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Abstract

A formula is presented for describing triangular subpatches of rectangular Bézier surfaces. Calculations using it are numerically
stable, since they are based on de Casteljau recursions and convex combinations of combinatorial constants. Several examples of
quadratic, cubic and quartic subpatches are given, and the bi- and the quadripartition of a rectangular Bézier surface are discussed.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Surfaces on surfaces can be looked at as subpatches of surfaces with boundary curves that are (in general)
not isoparametric. These subpatches might be created through typical surface interrogation techniques such as
intersecting, blending or trimming. It is advantageous to be able to define these patches exactly using common
Bézier methods, instead of employing numerical approximations. Surface composition applied in this paper offers
one suitable solution. Further applications of methods and results presented are free form deformation, [1, Chap. 11.5]
and product labeling (i.e. attaching a label to an article). Labeling might involve arbitrary shaped subsegments of a
surface which ought to be described by triangle and/or tensor product Bézier (briefly TB and TPB) representations.
Multi-patch surfaces, [1, Chap. 7.5, 7.6], provide further usage, since, subdivision, reparametrization and continuity
constructions are possible applications of composition. Therefore, problems such as the N-sided hole (e.g. the suitcase
corner), [1, p. 314, 331, 354], the N-sided vertex, [1, p. 330, 356], or the T-node surface configuration, [1, p. 353], could
be addressed. Finally, because of the variety of modelling systems in operation, some of which are using rectangular
while others are using tringular schemes, the need for a stable, reliable method for conversion from three-sided to
four-sided surface types (and conversely) defines one more very important application of formulas presented within
this manuscript.

Rectangular and triangular Bézier surfaces are among the most commonly used surfaces in CAGD. Thus, there are
four potential combinations of forms to define surfaces on surfaces: two cases of combining equal shapes and two
of combining diverse shapes. Publications on TB representations, which are very well understood, date back to the
years 1983 and 1984 [2–4]. Ideas and concepts have been reformulated and worked on later using blossoming and
functional composition principles, [5–8]. TPB representations are the subject of [9]. Combinations of diverse shapes
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are trickier. Brueckner, [10], converts a TB surface to a trimmed TPB surface, Waggenspack and Anderson, [11],
exactly transform a monomial to a TB representation, and Jie, [12], extends the equations to rationals. The explicit
formula of Goldman and Filip, [13], converts a TPB surface of degree (m, n) into two TB surfaces of degree m + n.
Lino and Wilde [14], decompose a TB surface into three rational TPB surfaces. Hu, [15], represents a TB surface as
a degenerated TPB surface using corner cutting methods and addresses in 1996, [16], the suitcase corner problem by
applying a bilinear reparametrization. Feng and Peng, [17], present algorithms for the composition of TPB and TB
surfaces through linear barycentric (resp. bilinear) reparametrization. Lasser, in 2002 [18], provides formulas and a
geometric algorithm for the conversion of rectangular subpatches of TB surfaces into TPB representation.

In this paper, we discuss triangular shaped Bézier surfaces defined in the domain of rectangular Bézier surfaces.
TPB as well as TB surfaces can be of arbitrary polynomial degree, generalizing [13] and [17] which both deal with
linear barycentric representations only. Section 2 introduces the notation used throughout this paper by reviewing
definitions of TB and TPB representations. Section 3 presents an explicit Bézier representation of triangular
subpatches of rectangular Bézier surfaces and sketches a de Casteljau-like algorithm. Section 4 discusses examples
such as quadratic, cubic, and quartic triangular subpatches as well as the special problems of bipartitioning and
quadripartitioning of TPB surfaces.

2. Bézier representations

A triangle Bézier surface T(u, v, w) – briefly TB surface – of degree N in (u, v, w) is defined by

T(u, v, w) =

∑
|I|=N

TI,J,K B N
I,J,K (u, v, w) (1)

with Bézier points TI,J,K ∈ R2 and with (generalized) Bernstein polynomials

B N
I,J,K (u, v, w) =

(
N

I

)
u I v J wK , where

(
N

I

)
=

N !

I !J !K !
, (2)

of degree N in barycentric coordinates u = (u, v, w) which satisfy |u| = u+v+w = 1 and 0 ≤ u, v, w ≤ 1 associated
with a base triangle 4(U, V, W) of u-parameter space.

