CSC2/455 Software Analysis and
Improvement
Interprocedural Analyses - |l

Sreepathi Pai
Mar 16, 2021

URCS

Interprocedural Analyses
Region-based Analysis Framework
Interprocedural Points-to Analysis

Postscript

Interprocedural Analyses

Cloning-based Context-Sensitive Analysis

for(i = 0; i < mn; i++) {

cl: t1 = £1(0);
c2: t2 = £2(243);
c3k t3 = £3(243);
X[i] = t1 + t2 + t3;

}

int f1(int v) {
return (v+1);
}

int f2(int v) {
return (v+1);
}

int £3(int v) {
return (v+1);

}

e Create a clone for each unique calling context and then apply
context-insensitive analysis
e Is this the same as inlining?

e See textbook for a differentiating example

CFG after context-sensitive cloning

=v+l

£1: retval

=v+1

£2: retval

t3 = retval
td=tl+t2
t5=td+t3
X[i]=t5
i= i+l

The CFG on the left does not distinguish context, the one on the
right does

k-level Context-Sensitive Analysis

for(i = 0; i < mn; i++) {

&g tl = g(0);
28 t2 = g(243);
c3k t3 = g(243);
X[i] = t1 + t2 + t3;
}
int g(int v) {
if(v > 1)
return f(v);
else

return (v+1);

}
int f(int v) {

return (v+2);

}

To what depth shall we clone functions?

k-level Context-sensitive analysis

A function call may be distinguished by its context

e Calling functions or
e Call-sites (i.e. call stack)

If we do not distinguish contexts,

e context-insensitive
[) k g 0

Different values of k may yield different precision

No value of k may be sufficient

e recursive function calls
e indirect function calls

Some numbers

e If there are N functions in a program, how many calling
contexts are possible
e if no recursion is involved?
e if recursion is involved?

Handling Recursion in Contexts

e Consider nodes in a call
graph
e non-recursive functions

e self-recursive functions @

e mutually recursive
functions
e Look for strongly-connected
components
e trivial (non-recursive)
e non-trivial (the latter two)

Methods to “finitize” Recursion

(D

o Model them using regular expressions
o £(g h i)*]
e Eliminate all call information within SCC

o f g j

Have contexts, will analyze!

e Cloning-based analysis

e Clone functions, once per context
e Followed by context-insensitive analysis

e Summary-based analysis
e (Bottom-up phase) Compute summaries of each function for
an analysis (e.g. constant propagation) in terms of input
parameters
e (Top-down phase) Pass inputs to summaries, one per context
OR merge contexts using meet operator
e Based on Region-based analysis

Region-based Analysis Framework

Region-based Analysis Framework

Operates on regions of the control flow graph

A region is defined (informally) as a portion of code with a
single entry and single exit

e Basic blocks are regions

Recall we need to iterate (in iterative data flow analysis,
IDFA) because of loops

e Can we get rid of loops in some way?

A region is a subset NV of the nodes, and E of the edges of a
(control) flow graph such that:

e There is a header node h that dominates all nodes in N

o If there is a path from m to n that does not go through h,
then me N

e E is the set of edges that connect two nodes n; and ny in N

e edges into h from outside the region are not part of E

Additionally, if the flow graph is reducible, we can organize the
regions into a hierarchy

Reducible Graphs

The T1-T2 definition of reducible graphs:

e T1: Remove all self edges on a node

e T2: If a node n has a single predecessor m, combine them
into a single node x. Edges into m and out of n are connected
to x instead.

e Repeat until neither T1 nor T2 can be applied

A graph is a reducible if at the end of the above procedure the
entire graph is reduced to a single node.

Example: Repeated applications of T2

Example: Application of T1 and T2

BO

l B0+B1+B2+B3+B4

B1+B2+B3+B4)

Non-reducible (or Irreducible) graphs

e Structured code usually produces reducible graphs
e Can you construct an irreducible graph?

o Textbook details some ways of transforming irreducible graphs
into reducible graphs

Region Hierarchy

e The smallest regions form leaf regions

e Basic blocks are leaf regions

e Using a process similar to T1/T2 we combine regions into
bigger regions

e Until we obtain a single large region
The largest region (i.e. final node) has no loops, and if we could

construct an appropriate transfer function, we could analyze this
region just as we analyze a basic block.

Basic ideas

e If the region consists of a “linear” sequence of basic blocks
e Say B followed by B,, with transfer functions f; and f,
respectively
e We need to construct the composition f, o f;
e This can be extended to regions, i.e. if we have a linear
sequence of regions
e If you encounter alternate paths (akin to join nodes)
e Apply the meet operator on the transfer functions (not the
values!)
e i.e. (A Ar f)(x), which is defined as f;(x) A fa(x)
e Note the second A is the meet operator on data-flow values

Example: Composition for Reaching Definitions

e Recall that reaching
definitions has a gen, kill
form for its transfer
functions

o fo(x) = genp U (x — killp)
e Here:
o fi(x) = {d1,d2}U(x—0)
o f(x) ={d3}U(x—{d1})
e The composed function is:
o (hofi)(x) =
{d2,d3} U (x —{d1})
e Which is also in gen—kill
form

