 1999). Spletzer & Enyedi (1999) could show that root feeding of 

salicylic acid to tomato plants significantly elevated foliar SA levels, induced PR-

1B gene expression, and activated SAR that was effective against Alternaria 

solani.  

 

Benzo(1,2,3,)thiadiazole derivates with S-methyl-benzo(1,2,3)thiadiazole-7-carbo-

thiate, known as Acibenzolar-S-metyl (ASM), was the first commercial product 

marketed under the trade names BION®, ACTIGARDTM and BOOST®. These 

compounds do not show any antimicrobial activity in vitro and activate resistance 

against the same spectra of pathogens as the biological inducers of SAR (Kunz et 

al., 1997). Resistance activation by ASM takes place without the accumulation of 

SA in wild type plants and it is still effective on NahG tobacco and Arabidopsis 

thaliana plants which lack SA and do not respond to biological induction of SAR 

(Oostendorp et al., 2001), showing that the synthetic inductor itself functions as 

transmitter of the signal and is transported in the phloem to all plant parts. Like all 

other resistance inducers, both biological and chemical, ASM has to be applied 

well before the challenging pathogen attack as it has no curative effect and the 

build-up of resistance can take several days. ASM has shown activation of broad-

spectrum disease resistance under field conditions on tomatoes, some other 

vegetable and fruit crops but this ASM-activated resistance is highly crop specific, 

for example on tomatoes, resistance is activated against late blight (Phytophthora 

infestans) while on potato no reliable activation against the same pathogen is 

observed (Tally et al., 1999). 

 

The second type of induced resistance develops systemically in response to 

colonisation of plant roots by certain plant growth promoting rhizobacteria (PGPR). 

This type of resistance, known as rhizobacteria-mediated induced systemic 

resistance (ISR), is transferred by a jasmonate/ethylene sensitive pathway and 

does not involve expression of PR proteins (van Loon et al., 1998). Rhizosphere 

bacteria are present in large numbers on plant root surfaces, where root exudates 

and lyases provide nutrients (Lynch & Whipps, 1991). Generally, PGPRs are able 
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to control plant pathogens by antibiotic effects, site occupancy or competition for 

iron through siderophores (Métraux et al., 2002). Certain strains of PGPRs 

promote plant growth and some are able to induce systemic resistance which 

extends to the above-ground plant parts and is phenotypically similar to SAR 

(Pieterse et al., 2001). 

 

Different rhizobacteria utilise different mechanisms for triggering systemic 

resistance: some trigger the SA-dependent pathway, others a jasmonate/ethylene-

dependent one, and additional pathways are likely to be discovered in the future 

(Pieterse et al., 2001). Silva et al. (2004) reported that PGPR isolate B101R 

reduced disease intensity in terms of average number of leaf lesions of Alternaria 

solani, Stemphilium solani (leaf spot) and Oidium neolycopersici (powdery tomato 

mildew) on tomato. ISR can be induced not only by the rhizobacteria themselves, 

but also by bacteria-synthesised macromolecules (Romeiro et al., 2005). Based on 

work with gene-knockout mutants in Arabidopsis, SAR and ISR are proposed to 

confer resistance to pathogens according to their lifestyles, so that SAR primarily 

functions against biotrophic pathogens, and ISR against necrotrophic pathogens 

(Thomma et al., 1998; 2001). Bacterial strains differ in their ability to induce 

resistance in different plant species, and plants show variation in the expression of 

ISR upon induction by specific bacterial strains (van Loon et al., 1998). 

Simultaneous activation of both the jasmonic acid/ethylene-dependent ISR 

pathway and the SA-dependent SAR pathway resulted in an enhanced level of 

protection as investigated by van Wees et al. (van Wees et al., 2000). 

 

 

2.4  Spirulina platensis as plant restorative 

 

Plant restorative agents are defined as agents which either (i) enhance the 

resistance of plants against pathogens without having a direct influence on the 

pathogen itself, (ii) protect plants against abiotic stresses, or (iii) prolong the life of 

cut flowers (Gesetz zum Schutz der Kulturpflanzen, 1998). In Germany, these 

plant restoratives have to be registered at the Biologische Bundesanstalt in 

Braunschweig and listed at the Bundesamt für Verbraucherschutz und 

Lebensmittelsicherheit. The acceptance to the list requires that the agents do not 
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have damaging effects on the health of humans or animals, or on the environment. 

Whereas a verification of the effectiveness is not necessary.  

 

The cyanobacteria Spirulina platensis is one of the most widely sold microalgae on 

the health food market and contains highly effective scavenger complexes, 

minerals and trace elements, polyunsaturated fatty acids, a very high protein 

content of about 60 to 70% and high-molecular polysaccharides (Pulz et al., 2001). 

Due to the exopolysaccharides of the microalgae, an effect on the plants pathogen 

defence system was expected and it is currently tested as potential plant 

restorative or resistance inducer.  

 

 

2.5  Root symbionts 
 

The following section focuses on fungi that colonise the root rhizosphere and live 

symbiotic on and in the roots of their host plants. This coexistence can have 

dramatic effects on the plant's status, also in respect to defence reactions towards 

attacking pathogens. 

 

 

2.5.1  Plant growth promoting fungus Piriformospora indica 

Piriformospora indica (in the following Piriformospora) Verma, Varma, Kost, Rexer 

& Franken is a newly discovered fungus which was isolated from an arbuscular 

mycorrhizal fungal spore from a desert soil in Rajasthan, India. The name refers to 

the pear-shaped chlamydospores that are formed asexually. The endophytic 

fungus belongs to the Sebacinaceae family, colonises the roots of a wide variety of 

plant species and promotes their growth in a manner similar to arbuscular 

mycorrhizal fungi (Peskan-Berghofer et al., 2004). Piriformospora has a wide and 

diverse host spectrum that is very similar to that of AM fungi, but includes the non-

mycorrhizal host Arabidopsis thaliana (Peskan-Berghofer et al., 2004) and some 

terrestrial orchids (Blechert et al., 1999). 

 

Piriformospora enters the root cortex and forms inter- and intracellular hyphae, 

often forming dense hyphal coils, branched structures or round bodies within the 
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cortical cells. Like AM fungi, the hyphae multiply within the host cortical tissue and 

never traverse through the endodermis, also they do not invade the aerial portion 

of the plant (Singh et al., 2000). Another attribute of Piriformospora is similar to AM 

fungi: the mobilization of insoluble phosphates and their translocation to the 

photosymbiont. Studies of Varma et al. (2001) have shown fungal-mediated 

uptake of radio-labelled phosphorus from the medium and its translocation to the 

host in an energy-dependent process, evident by a sharp increase in its content in 

the shoot.  

 

Piriformospora shows growth-promoting effects on a broad range of host plants, 

as do the AM fungi, but has the added trait of being able to be grown in axenic 

cultures (Varma et al., 1999). This cultivability of Piriformospora on economically 

viable synthetic media makes it suitable for mass scale inoculum production for 

application in agro-forestry and horticulture (Singh et al., 2000). Piriformospora 

can also be used as biological hardening agent of mircopropagated plants, as it 

renders more than ninety per cent survival rate for laboratory to field transferred 

plantlets (Singh et al., 2000). The positive growth responses of plants inoculated 

by Piriformospora have already been proved in field trials, e. g. on the medicinal 

plants Spilanthes calva and Withania somnifera by Rai et al. (2001). 

 

Peskan-Berghofer et al. (2004) detected a promotion of root growth of Arabidopsis 

thaliana plants even before noticeable root colonisation. The growth promotional 

effects of Piriformospora on a compatible photosymbiont do not exclusively 

demand the physical contact of the mycelium, but could also be realised with the 

treatment of the host with small quantities of the culture filtrate (Singh et al., 2000). 

But, the stimulating factor is not yet known. Varma et al. (1999) tested the 

possibilities of Piriformospora as biological control agent of soil-borne diseases. 

The pathogens Gaeumanomyces graminis and Aspergillus sydowii were placed in 

the centre of agar plates with four equidistantly surrounding mycel discs of 

Pirirformospora. Both pathogens were significantly suppressed in these agar 

plates, indicating the potential of Piriformospora to act as direct biocontrol agent.  
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2.5.2  Arbuscular mycorrhizal fungi 

Vesicular-arbuscular mycorrhiza is the symbiosis between land plants and 

arbuscular mycorrhizal fungi (AMF) of the order Glomales. About 95 % of present-

day plant species belong to families that are characteristically mycorrhizal (Smith 

& Read, 1997). Both fossil (Remy et al., 1994) and molecular phylogenic (Simon et 

al., 1993) evidence supports the hypothesis that terrestrial plants evolved with the 

aid of existing arbuscular mycorrhizal relationships. AMF are probably the most 

abundant fungi in agricultural soils, accounting for somewhere between 5 and 50% 

of the biomass of soil microbes (Olsson et al., 1999). Arbuscular mycorrhizae are 

the most important microbial symbioses for the majority of plants and, under 

conditions of phosphate-limitation, influence plant community development, 

nutrient uptake, water relations, and above-ground productivity (Jeffries et al., 

2003). VA mycorrhizal fungi have been recognised as ecologically obligate 

symbionts of a very wide range of plant species. The symbiosis is biotrophic and 

normally mutualistic, the long-term compatible interaction being based on 

bidirectional nutrient transfer between plant and fungus (Smith & Read, 1997).  

 

Phosphate (P) is an important plant macronutrient, being a component of key 

molecules such as nucleic acids, phospholipids, and ATP. Like zinc, P is relatively 

immobile in the soil. It moves only by diffusion and its concentration in the soil 

solution is very low. The rapid uptake of both nutrients by plants results in 

depletion zones around the roots (Nye & Tinker, 1977). AMF are known to 

enhance uptake of relatively immobile nutrients as phosphate and zinc in their 

host-plants (Thompson, 1987) and to stimulate the growth of symbiotic plants. The 

positive effect of AM fungi on phosphate uptake has been attributed to: (i) an 

exploration of a larger soil volume by the extraradical mycelium; (ii) the small 

hyphal diameter leading to an increased phosphate absorbing area and, compared 

to non-mycorrhizal roots, higher phosphate influx rates per surface unit; (iii) the 

formation of polyphosphates by mycorrhizal fungi and thus lower internal inorganic 

phosphate concentrations; and (iv) the production of organic acids and 

phosphatases that catalyse the release of phosphate from organic complexes 

(Marschner & Dell, 1994). 
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The fungus provides a link between the soil and the plant and therefore has 

different parts of its thallus living in two quite different environments (Smith et al., 

2001). Extraradical hyphae can have a total surface area of several orders of 

magnitude greater than that of roots alone, which increases the potential for 

nutrient uptake, and possibly also water uptake (Rhodes & Gerdemann, 1975; 

Augé, 2001). In the root cortex, the AM fungi spread by forming intercellular 

hyphae and form arbuscules or hyphael coils and in some cases also vesicles, 

which are assumed to be storage organs. Arbuscules and other fungal structures 

do not penetrate host cell membranes, but invaginate them (Bonfante-Fasolo, 

1984). Arbuscules consist of hyphae that branch dichotomously and profusely 

within root cortical cells (see Figure 2.3). They are assumed to be responsible for 

nutrient exchange between the host and the symbiont, transporting carbohydrates 

from the plant to the fungus and mineral nutrients, especially phosphate, and 

water from the fungus to the plant (Strack et al., 2003). The phosphate obtained by 

the fungus is translocated through the hyphae and effluxed into the interfacial 

apoplast between root cortical cell and arbuscule before uptake by plant cells 

across the plasma membrane (Smith & Read, 1997). 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Part of a mycorrhizal tomato root. In the middle, from below left to top right, is 
the central cylinder of the root with the vascular system. The long straight blue lines are 
intercellular mycel, with which the fungus spreads in the root. The arbuscules are the 
spots of dense mycel that nearly fill the cells.  
 

The formation of mycorrhizal symbiosis is closely related with the supply of 

phosphate: the colonisation of the roots decreases with increased phosphate 

available in the soil is for the host plant, but it may also be reduced at very low 
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phosphorus availabilities (Abbott et al., 1984; Amijee et al., 1989; Koide & Li, 

1990). AMF are obligate biotrophs which completely depend on their hosts for C 

supply (Jennings, 1995) and require for up to 20 % of the host’s assimilated 

carbon for establishment and maintenance (Jakobsen & Rosendahl, 1990; Douds 

et al., 2000; Graham, 2000; Johnson et al., 2002). The benefits of the host plants 

do not always outweigh the carbon costs and under conditions of sufficient and 

supraoptimal phosphate supply, a mycorrhizal infection may neither have positive 

effect on the phosphate absorption (Amijee et al., 1993) nor on plant growth.  

 

AMF also act as bioprotectants against pathogens and toxic stresses (Jeffries et 

al., 2003). It is commonly accepted that mycorrhizal formation reduces infection 

with various soil-borne pathogens and nematodes (Azcón-Aguilar & Barea, 1996; 

Smith & Read, 1997). Regarding viral diseases and leaf pathogens on the other 

hand, plants in symbiosis with AMF are generally assumed to be more susceptible 

as summarised by Dehne (1982). Gernns et al. (2001) observed that mycorrhizal 

barley plants were more infected by Blumeria graminis f. sp. hordei but suffered 

less in terms of reduction of grain number, ear yield and thousand-grain weight. 

 
In sustainable, low-input cropping systems the natural roles of microorganisms in 

maintaining soil fertility and biocontrol of plant pathogens may be more important 

than in conventional agriculture where their significance has been marginalised by 

high inputs of agrochemicals (Johansson et al., 2004). Hyphae of AMF have been 

shown to play an important role in soil stabilization through formation of soil 

aggregates (Tisdall & Oades, 1979). 

 

The strong influence of AMF on the plant's supply with P can make it difficult to 

distinguish between direct effects of the AMF on the plant and more indirect 

effects due to changed nutritional status. To ensure that effects were based on 

compensation and not on classical mycorrhizal growth promotion, a plant/AMF 

system has to be used that shows no difference in growth between mycorrhizal 

and non-mycorrhizal plants after sufficient fertilization with phosphate (Gernns et 

al., 2001). 
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3  MATERIALS AND METHODS 
 

 

 

 
The following chapter describes the materials and methods used in our studies of 

the pathosystem tomato – Alternaria solani: (i) the cultivation of plant material in 

section 3.1, (ii) all methods concerning the pathogen in 3.2, and (iii) the experi-

mental designs and statistical analysis in 3.3. All used material and the 

manufacturers are listed in section 3.4. 

 

 

3.1  Plant material  
 

In this section, the growth and handling of the tomato plants is described. The 

cultivation of the plants had to be adjusted whether root symbionts were used in 

the experimental sets. When the plants shall be colonised by fungi, the growing 

substrate has to be free of microorganisms and shall be easily removable of the 

plant roots. In 3.1.1, the cultivation of tomato plants for all studies without root 

symbionts is described. Section 3.1.2 focuses on the plant growth for studies with 

Piriformospora indica. The growth of mycorrhizal plants is described in 3.1.3.  

 

 

3.1.1  Tomato plants for general studies 

In the following, we describe the growth conditions applied to those tomato plants 

that were not destined for any root symbiosis. These tomatoes supplied the plant 
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material for the leaf disc experiments and tests with plant restoratives and 

resistance inducers. 

 

The following three tomato (Solanum lycopersicum L., syn. Lycopersicon 

esculentum Mill.) varieties were included in our studies: (i) Rheinlands Ruhm, (ii) 

Hellfrucht, and (iii) Campbell 28, the latter a Cuban cultivar developed at CENSA , 

San José de las Lajas, La Habana, Cuba. While cv. Rheinlands Ruhm was used in 

all experiments, the others were only used in studies in which different reactions of 

the cultivars were expected.  

 

To sterilise the surface of the seeds, they were rinsed in 95 % ethanol, washed 

with aqua dest., then soaked in 4 % NaOCl (v : v) for 10 min and washed again. 

The treated seeds were spread on filter paper for fast drying and stored in an air-

tight and dark sterile container. 

 

The seeds were sown in trays with P-soil (150 mg N l-1; 150 mg P2O5 l-1; 

250 mg K2O l-1; pH 5.9) and transplanted to small pots or multipot-trays (5 cm 

diameter per pot) after full germination. After the development of two true leaves, 

the plantlets were transferred in circular pots of 12 cm diameter with T-soil 

(300 mg N l-1; 280 mg P2O5 l-1; 400 mg K2O l-1; pH 5.9). If no other age ist stated 

for the individual experiment, the inoculation with Alternaria was performed when 

the plants were about 5 weeks old and had developed 5 fully unfolded leaves.  

 

The plants were grown at the University of Gießen either in a glasshouse at a 

16 : 8 hours light : dark cycle, with 24 - 26 °C : 16 - 18 °C and about 65% relative 

humidity, or in climate chambers at constantly 20 ± 1 °C and about 65% relative 

humidity. For the inoculation with Alternaria, the relative humidity was increased to 

95% for 24 to 48 hours to ensure germination and survival of the spores.  

 

 

3.1.1.1  Plant protective agents and plant restoratives 
The plant protective agent Maneb, resistance inducer ASM and plant restorative 

Spirulina platensis were applied as spray with a pressure sprayer. All agents were 

used in a variety of concentrations depending on the hypotheses of the studies. 
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The used concentrations are always given for the active ingredient for the single 

experiments in chapter 4. The plants were sprayed until run-off occurred. Both 

resistance inducers ASM and INA as well as Spirulina were also applied as soil 

drench. Plants were watered with a certain amount of the solution, afterwards 

some additional water was applied to ensure that the chemicals successfully 

infiltrate the soil. If more than one agent was tested, they were combined in the 

appropriate concentrations in one single spraying or watering solution. In all cases, 

control plants were treated first by replacing the spray or soil drench by tap water. 

 

 

3.1.1.2  Leaf disc experiments 
Leaf disc experiments were conducted (i) if the influence of the leaf age on 

infection was of interest, (ii) if a high number of replications was needed to detect 

differences, or (iii) if inoculation success was insecure during wintertime. Tomato 

plants for these studies were grown as described before until five to six weeks 

after germination. Leaves of defined leaf levels were picked and circular leaf discs 

with a diameter of 19 mm were cut. The leaf discs were placed in petri dishes with 

water agar (0.4% agar agar and an addition of 40 ml of 10% benzimidazol solution 

(w : v) per litre) and inoculated with droplets of Alternaria suspension (104 spores 

ml-1). The spore suspension was thickened with 40 g l-1 Sofort Gelatine to make 

moving of the petri dishes possible without letting the droplets run off the leaf 

surface. The petri dishes were kept at 18 °C in a 16 : 8 hour day/night regime and 

the disease severity on the leaf discs was assessed after two to four days.  

 

 

3.1.2  Plants with root colonising fungus Piriformospora indica 

This section describes the cultivation of tomato plants used as host plants for the 

root colonising fungus Piriformospora and the culture of the fungus itself.  

 

 

3.1.2.1  Plant material with Piriformospora indica 
For experiments with Piriformospora, a 1 : 1 mixture (v : v) of Oil Dri and Seramis® 

was used. Per 400 g pot, 15 g of minced fungal mycel or the equivalent amount of 

water as control were used and mixed thoroughly in the soil. The pots were either 
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lined with plastic bags or laid out with filter paper at the bottom to prevent mycel-

loss by run-off water. To optimise colonisation of the roots, the sterilised tomato 

seeds were sown directly into the pots. The plants were grown in a glasshouse 

under the same conditions as described in 3.1.1. 

 

 

3.1.2.2  Culture of Piriformospora indica 
The root colonising fungus Piriformospora was kindly provided Helmut Baltruschat, 

Institute for Applied Phytopathology and Zoology, Justus-Liebig-Universität 

Gießen, Germany.  

 

When mycel material was required for experiments, Piriformospora was cultivated 

in liquid complete medium (C-medium) in bottles on a shaking machine at room 

temperature. The fungal growth was relatively slow, the production of sufficient 

mycel for one experiment took about two month. To harvest the mycel, the 

medium was filtered, the obtained mycel particles were then washed with sterile 

aqua dest. to remove nutrient remains of the medium, and minced with a blender. 

The fungus can be kept on petri dishes with C-medium plus agar agar for periods 

of several months. 

 

Composition of medium used for Piriformospora cultivation 

C-medium 50 ml salt solution (see below),  
20 g glucose,  
2 g peptone,  
1 g yeast extract,  
1 g casamino acids  
and 1 ml trace element solution (see below),  
filled up to 1 litre with aqua dest. and autoclaved. For 
use in petri dishes add 15 g l-1 agar agar.  
Annotation: It is not necessary to add the vitamin 
solution as proposed by Pontecorvo et al. (1953). 
 

 
 
Salt solution  
 

 
 
120 g NaNO3
10.4 g KCl  
10.4 g MgSO4 · 7H2O  
and 30.4 g KH2PO4  
dissolved in 1 litre aqua dest.  
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Trace element solution For 100 ml solution:  
2.2 g ZnSO4 · 7H2O  
1.1 g H3BO4  
0.5 g MnCl2 · 4H2O  
0,5 g FeSO4 · 7H2O  
0.18 g CoCl2 · 6H2O  
0.18 g CuSO4 · 5H2O  
0.11 g (NH4)6Mo7O24 · 4H2O  
and 5 g Na2EDTA  
are dissolved one ingredient after the other in about 
80 ml aqua dest. Boil up the solution, then let to cool 
down to about 60 °C and set pH to 6,3 - 6,8 with KOH 
cookies or at least 10M KOH solution. After cooling 
down to room temperature solution is filled up to 100 
ml and stored in dark bottle. 