∑
|I|=N denotes summation over all triples I = (I, J, K ) which

satisfy |I| = I + J + K = N and 0 ≤ I, J, K ≤ N .
A rectangular Bézier surface R(µ, ν) also called a tensor product Bézier surface – briefly TPB surface – of degree

(l, m) in (µ, ν) is defined by

R(µ, ν) =

l∑
i=0

m∑
j=0

Ri, j Bl
i (µ)Bm

j (ν) (3)

with Bézier points Ri, j ∈ R3 and with (ordinary) Bernstein polynomials

Bl
i (µ) =

(
l

i

)
µi (1 − µ)l−i (4)

of degree l in µ and Bm
j (ν) of degree m in ν similarly, µ, ν ∈ [0, 1].

Bézier representations are quite popular because their expansion in terms of Bernstein polynomials yields, first,
a numerically very stable behavior of all algorithms and, second, a geometric meaning for the Bézier points. For an
extensive coverage of properties of Bernstein polynomials and Bézier representations see e.g. [1,7].

3. Calculation of triangular subpatches

The Bézier representation of triangular subpatches can be derived through the composition of a TB surface T(u)

and a TPB surface R(µ, ν) such that the base triangle of the TB surface is getting mapped into the domain of the TPB
surface (Fig. 1). Theorem 1 is fundamental for all applications mentioned above and the ones discussed below if exact
and explicit representations are needed.
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Fig. 1. A triangular on a rectangular Bézier surface using a composition of two mappings.

Theorem 1. Let T(u) = (µ(u), ν(u)) : R2
7→ R2 be a polynomial TB surface of degree N in u = (u, v, w), (1), with

Bézier points TI,J,K = (µI,J,K , νI,J,K ), and let R(µ, ν) = (x(µ, ν), y(µ, ν), z(µ, ν)) : R2
7→ R3 be a polynomial

TPB surface of degree (l, m) in (µ, ν), (3), with Bézier points Ri, j = (xi, j , yi, j , zi, j ).

The composition S(u) = R(T(u)) = R(µ(u), ν(u)) is polynomial and can be represented as a TB surface of
degree N (l + m):

S(u) =

∑
|I|=N (l+m)

SI B N (l+m)
I (u) (5)

with Bézier points

SI =

∑
Iµ+Iν=I

C l+m
|I| (N , I)Rl,m

0,0 (µl
Iµ , νm

Iν ) (6)

and constants

C l+m
|I| (N , I) =

l∏
Qµ=1

(
N

IµQµ

)
m∏

Qν=1

(
N

IνQν

)
(

N (l+m)
I

) , (7)

∑
|I|=N (l+m) has the meaning of summation over all index tuples I = Iµ

+ Iν , where Iµ
= Iµ

1 + · · · + Iµ
l ,

Iµ
Qµ = (I µ

Qµ , Jµ
Qµ , K µ

Qµ) with |Iµ
Qµ | = I µ

Qµ + Jµ
Qµ + K µ

Qµ = N and I µ
Qµ , Jµ

Qµ , K µ
Qµ ∈ {0, 1, . . . , N }, Iν analogously,

and |I| = |Iµ
| + |Iν

| = Nl + Nm = N (l + m).

Remark 1. Construction points Rl,m
0,0 (µl

Iµ , νm
Iν ) arise in the calculation of the polar form (also known as the blossom)

of R(µ, ν). They can be found recursively using the de Casteljau algorithm, for example, in the µ-direction we
compute

Rα,β
i, j (µα

Iµ , ν
β

Iν ) = (1 − µIµα )Rα−1,β
i, j (µα−1

Iµ , ν
β

Iν ) + µIµα Rα−1,β

i+1, j (µα−1
Iµ , ν

β

Iν ) (8)

with a similar recursion in the ν-direction, and the initialization R0,0
i, j = Ri, j where Iµ symbolizes indices Iµ

1 , . . . , Iµ
α ,

on the left side, while on the right side, Iµ symbolizes indices Iµ
1 , . . . , Iµ

α−1. Iν symbolizes indices Iν
1, . . . , Iν

β on both
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Fig. 2. Linearly parametrized triangular subdomain of the µ–ν-domain of a TPB surface.

sides of the recursion equation. Therefore, the calculation of Rα,β
i, j (µα

Iµ , ν
β

Iν ) implies α de Casteljau constructions for
parameter values µIµ1

, µIµ2
, . . . , µIµα and β de Casteljau constructions for parameter values νIν1

, νIν2
, . . . , νIνβ . Note, the

blossom of R(µ, ν) is symmetric w.r.t. the argument.
The proof of Theorem 1 is basically like the one given in detail in [18].