BO
dl:x=1
d2:y=2

gen={dl1, d2}
kill={}

l

Bl
d3: x=3

gen={d3}
kill={d1}

Working out the composed gen-kill form

e Here:
o fi(x)={dl,d2} U (x —0)
o fo(x) ={d3} U (x—{d1})
e Working it out:
o R(fi(x)) ={d3t U(({d1,d2} U (x —0)) — {d1})

e Symbolic form worked out in the textbook

For gen—kill form

e Composition for gen—kill form is then
e kill,: Union of all kill sets
e gen,: Union of all gen sets - kill,

o f(x) = geno U (x — killy)

Meet for Reaching Definitions

e Merging BO and B1, we

would get:
o foo(x) = {d1,d2}U(x—0) - —
o fgi1(x) = {d3}u(x—{d1}) gé;z; d3:x=3
e Recall that A for reaching _
={dl, 2 gen={d3}
definitions is U genkiil:{} } kill={d1}
° (fBO Af fBl)(X) = \ /
feo(x) U fg1(x) B2
dd:y=2
° (fBO Nf fBl)(X) = Y
_ ={d4}
{d1,d2,d3} U (x — 0))

e gen, = genpo U geng:
o killy = killgo N killgy = 0

f/\(X) = genp U (X — kl///\)

Working out the meet

fB()(X) = {d]_, d2} U (X - @)
fe1(x) = {d3} U (x — {d1})
(fBO Nf fBl)(X) = fBO(X) U fBl(X)
o ({d1,d2}U(x—0))U({d3}U(x—{d1})
o {dl,d2} U{d3}U(x —0)U(x —{d1})
e {d1,d2,d3} U (x — (8N {d1}))
Hints:
« X—-Y=XnYC®
e (ACUB®)=(ANnB)*

Loop regions for reaching definitions

e Loop region (L) is BH, B1,
and B2 atx=
a d2:y=2
e If L is not executed: g, 2
. f,_o(x) =X el
e If L is executed once? o
e BH - Bl - B2 —» BH
(ignore edge from BO to BI
BH) d3:x=3 I
° le(X) _ ﬁflT:((S?;
{d3,d4} U (x — {d1, d2}) l
B2
o If L is executed twice? dhy=2
o f2(x) = fi(fu(x)) s

® sz(X) =
{d3,d4} U (x — {d1,d2})

Loop regions for reaching definitions (2)

e Loop region (L) is BH, B1,

BO
and B2 @y
e We have: e
o 2(x)=x
o fl(x)= BH
{d3,d4} U (x — {d1, d2})
O sz(X) = fL(fL(X)) d3:Bxl=3
O an(X) = gen=(d3) ®
{d3,d4} U (x — {d1,d2}) k‘”I‘“”
e The gen set for a loop is W2
ry=
simply the gen set of its gene{dd)
kill={d2}

body, and likewise for its kill
set

Dealing with loop regions

o If the region consists of a loop,

o f*=

Compose the transfer functions for the body, obtaining fyody,
Compute the effect of one iteration (or one cycle), f
Compute the closure of f, denoted *

f* is the transfer function of the loop region

/\nZO £
f™is f applied to itself n times

O is loop does not execute, so identity

e Informally:

Compute the transfer function of not going into the loop
(essentially, identity), meet it with

Compute the transfer function of executing the loop once, and
meet it with

the transfer function of executing the loop twice, and meet it
with

Loop regions for Reaching Definitions

fr=fONFLAF
f*=xU (genU (x — kill)) U (gen U (x — kill))...

o f*=xU(genU (x — kill))
o f*=xUgenU x
o f*=genU(x—0)
For a loop region, in reaching definitions, the transfer function

(i.e., the closure) only generates definitions, but doesn't kill any
definition

Why we need reducible graphs

e In reducible graphs:

e loops are properly nested or are disjoint

e Repeat composition, meet and closure until you obtain the
transfer function for the whole region

The Region-based Analysis Framework

e Compute regions of the flow graph

e Compute, in a bottom-up fashion (from innermost region to
outermost), the transfer functions for each region

e Compute, in a top-down fashion (from outermost to
innermost), the results of the analysis

e Algorithm 9.53 in the Dragon Book
e Work out Example 9.54 in the Dragon book

e Example 12.8 in the textbook uses summary-based analysis for
interprocedural constant propagation

Interprocedural Points-to Analysis

Recall

Recall how we compute and update pointsTo sets from last class...

Flavours

e Flow-sensitive/Flow-insensitive
o Context-insensitive

e Context-sensitive

e Cloning-based
e Summary-based

What the textbook describes

e Flow-insensitive
e Context-sensitive

e With non-trivial SCCs treated as a single node

e Cloning-based

Additionally, the Dragon book formulates the points-to analysis as
a (datalog) logical formula to be solved.

Dynamic Call Graph Construction

class t {
t n() { return new r(); } /* call site g */
}

class s extends t {
t n() { return new s(); } /* call site h */

class r extends s {
t n() { return new r(); } /* call site i */

main() {
t a =mnew t(); /* call site j */
a = a.n();

}

What is a potential call graph for a.n() from the points-to

relationships?

Postscript

References

e Chapter 12 of the Dragon Book
e Region-based analysis is from Chapter 9, Section 9.7
e Paper recommended:

e Reps et al. " Precise interprocedural dataflow analysis via
graph reachability”

	Interprocedural Analyses
	Region-based Analysis Framework
	Interprocedural Points-to Analysis
	Postscript