 

 

3.1.3  Plants with arbuscular mycorrhizal fungus G. intraradices 

This section describes (i) the growth of mycorrhizal tomato plants, (ii) the harvest 

of the colonised roots, and (iii) the estimation of the degree of their colonisation. 

Further, the propagation of Glomus intraradices and the Cuban mycorrhizal 

inoculum EcoMic® are presented.  

 

 

3.1.3.1  Plant material with Glomus intraradices 
At the Risø National Laboratory, Denmark, a 1 : 1 (v : v) mixture of sand and 

irradiated soil (10 kGy, 10 MeV electron beam) was used for AMF-experiments. 

This growth medium, hereafter referred to as soil, had a bicarbonate-extractable P 

content of 9.8 µg g-1 (Olsen et al., 1954) and was enriched by adding nutrient 

solutions (Viereck et al., 2004) as described in Table 3.1. The KH2PO4 solution 

was used to control P levels of 0, 3, 6, 9, 12, and 15 mg P kg-1 soil, or 0, 15 and 

45 mg P kg-1 soil in AMF experiment 1 and 2, respectively. These concentrations 

do not include the above mentioned bicarbonate-extractable P. After the addition 

of the nutrient solutions, the soil was left to dry for three days and was then mixed 

thoroughly. Pots with 8 cm side length were lined with plastic bags and filled with 

400 g soil mixture as control. Mycorrhizal plants were grown in a mixture of 368 g 

soil and 32 g Glomus intraradices inoculum (BEG 87 (28a); kindly provided by the 

Plant Nutrition Group of Risø). 
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Table 3.1: Nutrient solutions for mycorrhizal experiments. 

Solution Compound Concentration in 
solution [mg ml-1] 

mg kg-1 
soil 

Solution addition 
[ml kg-1 soil] 

I K2SO4 25 75 3 
II CaCl2 · 2 H2O 25 75 3 
III CuSO4 · 5 H2O 0.7 2.1 3 
 ZnSO4 · 7 H2O 1.8 5.4  
 MnSO4 · H2O 3.5 10.5  
 CoSO4 · 7 H2O 0.13 0.39  
 MgSO4 · 7 H2O 15.0 45.0  
 Na2MoO4 · 2 H2O 0.06 0.18  

IV NH4NO3 28.57 (10 mg N ml-1) 30.0 3 
V KH2PO4 43.93 (10 mg P ml-1) variable variable 

The third column shows amounts of compounds to prepare these solutions, the fourth 
column gives the desired concentrations of nutrients in the resulting soil and the fifth 
column the amount of solution which has to be added to the soil mixture to achieve these 
concentrations. 
 

The surface sterilised tomato seeds were pregerminated on wet filter paper. The 

seedlings were transferred to pots after three days and reduced to one plant per 

pot after full germination. The soil surface was covered with plastic beads to 

prevent algae growth and evaporation. Plants were grown in climate chambers in 

a 16 : 8 hours light : dark cycle at 24 - 26 °C : 18 - 20 °C and irrigated daily to 60% 

field capacity. 

 

 

3.1.3.2  Root harvest and estimation of mycorrhizal colonisation 
At harvest, plant roots of mycorrhizal tomatoes were washed to remove the soil 

particles. The root material was cut into pieces of about 1 cm length, mixed 

thoroughly and a sample of about 1 to 2 g was taken from each plant. Samples 

were then cleared with 10% KOH and stained with 0,05% trypan blue in 

lactoglycerol (Phillips & Hayman, 1970, modified) with the omission of phenol from 

the solutions and HCl from the rinse. Percentage of mycorrhizal colonisation was 

determined using the following gridline intersection method as described by 

Giovanetti and Mosse (1980): Stained root pieces were spread on a petri dish with 

gridlines at 1 cm intervals. Using a binocular, all roots crossing these lines were 

assessed being whether mycorrhizal or not, recording the total number of roots 
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and the number of mycorrhizal roots separately, in order to determine the 

proportion of colonised roots. 

 

 

3.1.3.3  Propagation of Glomus intraradices 
Glomus intraradices was propagated in living plant cultures. For each culture, a 

pot (for 3 kg soil) was lined with a plastic bag, filled with 1500 g soil, then 950 g 

soil plus 50 g of the original inoculum and topped with 500 g of soil. A control pot 

was filled with the same amount of soil without inoculum. Pots were watered to 

60 % field capacity and left for 1 week to stimulate AMF spore germination. Then 

10 pregerminated seeds of host plants (Medicago sativa L. or Trifolium 

resupinatum L.) were sown and plants were reduced to five per pot after full 

germination. Pots were watered every second day to weight, increasing the weight 

slowly as plants were growing. After one month, a soil sample was taken, 

embodied roots were stained and checked for mycorrhizal colonisation. After 

approximately three months, the watering was stopped and the soil was left to dry 

for about two weeks. Then sprouts and thick roots of the host plants were 

removed, remaining roots were cut into fine pieces and mixed thoroughly with the 

soil. A quality control with the inoculum was performed by inoculating tomatoes 

and assessing the degree of colonisation after three weeks. The so produced 

inoculum can be stored in tightly closed dark containers either at room 

temperature or at 4 °C. 

 

 

3.1.3.4  AMF inoculum EcoMic®

The biofertiliser EcoMic® is produced in Cuba by the National Institute for 

Agricultural Sciences (Instituto Nacional de Ciencias Agrícolas, San José de las 

Lajas, La Habana, Cuba). It is based on several AM fungi of the genus Glomus, 

more detailed information about the contents are not available as the production 

process and contents are subjects of business secrecy. For the field trial in Cuba, 

one pellet of EcoMic® was used per pot in the multipot trays. 
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3.2  Pathogen Alternaria solani 
 

In this section, the culture of pathogen Alternaria solani, the inoculation of the host 

plant tomato and the assessment of the resulting disease severity for whole plants 

as well as leaf discs are described. 

 

 

3.2.1  Culture of Alternaria solani 

Alternaria isolates were cultured at 25 °C on plates and for long-term storage in 

test tubes. Potato dextrose agar (PDA) was produced from fresh potatoes and 

used as general culture medium. To ensure sporulation in spite of cultivation in 

vitro and without stimulating UV-C light, the isolates were cultivated every fourth 

cycle on dextrose agar (DA) which is a reduced PDA without potato cooking liquid. 

The sporulation enhancing S-medium after Shahin & Shephard (1979) was also 

used to induce sporulation. 

 

List of media used for culture of Alternaria solani 

PDA   200 g peeled potato pieces were boiled in a pot with lid with 
about 800 ml aqua dest. for 1 hour. The remaining cooking liquid 
is filtered through a sieve, mixed with 15 g agar agar and 20 g 
dextrose, filled up to 1 litre and autoclaved (Rotem, 1994). 
 

DA 15 g agar agar and 20 g dextrose are dissolved in 1 litre aqua 
dest. and autoclaved. Alternaria isolates sporulated profusely on 
PDA media if they were grown on nutrient-poor DA media before.
 

S-medium 20 g sucrose, 30 g CaCO3 and 20 g agar agar are dissolved in 1 
litre of aqua dest. and autoclaved. This media can enhance 
profuse sporulation if cubes of PDA medium with Alternaria
mycel are spread on its surface together with some sterile water 
(after Shahin & Shepard, 1979). 

 

 

3.2.2  Inoculation of host plants  

Tomato plants were inoculated with a mixture of spores from the isolates 

Greece-1, USA-1 and Cuba-141. To harvest the spores, 10-day-old cultures were 

brushed gently to loosen the spores from the mycel surface and then rinsed with a 

0.01 % Tween 20 solution. The resulting spore suspension was filtered through a 
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fine nylon mesh to remove bigger mycel parts, quantified using a haemocytometer 

and generally adjusted to 104 spores ml-1 (differing concentrations are given with 

the single experiments in chapter 4).  

 

Plants were inoculated by spraying the spore suspension until run-off. To ensure 

good spore germination, the plants were placed in plastic containers for 24 - 48 

hours to increase the relative humidity. Studies in Germany were performed in fully 

controlled climate chambers where the relative humidity was increased to 95% for 

at least 24 hours. 

 

 

3.2.3  Assessment of disease severity 

To define disease severity, percentage of leaf area with necrotic spots and 

proportion of chlorosis were assessed separately for all unfolded leaves 

(assessment grades from 1 to 12, see Table 3.2) and arithmetic means for single 

plants were calculated. Dead, shedded leaves were rated with assessment grade 

12 and were collected separately for every plant to determine the loss of biomass 

due to early blight infection.  

 
Table 3.2: Assessment scheme for necrotic or chlorotic leaf areas of single leafs after 
Horsfall and Barrett (1945) which is based on a semi-logarithm with 50 % infection as 
midpoint. 

% leaf area 0 < 3 < 6 < 12 < 25 < 50 < 75 < 87 < 94 < 97 < 100 100 
grade 1 2 3 4 5 6 7 8 9 10 11 12 
 

Tomato leaf discs were assessed with a reduced assessment scheme with grades 

from 0 to 5 as shown in Figure 3.1. All assessment grades of leaf discs in one petri 

dish were combined in an arithmetic mean, representing one leaf of a certain leaf 

level of one plant. 

 

At harvest, the shoots were cut from the plants directly above the soil surface and 

weighed to measure the fresh matter. As Alternaria defoliates the host plants and 

causes chlorosis at infected leaves resulting in reduced turgor, the fresh matter 

can be used as an alternative measure for disease severity. The dry weight was 

determined after a drying period of at least 72 hours at 70 °C. Dead, shedded 
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leaves were collected separately for each plant to determine the percental loss of 

biomass due to fungal infection.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Assessment scheme for leaf disc experiments. Shown are leaf discs with the 
grades 0 to 4 from left to right: 0 no infection; 1 only single and small necrotic spots, less 
than half of the droplet area is necrotic; 2 more than half of the droplet area is necrotic; 3 
the droplet area is fully necrotic; 4 the disease has spread over the whole leaf disc. Grade 
5 (not shown) was given for discs with a disease severity similar to grade 4, but with fully 
chlorotic leaf material. 
 

 

3.3  Experimental designs and statistical analysis 

 

The following section focuses on the experimental designs of the performed 

studies and the statistical analysis of the collected data material. The choice of 

appropriate statistical tests for the different data is described. 

 

 

3.3.1  Experimental designs 

All experiments were conducted in completely randomised designs as the 

conditions in the green house and climate chambers were even. All experiments 

were repeated once, but both replications are only demonstrated if the results 

were not consistent. Most studies investigated one or two treatment factors. All 

experiments were made with the number of replications indicated at the figures 

and tables in the results chapter. 
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3.3.2  Statistical analysis 

Most data, like fresh and dry weight data as well as mycorrhizal colonisation data, 

were evaluated using GLM and Tukey’s Test with α = 0.05. Disease assessment 

data were also analysed using GLM and Tukey's Test as arithmetic means were 

calculated for each plant or each leaf. Parallel, an analysis using H-Test followed 

by Nemenyi's Test was performed for these data. If these analyses resulted in 

diverging significant differences, both results are given in the results chapter. 

 

Necrosis and chlorosis data of mycorrhiza experiments, which were surveyed over 

several days, were analysed with a linear mixed model analysis for repeated 

measurements. Thereby, the autoregressive covariance structure was used as it 

fitted best with respect to the experimental structure and minimized values for 

Akaike’s Information Criterion (AIC; Akaike, 1973 after Burnham & Anderson, 

1998) and other information criteria. This statistical approach compares the 

treatments during the whole period of data collection and not only at certain time 

points by estimation of new means which are representing the whole time course 

and are therefore slightly different to the measured values. Degrees of freedom 

were estimated according to Satterthwaite’s formula (Satterthwaite, 1946 after 

Hocking, 1996). Levels of P addition and inoculation with G. intraradices were set 

as fixed factors, whereas the intervals between the assessments were used as 

covariates. Treatments were compared using LSD Test with Bonferroni correction. 

All calculations were performed using SPSS (SPSS for Windows, Rel. 12.0.1, 

2003. Chicago, SPSS Inc.). 

 

 

3.4  Chemicals and materials 
 

In Table 3.3 on the following page, we list all chemicals applied , and provide their 

chemical formula and manufacturers.  
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Table 3.3 : Applied chemicals and their manufacturers 

Chemicals Chemical formula Manufacturer 

α-D-glucose 
agar agar 
ammonium molybdate 4-hydrate 
boric acid  
calcium carbonate 
casamino acids 
cobalt chloride 6-hydrate 
copper II sulphate 5-hydrate 
iron II sulphate 7-hydrate 
glycerin 
lactic acid 
manganese II chloride 4-hydrate 
magnesium sulphate 7-hydrate 
potassium chloride 
potassium hydroxide 
sodium hypochloride 
sodium nitrate 
peptone 
Tween 20 
zinc sulphate 5-hydrate 
 

 
 
(NH4)6Mo7O24 · 4 H2O 
H3BO4
CaCO3
 
CoCl2· 6 H2O 
CuSO4 · 5 H2O 
FeSO4 · 7 H2O 
 
 
MnCl2 · 4 H2O 
MgSO4· 7 H2O 
KCl 
KOH 
NaOCl 
NaNO3
 
 
ZnSO4 · 5 H2O 

Carl Roth GmbH & Co.,
Karlsruhe, Germany 

sodium ethylenediamine-
tetraacetic acid 
 

Na2EDTA Fluka Chemie GmbH, 
Buchs, Switzerland 

yeast extract  Gibco Ltd., 
Paisley, Scotland 
 

benzimidazole 
potassium dihydrogen 
phosphate 

 
KH2PO4 · 4H2O 

Merck KGaA, 
Darmstadt, Germany 
 

trypan blue  Omikron GmbH, 
Neckarwestheim, 
Germany 
 

ammonium nitrate 
calcium chloride 
cobalt sulphate 7-hydrate 
2,6-dichloroisonicotinic acid 
manganese sulphate hydrate 
N,N-dimethylformamid  
potassium sulphate 
sodium molybdate 2-hydrate 
sucrose 

NH4NO3
CaCl2 · 2 H2O 
CoSO4 · 7 H2O 
INA 
MnSO4 · H2O 
DMF 
K2SO4  
Na2MoO4 · 2 H2O 

Sigma-Aldrich Chemie 
GmbH, Steinheim, 
Germany 
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The following Table 3.4 contains the trade names and manufacturers of the 

materials used in our experiments. 

 
Table 3.4: Applied materials and their manufacturers 

Materials Manufacturer 

Maneb® Celaflor GmbH, Ingelheim am Rhein, 
Germany 

Lycopersicon esculentum seeds 
cv. Campbell 28 

Centro Nacional de Sanidad Agropecuaria, 
San José de las Lajas, La Habana, Cuba 

Frustorfer P-Erde 
Frustorfer T-Erde 

Hawita Gruppe                                             
Vechta, Germany 

Oil Dri (Typ III R) Importer: Damolin 
Mettmann, Germany 

EcoMic® 

Patent No. 22641 
Instituto Nacional de Ciencias Agrícolas 
San José de las Lajas, La Habana, Cuba 

Lycopersicon esculentum seeds 
cv. Frembgens Rheinlands Ruhm 
cv. Hellfrucht 

Juliwa-Enza & Co. KG 
Heidelberg, Germany 

Seramis® Masterfoods GmbH  
Verden, Germany 

Sofort Gelatine, gemahlen RUF Lebensmittelwerk  
Quakenbrück, Germany 

host plant seeds for AMF 
inoculum: 
Medicago sativa L.  
and Trifolium resupinatum L. 

Samenhaus Hesemann GmbH 
Gießen, Germany 
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4  RESULTS 
 

 

 

 
In this chapter, the results of the studies of the pathosystem tomato – Alternaria 

solani are presented with special emphasis on induced resistance. The first 

section focuses on general studies about the pathogen itself and its interaction 

with the host plant. In the following sections, the effects of different agents for plant 

protection and resistance induction are demonstrated. The last section attends to 

the combination of tomatoes with symbiotic root colonising fungi and the resulting 

influences on disease severity. 

 

 

4.1  General studies of Alternaria solani  
 

This section describes the results of our general studies of Alternaria and its host 

plant tomato. Prior to the experiments, we had to develop a technique that induced 

sporulation in the isolates cultivated on artificial medium. The resulting new 

method is described in 4.1.1. The main objectives of the two following general 

studies were (i) to test whether the tomato leaves differing in age also differ 

significantly in suscptibility to early blight, which might influence the experimental 

results; and (ii) whether the toxins contained in the spore suspension could cause 

disease symptoms by themselves.  

 

 

  29   



Results 
   

4.1.1  Induction of sporulation  

A variety of Alternaria isolates were available but they had lost their ability to 

produce spores during the cultivation in vitro on axenic media. When high amounts 

of spores are required for inoculation, sporulation inducing methods are used to 

ensure sufficient spore production. The cultivation of Alternaria on Sporulation-

medium (S-medium) after Shahin & Shepard (1979) rendered in profuse 

sporulation of several isolates. But, this method is very time-intensive, as single 

pieces of fungal mycel on PDA have to be spread on a layer of the S-medium and 

covered with sterile water. The harvest of spores also takes more time than from a 

planar mycel disc, so this method was rarely practiced.  

 

Stress factors like nutrient deficiency can also induce sporulation, e.g. when the 

host plant is dying. We tested the cultivation on dextrose agar (DA), a modified 

PDA with the omission of potato cooking liquid. The mycel growth on DA plates 

was very slow and resulted in a fine mesh of mycel, but in no spores. The 

following transfer back on PDA yielded in sufficient and long-lasting spore 

production. With this two-step-method, isolates Greece-1, USA-1 and Cuba-141 

(kindly provided by Simon Pérez Martinez, CENSA, Cuba) could be stimulated to 

sporulate continuously. These three isolates were used in as mixture for 

inoculation in all following experiments.  

 

 

4.1.2  Leaf age dependent susceptibility 

Tomato leaves of various leaf levels differ in their susceptibility to Alternaria. A leaf 

disc experiment was conducted to investigate if these differences are relevant and 

subsequently to decide on the most appropriate leaf age for the following studies. 

The leaves 2 to 7 of ten plants were picked and from each leaf, 12 leaf discs were 

cut. For the youngest leaves of levels 6 and 7, the number of leaf discs had to be 

reduced as these leaves were relatively small. These discs were infested with 

droplets of Alternaria spore suspension and assessed after 48 hours.  

 

An overall leaf level effect could be shown by ANOVA (P < 0.001), with a maximal 

disease severity for level 2, i.e. for the oldest leaves. The disease severity 

decreased until leaf level 5, with minimal degree of infection. For levels 6 and 7, 
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the disease severity increased again. Leaves of level 7 (youngest) and 3 were 

significantly more susceptible than the leaves of level 5.  
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Figure 4.1: Disease severity of early blight disease susceptibility as a function of leaf age. 
Bars show arithmetic means and standard errors with n = 10, assessment scale from 0 to 
5. Data with equal letters do not differ significantly. 
 

 

4.1.3  Alternaria toxins 

Alternaria produces several host-specific and non-specific toxins, some of which 

assist the fungus during the infection. Disease severity of normal spore solution 

and the toxins alone were compared in an experiment with the following three 

treatments: (i) control (tap water plus an addition of 0.01% of Tween 20); (ii) toxins 

(filtered suspension without spores); and (iii) spore suspension. Analysis of the 

severity data by ANOVA followed by Tukey's Test and H-Test followed by 

Nemenyi gave differing results, as listed in Table 4.1. 

 
Table 4.1: Alternaria toxins and spore related disease severity.  

Treatments Disease severity 

Control 0.03 ± 0.05   a  A 

Toxins      1.3 ± 0.13   b  AB 

Spores    4.2 ± 0.13   c  B 

Given are arithmetic means and standard errors with n = 4, assessment scale from 0 to 5. 
Data with equal letters do not differ significantly; lower case letters for Tukey after 
ANOVA, capital letters Nemenyi after H-test. 
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Alternaria toxins alone resulted in a slightly increased degree of infection, which 

was significant by Tukey's method but not by Nemenyi. But this effect was small 

compared to the damage caused by inoculation with spores, which resulted in a 

significant increase even by means of the conservative Nemenyi-method. These 

results show that we could retain to our method of inoculating the plants with spore 

suspension. 

 

 

4.1.4  Summary 

• Long-lasting ability for profuse sporulation could be induced in some Alternaria 

solani isolates by a growth period on nutrient-poor dextrose agar (DA). This 

method could be easily included in the cultivation cycles of the fungus and was 

an improvement compared to the previously used labour-intensive method of 

Shahin & Shepard (1979).  

• The leaf levels of single plants do differ significantly in their susceptibility to 

early blight infection. The oldest leaves showed the highest susceptibility. The 

leaves of the levels 4, 5 and 6 were least susceptible. The susceptibility 

increased again in the youngest leaves. 

• Alternaria solani toxins in the absence of spores, as contained in filtered spore 

suspension, can cause light disease symptoms. However, this effect is small 

compared to the inoculation with spores, so there was no need to adapt 

another method of inoculation.  