4. Quadratic, cubic and quartic subpatches

While Theorem 1 in its generality handles arbitrary polynomial degrees and therefore addresses all applications
mentioned in the Introduction, in some special cases the computational costs reduce drastically and the equations
simplify a lot; eventually even explicit formulas for control points can be derived. This is especially true for the case
N = 1 which describes a surface subpatch corresponding to a linearly parametrized triangular subdomain of the
domain of the TPB surface (Fig. 2).

4.1. Quadratic triangular subpatches

Quadratic triangular subpatches can be found in general only on bilinear TPB surfaces, i.e. l = m = 1, if N = 1.
Bilinear TPB surfaces define rectangular surfaces which linearly interpolate the boundary of a quadrilateral in space.
They describe segments of hyperbolic paraboloidal surfaces (also known as hypar surfaces).

For l = m = 1 and N = 1 we have Iµ
= Iµ

1 = (I µ
1 , Jµ

1 , K µ
1 ) with |Iµ

1 | = I µ
1 + Jµ

1 + K µ
1 = 1 and I µ

1 , Jµ
1 ,

K µ
1 ∈ {0, 1}, i.e. there are just three different index triples Iµ

1 : (1, 0, 0), (0, 1, 0) and (0, 0, 1), and similarly for Iν , and
therefore (7) reduces to

C2
|I|(1, I) =

(
1
Iµ1

) (
1
Iν1

)
(

2
I

) =
1(
2
I

) ,

with I = Iµ
+ Iν

= Iµ
1 + Iν

1, |I| = 2, and Eqs. (5) and (6) of Theorem 1 simplify to

S(u) =

∑
|I|=2

SI B2
I (u) (9)

and

SI =
1(
2
I

) ∑
Iµ+Iν=I

R11
00(µIµ1

, νIν1
). (10)
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Fig. 3. A quadratic triangular subpatch of a hyperbolic paraboloidal TPB surface.

In detail, Eq. (10) gives the Bézier points of a quadratic TB subpatch of a bilinear TPB surface (Fig. 3)

S200 = R11
00(µ100, ν100),

S020 = R11
00(µ010, ν010),

S002 = R11
00(µ001, ν001),

S110 =
1
2

[
R11

00(µ100, ν010) + R11
00(µ010, ν100)

]
,

S101 =
1
2

[
R11

00(µ100, ν001) + R11
00(µ001, ν100)

]
,

S011 =
1
2

[
R11

00(µ010, ν001) + R11
00(µ001, ν010)

]
.

(11)

4.2. Cubic triangular subpatches

Cubic triangular subpatches can be found in general only on TPB surfaces which are linear in one and quadratic
in the other parameter direction, describing segments of parabolic cylinders, if N = 1. W.l.o.g. we set l = 1, m = 2,
yielding

C3
|I|(1, I) =

(
1
Iµ1

) (
1
Iν1

) (
1
Iν2

)
(

3
I

) =
1(
3
I

) ,

and Eqs. (5) and (6) simplify to

S(u) =

∑
|I|=3

SI B3
I (u) (12)

with

SI =
1(
3
I

) ∑
Iµ+Iν=I

R12
00(µIµ1

, νIν1
, νIν2

). (13)
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Fig. 4. Six cubic triangular subpatches of a TPB surface forming a hexagon.

Thus, the Bézier points SI of the cubic TB subpatch are (Fig. 4 shows an application)

S300 = R12
00(µ100, ν100, ν100),

S030 = R12
00(µ010, ν010, ν010),

S003 = R12
00(µ001, ν001, ν001),

S210 =
1
3

[
R12

00(µ010, ν100, ν100) + 2R12
00(µ100, ν100, ν010)

]
,

S201 =
1
3

[
R12

00(µ001, ν100, ν100) + 2R12
00(µ100, ν100, ν001)

]
,

S120 =
1
3

[
R12

00(µ100, ν010, ν010) + 2R12
00(µ010, ν100, ν010)

]
,

S102 =
1
3

[
R12

00(µ100, ν001, ν001) + 2R12
00(µ001, ν100, ν001)

]
,

S021 =
1
3

[
R12

00(µ001, ν010, ν010) + 2R12
00(µ010, ν010, ν001)

]
,

S012 =
1
3

[
R12

00(µ010, ν001, ν001) + 2R12
00(µ001, ν010, ν001)

]
,

S111 =
1
3

[
R12

00(µ100, ν010, ν001) + R12
00(µ010, ν100, ν001) + R12

00(µ001, ν100, ν010)
]
.

(14)

4.3. Quartic triangular subpatches

There are three ways to form quartic triangular subpatches of TPB surfaces: First, if N = 1, describing subsegments
of elliptic paraboloids, i.e. as subsegments of biquadratic TPB surfaces (Section 4.3.1); second, if N = 1, describing
subsegments of cubic cylinders, i.e. as subsegments of TPB surfaces which are linear in one and cubic in the other
parameter direction (Section 4.3.2); and third, if N = 2, describing subsegments of hyperbolic paraboloids (hypar
surface, also called saddle surface), i.e. as subsegments of bilinear TPB surfaces (Section 4.3.3).

4.3.1. Quartic triangular subpatches of biquadratic TPB surfaces
For l = m = 2 and N = 1 combinatorial constants C l+m

|I| (N , I) simplify, similarly to Sections 4.1 and 4.2, and
Bézier points SI, (6),

SI =
1(
4
I

) ∑
Iµ+Iν=I

R22
00(µIµ1

, µIµ2
, νIν1

, νIν2
). (15)



1712 D. Lasser / Computers and Mathematics with Applications 55 (2008) 1706–1719

Fig. 5. Four quartic triangular subpatches of a biquadratic TPB surface forming a diamond-shaped subsegment.

of the quartic TB subpatch are calculated by (Fig. 5 shows an application)

S400 = R22
00(µ100, µ100, ν100, ν100),

S040 = R22
00(µ010, µ010, ν010, ν010),

S004 = R22
00(µ001, µ001, ν001, ν001),

S310 =
1
2

[
R22

00(µ100, µ100, ν100, ν010) + R22
00(µ100, µ010, ν100, ν100)

]
,

S301 =
1
2

[
R22

00(µ100, µ100, ν100, ν001) + R22
00(µ100, µ001, ν100, ν100)

]
,

S130 =
1
2

[
R22

00(µ100, µ010, ν010, ν010) + R22
00(µ010, µ010, ν100, ν010)

]
,

S103 =
1
2

[
R22

00(µ100, µ001, ν001, ν001) + R22
00(µ001, µ001, ν100, ν001)

]
,

S031 =
1
2

[
R22

00(µ010, µ010, ν010, ν001) + R22
00(µ010, µ001, ν010, ν010)

]
,

S013 =
1
2

[
R22

00(µ010, µ001, ν001, ν001) + R22
00(µ001, µ001, ν010, ν001)

]
,

S220 =
1
6

[
R22

00(µ100, µ100, ν010, ν010) + 4R22
00(µ100, µ010, ν100, ν010) + R22

00(µ010, µ010, ν100, ν100)
]
,

S202 =
1
6

[
R22

00(µ100, µ100, ν001, ν001) + 4R22
00(µ100, µ001, ν100, ν001) + R22

00(µ001, µ001, ν100, ν100)
]
,

S022 =
1
6

[
R22

00(µ010, µ010, ν001, ν001) + 4R22
00(µ010, µ001, ν010, ν001) + R22

00(µ001, µ001, ν010, ν010)
]
,

S211 =
1
6

[
R22

00(µ100, µ100, ν010, ν001) + 2R22
00(µ100, µ010, ν100, ν001)

+ R22
00(µ010, µ001, ν100, ν100) + 2 R22

00(µ100, µ001, ν100, ν010)
]
,

S121 =
1
6

[
R22

00(µ010, µ010, ν100, ν001) + 2R22
00(µ100, µ010, ν010, ν001)

+ R22
00(µ100, µ001, ν010, ν010) + 2 R22

00(µ010, µ001, ν100, ν010)
]
,

S112 =
1
6

[
R22

00(µ001, µ001, ν100, ν010) + 2R22
00(µ100, µ001, ν010, ν001)

+ R22
00(µ100, µ010, ν001, ν001) + 2 R22

00(µ010, µ001, ν100, ν001)
]
.