 

 

4.2  Spirulina platensis as plant restorative 
 

In this section we describe the effects of cyanobacteria Spirulina platensis as a 

plant restorative. Plant restoratives can help to increase plant health without any 

direct activity on the pathogen. First, the different methods of application and their 

influence on the activity are compared. Then, the results of a combination with 

resistance inducer ASM are described. 
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4.2.1  Comparison of soil drench and spraying 

In the first approach, it was intended to test whether spraying or watering with 

Spirulina suspension has any influence on Alternaria disease development on leaf 

discs. For this purpose, 8 plants served as control and were treated only with aqua 

dest., a second set of 8 plants were watered with aqua dest. and sprayed with 

Spirulina suspension, finally a third set of plants was watered with Spirulina 

suspension and sprayed with aqua dest.. Leaves of level 4 were picked five days 

after the treatment as modifications in the plants, e. g. a build-up of induced 

resistance, could require some time. Per plant, 8 to 10 leaf discs were inoculated 

with droplets of Alternaria spore suspension in the two concentrations 102 and 104 

spores ml-1and disease severity was assessed about 48 hours afterwards. 

 
Table 4.2: Sprayed and watered Spirulina platensis related disease severity.  

Treatments 102  spores ml-1 104 spores ml-1

Control   1.08 ± 0.06   a  AB 2.58 ± 0.09   a 

Sprayed 1.39 ± 0.15   b  B 2.57 ± 0.15   a 

Watered 0.89 ± 0.03   a  A 2.58 ± 0.08   a 

Given are arithmetic means and standard errors with n = 8, assessment scale from 0 to 5. 
Data with equal letters in columns are not significantly different; lower case letters for 
Tukey after ANOVA, capital letters for Nemenyi after H-test. 
 

For the lower Alternaria spore concentration, no significant different disease 

severity could be detected between control and Spirulina watered plants (Table 

4.2), but sprayed plants showed significantly higher assessment grades than the 

two other treatments (according to Tukey). Spraying with Spirulina seemed to 

increase early blight infection. In case of the higher spore concentration, infection 

pressure was clearly higher and no differences between treatments could be seen. 

Spirulina showed no activity to increase the plants health. The results indicate that 

Spirulina platensis seems not to be suitable as plant restorative for the 

pathosystem tomato - Alternaria.  

 

 

4.2.2  Combination of Spirulina platensis and ASM 

While Spirulina alone turned out to be non-restorative, the following two 

experiments tested the activity of combinations of Spirulina and ASM against early 
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blight. Each agent was applied in 3 concentrations (Spirulina: 0, 2.5; 10 g l-1; ASM 

0, 424, 848 mg l-1), all together 9 combinations. 11 tomato plants per treatment 

were sprayed, inoculated after one week, and 5 days later when the Alternaria 

infection was fully developed, plant sprouts were harvested. Since the disease 

assessment for the whole plants seemed too inaccurate, fresh and dry matter of 

the sprouts were measured instead. Especially data of fresh matter can reveal 

spreading Alternaria infection as leaves typically become chlorotic, start to wilt and 

are discarded already at early stages of the disease, thus reducing the biomass of 

the plant notably. 

 
Table 4.3: Two-way ANOVA of fresh weight data of tomato plants for combined treatment 
with Spirulina and ASM in experiment 1. 

Source df SQ MQ F P 
ASM 2 1957.776 978.888 18.697 0.000 

Spirulina 2 126.775 63.388 1.211 0.303 

Interaction 4 802.264 200.566 3.831 0.006 

Error 90 4715.029 52.356  

Total 98 7598.844  
 

Using a one-way ANOVA for the analysis, the treatments with combinations of 

Spirulina and ASM differed significantly (P < 0.001) in their activity against early 

blight. A two-way ANOVA (Table 4.3) showed that only ASM had a significant 

influence (P < 0.001), whereas Spirulina treatments did not have any effect on the 

plants weight (P = 0.303). However, the interactions between both factors were 

significant with P = 0.006. The interactions are easily to detect as the mixtures of 

the two agents differed clearly in their effectiveness depending on the ASM 

concentration. Multiple comarisions did also not show any activity of Spirulina. 

 

Plants treated only with Spirulina showed significantly lowest fresh matter values 

irrespective of the concentration (Figure 4.2). Fresh matter of the control plants 

(treatment A) and plants treated with ASM alone (B and C) were higher but not 

significantly higher than in Spirulina treatments. The combination of ASM in low 

dosage plus Spirulina in whatever concentration (F and G) resulted in highest 

fresh matter production. All other treatments were indifferent.  
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Concerning the dry weight, the results were slightly different since the number of 

indifferent treatments increased. Plants treated with the mixtures of ASM in low 

dosage with Spirulina had highest dry weights (F and G). However, we can 

conclude that none of the treatments could increase the fresh or dry weight of the 

plants significantly compared to the control. This means that no treatment in this 

study proved effective against early blight.  
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The experiment was repeated, but only

slightly differing results (Figure 4.3) a

again a significant influence of the fact

Spirulina (P = 0.659, compare Table 4

were again significant with P = 0.006.  

 
Table 4.4: Two-way ANOVA of fresh weigh
with Spirulina and ASM in experiment 2. 

Source df SQ
ASM 2 701.221 35

Spirulina 2 54.408 2

Interaction 4 1012.317 25

Error 90 5854.111 6

Total 98 7622.058
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nd a two-way ANOVA analysis revealed 
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t data of tomato plants for combined treatment 
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The application of the higher concentration of ASM (C, Figure 4.3) led to 

significantly higher fresh weight compared to the control. Also, the combination of 

ASM in low concentration and Spirulina were significantly less infected with early 

blight than the control. These results differ from experiment 1, where none of the 

treatments showed any improvement of plant health. On the other hand, the 

Spirulina treatments had not such a negative impact on the plant weight as in 

experiment 1.   
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Figure 4.3: Fresh weight data of combined treatment of tomato plants with Spirulina and 
ASM in experiment 2. Plants were sprayed with following solutions: A control, B 424 mg l-1 
ASM, C 848 mg l-1 ASM, D 2.5 g l-1 Spirulina, E 10 g l-1 Spirulina, F 424 mg l-1 ASM + 
2.5 g l-1 Spirulina, G 424 mg l-1 ASM + 10 g l-1 Spirulina, H 848 mg l-1 ASM + 2.5 g l-1 
Spirulina, and I 848 mg l-1 ASM + 10 g l-1 Spirulina. Given are arithmetic means and 
standard errors with n = 11. Data with equal letters are not significantly different.  
 

 

4.2.3  Summary 

• Spraying of Spirulina solution did rather increase the susceptibility of tomato 

plants to Alternaria solani instead of protecting the plants.  

• When only low infection pressure occurs, watering with Spirulina solution can 

improve the plant health slightly. However, this effect was not significantly 

different to the control according to the conservative Nemenyi method. 

• In the studies comparing treatments with ASM and Spirulina both alone and in 

mixtures, only the application of ASM had a significant influence on the plants 

fresh and dry weight. Since the interactions between both factors were also 

significant, Spirulina seemed to have some activity in the agent combinations.  
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• Spraying the plants with a combination of ASM in low concentration plus 

Spirulina resulted in higher plant fresh weights after early blight infection than 

application of Spirulina alone.  

• Results for the treatments with ASM in higher concentration were slightly 

inconsistent in the two experiments.  

• In experiment 1, no significant difference could be detected if the treatments 

with higher plant weight were compared to the control. None of the treatments 

could effectively control or at least reduce the infection with early blight. 

• In experiment 2 however, the application of ASM alone in high concentration 

and of mixtures of ASM in low concentration plus Spirulina resulted in 

significantly higher plant fresh weights relative to the control.  

• Spirulina had no significant influence in both experiments, but showed 

significant interactions with the ASM treatment. The application of Spirulina 

alone resulted in the lowest plant weights in experiment 1. 

• All these findings together hint that spraying with Spirulina increases Alternaria 

infection on tomato.  

 

 

4.3  Chemical plant protective agent Maneb®

 

If a resistance inducer is used, it can be necessary to mix the spraying solution 

with a curative chemical fungicide to eliminate already existing pathogens during 

the resistance build-up. As there is actually no curative agent against early blight 

available, the protective fungicide Maneb could be used in a mixture with a 

resistance inducer. By the addition of Maneb, the plants would be protected from 

the time of spraying and not as late as the resistance induction is completed.  

 

This section focuses on the activity of Maneb if applied alone. Further experiments 

with Maneb in combination with ASM are described in later sections, see 4.4.3 and 

4.4.5. 
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4.3.1  Maneb in recommended concentration 

In a preliminary experiment, the fungicide Maneb was tested alone in the 

concentration recommended for tomato crops (2.4 g l-1). Since it had been shown 

before (see 4.1.2) that leaves of varying levels differ in their susceptibility to 

Alternaria, it was of interest whether the activity of Maneb is also influenced by the 

leaf age. Plants were either sprayed with Maneb solution or with tap water for the 

control. After one week, leaves of different levels were picked and leaf discs were 

infected by droplets of Alternaria suspension.  

 
Table 4.5: Maneb related disease severity.  

Leaf level Control Maneb [2.4 g l-1] 

3 3.3 ± 0.06   b 1.1 ± 0.07   a 

5 3.0 ± 0.07   a 1.8 ± 0.10   b 

6 2.9 ± 0.06   a 2.0 ± 0.10   b 

Given are arithmetic means and standard errors with n = 8, assessment scale from 0 to 5. 
Data with equal letters in columns are not significantly different. Data in lines are all 
significantly different. 
 

The disease severity differed significantly between treatments as well as between 

leaf levels, and the interactions between the two factors were also significant (all 

P ≤ 0.005, ANOVA not shown). On water control plants (Table 4.5), older leaves 

were significantly higher infected than younger leaves. This effect is consistent 

with results presented in section 4.1.2. Maneb treated plants were significantly 

less infected than plants of the control group. But, in Maneb treated plants, the 

younger leaves (levels 5 and 6) showed significantly more disease symptoms than 

the older leaves (level 3).  

 

 

4.3.2  Summary 

• The activity of Maneb against early blight on tomatoes was significant 

compared to the water control. 

• However, this protection interacted significantly with the age of the examined 

leaves. The grade of protection was significantly lower for the younger leaves, 

which had not been fully grown or unfolded at the time of application.  
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• Maneb is only active on the treated parts of the plant and has no systemic 

effect, therefore it cannot protect growing plant tissue.  

• It could be demonstrated again that the older tomato leaves are significantly 

more susceptible to Alternaria than the younger ones. 

 

 

4.4  Resistance inducer ASM 
 

Acibenzolar-S-methyl, or short ASM, is the active agent of the commercially used 

resistance inducer BION®. This resistance inducer can be applied either as spray 

or as soil drench and should not have any direct inhibitory effect on pathogens. 

This section focuses first on the activity of ASM depending on the way of 

application, and later on its activity in combination with the fungicide Maneb. 

Finally, the direct activity of ASM against Alternaria is demonstrated. 

 

 

4.4.1  ASM as soil drench or as spray 

To test ASM activity, two leaf disc experiments were performed separately, one 

with sprayed and one with soil drench application of ASM.  

 

The first experiment was performed by soil drenching ASM to 10 plants per 

treatment. ASM solutions in 5 concentrations (0, 5, 25, 50, and 100 mg l-1) were 

used and leaf discs were prepared after one week after application, using leaves 

of levels 4 and 7. 

 
Table 4.6: Two-way ANOVA for disease severity after ASM soil drench. 

Source df SQ MQ F P  
Concentration 4 3.700 0.925 7.001 0.000 

Leaf level 1 39.005 39.005 295.244 0.000 

Interaction 4 7.387 1.847 13.980 0.000 

Error 90 11.890 0.132  

Total 99 61.982  
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Table 4.7: Disease severity after ASM soil drench.  

Concentration Leaf level 4 Leaf level 7 

Control 3.67 ± 0.20   a 3.47 ± 0.08   a 

5 ASM 4.61 ± 0.17   b 3.28 ± 0.08   a 

25 ASM 4.81 ± 0.11   b 3.43 ± 0.11   a 

50 ASM 4.92 ± 0.04   b 3.20 ± 0.10   a 

100 ASM 4.76 ± 0.11   b 3.16 ± 0.05   a 

All concentrations are given in mg l-1 of the active ingredient. Given are arithmetic means 
and standard errors with n = 10, assessment scale from 0 to 5. Data with equal letters in 
columns are not significantly different. 
 

A 2-way ANOVA of the data showed significant differences for both the factor leaf 

level and the ASM concentrations, and also significant interactions (all P < 0.001, 

compare Table 4.6). For level 4, differences in disease severity between control 

and ASM-treatment were significant (Table 4.7). But, Alternaria infection was 

clearly higher for the ASM-treated plants, independent of the concentration used. 

The application of ASM as soil drench increased the tomato susceptibility to early 

blight. Ratings of level 7 showed no significant differences between treatments. 

The disease severity was generally lower relative to the leaves of level 4. 

 

The second experiment with sprayed ASM was performed with level 4 leaves 

alone, since the preceding experiment indicated no effects at level 7. The number 

of tested concentrations were also reduced to 0, 5, 50 and 100 mg l-1 ASM.  

 
Table 4.8: Disease severity after sprayed ASM.  

Concentration Leaf 4 

Control 3.2 ± 0.08   a 

5 ASM 4.6 ± 0.14   b 

50 ASM 4.5 ± 0.47   b 

100 ASM 4.6 ± 0.12   b 

All concentrations are given in mg l-1 of the active ingredient. Given are arithmetic means 
and standard errors with n = 10, assessment scale from 0 to 5. Data with equal letters in 
columns are not significantly different. 
 

The disease severity differed significantly depending on the ASM concentration. 

Leaf discs of control plants had the lowest ratings (Table 4.8) again. All ASM 

treatments showed higher disease severity that did not differ depending on the 
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concentration used. These results show that ASM seemed to enhance early blight 

on tomato plants, independent of the mode of application.  

 

 

4.4.2  Comparing ASM spray and soil drench in one experiment 

This study combines the two separate experiments described in 4.41. Five week 

old tomato plants were either sprayed or watered with ASM solution containing 

100 mg l-1 active ingredient. Control plants were watered and sprayed with tap 

water. In this experiment, we included the leaf levels as factor again. 

 
Table 4.9: Two-way ANOVA of comparison of ASM soil drench and spray. 

Source df SQ MQ F P  
Application 2 11.743 5.872 22.845 0.000 

Leaf level 3 4.251 1.417 5.513 0.002 

Interaction 6 5.361 0.894 3.476 0.005 

Error 60 15.421 0.257  

Total 71 36.776  
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Figure 4.4: Disease severity on tomato leaf discs of 4 different leaf levels. The plants were 
either treated with water, sprayed with ASM solution or watered with ASM solution. Given 
are arithmetic means and standard errors with n = 6, assessment scale from 0 to 5.  
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Both factors, application mode and leaf level, were significant with P-values 

P = 0.000 and P = 0.002, respectively. The interactions between both factors were 

also significant with P = 0.005 (Table 4.9). These interactions are obvious as the 

effect of the ASM-application was reduced for younger leaves (compare Figure 

4.4). The application of ASM as spray significantly reduced the disease for the 

levels 5 and 6, for the younger leaves (levels 7 and 8) the difference was no longer 

significant. The application of ASM as soil drench increased the infection with 

Alternaria relative to the control, but this difference was not significant. These 

findings were inconsistent with the results of the previous experiments in 4.4.1.  

 

 

4.4.3  Combination of Maneb and ASM 

The following study investigated the activity of ASM in combination with the 

fungicide Maneb, which was used in reduced concentration. As the foregoing 

experiment had shown only a positive effect of ASM if it was sprayed, and as 

Maneb cannot be applied as soil drench, the four combinations (400 mg l-1 Maneb, 

100 mg l-1 ASM plus 400 mg l-1 Maneb, 50 mg l-1 ASM plus 80 mg l-1 Maneb, and 

100 mg l-1 ASM) as well as the control were applied as spray. The leaf discs were 

cut of leaf level 5 one week after the application. 
 

 

Results of a one-way ANOVA showed significant differences between the 

treatments (Figure 4.5). Only the higher concentration of Maneb was effective 

against Alternaria solani, with no distinction if ASM was added or not. This 

reduction of disease severity was significant, but the improvement was very small, 

showing that the concentration of 400 mg l-1 Maneb was only slightly effective. No 

difference could be seen between all other treatments. Inconsistent to the results 

in section 4.4.2, ASM sprayed in the concentration of 100 mg l-1 showed no activity 

here. Thus, it can be concluded that application of Maneb in lower concentration 

(20% of the recommended dose) with or without ASM has only minor effects 

against early blight. The reduction of the Maneb concentration to only 4% of the 

recommended dose plus an addition of ASM had no influence at all. Different 

experimental results with regard to ASM seem to be inconsistent. 
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Figure 4.5: Disease severity in the leaf disc experiment with mixtures of Maneb (M) and 
ASM. All concentrations are given for the active ingredient in mg l-1. Bars represent 
arithmetic means, error bars the standard errors with n = 8, assessment scale from 0 to 5. 
Data with equal letters in columns are not significantly different. 
 

Re-analysing the current data with GLM, the factors were used as covariates. 

According to this analysis, ASM application did not have any significant influence, 

whereas Maneb had significant activity (Table 4.10). The interactions between 

both factors were not significant. The estimated parameters of the regression 

revealed a significant negative slope for Maneb. Thus, a higher concentration of 

Maneb would result in less disease severity. 

 
Table 4.10: GLM of the leaf disc experiment with mixtures of Maneb and ASM, factors 
were used as covariates. 

Source df SQ MQ F P  
ASM 1 0.010 0.010 0.213 0.647 

Maneb 1 1.443 1.443 30.696 0.000 

Interaction 1 0.090 0.090 1.922 0.174 

Error 36 1.692 0.047  

Total 39 3.818  
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4.4.4  Direct effects of ASM on Alternaria solani 

In an in vitro experiment, it was tested whether ASM has a direct inhibitory effect 

on the growth of Alternaria isolates. Isolates Greece-1 and USA-1 were chosen for 

this study since their mycel discs tend to regular growth so that mycel radii could 

be measured accurately. Both fungi were grown in petri dishes on PDA media with 

ASM addition in the following concentrations: 0, 2.6 mg l-1, 10.6 mg l-1 and 

42.4 mg l-1.  

 
Table 4.11: Mycel radii of 2 Alternaria isolates grown on culture media containing ASM.  

ASM [mg l-1] Greece-1 USA-1 

Control 37.7 ± 0.3   a 29.0 ± 1.0   a 

2.6 mg l-1 38.3 ± 0.9   a 26.3 ± 0.3   a 

10.6 mg l-1 31.7 ± 0.3   b 23.0 ± 0.6   b 

42.4 mg l-1 27.7 ± 0.7   c 21.0 ± 0.6   b 

Mycel radii are given in mm. Given are arithmetic means and standard errors with n = 3. 
Data with equal letters in columns are not significantly different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: Direct fungitoxic effect of resistance inducer ASM on Alternaria solani isolates 
Greece-1 (above) and USA-1 (below) in vitro. From left to right the concentrations of ASM 
in mg l-1: 42.4; 10.6; 2.6 and control. Note the change in colour of isolate USA-1 with 
increasing ASM concentration. 
 
A direct fungitoxic influence of ASM on Alternaria could be proved as shown in 

Table 4.11 and Figure 4.6. Isolate Greece-1 responded to increasing ASM 

concentration with significantly reduced mycelia growth. The isolate from USA 

showed a very apparent change of colour from grey to brownish-white in addition 
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to the significant size reduction. A radius reduction of 27% as observed for isolate 

Greece-1 results in a reduction of the covered area to only 53% of the possible 

size. With these results, we can conclude that ASM obviously directly inhibits the 

growth of Alternaria. 

 

 

4.4.5  Interactions between Maneb and ASM  

The experiment described in section 4.4.3 had not revealed any interactions be-

tween ASM and Maneb. But since direct effects of ASM on Alternaria were 

discovered, an in vitro study was performed. By measuring the growth reduction, 

precise calculated efficiencies (expressed in percent control) could be determined. 

These were needed to estimate the extent of interaction. Mycel discs of three 

Alternaria isolates were placed in petri dishes with PDA media to which Maneb 

and ASM were added in various concentrations. One week later, the diameters of 

the mycel were measured and transformed to percent control by standardisation 

with control dish values. As Maneb and ASM have very different modes of action, 

the Abbott formula (Abbott, 1925) was used to calculate the expected efficacy of 

the different mixtures.  

 

Abbott formula (Abbott, 1925): 

% Cexp = A + B - (AB / 100)      

with % Cexp as expected efficacy of fungicide mixture and A and B 

as % control levels given by the single fungicides. 

 

If the ratio between the experimentally observed efficacy of the 

mixture (Cobs) and the expected efficacy Cexp is greater than 1, 

synergistic interactions are present in the mixture. If the ratio is 

less than 1, the combination of fungicides has antagonistic effects. 

A ratio of 1 indicates an additive action of the mixture.  

 

The addition of Maneb to the growth media had very drastic effects on Alternaria, 

only the lowest concentration (100 mg l-1) allowed at least some growth. In petri 

dishes with higher Maneb concentration, the fungi were killed. Synergistic 
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interactions decrease rapidly with increasing control levels of single components 

(Cohen, 1986; Gisi, 1996; Samoucha & Cohen, 1988; Scardavi, 1966), so the 

maximum efficiencies should not exceed 70% (Gisi, 1996). Only in variants with 

the lowest Maneb concentrations synergism could be verified and data of 

treatments with higher concentration are not presented.  

 
Table 4.12: Ratios between Cobs and Cexp for certain Maneb and ASM mixtures.  