(16)



D. Lasser / Computers and Mathematics with Applications 55 (2008) 1706–1719 1713

4.3.2. Quartic triangular subpatches of TPB surfaces of degree (1, 3)
For l = 1, m = 3 and N = 1 Bézier points SI, (6),

SI =
1(
4
I

) ∑
Iµ+Iν=I

R13
00(µIµ1

, νIν1
, νIν2

, νIν3
). (17)

of the quartic TB subpatch are calculated by (Fig. 6 shows an example)

S400 = R13
00(µ100, ν100, ν100, ν100),

S040 = R13
00(µ010, ν010, ν010, ν010),

S004 = R13
00(µ001, ν001, ν001, ν001),

S310 =
1
4

[
3R13

00(µ100, ν100, ν100, ν010) + R13
00(µ010, ν100, ν100, ν100)

]
,

S301 =
1
4

[
3R13

00(µ100, ν100, ν100, ν001) + R13
00(µ001, ν100, ν100, ν100)

]
,

S130 =
1
4

[
3R13

00(µ010, ν100, ν010, ν010) + R13
00(µ100, ν010, ν010, ν010)

]
,

S103 =
1
4

[
3R13

00(µ001, ν100, ν001, ν001) + R13
00(µ100, ν001, ν001, ν001)

]
,

S031 =
1
4

[
3R13

00(µ010, ν010, ν010, ν001) + R13
00(µ001, ν010, ν010, ν010)

]
,

S013 =
1
4

[
3R13

00(µ001, ν010, ν001, ν001) + R13
00(µ010, ν001, ν001, ν001)

]
,

S220 =
1
2

[
R13

00(µ100, ν100, ν010, ν010) + R13
00(µ010, ν100, ν100, ν010)

]
,

S202 =
1
2

[
R13

00(µ100, ν100, ν001, ν001) + R13
00(µ001, ν100, ν100, ν001)

]
,

S022 =
1
2

[
R13

00(µ010, ν010, ν001, ν001) + R13
00(µ001, ν010, ν010, ν001)

]
,

S211 =
1
4

[
2R13

00(µ100, ν100, ν010, ν001) + R13
00(µ010, ν100, ν100, ν001) + R13

00(µ001, ν100, ν100, ν010)
]
,

S121 =
1
4

[
2R13

00(µ010, ν100, ν010, ν001) + R13
00(µ100, ν010, ν010, ν001) + R13

00(µ001, ν100, ν010, ν010)
]
,

S112 =
1
4

[
2R13

00(µ001, ν100, ν010, ν001) + R13
00(µ100, ν010, ν001, ν001) + R13

00(µ010, ν100, ν001, ν001)
]
.

(18)

4.3.3. Quartic triangular subpatches of bilinear TPB surfaces
For l = m = 1 and N = 2, we have Iµ

= Iµ
1 , |Iµ

1 | = I µ
1 + Jµ

1 + K µ
1 = 2 and I µ

1 , Jµ
1 , K µ

1 ∈ {0, 1, 2}, and similarly
for Iν . (7) becomes

C2
|I|(2, I) =

(
2
Iµ1

) (
2
Iν1

)
(

4
I

) ,

and Bézier points SI, (6),

SI =

∑
Iµ+Iν=I

(
2
Iµ1

) (
2
Iν1

)
(

4
I

) R11
00(µIµ1

, νIµ1
) (19)

of the quartic TB subpatch are calculated by (Fig. 7 illustrates an example)
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Fig. 6. Three quartic triangular subpatches of a TPB Surface of degree (1, 3).

S400 = R11
00(µ200, ν200),

S040 = R11
00(µ020, ν020),

S004 = R11
00(µ002, ν002),

S310 =
1
2

[
R11

00(µ200, ν110) + R11
00(µ110, ν200)

]
,

S301 =
1
2

[
R11

00(µ200, ν101) + R11
00(µ101, ν200)

]
,

S130 =
1
2

[
R11

00(µ020, ν110) + R11
00(µ110, ν020)

]
,

S103 =
1
2

[
R11

00(µ002, ν101) + R11
00(µ101, ν002)

]
,

S031 =
1
2

[
R11

00(µ020, ν011) + R11
00(µ011, ν020)

]
,

S013 =
1
2

[
R11

00(µ002, ν011) + R11
00(µ011, ν002)

]
,

S220 =
1
6

[
R11

00(µ200, ν020) + 4R11
00(µ110, ν110) + R11

00(µ020, ν200)
]
,

S202 =
1
6

[
R11

00(µ200, ν002) + 4R11
00(µ101, ν101) + R11

00(µ002, ν200)
]
,

S022 =
1
6

[
R11

00(µ020, ν002) + 4R11
00(µ011, ν011) + R11

00(µ002, ν020)
]
,

S211 =
1
6

[
R11

00(µ200, ν011) + 2R11
00(µ110, ν101) + R11

00(µ011, ν200) + 2R11
00(µ101, ν110)

]
,

S121 =
1
6

[
R11

00(µ020, ν101) + 2R11
00(µ110, ν011) + R11

00(µ101, ν020) + 2R11
00(µ011, ν110)

]
,

S112 =
1
6

[
R11

00(µ002, ν110) + 2R11
00(µ101, ν011) + R11

00(µ110, ν002) + 2R11
00(µ011, ν101)

]
.

(20)

4.4. Special problems

The above given formulas of Sections 4.1–4.3 for Bézier points SI are programmed and evaluated very easily,
though explicit expressions in terms of Bézier points Ri, j are of very high interest as well, because they both reduce
computational cost and improve numerical stability. They are provided for the bi- and the quadripartitions of a TPB
surface.
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Fig. 7. A quartic triangular subpatch of a hypar surface.

Fig. 8. Domain of T(u) (left) and half-subpatch T(u) incl. its defining Bézier points in the µ–ν-domain (right) of a TPB surface.

4.4.1. The bipartition
The bipartition, also known as bisection, divides a TPB surface along one of the diagonals into two triangular

segments. To specialize above given equations of Sections 4.1–4.3, we choose control points TI,J,K according to
Fig. 8.

Adapting Eq. (11) of Section 4.1, i.e. situation l = m = 1, N = 1, to the situation illustrated in Fig. 8, the Bézier
points SI of the quadratic TB subpatch of the bilinear TPB surface in terms of TPB points Ri, j are

S200 = R00,

S020 = R10,

S002 = R01,

S110 =
1
2

[R00 + R10] ,

S101 =
1
2

[R01 + R00] ,

S011 =
1
2

[R11 + R00] .

(21)

Similarly, Eq. (14) of Section 4.2, i.e. situation l = 1, m = 2, N = 1, results in the following list of Bézier points
SI of the cubic TB subpatch of the TPB surface in terms of TPB points Ri, j (Fig. 9).
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S300 = R00,

S030 = R10,

S003 = R02,

S210 =
1
3

[R10 + 2R00] ,

S201 =
1
3

[R00 + 2R01] ,

S120 =
1
3

[R00 + 2R10] ,

S102 =
1
3

[R02 + 2R01] ,

S021 =
1
3

[R00 + 2R11] ,

S012 =
1
3

[R12 + 2R01] ,

S111 =
1
3

[R00 + R01 + R11] .

(22)

Similarly, in case of the biquadratic TPB surface, Eqs. (15) and (16) of Section 4.3.1, the Bézier points SI of the
quartic TB subpatch are calculated in terms of Bézier points Ri, j of the TPB surface as follows

S400 = R00,

S040 = R20,

S004 = R02,

S310 =
1
2

[R00 + R10] ,

S301 =
1
2

[R01 + R00] ,

S130 =
1
2

[R10 + R20] ,

S103 =
1
2

[R02 + R01] ,

S031 =
1
2

[R21 + R10] ,

S013 =
1
2

[R12 + R01] ,

S220 =
1
6

[R00 + 4R10 + R20] ,

S202 =
1
6

[R02 + 4R01 + R00] ,

S022 =
1
6

[R22 + 4R11 + R00] ,

S211 =
1
6

[R01 + 2R11 + R10 + 2R00] ,

S121 =
1
6

[R21 + 2R11 + R00 + 2R10] ,

S112 =
1
6

[R00 + 2R01 + R12 + 2R11] .