ASM [mg l-1] Maneb [mg l-1] Alternaria isolate Ratio Interaction 

Cuba-141 1.22 synergistic 

Greece-1 3.41 synergistic 42.4 100 

USA-1 0.79 antagonistic 

Cuba-141 1.24 synergistic 

Greece-1 2.61 synergistic 10.6 100 

USA-1 0.97 additive 

Greece-1 1.39 synergistic 
2.65 100 

USA-1 1.03 additive 

One data set for isolate Cuba-141 is missing as this isolate tends to mutations which 
altered the growth and inhibited correct measurements. Ratio values are calculated as 
described above, A (for ASM alone) and B (for Maneb alone) as well as Cobs were 
computed with n = 5. Ratio values close to 1 were assessed as additive interaction. 
 

As seen in Table 4.12, the possible interactions of Maneb and ASM did depend on 

the specific Alternaria isolate. For the Cuban and especially the Greek isolate, 

synergistic effects of the combination of ASM and Maneb in vitro could be shown. 

These results hint that ASM has a direct fungitoxic effect on Alternaria isolates in 

vitro.  

 

However, for the isolate from the USA only additive and even antagonistic 

interactions could be demonstrated. Possibly, ASM or Maneb has a lower 

inhibitory effect on this isolate. This could be due to increased resistance of this 

isolate towards one or both agents. Unfortunately, Cuban isolate 141 mutated too 

often in some of the tested variants so that no round mycel area was developed 

and radii could not be measured. These data were discarded. 
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4.4.6  Summary 

• Using ASM as soil drench significantly increased the susceptibility of old 

tomato leaves against Alternaria. For younger and therefore relatively resistant 

leaves, no influence could be demonstrated.  

• Also spraying with ASM solution increased the disease severity on treated 

tomato plants. 

• These results indicate that ASM enhances disease severity of Alternaria on 

tomato plants independent of the way of application.  

• A study comparing the applications of ASM as spray and as soil drench gave 

inconsistent results. Here, ASM showed a significant reductive activity when it 

was applied as spray. This effect was also not significant for the youngest 

leaves. 

• Combinations of ASM with the fungicide Maneb in very low concentration did 

not have any plant protecting effect and resulted in the same disease severity 

as for the water control. A concentration of 20% of the recommended Maneb 

dose could reduce early blight to a minor extent. In this experiment, the addition 

or omission of ASM had no effect on the disease. 

• No interactions between ASM and Maneb were found when tested in vivo on 

living inoculated plants. 

• A strong, direct inhibitory effect of ASM in vitro on Alternaria isolates was 

documented. Mycel discs were reduced to only 53% of the size of the control. 

• When fungicide Maneb and resistance inducer ASM were examined together in 

vitro in petri dishes, synergistic interactions between the two agents could be 

demonstrated. These interactions seemed to depend on the Alternaria isolate, 

hinting that the individual isolates differ in their resistance towards Maneb 

and/or ASM. 

 

 

4.5  Resistance inducer INA 
 

As treatments with ASM did not result in consistent results concerning Alternaria 

infection, a set of experiments with 2,6-dichloroisonicotinic acid (INA) was plan-

ned. This resistance inducer is also a derivate of salicylic acid, but is not 

commercially used like ASM. 
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4.5.1  Phytotoxic side-effects of INA 

In a first study, the formulation with the wetting agent Tween 20 and solution 

additive DMF (N,N-Dimethylformamid) as well as feasible concentrations of INA 

were tested. Plants were treated with soil drench of either 30 ml tap water (as 

control), 20 ml formulation plus 10 ml tap water, or 20 ml formulation with 30 µg 

respectively 60 µg INA plus 10 ml tap water. The plants were watered with these 

solutions 3 weeks after germination and harvested one week later. 

 
Table 4.13: Tomato fresh and dry weight after treatment with resistance inducer INA.  

Treatments Fresh weight [g] Dry weight [g] 

Control   10.3 ± 1.14   bc 0.9 ± 0.17   b 

Formulation 11.2 ± 1.89   c 1.0 ± 0.27   b 

30 µg INA    8.5 ± 1.08   b 0.7 ± 0.12   a 

60 µg INA    6.4 ± 1.75   a 0.5 ± 0.15   a 

Given are arithmetic means and standard errors with n = 10. Data with equal letters in 
columns are not significantly different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Tomato plants treated with resistance inducer INA. From left to right the water 
control, the formulation control and the treatments with 30 and 60 µg INA, respectively. 
 

Results in Table 4.13 show that the formulation with DMI plus Tween 20 alone was 

not phytotoxic for tomato plants as neither fresh nor dry weights of the plants differ 

significantly from the control. However, the treatment with INA had very dramatic 

effects reducing fresh as well as dry matter of these plants significantly (see Figure 

4.7). In case of fresh matter production, a significant difference between the two 

concentrations could be seen: the higher the concentration of INA, the smaller the 

plant. These findings show that the use of INA as plant protective agent for 
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tomatoes is not practicable due to the strong phytotoxicity. Further experiments 

with this resistance inducer were not conducted as the reduction of biomass could 

mimic a strong infection with early blight.  

 

 

4.5.2  Summary 

• Resistance inducer INA showed strong phytotoxic side effects which made a 

use as second resistance inducer impossible.  

• As the aim of this work was to find an optimal combination of different plant 

health increasing agents for horticulture, further studies with INA were stopped.  

 

 

4.6  Growth promoting fungus Piriformospora indica 
 

The recently isolated fungus Piriformospora is known to stimulate plant growth as 

it colonises the roots of its host plants. Since susceptibility to Alternaria is high for 

weak, stressed or senescent plants, the symbiosis with Piriformospora could 

possibly strengthen the plants and increase the resistance. 

 

 

4.6.1  P. indica growth promotion in three tomato cultivars 

These two experiments investigated the growth-promoting effect of Piriformopsora 

on the three tomato cultivars Campbell 28 (C), Hellfrucht (H) and Rheinlands 

Ruhm (R). The growth substrate of the tomatoes was enriched with either (i) 

autoclaved Piriformospora mycel as a control for the included nutrients, (ii) fresh 

Piriformospora mycel, or (iii) as control with wet sand. Two approaches were 

taken: experiment 1 focused on the test whether a growth induction is achieved, 

and experiment 2 studied the growth promotion over a longer time period. 

 

In the first experiment, 10 tomato plants were grown per pot to keep the necessary 

amount of Piriformospora mycel as low as possible. Plants were harvested 3 

weeks after germination.  

 

  49   



Results 
   

Both factors tomato cultivar and Piriformospora treatment were significant with P-

values of P = 0.002 and P = 0.000, respectively (ANOVA not shown). Also 

significant interactions between both factors could be detected. These are clearly 

visible in cultivar C that differed from the two other cultivars in its reaction to the 

addition of living Piriformospora mycel (Figure 4.8). Instead of a more pronounced 

growth induction, the C plants showed a significant growth depression. For the 

other cultivars H and R, the autoclaved material induced a significant growth 

promotion and an even more pronounced effect by the living fungus.  
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Figure 4.8: Dry weight of tomato sprouts of 3 cultivars grown in the presence or absence 
of Piriformospora in the soil. Control plants were grown without Piriformospora mycel, 
some plants were grown in soil added with autoclaved mycel, and the other plants were 
grown in soil enriched with living mycel. Bars represent arithmetic means, error bars the 
standard errors with n = 10. 
 

In the second experiment, single plants were grown in the pots, but replicates 

were limited to three due to the little amount of mycel material. Plant sprouts were 

harvested at three time points: 15, 30 and 50 days after germination. The dry 

weight was measured to analyse if the differences in growth are stable over a 

longer time period. 
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Table 4.14: Two-way ANOVA of the Piriformospora time-course experiment. 

Source df SQ MQ F P 
P. indica 2 0.340 0.170 0.765 0.470

Cultivar 2 3.759 1.880 8.460 0.001

Harvest 2 187.410 93.705 421.745 0.000

P. indica * Cultivar 4 1.172 0.293 1.319 0.275

P. indica * Harvest 4 2.149 0.537 2.418 0.060

Cultivar * Harvest 4 4.715 1.179 5.306 0.001

P. indica * Cultivar * Harvest 8 2.152 0.269 1.211 0.311

Error 54 11.998 0.222  

Total 80 213.696  
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Figure 4.9: Dry weight of tomato sprouts in the Piriformospora time-course experiment. 
Control plants were grown without Piriformospora mycel, some plants were grown in soil 
added with autoclaved mycel, and the other plants were grown in soil enriched with living 
mycel. Bars represent arithmetic means, error bars the standard errors with n = 3.  
 

When the data were analysed using a three-way ANOVA, only the time points of 

the harvests, the tomato cultivars and the interaction between these two factors 

were significantly influencing the tomato weight (Table 4.14). As the main focus of 

the experiment laid on the possible growth-inducing effect of Piriformospora, the 

data were split and analysed separately for the three time points and for the three 

cultivars. These evaluations resulted in the significant differences closely 

described below. 

 

The results of the first harvest are similar to the results of the previous study, but 

due to the small number of replications and therefore higher variability, the 
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differences between the Piriformospora treatments are not significant. For cultivar 

C, no significant influence of the treatment with Piriformospora on the dry weight 

was found. The addition of Piriformospora had a significant growth-inducing effect 

only for the cultivars H and R with P = 0.029 and P = 0.012, respectively (see 

Figure 4.9, 2nd harvest). At the 3rd harvest, both H and R showed slight growth 

depressions in the treatment with autoclaved Piriformospora mycel, but this was 

also not significant. It is likely that the decaying fungal material had negative 

effects on soil and roots of these plants. No growth-induction due to colonisation 

with Piriformospora could be documented at the time of the 3rd harvest.  

 

 

4.6.2  Influence of P. indica on Alternaria in vitro 

Varma et al. (2001) tested in vitro, whether Piriformospora could be used as 

biological control agent against soil-borne diseases. Alternaria, that can outlive on 

decaying plant material or seeds, can infest germinating tomato plants in the 

seedbed. Here, an addition of Piriformospora could help to prevent damping-off of 

the plants and increase the survival rate when the seedlings are transplanted.  

 

The Alternaria isolates and Piriformospora were arranged together in different 

patterns in petri dishes, similar to the study described by Varma et al. (2001). One 

mycel disc of Alternaria was growing either alone (as control), or in the middle of 

four Piriformospora mycel discs. Mycel growth was measured after one week. To 

compensate the slow growth of Piriformospora, it was placed in petri dishes one 

week before Alternaria in one treatment. It was also examined if the culture media 

C-medium and PDA influence the growth. 

 

Evaluation showed that no chemical mechanisms between the fungi exist to 

repress growth of one another. When both fungi were placed in the dishes at the 

same time, the mycel grew in usual speed until hyphae nearly touched (Figure 

4.10 A and C) and then stopped. This showed that there were no direct 

interactions between the fungi. Growth of both fungi was clearly better on PDA 

medium, even if the brim of the Piriformospora mycel was less sharp than on C 

medium (compare Figure 4.10 B and D). But all Alternaria isolates were repressed 

drastically if they were placed in the middle of already growing Piriformospora 
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mycel discs (Figure 4.10 B and D). Statistical analysis showed that culture media 

and fungal growth as well as Alternaria isolate and Piriformospora treatment had 

significant interactions (ANOVA not shown).  
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Figure 4.11: Dry weight of tomato sprouts of 3 cultivars, inoculated with Alternaria (left) or 
healthy (right). Control plants were grown without Piriformospora mycel, some plants were 
grown in soil added with autoclaved mycel, and the other plants were grown in soil 
enriched with living mycel. Bars represent arithmetic means, error bars standard errors 
with n = 10. 
 

The data for healthy tomato plants were slightly inconsistent to the previous 

described experiments as growth induction of tomato cultivar C was this time 

higher for the living mycel material. And, for cultivars H and R, no significant 

growth induction could be demonstrated (Figure 4.11). The dry weight of C plants 

was significantly higher than the control when living Piriformospora mycel was 

added. In case of plants inoculated with Alternaria, the dry weight increased with 

the addition of autoclaved Piriformospora mycel and even increased more, if living 

mycel material was used. But, this effect was only significant for cultivar C due to 

the relatively high variances of the data. For all three cultivars, healthy plants of 

the control treatment were bigger than Alternaria-infected plants. 
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4.6.4  Summary 

• Piriformospora mycel showed a clear growth inducing effect on tomato plants. 

A smaller growth promotion was achieved if autoclaved Piriformospora material 

was added to the soil. 

• The growth promotion was not long-lasting, as plants in symbiosis with 

Piriformospora were not bigger than control plants 60 days after germination, 

even if the growth induction was obvious in the weeks before. 

• In vitro, Piriformospora had an inhibitory effect on the growth of different 

Alternaria isolates, when it was placed in the dishes one week prior to the 

addition of Alternaria.  

• In a later experiment, the reactions of the single tomato cultivars to the 

colonisation with Piriformospora were slightly inconsistent to the studies before. 

Tomatoes in symbiosis with Piriformospora suffered less after inoculation with 

Alternaria than control plants. The addition of autoclaved Piriformospora mycel 

also significantly increased the dry weight of infected tomato cultivars C and R, 

but not to the same extend as living mycel.  

 

 

4.7 Influence of nutrient supply on Alternaria infection 
 

Experiments described in the following sections 4.7.1 and 4.7.2 were performed 

during a stay at the Risø National Laboratory, Roskilde, Denmark. The studies 

presented here were performed additionally to the experiments presented in 

chapter 6. 

 

Studies examining the influences of different nutrient supplies on the development 

and severity of early blight are presented in this section. We focused on the 

investigation of nitrogen (N), to determine optimal provision with this nutrient, and 

on phosphorus (P), which is known to interact with AM fungi. All plants were grown 

in soil enriched with the nutrients by addition of nutrient solutions as described in 

chapter 3.  
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4.7.1  Influence of phosphorus on early blight 

This study was performed using the three tomato cultivars Campbell 28 (C), 

Hellfrucht (H) and Rheinlands Ruhm (R), in order to choose a suitable cultivar for 

the planned experiments with AMF and with different P supply levels. 6 plants per 

treatment were grown in soil with the following amounts of P: 0, 15 mg P kg-1 soil, 

and 45 mg P kg-1 soil. Half of the plants were harvested 4 weeks after germination 

to measure the dry weight of the sprouts. 

 

Regarding the dry weight, the supply with P resulted in significantly better plant 

growth compared to the plants without additional P. For the cultivars H and R, the 

treatments with additional P differed significantly to the 0 P treatment. Increasing 

the P supply from 15 to 45 mg kg-1 soil did not result in even higher dry weights. 

Low-input cultivar Campbell 28 seemed to react inconsistently to increased P 

supply (see Figure 4.12). Here, the treatments 0 P and 15 P differed significantly, 

whereas the 45 P treatment was intermediate. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Influence of three P supply levels (0, 15 and 45 mg kg-1 soil) on the growth of 
three tomato cultivars. Bars show arithmetic means, error bars the standard errors, both 
with n = 3.  
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The remaining plants were inoculated with Alternaria spores and the disease 

development was assessed during 2 to 7 days after inoculation (dai). There were 

no significant differences in the severity of early blight infection (compare Figures 

4.13 and 4.14) concerning necrosis and chlorosis, with all P-values well above 

10% in the mixed model analysis.  
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Figure 4.13: Influence of three different P supply levels (0, 15 and 45 mg kg-1 soil) on early 
blight necrosis development during 2 to 7 days after inoculation (dai) on three tomato 
cultivars. Dots represent arithmetic means with n = 3, assessment scale from 1 to 12.  
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igure 4.14: Influence of three different P supply levels (0, 15 and 45 mg kg-1 soil) on early 
light chlorosis development during 2 to 7 days after inoculation (dai) on three tomato 
ultivars. Dots represent arithmetic means with n = 3, assessment scale from 1 to 12.  
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able 4.15 gives the estimated means of necrosis and chlorosis for all cultivars. 

he means were not significantly different, but the disease severity was in nearly 

ll cases higher for plants grown without additional P. Therefore, tomato plants 

upplied an increased levels of P tended to a reduced disease severity. For 

ultivar H, the necrotic symptoms increased dramatically at the end of the 

ssessment period in the treatment 0 P. Cultivar C had slightly lower disease 

ymptoms, but this difference was also not significant. 
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Table 4.15: Necrosis and chlorosis of three tomato cultivars grown in soil with different P 
supply levels and inoculated with Alternaria solani. 

 Necrosis Chlorosis 
P supply Mean SE df Mean SE df 

Campbell 28       
0 P 5.691 0.527 5.608 6.233 0.495 5.375 
15 P 3.935 0.527 5.608 5.016 0.495 5.375 
45 P 4.931 0.527 5.608 5.908 0.495 5.375 

Hellfrucht       
0 P 5.727 0.797 5.196 6.738 0.723 5.031 
15 P 4.203 0.797 5.196 5.333 0.723 5.031 
45 P 4.643 0.797 5.196 5.975 0.723 5.031 

R. Ruhm       
0 P 6.033 0.667 6.096 6.929 0.670 5.562 
15 P 5.132 0.667 6.096 5.832 0.670 5.562 
45 P 4.593 0.667 6.096 5.830 0.670 5.562 

Estimated means were calculated in a mixed model analysis with repeated measures data 
over the whole time period. Necrosis and chlorosis were assessed using an assessment 
scale from 1 to 12.  
 

 

4.7.2  Influence of nitrogen on early blight 
As the study concerning P supply did not show any objections against the 

commonly used tomato cultivar Rheinlands Ruhm, the experiment concerning 

possible influences of the nitrogen (N) supply was conducted with this cultivar 

only. The hypothesis of the experiment was to test whether a high supply with N 

could reduce Alternaria infection of the plants. Four different N supply levels (0, 

25, 50 and 75 mg kg-1 soil) were examined with 4 plants each. Inoculation with 

Alternaria occurred 4 weeks after germination. The disease development was 

assessed during 2 to 8 days after inoculation (dai). 

 

Disease severity data from the days 2 to 8 after inoculation were analysed using a 

linear mixed model approach. Table 4.16 gives the estimated means calculated 

over the whole time period. There were no significant differences between the four 

N treatments for both necrosis (P = 0.302) and chlorosis (P = 0.231). Analogue to 

the previous study concerning the P supply, the plants of increased nutrient levels 

tended to show the lowest early blight disease symptoms.  
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lants grown in soil with different N supply 

al Chlorosis 95% Confidence Interval 

Mean 
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Bound 
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Bound 

8.377 6.345 10.409 

7.523 5.491 9.555 

7.173 5.141 9.205 

5.522 3.490 7.554 

odel analysis with repeated measures data 
d error of necrosis means is SE = 1.00 and 
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df = 12.08. Necrosis and chlorosis were 
 12.  

e can summarise that neither N nor P 

 blight development, at least in the 

e dry weight of the treated plants 

 and 45 mg P kg-1 soil. 

 significantly by the supply with P, but 

ed the worst disease symptoms.  
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• In the case of N, a high supply with this nutrient seemed to reduce early blight 

symptoms, but this effect was not significant. Plants without N supply showed 

the highest disease severity for both necrosis and chlorosis, but this was also 

not significant. 

• As the tendency of N to reduce early blight was not significant, subsequent 

studies with normal N supply could be performed. 

• All tested tomato cultivars reacted in the same way to the different nutrient 

supply. Therefore, we decided to use cultivar Rheinlands Ruhm also for the 

following studies. Since we used it in the foregoing experiments, the results of 

all studies together would be complementary. 

 

 

4.8  Arbuscular mycorrhizal fungi  

 

Experiments described in section 4.8 were performed during a stay at the Risø 

National Laboratory, Roskilde, Denmark. The here presented studies were 

performed additionally to the experiments presented in chapter 6. 

 

In this section, two experiments are described, which are testing the possible 

influence of colonisation of tomato plants with AM fungi on the infection with 

Alternaria. As phosphate nutrition and rate of colonisation are closely interacting, 

all studies include different levels of P supply.  

 

 

4.8.1  AMF and low P supply influence on Alternaria infection 

The first experiment focused on a reduced range of concentrations from 0 to 15 

mg P kg-1 soil. Glomus intraradices (AMF) was also added to the treatment with 

3 mg P to test if a presumably lower colonisation of roots, as described by Mosse 

(1973), still has a positive influence on plant health. This resulted in an unbalanced 

experimental design and the two additional treatments 0 P + AMF and 3 P + AMF.  

 

Estimations of the degree of colonised roots revealed that there was no significant 

difference between treatments 0 P + AMF and 3 P + AMF in formation of 
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mycorrhiza (about 80% root length, data not shown), the low amount of offered 

phosphate did not have any influence on formation of the symbiosis.  

 
Table 4.17: Necrosis and chlorosis of mycorrhizal (+ AMF) and non-mycorrhizal tomato 
plants after infection with Alternaria in experiment 1.  

 Necrosis 95% Confidence Interval Chlorosis 95% Confidence Interval 

Treatment Mean 
Lower 
Bound 

Upper 
Bound Mean 

Lower 
Bound 

Upper 
Bound 

0 P 5.38 bc 4.60 6.17 5.86 b 5.05 6.68 

0 P + AMF 2.92 a 2.13 3.71 3.39 a 2.58 4.21 

3 P 6.25 c 5.46 7.07 6.86 b 6.05 7.68 

3 P + AMF 4.21 ab 3.42 5.00 5.01 ab 4.19 5.82 

6 P 5.80 bc 5.01 6.59 6.61 b 5.79 7.42 

9 P 6.12 c 5.33 6.91 7.12 c 6.31 7.94 

12 P 5.98 bc 5.19 6.77 6.90 b 6.09 7.72 

15 P 6.13 c 5.35 6.92 7.30 c 6.49 8.12 

Estimated means were calculated in a mixed model analysis with repeated measures data 
over the whole time period, n = 4. The standard error of necrosis means is SE = 0.38 and 
the degrees of freedom are df = 22.20 for all treatments, whereas the standard error and 
df for chlorosis means are SE = 0.39 and df = 20.56. Necrosis and chlorosis were 
assessed using an assessment scale from 1 to 12. Means in columns followed by equal 
letters are not significantly different. 
 

Concerning the infection with Alternaria, the disease severity was significantly 

least on tomatoes of the treatment 0 P + AMF (see Fig. 4.16 and Table 4.17). 

Plants of treatment 3 P + AMF showed a more severe infection, however, it did not 

reach damaging levels as with non-mycorrhizal tomatoes. A linear mixed model 

analysis revealed significant differences depending on the addition or omission of 

AMF. The phosphate treatments as well as the interactions were both not 

significant with P = 0.160 and P = 0.587, respectively. 

 

The colonisation of tomato plants by Glomus intraradices reduced the infection 

with early blight significantly. But it seemed that P nutrition could reduce the 

beneficial susceptibility-reducing effect of mycorrhiza even if the degree of 

colonisation is not influenced. The Alternaria infection in terms of necrosis and 

chlorosis increased significantly during the experiments in all treatments.  
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Figure 4.16: Necrosis (a) and chlorosis (b) caused by Alternaria infection in experiment 1 
monitored over days 2 to 7 after inoculation (dai) of tomato leaves. 0 to 15 P represent 
non-mycorrhizal plants with different P supply (in mg kg-1 soil) and 0P + AMF and 
3 P + AMF represent mycorrhizal plants. Data points show arithmetic means with n = 4, 
assessment scale from 1 to 12. 
 

During this study it was observed that tomatoes of 0 P + AMF were significantly 

smaller in terms of sprout length compared to plants of treatment 0 P (Figure 

4.17). This could probably be attributed to the strong competition for carbon 

between the two sinks plant and fungus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0 P + AMF   0 P 

 

3 P + AMF 3 P 

Figure 4.17: Tomato plants of the first experiment combining different P supply and AMF. 
From left to right the treatments 0 P, 0 P + AMF, 3 P and 3 P + AMF. Note the different 
height of 0 P plants and the varying amounts of chlorotic leaf area of plants with and 
without AMF.  
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Plants of treatment 0 P + AMF showed red colouring of some lower leaves, hinting 

a P deficiency. The difference in disease severity between the treatments with and 

without addition of AMF is clearly visible in amount of chlorotic leaf area. Plants of 

the treatments 3 P and 3 P + AMF did not show a great difference in height but the 

same distinction in early blight infection.  

 

 

4.8.2  AMF and high P supply influence on Alternaria infection 

A balanced design was used in the second study, meaning that all P supply levels 

were combined with and without the addition of AMF. This resulted in the six 

treatments: 0 P, 0 P + AMF, 15 P, 15 P + AMF, 45 P and 45 P + AMF. This study 

is a replication of the second experiment presented in the article in chapter 6, but 

inoculation success with Alternaria was notably smaller than in other experiments. 

 

Mycorrhizal colonisation of plants with no added P was significantly higher 

(P = 0.000) than the colonisation of plants with 15 and 45 mg P kg-1 soil: 65% for 

0 P + AMF and 46% and 36% for 15 P + AMF and 45 P + AMF, respectively. The 

sprout dry weight was significantly reduced in both treatments without added P 

and was not influenced by the presence or absence of Glomus intraradices.  
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Concerning early blight disease, a linear mixed model analysis of the time course 

assessment could only support a significant influence of the P supply (Table 4.18). 

As visible in Figure 4.18, the inoculation success with Alternaria was very low in 

this experiment. Mean assessment grades reached only about 4 for necrosis, 

corresponding to 6 to 12% of the leaf area, which is very low compared when to all 

other experiments. Though not significant, the treatment 0 P + AMF showed for 

both necrosis and chlorosis the lowest disease severity which did increase only 

very slightly over time. The higher infection levels of treatments 15 P + AMF and 

45 P + AMF could be a result of the reduced mycorrhizal colonisation.  

 
Table 4.18: Necrosis and chlorosis of mycorrhizal (+ AMF) and non-mycorrhizal tomato 
plants after infection with Alternaria in experiment 2.  

 Necrosis 95% Confidence Interval Chlorosis 95% Confidence Interval

Treatment Mean 
Lower 
Bound 

Upper 
Bound Mean 

Lower 
Bound 

Upper 
Bound 

0 P 2.376 1.432 3.320 3.029 1.824 4.234 

0 P + AMF 1.533 0.589 2.477 1.635 0.430 2.840 

15 P 2.606 1.663 3.550 3.505 2.300 4.711 

15 P + AMF 2.902 1.959 3.846 3.399 2.194 4.604 

45 P 3.158 2.215 4.102 3.943 2.738 5.148 

45 P + AMF 3.328 2.384 4.271 4.037 2.832 5.242 

Estimated means were calculated in a mixed model analysis with repeated measures data 
over the whole time period, n = 4. The standard error of necrosis means is SE = 0.45 and 
the degrees of freedom are df = 19.82 for all treatments, whereas the standard error and 
df for chlorosis means are SE = 0.57 and df = 18.12. Necrosis and chlorosis were 
assessed using an assessment scale from 1 to 12.  
 

 

4.8.3  Summary 

• Colonisation of tomato plants with Glomus intraradices significantly reduced 

early blight disease symptoms in terms of necrosis and chlorosis.  

• The amount of mycorrhizal colonisation is reduced significantly if amounts like 

15 and 45 mg P kg-1 soil are added.  

• A smaller amount of added P, as described in the first experiment, did not 

reduce the mycorrhiza formation, but decreased the resistance as well. This 

showed that the AMF-induced resistance is strongly influenced by the P supply.  

• In the first experiment, plants of the treatment 0 P + AMF were notably smaller 

than plants of the treatment 0 P, which hinted a strong competition for carbon 
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between the two sinks plant and fungal symbiont. For plants with an addition of 

3 mg P, no such growth difference was observed. 

 

 

4.9  Field trial with ASM, Spirulina and AMF 

 

The following section describes a field trial that was performed at the CENSA, La 

Habana, Cuba. The induction of resistance by (i) AM fungi, (ii) chemical resistance 

inducer ASM, and (iii) plant restorative Spirulina was tested alone and in 

combinations under field conditions. It was planned to analyse SAR-related 

enzymatic systems like PR proteins (pathogenesis related proteins), peroxidase, 

polyphenoloxidase, chitinase, and lypoxigenase both after treatment of the plants 

and after inoculation with Alternaria solani. Leaf samples were to be taken at 0, 12, 

24 hours, and the following 6 days. Assessment of the disease severity was to 

take place during flowering (60 days after germination) and before the ripening of 

the fruits (90 days after germination). The following treatments were planned: 

AMF, ASM, Spirulina, AMF + ASM, AMF + Spirulina, ASM + Spirulina, and the 

untreated control. 

 

The seedlings were first grown in multipot-trays in a glasshouse. Mycorrhizal 

plants were inoculated using pellets of the Cuban AMF inoculum EcoMic®. 

Regrettably, the used soil for the multipots was of poor quality which resulted in 

bad seedling growth and especially bad root development. And, the tomato plants 

were not sown in time, so that at the time of transplanting to the field, they had 

developed only one leaf besides the cotyledons. The seedlings were transplanted 

in a randomised complete block design with three replications to compensate 

slight soil differences in the grounds. Every plot contained 5 rows with about 20 

plants. It was not tested, whether the plants of the "+ AMF" treatments show 

mycorrhizal colonisation. It can be assumed that all plants normally become 

mycorrhizal during the growth in fields. This test could have proved mycorrhization 

at the time of transplanting for the "+ AMF" tomatoes and could have helped to 

explain possible differences in the later results.  
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High damage by leaf cutter ants occurred and in some plots were only very few 

plants left. In Cuba, chemical plant protectants are scarce and the only strategy to 

minimise plant loss was offering of cabbage to the ants to detract them from the 

tomato plantlets. After two weeks, the ant population had enormously increased 

and more tomato plants than before were lost. In some plots, not enough plant 

material was left, so that these plots had to be excluded from sampling. The 

analysis of the enzymatic systems is still in work due to shortage of staff at 

CENSA.  

 

 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 4.19: Leaf cutter ants transporting tomato plant pieces to their nest. 
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5  DISCUSSION 

 
 
 
 
It is well-known that the use of induced resistance in plant protection can be 

problematic, especially under practical conditions. In this work, we investigated the 

pathosystem tomato – Alternaria solani with special emphasis to resistance 

induction to understand more about mechanisms and factors influencing the 

success or failure of plant protection. A multitude of experiments was accomp-

lished to analyse aspects such as application, interaction with other agents, and 

different inductors. Within the scope of these studies, SAR emerged to be rather 

unreliable in controlling Alternaria. However, it was found that focusing on 

arbuscular mycorrhizal fungi can be a promising option. In the discussion, we 

interpret and summarise our findings with regard to achieve a general view.  

 

 

5.1  General studies of Alternaria solani  
 

In the first studies with Alternaria, we could (i) develop a new and more efficient 

method to induce sporulation, and (ii) prove the age-dependent susceptibility of 

tomato leaves. We could show also that the toxins in the spore suspension can 

cause disease symptoms by themselves, but not to a degree that would falsify the 

inoculation of the plants and the later assessment of the disease severity.  

 

Alternaria is readily isolated from infected plant tissue but it is difficult to maintain 

these isolates on agar media in forms that produce conidia. Often sporulation 
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capacity declines or is lost after a few serial transfers on these media and the 

colonies may become completely mycelial or produce only very few conidiophores 

and conidia. The ability to still produce spores when growing on artificial media 

differs widely from isolate to isolate, but mostly an induction of sporulation is 

required when high amounts of spores are needed for experiments.  

 

Commonly used methods for sporulation induction include exposure to sun- or 

ultraviolet light (Charton, 1953; Rands, 1917), mycelial wounding (Douglas & 

Pavek, 1971), medium dehydration or the use of chemical additives (Charton, 

1953). The normal method used in our laboratory, developed by Shahin & 

Shepard (1979), combined wounding of the mycel, reduction of nutrient supply and 

increased stress by the addition of sterile water. This method is very effective but 

also time-consuming and work-intensive, as single mycel cubes have to be spread 

on a second medium and the harvest of spores has to be done more carefully. Our 

new method focuses on nutrient stress for the induction of sporulation. The 

isolates were transferred first to DA medium without any contents of host plants 

and are transferred back to normal PDA medium 7 to 10 days before the spores 

are needed. This method is easily included in the normal maintenance of the 

cultures as only a change of media is required. The change in nutrient supply 

resulted in profuse sporulation and could establish continuous sporulation in 

isolate Greece-1. It can be concluded that the new method is an improvement 

compared to the previously used sporulation induction process.  

 

In leaf disc experiments, the oldest leaves were the most susceptible to Alternaria. 

This was expected as the susceptibility of tomatoes to early blight increases with 

senescence (Rotem, 1994). Barna & Györgyi (1992) list several reasons for a 

generally increased susceptibility of senescent tissues to necrotrophic pathogens, 

among these reasons are higher sensitivity of senescent plant tissues to pathogen 

toxins, to cell wall degrading enzymes and autolysis of membrane lipids.  

 

The leaves of levels 6 and 7 showed unexpectedly high susceptibility. These 

leaves were not completely developed at the time of picking. Leaf discs cut from 

these young leaves were not planar but slightly folded towards the leaf vein. When 

droplets of the spore solution were placed on these discs, they covered a bigger 
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area of the disc due to the water tension. Additionally, the discs of young leaves 

seemed to wilt faster than other leaf discs. These two points, bigger area for 

Alternaria attack and additional stress by reduced turgor, could have eased early 

blight infection. Furthermore, it was impossible to cut as many leaf discs from 

these small leaves as from leaves of the other levels, resulting in fewer 

measurement replications for the youngest leaves and providing less reliable 

estimates. This could have been avoided by reducing the repeated measurements 

to the smallest possible number, but this reduction of measurement repetitions 

would have reduced accuracy at the same time.  

 

Rotem (1994) states that many hosts of Alternaria species are susceptible in the 

juvenile stage, with a second peak of highest susceptibility in the senescent stage. 

The best-known case is tomato, where Alternaria causes collar rot in seedlings. 

Past the susceptible juvenile stage, plants become relatively resistant, but later 

enter the susceptible senescent stage (Moore, 1942; Moore & Thomas, 1943). Our 

results suggest that not only tomato seedlings are highly susceptible, but also 

young leaves.  

 

Tomato leaf discs inoculated with filtered, spore-free suspension, which is likely to 

contain some fungal toxins, showed significantly higher assessment grades than 

the control discs inoculated with pure water droplets. Not surprisingly, inoculation 

with unfiltered spore suspension showed by far highest disease severity indicating 

that toxins alone caused some disease symptoms but no severe damage. 

Germination fluids of Alternaria contain alternaric acid (Langsdorf et al., 1990), so 

we can conclude that the filtered spore suspension contained at least this toxin. 

The marginal effect of the toxin itself showed that inoculation using a spore 

suspension will not create an artefact but represent the true inoculation success.  

 

The involvement of a toxic compound produced by Alternaria in vivo was 

suggested very early in Alternaria research since the disease symptoms enlarge 

rapidly and coalesce from small necrotic spots (Hooker, 1981). Pound and 

Stahmann (1951) showed that alternaric acid, produced by Alternaria solani, plays 

an important role in the emerge of early blight symptoms and in defoliation, as it 

can be spread in the vascular tissue of an infected plant and enhance chlorosis 
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and shedding of the leaves. Alternaric acid alters the morphological and 

physiological characteristics of plasma membranes near plasmodesmata and 

thereby causes a permeability change, which leads to a leakage of electrolytes 

(Langsdorf et al., 1991). Various toxic metabolites produced by Alternaria isolates 

in culture were reported, e. g. alternaric acid (Brian et al., 1945), anthroquinones 

like altersolanol A and macrosporin (Stoessl, 1969), solanopyrones (Ichihara et al., 

1983) and other chemically not yet fully identified compounds. The importance of 

these toxins for the infection process could be demonstrated by their susceptibility-

inducing properties: when spores on non-pathogenic races of these pathogens 

which were unable to infect the host plants per se were supplemented with host-

selective toxins, they were able to penetrate the host plants and initiate disease 

(Yoder & Scheffer, 1969; Yamamoto et al., 1984). However, no correlation was 

found between the virulence of specific strains of Alternaria and their ability to 

produce toxins (Stancheva, 1989).  

 

 

5.2  Plant restorative Spirulina platensis 
 

The studies concerning Spirulina platensis as plant protective showed that the 

activity depends strongly on the method of application. Application as spray 

increased the disease severity relative to the control or decreased the plants 

weight. However, if Spirulina was used as soil drench, it could reduce the 

susceptibility of tomato to Alternaria at low infection pressure. For normal infection 

pressure, no differences between the two application methods and the control 

were observed. In mixtures with resistance inducer ASM, Spirulina had no 

significant activity. Since the influence of ASM was significant in this experiment, 

these results are discussed in section 5.4.  

 

The slight disease reduction after use of Spirulina as soil drench may be explained 

by (i) a fertilising effect or (ii) a kind of induced resistance. Spirulina contains a 

multitude of proteins and amino acids, vitamins, macro- as well as micronutrients, 

and pigments such as chlorophyll and carotenoide (Pulz et al., 2000). These 

substances, and especially the soluble exocellular polysaccharides secreted by 

Spirulina (Filali Mouhim et al., 1993; De Philippis & Vincenzini, 1998; Nicolaus et 
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al., 1999), could enhance the plants nutrition or interact with the plant and induce 

an alteration in the plants defence.  

 

In contrast to soil drenching, Spirulina as spray increased the early blight disease 

symptoms significantly. The remains of the spraying solution could have had a 

positive effect on Alternaria spores, possibly by stimulating germination or 

providing nutrients prior to penetration into the host. It is also likely, that the 

exopolysaccharides of Spirulina interacted with the plant cells and increased the 

susceptibility. It also seems possible that spraying with the dark-green Spirulina 

solution covered the canopy with cell residues and reduced the light intensity. This 

could have resulted in decreased photosynthesis and reduced the plant growth on 

a long-term basis. However, this cannot explain the leaf-disc results, where no 

photosynthesis is at work but nevertheless an increased disease severity was 

measured.  

 

 

5.3  Chemical plant protective agent Maneb 
 

In a preliminary study preparing for the subsequent interaction experiments, 

Maneb was applied in the recommended concentration for tomato crops. The 

observed disease severity after inoculation with early blight dependent strongly on 

leaf age. For older leaves, necrosis and chlorosis symptoms were significantly 

reduced compared to the control. For the younger leaves, the disease severity 

was still significantly reduced, but to a lesser extend.  

 

At the time of spraying, the leaves of levels 5 and 6 were not fully developed and 

therefore the Maneb layer was thinner or more irregular than for the older leaves. 

Alternaria spores could germinate easier on the less protected younger leaves. 

Maneb, as a strictly protective fungicide without systemic action, can only protect 

treated plant parts and not growing tissue. Under practical conditions, the 

application with Maneb would have to be repeated in regular time intervals.  
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Additionally, this leaf disc experiment showed that untreated leaves of different 

ages had characteristically unequal levels of susceptibility, with the lowest sus-

ceptibility for the youngest leaves. This effect is already discussed in section 5.1. 

 

 

5.4  Resistance inducer ASM 
 

Results of the various ASM studies seem rather inconsistent. The application of 

ASM as soil drench significantly increased disease severity, whereas sprayed 

ASM increased in some cases, and decreased in others the outbreak of early 

blight.  

 

The induction of systemic resistance in tomato, especially against Phytophthora 

infestans, is reported by several authors (Heller & Gessler, 1986; Kovats et al., 

1991; Enkerli et al., 1993). Spletzer & Enyedi (1999) activated SAR in tomato 

plants by root feeding of SA. Also Senaratna et al. (2000) could induce multiple 

stress tolerance in tomato by growing tomatoes from seeds imbibed in solutions 

with SA and acetyl salicyl acid (ASA). It is possible that both SA and ASA are 

more readily absorbed via the roots than ASM. There are also reports of 

successful use of ASM against Alternaria solani, or of resistance induction by ASM 

in tomato against a variety of pathogens and pests. Spraying with ASM gave 

almost complete control of Alternaria in potato under glasshouse-conditions, and 

at least a reduction of disease severity in the field (Bokshi et al., 2003). Treatment 

of tomato seedlings with ASM reduced the disease severity of bacterial canker as 

well as the growth of the disease causing bacteria Clavibacter michiganensis in 

planta to up to 75% (Soylu et al., 2003). Audenaert et al. (2002) reported 

resistance induction of tomato to the necrotrophic pathogen Botrytis cinera after 

ASM soil application. ASM treatment (i) reduced the population growth of potato 

aphid on a susceptible tomato cultivar, and (ii) enhanced aphid control on a 

resistant cultivar, both by a direct negative effect on the phloem-feeding insect 

(Cooper et al., 2004). 

 

In contrast to the positive reports above, is the efficacy of resistance inducing 

chemicals rather unpredictable, and resistance strategies by chemical induction 
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are so far inapplicable for farmers (Kumar et al., 2002). For example in the barley 

– mildew-pathosystem, one application of ASM under laboratory conditions is 

usually sufficient for protection during the whole growing season, whereas under 

field conditions, the action of ASM is uncertain and the reasons for this are still 

unclear (Wiese et al., 2003).  

 

The diverging results could be due to the relatively high phytotoxicity of ASM. The 

threshold between the concentration to achieve induced resistance and the 

concentration damaging the plant seems to be very narrow. Audenaert et al. 

(2002) reported that higher concentrations of ASM caused a decline in induced 

resistance and dramatic changes in the tomato plants morphology: leaves turned 

dark green and became shrunken, and spontaneous necrotic lesions developed. 

Already in the concentration of 10 mg ASM kg-1 soil, the treatment resulted in 

lengthening of internodes and shrinking of leaves. In our studies, plants treated 

with ASM as soil drench in high concentration (> 25 mg ASM l-1) had a darker leaf 

colour and in some cases, the single leaflets were slightly smaller than in control 

plants. Tomato plants stressed by the phytotoxic ASM could be more susceptible 

to Alternaria. 

 

Watering tomato plants with ASM solution resulted in significantly increased 

infection compared to the water control. Instead of increasing the resistance, this 

treatment led to a higher susceptibility to Alternaria. As the plants were 

significantly more infected, we cannot only emanate from missing effectivity but 

have to ask why the susceptibility was increased. Therefore, missing absorption 

into the plant cannot explain the worsening of the disease.  

 

Induced resistance caused by ASM mainly protects the plants by formation of 

papillae (Kogel & Hückelhoven, 1999) and accelerating the hypersensitive 

response (HR) of the challenged cell. The current knowledge predicts that the 

effects of reactive oxygen intermediates in plant pathogenesis depend on many 

factors, of which the lifestyle of the pathogen (biotrophy or necrotrophy) is a major 

one (Hückelhoven & Kogel, 2003). In general, it seems that SA-dependent 

defence responses (SAR) are effective against biotrophic pathogens, while 
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jasmonic acid-dependent defence responses (ISR) are effective against 

necrotrophic pathogens (Thomma et al., 1998; 2001a; Tierens et al., 2002).  