(23)
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Fig. 9. A triangular cubic subpatch of a TPB surface.

Fig. 10. Domain of T(u) (left) and quarter-subpatch T(u), including its defining Bézier points in the µ–ν-domain (right) of a TPB surface.

Rotating the triangular half-subsegment of Fig. 8 (incl. all 3 TI,J,K ) around the center point (µ, ν) = ( 1
2 , 1

2 ) in
counterclockwise order provides the Bézier points of the other triangular Bézier subpatches.

4.4.2. The quadripartition

Cutting along both diagonals, the quadripartition divides a TPB surface into four triangular segments. To specialize
the above given equations of Sections 4.1–4.3, we choose control points TI,J,K according to Fig. 10.

TB control points listed in Fig. 10 imply, that Eq. (11) of Section 4.1 specifies such, that the Bézier points SI of the
quadratic TB subpatch of the bilinear TPB surface are calculated in terms of the TPB points Ri, j as follows (Fig. 11)

S200 = R00,

S020 = R10,

S002 =
1
4

[R00 + R01 + R10 + R11] ,

S110 =
1
2

[R00 + R10] ,

S101 =
1
4

[R01 + 2R00 + R10] ,

S011 =
1
4

[R00 + 2R10 + R11] .

(24)
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Fig. 11. Two triangular quadratic quarter-subpatches of a bilinear TPB surface.

Fig. 12. Four triangular cubic quarter-subpatches (right) of a TPB surface (left).

Similarly, Eq. (14) of Section 4.2 yields the following Bézier points SI of the cubic TB subpatch of the TPB surface
in terms of TPB points Ri, j (Fig. 12 illustrates a quadripartition)

S300 = R00,

S030 = R10,

S003 =
1
8

[R00 + R10 + 2R01 + 2R11 + R02 + R12] ,

S210 =
1
3

[2R00 + R10] ,

S201 =
1
6

[2R01 + 3R00 + R10] ,

S120 =
1
3

[2R10 + R00] ,

S102 =
1
12

[4R01 + 2R10 + 3R00 + 2R11 + R02] ,

S021 =
1
6

[3R10 + 2R11 + R00] ,

S012 =
1
12

[3R10 + 2R00 + 4R11 + 2R01 + R12] ,

S111 =
1
6

[2R00 + R01 + 2R10 + R11] .

(25)
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Rotating the triangular quarter-subsegment of Fig. 10 (incl. all 3 TI,J,K ) around the center point (µ, ν) = ( 1
2 , 1

2 )

in counterclockwise order provides the Bézier points of the other tringular Bézier subpatches.
Explicit formulas for the control points of the quadripartition for the situation of Section 4.3.1 are available and

can be provided upon request.

5. Final remarks

This paper deals with triangular Bézier subpatches of rectangular Bézier surfaces, both of arbitrary polynomial
degree. Calculations apply de Casteljau-like recursions forming convex linear combinations of control points. Thus,
the numerically stable constructions can also be looked at as a corner cutting algorithm. Some special examples
and problems such as quadratic, cubic, and quartic subpatches and the bi- and the quadripartitions are discussed and
illustrated, and formulas for Bézier points SI of TB surfaces are presented. Quintic triangular subpatches might appear
in just two different situations: first, for l = 1, m = 4 (or vice versa) and N = 1 and, second, for l = 2, m = 3 (or vice
versa) and N = 1. Sixth-degree triangular subpatches show up more often, in five different situations, also including
the case of bicubic (i.e. l = m = 3) TPB surfaces, [13]. The appearance of seventh-degree subpatches is more
restricted again, as is the case for all primes. Calculations and constructions can be carried over easily to multivariate
Bézier representations describing volumes and hypersurfaces, (see e.g. [1]), and, using homogeneous coordinates, to
rational representations as well.
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As highlighted by one of the referees, the bi- and the quadripartition of tensor product surfaces as described
above support potential applications in areas such as computer graphics, for illumination models, and multiresolution
schemes for instance. This is because current computer graphical cards mostly rely on the triangular structure as the
basic primitive.
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