 

As described before, Alternaria is necrotrophic. Involvement of pathogenesis-

related (PR) proteins has been implicated in Alternaria resistance in tomato 

through the observation that it correlates with high and rapid accumulation of PR-

proteins. However, it is speculated that those PR-proteins, many of which possess 

hydrolytic activity, are not necessarily directly involved in arresting the pathogen 

but rather release elicitors from the pathogen cell wall, thus triggering a 

hypersensitive response (Lawrence et al., 2000). The HR is considered to be a 

major element of plant disease resistance as it disrupts the pathogen from food 

supply and confines it to the initial infection site.  

 

Necrotrophic pathogens, such as Botrytis cinera, Sclerotinia sclerotiorum and 

Alternaria solani, however, can utilise dead tissue and HR does not protect plants 

against infection (Gorvin & Levine, 2000). By contrast, B. cinera triggers HR, which 

facilitates its colonisation of plants.  

 

So, when a pathogen is necrotrophic and requires dead cells for its survival, the 

HR is not a viable resistance mechanism. While necrotrophs may produce toxins 

to facilitate plant cell death for their survival, there also remains the possibility that 

they take advantage of disease resistance mechanisms such as HR (Gorvin & 

Levine, 2000), evolved by the plant to defend against biotrophs (Thomma et al., 

2001b). The observations that oxidative stress is higher in senescing leaves (Lin & 

Kao, 1998) and most necrotrophic fungi prefer to grow on senescent leaves 

(Agrios, 2005), would lend support to this theory.  

 

Alternatively, necrotrophic pathogens may be directly responsible for reactive 

oxygen species (ROS) production as means of increasing lipid peroxidation 

(Gönner & Schlösser, 1993), to cause cell death (von Tiedemann, 1997). Recent 

reports suggest that a successful pathogenesis of some necrotrophic or hemi-

biotrophic fungal pathogens relies on or is at least supported by a high 

concentration of hydrogen peroxide (von Tiedemann, 1997; Govrin & Levine, 

2000; Kumar et al., 2001).  
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Able (2003) observed two bursts of ROS production during the early stages of 

challenge in barley by the fungal necrotroph Rhynchosporium secalis, with the first 

burst occurring in both resistant and susceptible responses and the second burst 

being specific to the susceptible response. A similar situation has been observed 

during the response of susceptible pear cells to challenge with the necrotrophic 

bacteria Erwinia amylovora (Venisse et al., 2001), suggesting a role in signalling 

for the first oxidative burst.  

 

Since Alternaria has a necrotrophic lifestyle, it could penetrate and spread more 

easily in a host with enhanced ability to perform hypersensitive response. In 

contrast to this, all less susceptible tomato lines have higher constitutive levels of 

the PR-proteins chitinase and β-1,3-glucanase, and constitutive enzymes can 

release elicitors of plant cell death from the cell walls of Alternaria solani (Agrios, 

2005).  

 

ASM was also tested in combination with the plant protective agent Maneb. Maneb 

concentrations were reduced to 20%, respectively only 4% of the recommended 

dosage, to check if this fungicide in such low concentrations could protect the plant 

during the build-up of SAR. ASM again showed no activity against early blight. 

Only treatments with the higher Maneb concentration significantly reduced 

Alternaria infection compared to the water control and the other variants. Still, 

these leaf discs were not fully protected and an infection of plants could only have 

been delayed and not held off. The combinations of ASM and Maneb did not show 

results that would hint synergistic interactions. Though, the experimental design 

was not sufficient to test for interactions as the agents were not tested in a 

sufficient amount of different concentrations.  

 

However, in a study combining ASM with the cyanobacteria Spirulina, ASM alone 

in high concentration and ASM in low concentration plus an addition of Spirulina 

could increase the plant shoot weight significantly compared to the control.  

 

Using in vitro studies, we demonstrated a significant direct fungitoxic activity of 

ASM on Alternaria isolates. In a second in vitro experiment, ASM and Maneb were 

tested in different concentrations and combinations. To enable correct 
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measurements of percentage control data, it was necessary to conduct this test in 

vitro with mycel discs of Alternaria growing on PDA mixed with the plant 

protectives. This means that the normal mode of action of ASM, which would 

induce mechanisms of SAR in a plant and have only indirect influence on the 

pathogen, could not take place. Still, treated plants are often covered in dry 

remainders of the spraying solutions and spores on the leaf surface would have 

direct contact with the components, which have not diffused into the plant. Here, 

ASM could unfold its fungitoxic activity and directly control the pathogen. For the 

protective fungicide Maneb, this contact is necessary to inhibit spore germination. 

This test proved interactions between the two agents that seem to depend highly 

on the individual isolate. For the isolates Cuba-141 and Greece-1, we could 

document clear synergistic effects. For isolate USA-1 however, the interactions 

between ASM and Maneb were only additive and for the combination of Maneb 

and ASM with the highest concentrations even antagonistic. These findings hint 

different levels of resistance of the Alternaria isolates against ASM and/or Maneb. 

Since isolate USA-1 showed significant growth depressions in the experiment with 

ASM alone, we assume that this isolate is relatively resistant against Maneb. 

 

Kunz et al. (1997) state, that BTH derivates, with ASM as commercial product, do 

not show any antimicrobial activity in vitro. In the case of Alternaria, we could 

clearly demonstrate that this general assumption is not true. Since the activity of 

ASM depends on the individual isolates of Alternaria, it is likely that there are also 

isolates that would not be suppressed by an addition of ASM in the growth media.  

 

It would be very interesting to rerun this study essay with leaf discs and later with 

plants to check for interactions with the normal modes of action of both plant 

protectives. To achieve general conclusions, the experimental design should 

include the following qualities: (i) correct measuring of the infected leaf areas for 

later percentage control calculation, (ii) more than two or three different 

concentrations, (iii) a high number of combinations, (iv) an adequate number of 

replications, and finally (v) the test of either many individual isolates or a mixture of 

them.  
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5.5  Resistance inducer INA 
 

In a preliminary study to test useful concentrations and the formulation of INA, the 

phytotoxic effects on tomato plants were dramatic. Further experiments were not 

performed, as this resistance inducer could not be an alternative to ASM. 

Oostendorp et al. (2001) explained that none of the INA derivates were 

commercialised, mainly due to insufficient crop tolerance.  

 

 

5.6  Growth promoting fungus Piriformospora indica 
 

The tested tomato varieties differed in their reactions to colonisation with 

Piriformospora indica. In contrast to the other varieties, the Cuban cultivar 

Campbell 28 produced less dry matter when living Piriformospora mycel was 

added than with the addition of autoclaved mycel. The growth improvement in 

combination with the autoclaved mycel, in relation to the control, seemed to rely on 

the load with nutrients. These results show that no general growth induction for all 

cultivars of the host plants of Piriformospora can be expected.  

 

For both other tomato varieties, Piriformospora showed a clear growth-inducing 

effect. But when plants grew older, the difference between colonized and non-

colonized plants was more and more reduced until the plant size did not differ 

significantly at the time of the third harvest. It is likely that the beneficial effects of 

the fungal colonisation are no longer sufficient for plants reaching maturity, or that 

fungal growth is limited in the pots and so is the stimulus for the plants.  

 

An in vitro experiment showed that preinoculation of the agar plates with 

Piriformospora inhibited the growth of Alternaria. Either, Piriformospora released 

some substances that inhibit the growth of Alternaria, or it had already diminished 

the essential nutrients in the media. These fungi do not share the same habitats 

and so do not come in contact with each other, so this finding may not have any 

practical use. On the other hand, when both fungi were transferred to the petri dish 

at the same time, they would both grow at usual speed and then stop before the 

mycel discs touch each other. This shows that there should not be some toxic 
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substances involved in the suppression of Alternaria. Varma et al. (2001) reported 

equal findings for Gaeumannomyces graminis and several other established root 

pathogenic fungi.  

 

In the last study with Piriformospora, tomato plants were inoculated with Alternaria. 

For both Campbell 28 and Rheinlands Ruhm, the plants dry shoot weight was 

highest in the treatment with living Piriformospora mycel, whether the plants were 

affected with Alternaria or not. Cultivar Hellfrucht did not show any growth 

induction in the healthy plants. This findings are analogue to Kumar et al. (2002), 

who reported that colonisation of wheat roots by Piriformospora considerably 

increased growth and yield relative to non-colonised control plants up to 

approximately 35% and the number and size of Bipolaris sorokiniana leaf lesions 

were significantly reduced. 

 

5.7  Influence of nutrient supply on Alternaria infection 

 

It is well established that nitrogen availability can influence the resistance of plants 

to pathogens (Engelhard, 1989; Marschner, 1995). These effects may depend, 

among others, on the form of N nutrition to the host (Huber & Watson, 1974) or the 

type of pathogen, i.e. if the pathogen is biotroph or necrotroph (Büschbell & 

Hoffmann, 1992). Biotrophic diseases are often increased by high rates of nitrogen 

fertilizer (Marschner, 1995). The opposite situation exists with the senescent type 

pests, i.e. pests that attack the more mature plant tissues, such as Alternaria 

(MacKenzie, 1981). Since Alternaria is known to be primarily a pathogen of 

senescent tissue, any factor that delays maturity will also reduce the severity of 

the disease. Conversely, plants suffering from a lack of nitrogen are weaker, 

slower growing, and faster aging. Such plants, therefore, are susceptible to 

pathogens that are best able to attack weak, slow-growing plants (Agrios, 2005).  

 

It has been commonly observed that early blight disease appears to be worse (i) 

on plants located in the less fertile parts of a field, (ii) on earlier transplanted 

plants, and (iii) on earlier maturing varieties (Thomas, 1948). MacKenzie (1981) 

could prove that increased rates of nitrogen fertilizer application reduced the 
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apparent infection rate and also the final amount of early blight disease in potato. 

In carrots, disease severity of leaf blight, caused by Alternaria dauci, was 

significantly decreased by high nitrogen supply (Vintal et al., 1999). By providing 

additional applications of nitrogen fertilizer, the grower may forestall the 

senescence of the crop and indirectly control the pathogen. Thomas (1940) found 

that tomato seedlings grown in sand with a high nitrogen supply were consistently 

less susceptible to the collar rot type of stem canker caused by Alternaria and had 

smaller lesions than those plants raised in medium- or low-nitrogen solutions. 

Horsfall & Heuberger (1942) explained reduced infection of plants fertilized with 

sodium nitrate by an overvegetative condition of the plants that was accompanied 

by a poor fruit set. High nitrogen levels are known to prolong plant vigor and delay 

maturity, especially when other factors are limiting (Blachinski et al., 1996).  

 

It is commonly accepted that high nitrogen levels, together with low phosphorus 

and medium to high potassium levels, decrease host susceptibility to Alternaria 

(Barclay et al., 1973; Soltanpour & Harrison, 1974; MacKenzie, 1981; Kumar et al., 

1983). In contrast to this, Thomas (1948) reported that plants grown at high levels 

of phosphorus, irrespective of nitrogen and potassium levels, had smaller leaf 

spots and a significantly smaller percentage of dead leaves than plants grown with 

low P fertilization. P seems to increase resistance either by improving the balance 

of nutrients in the plant or by accelerating the maturity of the crop and allowing it to 

escape infection by pathogens that prefer young tissues (Agrios, 2005). The 

improvement of the nutrient balance, as P is often more limiting nutrient than N, 

could probably explain the lower disease severity in the studies of Thomas (1948). 

Whereas an acceleration of senescence caused by higher P supply would rather 

increase an early blight infection.  

 

In both performed studies concerning possible interactions between early blight 

and the supply with nitrogen or alternatively phosphorus, we could not find 

significant effects of the nutrients. This might be due to the small number of 

replications, resulting in relatively high data variability and inhibiting the 

demonstration of significant differences. As visible in the according figures, there 

was a tendency to lower disease severity if the plants were provided with the 

highest amount of nitrogen or respectively phosphate. A second factor could be 
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the general amount of nutrients in the used soil. Even in the zero treatments, this 

soil provided some nitrogen or phosphorus. It is likely that this general nutrient 

supply was too high to result in nutrient deficiency or measurable differences 

during the short growing phase of the experiments. And, we did not test very high 

levels of nutrient supply. These problems could be avoided by planning further 

studies with a higher number of replications, more extreme nutrient concentrations 

and by using a substrate low in nutrients, e. g. pure sand.  

 

 

5.8  Arbuscular mycorrhizal fungi as bioprotectants 

 

In the first experiment, mycorrhizal colonisation of tomatoes led to significantly 

lower infection-levels of Alternaria solani than in non-mycorrhizal tomato plants. 

Additional to the protective effect of AMF against stress (Jeffries et al., 2003), 

bioprotection of AM colonised plants against various pathogens like nematodes 

and root diseases has been described by several authors (Boedker et al., 1998; 

Cordier et al., 1996; Dugassa et al., 1996; Elsen et al., 2001; Slezak et al., 2000; 

Vaast et al., 1998). Newsham et al. (1995) found that AM inoculation did not affect 

P concentration of the annual grass Vulpia ciliata, but mycorrhizal plants were 

protected from the deleterious effects of Fusarium oxysporum infection on shoot 

and root growth. Apparently, the AM suppressed pathogen development in the 

roots. Niemira et al. (1996) were able to demonstrate, even in a high-input 

commercial greenhouse and very low AM colonization and no evidence of 

enhanced P nutrition, a suppression of tuber dry rot (Fusarium sambucinum) in 

minitubers of potato (Solanum tuberosum) treated with peat-based medium 

containing Glomus intraradices. And furthermore Caron (1989) observed a 

reduction in Fusarium populations in the soil surrounding mycorrhizal tomato roots, 

and suggested that there was a potential role for AM fungi in biocontrol of soil-

borne diseases. 

 

Some studies have shown mycorrhizal protection of tomato plants against the root 

pathogens Erwinia carotovora and Pseudomonas syringae (García-Garrido & 

Ocampo, 1988; García-Garrido & Ocampo, 1989) but nothing is known with 
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respect to Alternaria solani and mycorrhizal tomatoes. As Azcón-Aguilar et al. 

(2002) explain, competition for carbon compounds may be a cause of pathogens 

depression in mycorrhizal plants as the growth of both symbiotic and pathogenic 

organisms depends on host photosynthates.  

 

For leaf pathogens however, increased activity on mycorrhizal plants is well 

documented (Schönbeck & Dehne, 1979; Linderman, 1994; Dugassa et al., 1996). 

Dehne (1982) suggests that the systemic influence of AMF may be attributed to (i) 

enhanced nutrition, (ii) plant growth, and (iii) physiological activity of mycorrhizal 

plants. Therefore, with increased levels of assimilates, such plants can serve 

better as nutrient sources for plant parasitic organisms. Shaul et al. (1999) provide 

an alternative mechanism by explaining the increased disease severity by the 

suppression of the plant defence response by AMF shortly after the early events of 

root colonization.  

 

Tomatoes with AMF did not show a positive growth effect due to mycorrhization. In 

fact, the mycorrhizal tomatoes of the 0 P level in the first experiment were notably 

smaller than corresponding non-mycorrhizal plants. This growth depression was 

expected as it was described previously in other studies (Burleigh et al., 2002) and 

seems to occur mainly under conditions of increased competition for carbon, e.g. 

light deficiency. Also Burleigh et al. (2002) reported growth depressions in tomato 

and medic colonized by Gigaspora rosea for 5 week-old plants. AM fungi are an 

additional sink for the carbon resources of the host and mycorrhizal plants require 

improved production of assimilates (Drüge & Schönbeck, 1992; Gernns et al., 

2001; Smith & Read, 1997). As carbon costs can be as high as 20% (Douds et al., 

2000; Graham, 2000; Jakobsen & Rosendahl, 1990), the competition for carbon 

between host and AM fungus can be very strong. On the other hand, Azcón-

Aguilar et al. (2002) state that there is no relationship between the ability of AMF 

to protect the plant, and their ability to promote growth. 

 
Alternaria fungi are saprophytes and facultative parasites with necrotrophic nature, 

which explains why they require a weakened, stressed, or senescent host plant for 

infection (Rotem, 1994). Rotem et al. (1990) showed for Alternaria macrospora 

that the disease severity of cotton plants grown in cool regime, causing delayed 

aging, was lower than for those grown under hot conditions (causing accelerated 
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aging), demonstrating that physiological rather than chronological age governs the 

age-conditioned susceptibility. Due to the competition for carbon, mycorrhizal 

tomatoes could be physiologically younger than non-mycorrhizal ones and 

therefore harder to infect by Alternaria solani. A delaying effect of AM on 

senescence has been observed in barley (Gernns et al., 2001; West, 1995) and in 

roots of herbaceous plants (Gavito et al., 2001; Lingua et al., 2002). Induction of 

juvenility inhibits tissue necrosis or cell death and affects only indirectly the 

development or multiplication of pathogens, which means that development of 

necrotrophs, like Alternaria and Botrytis, is reduced in such tissues (Barna et al., 

2003).  

 

Alternaria itself destructs the foliage of the host plant by defoliation and 

blightening. In addition to this reduction of green leaf area, the photosynthetic 

activity is decreased and the respiration is increased in apparently healthy tissue 

(Rotem, 1994). These alterations might be explained by the action of a phytotoxic 

material that diffuses into the leaf area surrounding necrotic lesions (Ephrath et al., 

1989) that affects the photosynthesis and reduces the yield to a higher proportion 

than defoliation alone would do (Rotem, 1990). Gernns et al. (2001) found that 

mycorrhizal barley without mildew showed an increased net assimilation of 34%, 

demonstrating again that AM fungi have a stimulatory effect on photosynthesis of 

their host plants (Drüge & Schönbeck, 1992; Smith & Read, 1997). It is likely that 

this increased photosynthetic activity of mycorrhizal plants could compensate the 

negative influence of Alternaria on photosynthesis and could help to reduce the 

disease severity. 

 

The involvement of preactivation of plant defence responses by AMF in 

bioprotection is an apparent paradox because at the early stages of root 

colonization only a weak and transient defence response is induced (Azcón-

Aguilar & Barea, 1996; Gianinazzi-Pearson, 1996) and this response is 

suppressed later on (Kapulnik et al., 1996). By using a split root experimental 

system it has been shown that a decrease in the development of Phytophthora in 

mycorrhizal and non-mycorrhizal roots of mycorrhizal tomato plants was 

associated with accumulation of phenolics and plant cell defence responses 

(Cordier et al., 1998), this being the first evidence of the induction of systemic 
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resistance by mycorrhiza formation. AMF are able to induce systemic protection 

against pathogens as parallel aspects to these described for rhizobacteria-

mediated ISR have been found for mycorrhiza-induced defence response in plants 

(Pozo et al., 2002). 

 

Certain non-pathogenic microorganisms, such as some plant growth promoting 

rhizobacteria (PGPR) have been shown to evoke in plants a resistance response 

phenotypically similar to SAR induced by pathogens, this phenomenon has been 

called induced systemic resistance (ISR) (van Loon et al., 1998). In contrast to 

SAR, which is mediated via a salicylic acid dependent process and is associated 

with the production of pathogenesis related proteins (reviewed by 

Hammerschmidt, 1999); ISR is generally mediated by a jasmonate/ethylene 

sensitive pathway and does not involve expression of PR proteins (Pieterse et al., 

1998; van Loon et al., 1998). But, different rhizobacteria utilise different 

mechanisms for triggering systemic resistance: some trigger the SA-dependent 

pathway, others a JA/ethylene-dependent one, and additional pathways are likely 

to be discovered in future (Pieterse et al., 2001). Silvia et al. (2004) could show 

that rhizobacteria induced systemic disease resistance in terms of average 

number of lesions as compared to the treatment control, thus increasing protection 

of tomato plants against Alternaria solani, Stemphilium solani (leaf spot) and 

Oidium neolycopersici (powdery mildew). In general, it seems jasmonic acid-

dependent defence responses (ISR) are mainly effective against necrotrophic 

pathogens (Thomma et al., 1998; 2001a; Tierens et al., 2002), so we can assume 

to have triggered an induced resistance similar to ISR that reduced the 

susceptibility of the mycorrhizal tomato plants.  

 

In the second experiment, the disease severity of all tomatoes increased together 

with the P supply and resulting in significantly higher early blight infection for 

plants with 45 P than in plants with 0 P. Plants of the 15 P level were intermediate. 

In the two-way linear mixed model analysis, the mycorrhiza treatment had no 

significant influence. Still, the plants of treatment 0 P + AMF had definite less 

necrotic lesions and lower chlorotic areas. The inoculation success seemed 

reduced in this experiment as the disease severity was notably lower than in all 

other experiments of this series. This remote Alternaria infection could attribute to 
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the missing significances in this study. It seems to be more difficult to inoculate 

tomato plants with Alternaria during late autumn and winter months, even if 

conditions in the glasshouse or climate chamber are constant. 

 

An early mycorrhizal inoculation, previous to pathogen attack, has been shown to 

be a successful practice to increase disease tolerance/resistance in economically 

important crop species mainly for those involved in horticultural and fruit 

production systems (Jaizme-Vega et al., 1997; Pinochet et al., 1998). In the 

second experiment, the mycorrhizal colonization of the tomato roots was 

significantly reduced for the treatments 15 P + AMF and 45 P + AMF. The addition 

of P has therefore an indirect influence on the disease severity of the mycorrhizal 

plants, as the reduced mycorrhizal colonisation could not induce adequate 

resistance. Cordier et al. (1996) proved for tomato plants infected with 

Phytophthora parasitica, that only a well-established mycorrhizal colonization 

could protect plants. And bioprotection by Glomus mosseae against Aphanomyces 

euteiches was shown to depend on a fully established symbiosis with presence of 

arbuscules (Slezak et al., 2000).  

 

We can conclude that the reduction of susceptibility to Alternaria in mycorrhizal 

tomato plants is likely to be caused by a mechanism similar to ISR. This effect is 

indirectly influenced by the supply with phosphate as this nutrient interferes with 

the development of root colonisation, so that a reduced colonisation leads to 

reduced resistance. To exploit optimal protection by AMF, the phosphate provision 

via fertilizers should be reduced, which is possible as the mycorrhiza will ensure a 

sufficient supply with this nutrient.  
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6  MYCORRHIZA REDUCES SUSCEPTIBILITY  

 
 
 
 
Arbuscular mycorrhiza reduces                                         

susceptibility of tomato to Alternaria solani*  

 
 

6.1  Summary  

• Mycorrhiza frequently leads to the control of root pathogens, but appears to 

have the opposite effect on leaf pathogens. Here we studied mycorrhizal 

effects on the development of early blight in tomato (Lycopersicon 

esculentum) caused by the necrotrophic fungus Alternaria solani. 

• Alternaria-induced necrosis and chlorosis of all leaves was studied in 

mycorrhizal and non-mycorrhizal plants over time course and at different soil 

P levels. 

• Mycorrhizal tomato plants had significantly less A. solani symptoms than non-

mycorrhizal plants, but neither plant growth nor phosphate uptake was 

enhanced by mycorrhizas. An increased P supply had no effect on disease 

severity in non-mycorrhizal plants, but led to a higher disease severity in 

mycorrhizal plants. This was parallel to a P supply-induced reduction in 

mycorrhiza formation. 

• The protective effect of mycorrhizas towards development of A. solani has 

some parallels to induced systemic resistance, mediated by rhizobacteria: 

                                                 
* This chapter is a reproduction of an article, authored by Maendy Fritz, Iver Jakobsen, Michael F. 
Lyngkjær, Hans Thordal-Christensen and Jörn Pons-Kühnemann, submitted to Mycorrhiza. 
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both biocontrol agents are root-associated organisms and both are effective 

against necrotrophic pathogens. The possible mechanisms involved are 

discussed. 

 

 

6.2  Introduction 

Early blight of tomato, caused by the fungus Alternaria solani, is one of the 

common foliar diseases of tomatoes. This disease can occur over a wide range of 

climatic conditions, but is most severe in areas with high relative humidity caused 

by heavy dew or rainfall combined with high averaged temperatures. Tomato 

crops are damaged by damping-off of seedlings, collar-rot, destruction of foliage 

as well as direct destruction of fruits by fruit rot and sun-scald of fruits on 

defoliated plants (Rotem, 1994). Alternaria spp. fungi produce many non-host-

specific as well as host-specific toxins (Thomma, 2003), which kill the host cells 

prior to or at the time of invasion and the fungus subsequently lives as saprophyte 

on the decaying tissue. In contrast to such necrotrophic life style, biotrophic fungi 

feed on living host cells and are very host specific pathogens. The toxin alternaric 

acid, produced by A. solani, causes chlorosis and necrosis itself and therefore 

plays a major role in early blight symptoms and defoliation (Pound & Stahmann, 

1951).  

 

Strategies for the control of A. solani include the activation of various forms of 

induced resistance. Systemic acquired resistance (SAR) is activated after infection 

by a necrotising pathogen or other biotic and abiotic stresses, rendering distant, 

uninfected plant parts resistant towards a broad spectrum of pathogens (Kuć, 

1982; Durrant & Dong, 2004). Certain strains of plant growth promoting 

rhizobacteria (PGPR) are able to induce systemic resistance, which extends to the 

above-ground plant parts and is phenotypically similar to SAR. This second type of 

induced disease resistance is commonly referred to as rhizobacteria-mediated 

induced systemic resistance (ISR), as reviewed by Van Loon et al. (1998). Based 

on work with gene-knockout mutants in Arabidopsis, SAR and ISR are proposed to 

confer resistance to pathogens according to their lifestyles, so that SAR primarily 

functions against biotrophic pathogens, and ISR against necrotrophic pathogens 

(Thomma et al., 1998; 2001). Parallel with the induction of resistance, significant 
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changes in the plant occur: inoculation with root-promoting Pseudomonas results 

in a significant increase of phenylpropanoid content in sprouts (Leinhos & 

Bergmann, 1995) and root exudates (Azcón-Aguilar & Barea, 1995). ISR can be 

induced not only by the rhizobacteria themselves, but also by bacteria-synthesized 

macromolecules (Romeiro et al., 2005).  

 

Root colonisation by arbuscular mycorrhizal fungi (AMF) has been frequently 

reported to reduce root infection by various soil-borne pathogens (Azcón-Aguilar & 

Barea, 1996; Smith & Read, 1997). The mechanisms involved in this biocontrol 

are not clear, but the common increase in plant P status in response to mycorrhiza 

formation appears to be involved (Graham & Menge, 1982; Graham & Egel, 1988; 

Graham, 2001). In contrast, mycorrhiza is generally assumed to increase 

susceptibility to leaf pathogens such as fungi, viruses and aphids (Dehne, 1982; 

Gange & West, 1994; Lindermann, 1994; Dugassa et al., 1996).  

 

The objective of this work was to investigate effects of mycorrhiza on susceptibility 

to A. solani in tomato. Disease symptoms were studied over time in mycorrhizal 

and non-mycorrhizal plants and the possible role of mycorrhiza-induced changes 

in plant P status was investigated by supplying different amounts of P to both non-

mycorrhizal and mycorrhizal plants. 

 

 

6.3  Materials and methods 

 
6.3.1  Experimental design 
Two experiments were carried out: Experiment 1 had four treatments: 0 P, 25 P, 

75 P, and 0 P + AMF (numbers refer to mg P added kg-1 soil). Experiment 2 had 

eight treatments resulting from combining four P levels with the presence or 

absence of mycorrhizas: 0 P, 0 P + AMF, 3 P, 3 P + AMF, 6 P, 6 P + AMF, 24 P, 

and 24 P + AMF. The experiments were conducted in a completely randomised 

design and repeated once. Generally, all treatments had 4 replicates as indicated 

by Figures and Tables. For experiment 2, seven plants per treatment were grown 

and three of these were harvested before inoculation with Alternaria solani, 
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reducing the replications to 3 for these data. Later data of this experiment were 

obtained from the 4 remaining plants.  

 

6.3.2  Biological materials 
Lycopersicon esculentum cv. Frembgens Rheinlands Ruhm was grown in both 

experiments. Seeds were surface sterilized (95% EtOH, soaking in 4% NaOCl 

(v : v) for 10 min and a final rinse in dist. H2O) and pre-germinated on wet filter 

paper for 2 days. Mycorrhiza was established in both experiments by inoculation 

with Glomus intraradices (BEG 87), which had been propagated on Trifolium 

subterraneum. The dry inoculum consisted of soil, hyphae, spores and colonised 

root pieces. The Alternaria solani isolate Greece-1 was kindly provided by Simon 

Pérez Martinez, CENSA, Cuba, and was cultured on potato dextrose agar at 

25 °C. To harvest the spores, 10-day-old cultures were brushed gently to loosen 

the spores and then rinsed with a 0,01% Tween 20 solution. The resulting spore 

suspension was filtered through a fine cloth, quantified using a haemocytometer 

and adjusted to 104 spores ml-1. 

 

6.3.3  Experimental setup  
Plants were grown in square pots (8 cm side length) lined with plastic bags and 

filled with 400 g growth medium, which was a 1 : 1 (w : w) mixture of quarts sand 

and irradiated soil (10 kGy, 10 MeV electron beam). The growth medium, hereafter 

referred to as soil, had nutrients uniformly incorporated at the following concen-

trations (mg kg-1 dry soil): K2SO4 75.0; CaCl2⋅2H2O 75.0; CuSO4⋅5H2O 2.1; 

ZnSO4⋅7H2O 5.4; MnSO4⋅H2O 10.5; CoSO4⋅7H2O 0.39; MgSO4⋅7H2O 45.0; 

Na2MoO4⋅2H2O 0.18; NH4NO3 30.0 (Viereck et al., 2004). The soil had a 

bicarbonate-extractable P content of 9.8 µg P g-1 (Olsen et al., 1954). The various 

P levels in the two experiments were established by thorough mixing of KH2PO4 

into the soil. Mycorrhizal treatments (+ AMF) had 32 g of the soil replaced by G. 

intraradices inoculum. The soil was moistened to 60% of water holding capacity 

and pots were left for one week for incubation of AMF inoculum. Three 

pregerminated seeds were planted in each pot and were thinned to one plant per 

pot after establishment. The soil surface was covered with plastic beads. Plants 

were grown in a climate chamber with a 16 : 8 h light : dark cycle with 24-26 : 18-

20 °C temperatures respectively, and watered daily to 60% water holding capacity. 
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Plants were inoculated 35 days after sowing by spraying with spore suspension 

until run-off occurred. To ensure high relative humidity that is needed during spore 

germination, the plants were placed in tight closing clear plastic containers for 24 

to 48 h.  

 

6.3.4  Monitoring of disease severity, harvest and analyses 
Early blight disease severity was assessed daily or every second day in 

experiment 1 and experiment 2, respectively, by assigning a grade in the range 1-

12 reflecting the percentage of leaf area with necrotic spots or respectively 

chlorosis of all unfolded leaves. Grade 12 was assigned to dead and shed leaves. 

For each time point, arithmetic means for individual plants were calculated. 

Tomato shoots were harvested 5 or 8 days after infection (dai) with A. solani in 

experiment 1 and 2 respectively, and weighed after drying at 70 oC for two days. 

Ground shoot material was digested in a 4 : 1 mixture (v : v) of nitric and perchloric 

acids. Total P content was measured by the molybdate blue method (Murphy & 

Riley, 1962) on a Technicon Autoanalyser II (Technicon Autoanalysers, Analytical 

Instruments Recycle, Inc., Golden, CO, USA). Root systems were washed and 

root samples of mycorrhizal tomatoes were cleared with 10% KOH and stained 

with 0.05% trypan blue in lactoglycerol (Phillips & Hayman, 1970) with the 

omission of phenol from the solutions and HCl from the rinse. Percentage of AMF 

colonisation was determined using a gridline intersection method (Giovanetti & 

Mosse, 1980).  

 

6.3.5  Statistical analysis 
Data for dry weight, phosphate content and mycorrhizal colonisation were 

analysed using GLM and Tukey’s Test. Necrosis and chlorosis data which were 

surveyed over several days in all experiments, were analysed with a linear mixed 

model for repeated measurements, using the autoregressive covariance structure 

which fitted best with respect to the experimental structure and minimized values 

for Akaike’s Information Criterion (AIC) and other information criteria. This 

statistical approach compares the treatments during the whole period of data 

collection and not only at certain time points by estimation of new means which 

are representing the whole time course and are therefore slightly different to the 

measured values. Degrees of freedom were estimated according to 
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Satterthwaite’s formula (Satterthwaite, 1946 after Hocking, 1996). Levels of P 

addition and inoculation with G. intraradices were set as fixed factors, whereas the 

intervals between the assessments were used as covariates. Treatments were 

compared using LSD Test with Bonferroni correction. All calculations were 

performed using SPSS (SPSS for Windows, Rel. 12.0.1, 2003. Chicago, SPSS 

Inc.). 

 

 

6.4  Results 

In experiment 1, the Alternaria solani development was determined (i) on non-

mycorrhizal tomatoes with increasing P supplies and (ii) on mycorrhizal and non-

mycorrhizal tomatoes given no additional P. Disease severity in terms of necrosis 

(P = 0.005) and chlorosis (P = 0.000) was significantly reduced by mycorrhiza. 

Whereas the effect of increased P supply to non-mycorrhizal plants was not 

significant (P = 0.208 and P = 0.089 for necrosis and chlorosis, respectively) (Fig. 

1; Table 1). Necrosis and chlorosis increased significantly (both P = 0.000) over 

time in all treatments. Interactions could not be tested due to the incomplete 

experimental design.  
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Figure 1: Necrosis (a) and chlorosis (b) caused by Alternaria solani infection monitored 
over 5 days after inoculation (dai) of tomato leaves. 0, 25 and 75 P represent non-mycor-
rhizal plants with different phosphate (P) supply (mg kg-1 soil) and 0P + AMF represent 
mycorrhizal plants. Data points show arithmetic means with n = 4. Experiment 1. 
 
The increased degree of necrosis in response to P addition was not significant. 

For the range of concentrations used in this study, phosphate nutrition had no 
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influence on severity of early blight. The more pronounced effect on disease 

development arose from the addition of Glomus intraradices to the 0 P treatment 

(0 P + AMF) such that mycorrhizal tomato plants had significantly less Alternaria 

symptoms in terms of necrosis and chlorosis than non-mycorrhizal plants (Fig. 1, 

Table 1).  

 
Table 1: Necrosis and chlorosis ranking of mycorrhizal (+ AMF) and non-mycorrhizal 
tomato plants estimated over a time period of five days after infection with Alternaria 
solani.  

Treatment Necrosis Chlorosis 
0 P 3.16  b 4.55  b 
25 P 3.31  b  5.58  b 
75 P 3.92  b 5.83  b 
0 P + AMF 1.64  a 1.86  a 

Estimated means were calculated in a mixed model with repeated measures data. The 
standard errors of necrosis means are SE = 0.34 for 0 P and SE = 0.29 for all other 
treatments. For chlorosis data, the standard errors are SE = 0.41 and SE = 0.36, 
respectively. Degrees of freedom are df = 11.89 for necrosis data and df = 11.81 for 
chlorosis. Means followed by equal letters are not significantly different. Experiment 1. 
 

In order to test whether the reduced Alternaria symptoms in the mycorrhizal plants 

in the first experiment were caused by an improved phosphate-level, a second 

experiment was set up where mycorrhiza was combined with all phosphate levels 

in the range between 0 and 24 mg kg-1, resulting in a complete factorial design. 

Phosphate concentrations in shoots were analysed to study whether disease 

severity was somehow correlated to any change in leaf P status caused by AMF 

inoculation or P supply. 

 

A two-way statistical analysis showed that disease severity was significantly 

influenced by the addition or absence of AMF (P = 0.000 for both necrosis and 

chlorosis). Mycorrhizal plants had significantly less disease symptoms (Fig. 2a and 

Table 2). Necrotic symptoms did not differ at various levels of P supply (P = 0.253) 

but chlorosis of leaves was significantly influenced by the amount of additional P 

(P = 0.014).  
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Table 2: Necrosis and chlorosis ranking of mycorrhizal (+ AMF) and non-mycorrhizal 
tomato plants estimated over a time period of third to seventh day after infection with 
Alternaria solani.  

Treatment Necrosis Chlorosis 
0 P 4.42  d     4.50  b 
0 P + AMF   1.35  ab     1.63  a 
3 P  3.31  cd     3.75  b 
3 P + AMF 1.15  a     1.50  a 
6 P   3.48  cd     4.38  b 
6 P + AMF   1.29  ab     2.00  a 
24 P     3.08  bcd     3.88  b 
24 P + AMF    2.50  abc     3.75  b 

Estimated means were calculated in a mixed model with repeated measures data. The 
standard error of necrosis means is SE = 0.37 and the degrees of freedom are df = 25.79 
for all treatments, whereas the values are SE = 0.33 and df = 24.00 for chlorosis data. 
Means followed by equal letters are not significantly different. Experiment 2. 
 

Also, there were significant interactions between mycorrhiza and the level of P 

supply, with P = 0.019 and P = 0.002 for necrosis and chlorosis, respectively. 

These interactions were very obvious as an increase in P supply caused more 

early blight symptoms in mycorrhizal plants. At the 24 P supply level, mycorrhizal 

and non-mycorrhizal tomatoes did not differ significantly (Table 2). Seven days 

after inoculation with A. solani, the remaining non-mycorrhizal tomato plants had 

lost between 13 and 22% of their dry matter, as many chlorotic leaves were 

shedded. Tomatoes with mycorrhiza suffered much less, thus resulting in higher 

amounts of dry weight after infection with early blight, though this difference was 

only significant at the 0 P level due to high variability of the data (Fig. 2b). 

 

The dry weight of mycorrhizal and non-mycorrhizal tomatoes was quantified before 

and after inoculation (Fig. 2c and d). Before inoculation with A. solani, dry matter 

of plants was slightly higher the more phosphate was added, and non-mycorrhizal 

tomatoes were generally larger than mycorrhizal ones even if these differences 

were rarely significant (see Fig. 2c). The P-content in mg g-1 dry weight in shoots 

before infection was nearly at the same level for all treatments (Fig. 2e), only the 

treatments 0 P + AMF and 3 P contained significantly lower phosphate than plants 

of treatment 24 P. As expected, mycorrhizal colonisation was significantly reduced 

the more phosphate was added (Fig. 2f), this reduction could explain the 

described interactions. 
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Figure 2: Leaf necrosis (a), necrosis-induced dry wt loss (b), shoot dry wt (c, d), shoot P 
concentration (e), and mycorrhiza formation (f) in mycorrhizal (+ AMF) and non-mycor-
rhizal (- AMF) tomato plants grown at 4 levels of phosphate (P) supply. Shoot dry weights 
in (c) were recorded just before inoculation with Alternaria solani on different plants while 
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all other data were recorded 7 days after inoculation (dai). Columns represent arithmetic 
means and bars are standard errors ( n = 3 for (c) and otherwise 4). Experiment 2. 
 

 

6.5  Discussion 

The presence of mycorrhiza in tomato roots led to significantly lower infection-

levels of Alternaria solani than observed in non-mycorrhizal plants in two separate 

experiments. Bioprotection of AM colonised plants against soil-borne pests like 

nematodes and various root diseases is commonly observed (Cordier et al., 1996; 

Dugassa et al., 1996; Boedker et al., 1998; Vaast et al., 1998; Slezak et al., 2000; 

Elsen et al., 2001). Some studies have shown mycorrhizal protection of tomato 

plants against the root pathogens Erwinia carotovora and Pseudomonas syringae 

(García-Garrido & Ocampo, 1988; 1989). In contrast, susceptibility to leaf 

pathogens is often higher in mycorrhizal than in non-mycorrhizal plants 

(Schönbeck & Dehne, 1979; Lindermann, 1994; Dugassa et al., 1996). Dehne 

(1982) suggests that the systemic influence of AMF may be attributed to enhanced 

nutrition, plant growth and physiological activity of mycorrhizal plants, and 

therefore, with increased levels of assimilates, such plants can serve as improved 

nutrient sources for plant parasitic organisms. Shaul et al. (1999) provide an 

alternative mechanism by explaining the increased disease severity by the 

suppression of the plant defence response by AMF shortly after the early events of 

root colonisation. However, mycorrhiza may induce qualitative or quantitative 

changes in plant performance that could compensate higher disease susceptibility. 

Hence, although mycorrhiza formation in barley resulted in increased leaf infection 

by Blumeria graminis f. sp. hordei, mycorrhizal plants suffered less than non-

mycorrhizal plants in terms of reductions in grain number, ear yield and thousand-

grain weight (Gernns et al., 2001).  

 

Alternaria fungi are saprophytes and facultative parasites with necrotrophic nature 

that may explain why they require a weakened, stressed or senescent host plant 

for infection (Rotem, 1994). Rotem et al. (1990) showed for Alternaria macrospora 

that the disease severity of cotton plants grown in cool regime, causing delayed 

aging, was lower than for those grown under hot conditions (causing accelerated 

aging). This demonstrates that physiological rather than chronological age governs 

the age-conditioned susceptibility. AM fungi constitute a sink for the carbon 
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resources of the host and mycorrhizal plants require improved production of 

assimilates (Drüge & Schönbeck, 1992; Smith & Read, 1997; Gernns et al., 2001). 

As carbon costs can be as high as 20% (Jakobsen & Rosendahl, 1990; Douds et 

al., 2000; Graham, 2000), competition for carbon between hosts and AM fungus 

can be strong. This competition can result in a growth reduction of mycorrhizal 

plants compared to non-mycorrhizal ones, especially under light deficiency or 

other photosynthesis-limiting condition. An age delaying effect of AMF on 

senescence has been observed in barley (Gernns et al., 2001; West, 1995) and in 

roots of herbaceous plants (Gavito et al., 2001; Lingua et al., 2002). In our 

experiments, the tomatoes with AMF did not show a positive growth effect due to 

mycorrhization but actually a slight growth depression in terms of fresh and dry 

matter before inoculation with early blight. This was expected, based on previous 

studies in our laboratory (Burleigh et al., 2002; Smith et al., 2004). The mycorrhizal 

tomato plants could have been physiologically younger than non-mycorrhizal ones 

and therefore probably harder to infect by Alternaria solani. Alternatively, the 

competition for carbon compounds could be a cause of pathogen’s depression in 

mycorrhizal plants as the growth of both symbiotic and pathogenic organisms 

depends on host photosynthates (Azcón-Aguilar et al., 2002). 

 

The nutritional status can be an important factor influencing the disease 

susceptibility of plants. Our experiments demonstrated that additional P did not 

increase early blight symptoms, only reduced formation of mycorrhiza. This 

reduced mycorrhiza formation also reduced the mycorrhiza-induced resistance 

effects for plants of the treatment 24 P + AMF of experiment 2. The phosphate 

concentration of mycorrhizal tomato was not increased by Glomus intraradices. 

Smith et al. (2004) could show that nearly 100% of the P uptake of mycorrhizal 

tomatoes happened via AMF and not directly through the roots as the direct P 

uptake pathway seemed to be inactivated. The nutritional status of the mycorrhizal 

tomatoes was not improved because the indirect P uptake via AM fungus did not 

occur in addition to but instead of the direct uptake. Thus, the increase in 

resistance in the treatments with AMF cannot be explained by a better P supply. 

Other nutrients as nitrogen, potassium or zinc were not measured during the 

studies, as only surplus supplies of N are known to reduce early blight symptoms 

(Thomas, 1948; Vintal et al., 1999).  
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An early mycorrhizal inoculation, previous to pathogen attack, has been shown to 

be a successful practice to increase disease tolerance/resistance in economically 

important crop species mainly for those involved in horticultural and fruit 

production systems (Jaizme-Vega et al., 1997; Pinochet et al., 1998). In tomato 

plants infected with Phytophthora parasitica, only a well-established mycorrhizal 

colonization could protect plants (Cordier et al., 1996) and bioprotection by 

Glomus mosseae against Aphanomyces euteiches was shown to depend on a 

fully established symbiosis with presence of arbuscules (Slezak et al., 2000). In 

our first experiment mycorrhizal colonisation was as high as 79% with no 

difference due to phosphate levels. Percentage of mycorrhizal infection in our 

second study did depend significantly on the P supply but still reached around 

50% in the treatment with maximum P addition (see Fig. 2), showing that the 

colonisation with AMF was well developed and sufficient for bioprotection of the 

plants. The decrease of root colonisation due to additional P could be an 

explanation for the lack of resistance induction in the treatment with high P supply. 

 
Different organisms can stimulate plants and activate either pathogen-induced 

SAR or rhizobacteria-mediated ISR. Parallel to ISR, mycorrhizal fungi interact with 

the host plant’s roots and influence the whole plant including the above-ground 

parts. ISR is effective against necrotrophic pathogens and it seems possible that 

similar mechanisms reduce susceptibility of mycorrhizal plants towards 

necrotrophic leaf pathogens like Alternaria solani.  

 

We can conclude that mycorrhization of tomato roots can induce a reduced 

susceptibility to the necrotrophic leaf pathogen Alternaria solani. This effect is 

indirectly influenced by the supply with phosphate that reduced mycorrhizal 

development and led to reduced resistance. The effect resembles the 

rhizobacteria-mediated induced systemic resistance that is also induced by 

associated organisms and is also effective against necrotrophic pathogens.  
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7  SUMMARY  
 

 

 

 

The objective of this work was to study the pathosystem tomato – Alternaria solani 

with regard to several new plant protection strategies. Agents and symbionts were 

tested alone and in combinations to find environmentally friendly but effective 

methods of early blight control. The included agents and symbionts were: (i) 

systemic acquired resistance, induced by ASM; (ii) plant restorative Spirulina 

platensis; (iii) growth-promoting fungus Piriformospora indica; (iv) symbiotic 

arbuscular mycorrhizal fungi; and (v) minimum quantities of the chemical fungicide 

Maneb.  

 

The protective activity against Alternaria was assessed either on whole plants or 

on leaf discs. Whenever root symbionts were included, experiments with whole 

plants were necessary, otherwise leaf discs were preferred, especially since this 

allowed to simultaneously examine the influence of leaf age on susceptibility. 

Interaction between ASM and Maneb, as well as between Piriformospora and 

Alternaria, were studied in vitro on artificial medium.  

 

The main results of the work are: 

• A new method to induce sporulation of Alternaria on axenic medium has been 

developed, which is easily integrated into the normal process of cultivation. The 

new technique yields high amounts of spores and requires no more than a 

switch from the normally used PDA medium to the nutrient-poor DA medium. 

Ten days before spore harvest, one has to change back to PDA.  
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The age of host leaves emerged as one important parameter determining the 

degree of susceptibility to Alternaria. Old leaves exhibit higher levels of disease 

severity than young leaves. 

The application of Alternaria toxins causes only minor disease symptoms. This 

ensures that observed disease severity after inoculation with spore suspension 

is not generated solely by the contained toxins.  

• Spirulina platensis, which is suspected to have plant restorative potential, has 

no diminishing activity on early blight disease. To the contrary, if sprayed, 

Spirulina has even an enhancing effect. Soil drenching Spirulina shows a less 

pronounced degree of infection. In tomato cultures, therefore, Spirulina 

platensis should not be used as plant restorative. 

• ASM has a distinct fungitoxic efficacy with respect to Alternaria. In vitro 

experiments showed that – if in direct contact with the fungus – ASM unfolds its 

toxicity and inhibits fungal growth. 

Application of the resistance inducer ASM via soil drench increases the 

susceptibility to early blight infection. This clear counter-protective effect might 

be due to strong phytotoxicity of root-absorbed ASM. 

Application of ASM via spraying reduced the susceptibility to early blight in 

some instances but increased it in others. This inconsistency may be explained 

by the duality of ASM toxicity, which harms on one hand the fungus 

(fungitoxicity) and on the other the host (phytotoxicity). In sprayed form both 

effects can occur in parallel with unpredictable outcome. A successfully 

established SAR, which is assumed to benefit necrotrophic pathogens as 

Alternaria may be a third contributing factor. 

• It turned out to be impractical to pre-protect tomato plants by small quantities of 

Maneb until SAR is established. A satisfactory protection can only be achieved 

with amounts of Maneb close to the recommended dose.  

The mode of interaction between ASM and Maneb depends substantially on 

the particular Alternaria isolate. Different isolates seem to have different levels 

of resistance against the two agents, resulting in synergistic, additive or 

antagonistic modes of interaction. 
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• Piriformospora indica has a measurable growth-promoting effect on tomato 

plants, which levels out approximately 50 days after germination. The strength 

of growth promotion is different for different cultivars.  

Under certain circumstances, Piriformospora has a suppressing effect on 

Alternaria growth. In vitro experiments showed that Piriformospora cultures 

inhibit growth of Alternaria if the pathogen is added one week later.  

Piriformospora seems to have – in addition to its growth-enhancing effect – 

protective potential against Alternaria infections. The mode of action of this 

ability to reduce the plant matter losses is yet unclear. 

• Nitrogen and phosphorus deficient growth conditions weaken the host plants. 

This tends to decrease the defence capability against early blight, a charac-

teristic feature of interactions between hosts and necrotrophic pathogens.  

• Arbuscular mycorrhizal fungi are an effective bioprotectant against Alternaria in 

tomato. It has been demonstrated in this work that mycorrhizal tomatoes have 

a significantly lower level of disease severity than non-mycorrhizal plants. The 

mechanism seems to be similar to ISR, which is also induced by associated 

organisms in the roots and effective against necrotrophic pathogens.  

It is well-known that P surplus hinders an optimal colonisation of host roots by 

AMF. Therefore, a restricted P supply is advantageous if the mycorrhizal 

protection method is exploited against Alternaria infection. Since mycorrhiza 

itself ensures a sufficient P availability for the host plant, no P deficiency will 

occur.  
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8  DEUTSCHE KURZFASSUNG  
 

 

 

 

8.1  Einleitung 

Zielsetzung der vorliegenden Arbeit war die Untersuchung des Pathosystems 

Tomate – Alternaria solani sowie die Entwicklung einer Pflanzenschutzstrategie, 

die systemische induzierte Resistenz, Pflanzenstärkungsmittel, symbiotische Pilze 

und, falls notwendig, minimale Mengen chemischer Fungizide kombiniert, um die 

Dürrfleckenkrankheit langfristig und auf umweltfreundliche Weise zu kontrollieren. 

 

8.2  Das Pathosystem Tomate - Alternaria solani 

Tomaten (Solanum lycopersicum L., Syn. Lycopersicon esculentum Mill.) gehören 

zu den wichtigsten Fruchtgemüsen für die menschliche Ernährung und werden auf 

praktisch allen Kontinenten angebaut.  

 

Alternaria solani (im Folgenden Alternaria) ist der Erreger der Dürrfleckenkrankheit 

und befällt außer Tomaten noch weitere Mitglieder der Solanaceen sowie Pflanzen 

anderer Familien. An Tomaten verursacht Alternaria Stängelgrundfäule, Blatt-

flecken, Stängelläsionen und Fruchtfäule. Tomatensämlinge können durch 

befallenes Saatgut oder Substrat absterben. Typische Symptome der Dürrflecken-

krankheit sind dunkle Flecken mit konzentrischen Sporenringen, die von aufge-

helltem Blattgewebe umgeben sind. Der Ertrag wird sowohl indirekt durch die 

Zerstörung des Laubes als auch direkt durch befallene und fleckige Früchte (nach 

zu hoher Sonneneinstrahlung) verringert, so dass komplette Ertragsausfälle 

möglich sind (Rotem, 1994).  
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8.3  Induzierte Resistenz 

Die Nutzung induzierter Resistenz könnte eine Alternative zum chemischen 

Pflanzenschutz bieten. Dabei wird zwischen zwei Arten induzierter Resistenz 

unterschieden: (a) die systemisch induzierte Resistenz oder SAR, und (b) die von 

Rhizobakterien induzierte systemische Resistenz, kurz ISR.  

 

SAR wird in Pflanzen durch eine Vielzahl von Auslösern aktiviert, darunter 

nekrotisierende Pathogene, biotischer oder abiotischer Stress, sowie chemische 

Induktoren wie Salze, ungesättigte Fettsäuren und subletale Mengen an 

Herbiziden (Kuć, 1982; Oostendorp et al., 2001). Dabei wird die Pflanze bildlich 

gesprochen in einen Zustand erhöhter Alarmbereitschaft versetzt, so dass sie 

schneller und effektiver auf angreifende Pathogene reagieren kann. Diese Abwehr 

besteht in den meisten Fällen aus Papillenbildung, um das Eindringen von 

Pathogenen in einzelne Zellen zu verhindern, und aus der beschleunigt ab-

laufenden hypersensitiven Reaktion (HR), bei der die angegriffene Zelle unter 

Produktion verschiedener Sauerstoffradikalen spontan abstirbt.  

 

Salizylsäure, ein Hauptbestandteil des SAR-Signalweges, und deren Derivate 

ASM (Acibenzolar-S-methyl, Wirkstoff des kommerziell genutzten Resistenzinduk-

tors Bion®) und INA (2,6-Dichlorisonikotinsäure) können sowohl über die Blätter 

als auch über die Wurzeln von Pflanzen aufgenommen werden und SAR 

auslösen. Dabei wird ein über mehrere Wochen andauernder Schutz gegenüber 

Virosen, Bakterien, Pilzen sowie einigen tierischen Schaderregern erreicht. 

 

Im Gegensatz zu SAR entsteht ISR in Erwiderung auf die Besiedlung der Pflan-

zenwurzeln durch bestimmte Kulturen von wachstumsfördernden Rhizobakterien. 

In den meisten Fällen verläuft das Auslösen der systemischen Resistenz über 

einen Jasmonat/Ethylen-empfindlichen Signalweg (van Loon et al, 1998; Pieterse 

et al., 2001). Es wird weitgehend angenommen, dass SAR hauptsächlich gegen 

biotrophe Pathogene schützt, während ISR wirksam gegen nekrotrophe Schad-

erreger ist (Thomma et al., 1998; 2001; Tierens et al., 2002). 
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8.4  Symbiotische Pilze 

Symbiotische Pilze, wie arbuskuläre Mykorrhizapilze (AMF) und Piriformospora 

indica, besiedeln die Rhizosphäre von Pflanzenwurzeln und können dramatische 

Auswirkungen auf den Pflanzenstatus und das -wachstum ihres Wirtes haben.  

 

Arbuskuläre Mykorrhizapilze der Ordnung Glomales bilden mit terrestrischen 

Pflanzen die sogenannte Mykorrhiza. Diese Symbiose hat für die Wirtspflanze den 

Vorteil, dass ihre Versorgung mit dem meist wachstumslimitierenden Makronähr-

stoff Phosphat verbessert wird. Aber auch andere Nährstoffe wie beispielsweise 

Zink werden vom Pilz verfügbar gemacht und zur Pflanze transportiert, und auch 

die Wasseraufnahme wird erhöht. Zusätzlich reagieren viele Pflanzen mit einer 

Wachstumssteigerung auf die Bildung der Mykorrhiza und ihre Toleranz 

gegenüber abiotischem Stress, wie Versalzung oder Schwermetallbelastung des 

Bodens, wird erhöht. Die Bildung von Mykorrhiza schützt die Pflanzen auch gegen 

verschiedene Wurzelkrankheiten und Nematoden, während die Wirkung auf 

Blattkrankheiten nicht eindeutig ist. Die AM Pilze hingegen sind vollständig auf die 

Versorgung mit Kohlenhydraten durch die Wirtspflanzen angewiesen, damit sie 

ihren Lebenszyklus vollenden und Sporen bilden können.  

 

Piriformospora indica (im Folgenden Piriformospora) wurde erst kürzlich aus 

westindischem Wüstenboden isoliert. Der Pilz besiedelt eine weites Wirtsspektrum 

aus vielen Pflanzenfamilien und fördert das Pflanzenwachstum, unter anderem 

durch die Mobilisierung von Phosphaten und deren Translokation. Im Gegensatz 

zu AMF kolonisiert Piriformospora auch Brassicaceen wie beispielsweise 

Arabidopsis thaliana und lässt sich auf künstlichem Nährboden vermehren.   

 

8.5  Methoden 

Zur Überprüfung der einzelnen Pflanzenschutz-Methoden wurden verschiedene 

Experimente verwendet: (a) Versuche mit ganzen Pflanzen, beispielsweise bei 

Studien mit den symbiotischen Pilzen, (b) Versuche mit Blattscheiben, die immer 

dann eingesetzt wurden, wenn auch das Blattalter eine Auswirkung auf die 

Wirksamkeit haben könnte, und (c) in vitro Versuche, mit denen 

Wechselwirkungen zwischen ASM und Maneb sowie direkte Interaktionen 

zwischen Alternaria und Piriformospora untersucht wurden. Die Ausprägung der 

  106 



Deutsche Kurzfassung 
   

Alternaria Infektion wurde jeweils mit angepassten Boniturschemen geschätzt und 

die Daten generell mittels ANOVA und nachfolgendem Tukey Test ausgewertet. 

Bei den Experimenten bezüglich der Versorgung mit P und N sowie den 

Versuchen mit AMF wurde der Krankheitsverlauf über einen Zeitraum von 

mehreren Tagen bonitiert. Diese Daten wurden mit einem Ansatz für lineare 

gemischte Modelle analysiert, da dabei Mittelwerte über die gesamte Zeitspanne 

errechnet und diese dann in nachfolgenden post hoc Tests verglichen werden. 

 

8.7  Zusammenfassung der Ergebnisse 

• Wir konnten eine neue, zeitsparende Methode entwickeln, mit der die 

Sporulation von verschiedenen Alternaria-Isolaten auf künstlichem Nährboden 

angeregt wird. Diese Methode lässt sich problemlos in den normalen Kulti-

vationszyklus integrieren, da nur zwei Wechsel des Nährbodens erforderlich 

sind. Zuerst werden die Isolate von normalem PDA-Medium auf nährstoff-

ärmeres DA-Medium transferiert, auf dem sie nur langsam wachsen. Zehn 

Tage bevor Sporen benötigt werden, setzt man die Isolate wieder zurück auf 

PDA, dieser Wechsel im Nährstoffangebot stimuliert dann reichliche Sporen-

produktion. 

• Wie erwartet konnten auch wir bestätigen, dass das Auftreten der Dürrflecken-

krankheit deutlich vom Blattalter der Pflanzen beeinflusst wird. Dabei zeigen 

die ältesten Blätter die signifikant höchste Anfälligkeit, und die jüngsten Blätter 

ausgeprägte Resistenz gegenüber Alternaria.  

• Es war geplant, die Pflanzen bzw. Blattscheiben mit einer Sporensuspension 

zu inokulieren. Im Hinblick darauf wurde untersucht, ob nur die in der Sporen-

lösung enthaltenden Toxine, ohne die Anwesenheit von Alternaria-Sporen, an 

den Pflanzen die Dürrfleckenkrankheit auslösen können. Dabei wurden nur 

marginale Krankheitssymptome beobachtet. Dieses Ergebnis gewährleistet, 

dass die bonitierte Alternaria-Infektion nach Inokulation mit einer Sporen-

suspension nicht durch die Toxine allein verursacht wird. Die Methode der 

Inokulation mittels Sporensuspension konnte daher beibehalten werden. 

• Das Cyanobakterium Spirulina platensis, für das eine potentielle Wirkung als 

Pflanzenstärkungsmittel angenommen wird, hat keinen reduzierenden Effekt 
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auf die Alternaria-Infektion. Bei Applikation als Spray hingegen hat Spirulina 

sogar eine verstärkende Wirkung auf die Dürrfleckenkrankheit. Das Wässern 

der Pflanzen mit Spirulina resultiert in einem weniger ausgeprägten Grad der 

Infektion relativ zur Spraybehandlung. In Tomatenkulturen kann Spirulina 

platensis daher nicht als Pflanzenstärkungsmittel empfohlen werden. 

• ASM hat eine direkte fungitoxische Wirkung auf Alternaria. In vitro-Experimente 

zeigten, dass ASM in direktem Kontakt mit Alternaria seine Toxizität entfaltet 

und das Pilzwachstum verhindert. 

• Die Behandlung mit dem Resistenzinduktors ASM durch Wässern der Pflanzen 

steigert die Anfälligkeit gegenüber Dürrfleckenkrankheit. Diese einer Schutz-

wirkung entgegengesetzte Effekt könnte möglicherweise durch die starke 

Phytotoxizität des über die Wurzeln aufgenommenen ASM erklärt werden.  

• Applikation von ASM als Spray reduzierte die Anfälligkeit der Tomatenpflanzen 

gegen Alternaria in einigen Fällen, und erhöhte sie in anderen. Diese 

Inkonsistenz könnte durch die zweifache toxische Wirkung von ASM erklärt 

werden: auf der einen Seite wird der Pilz geschädigt (Fungitoxizität) und auf 

der anderen die Wirtspflanze (Phytotoxizität). Letzteres erhöht den Stress für 

die Pflanzen, was besonders bei Angriffen nekrotropher Pathogene die 

Anfälligkeit verstärkt. Bei der Anwendung als Spray können beide Effekte mit 

unvorhersehbarem Ausgang auftreten. Ein dritter auftretender Faktor könnte 

das erfolgreiche Induzieren von SAR sein, von der angenommen wird, dass sie 

nekrotrophe Pathogene während der Besiedlung des Wirtes begünstigt. 

• Es zeigte sich, dass es nicht möglich ist, Tomatenpflanzen mit geringen 

Mengen des chemischen Fungizids Maneb zu schützen, während SAR 

aufgebaut wird. Ein befriedigender Schutz gegen Alternaria kann nur durch 

Konzentrationen nahe an der empfohlenen Dosis erreicht werden.  

• Die Art der Interaktion zwischen ASM und Maneb hängt von bestimmten 

Alternaria-Isolaten ab. Verschiedene Isolate scheinen unterschiedliche Resis-

tenzlevel gegenüber den beiden Mitteln zu haben, was sich in synergistischen, 

additiven und auch antagonsitischen Interaktionen widerspiegelt.  
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• Piriformospora indica hat einen messbaren wachstumsanregenden Effekt auf 

Tomatenpflanzen, der sich etwa 50 Tage nach der Keimung ausgleicht. Der 

Grad der Wachstumssteigerung variiert zwischen den verwendeten 

Tomatensorten.  

• Unter bestimmten Umständen hat Piriformospora eine unterdrückende Wirkung 

gegenüber Alternaria. In vitro-Experimente zeigten, dass Piriformospora-

Kulturen das Wachstum von Alternaria fast vollständig hemmen, wenn das 

Pathogen eine Woche nach Inokulation hinzugefügt wird.  

• Zusätzlich zum wachstumssteigernden Effekt scheint Piriformospora eine 

protektive Wirkung gegen Alternaria-Infektionen zu haben. Die Wirkungsweise 

dieser Fähigkeit, den Verlust an Pflanzenbiomasse zu reduzieren, ist noch 

unklar. 

• Nitrat- und Phosphat-Mangel schwächen und erhöhen den Stress für die 

Tomatenpflanzen, welche dann zu erhöhter Anfälligkeit gegenüber Alternaria 

neigen. Dies ist ein charakteristisches Merkmal von Interaktionen zwischen 

Pflanzen und nekrotrophen Pathogenen.  

• Arbuskuläre Mykorrhizapilze sind effektive "Bioschutzmittel" gegen die Dürr-

fleckenkrankheit in Tomaten. In dieser Arbeit wurde bewiesen, dass 

mykorrhizierte Tomaten ein signifikant geringeres Ausmaß an Alternaria-

Infektion aufwiesen als nicht-mykorrhizierte Pflanzen. Der zugrundeliegende 

Mechanismus scheint gleich dem der ISR zu sein, welche auch durch 

assoziierte Organismen an den Wurzeln induziert wird und gegen nekrotrophe 

Pathogene wirksam ist.  

• Es ist bekannt, dass ein Überangebot von Phosphat die optimale Kolonisation 

der Wirtswurzeln mit AMF verhindert. Daher ist eine eingeschränkte Ver-

sorgung mit Phosphat vorteilhaft, wenn der Einsatz von Mykorrhizapilzen als 

Pflanzenschutzmethode gegen Alternaria ausgenutzt werden soll. Dabei kann 

kein Phosphatmangel auftreten, da die Mykorrhiza eine ausreichende Phos-

phatversorgung der Pflanzen garantiert.   
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