
CSC2/455 Software Analysis and

Improvement

Interprocedural Analyses - II

Sreepathi Pai

Mar 16, 2021

URCS



Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript



Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript



Cloning-based Context-Sensitive Analysis

for(i = 0; i < n; i++) {
c1: t1 = f1(0);
c2: t2 = f2(243);
c3: t3 = f3(243);

X[i] = t1 + t2 + t3;
}

int f1(int v) {
return (v+1);

}

int f2(int v) {
return (v+1);

}

int f3(int v) {
return (v+1);

}

� Create a clone for each unique calling context and then apply

context-insensitive analysis

� Is this the same as inlining?

� See textbook for a differentiating example



CFG after context-sensitive cloning

i = 0

if i<n goto L

c1: v = 0 ...

f = retval = v + 1

t1 = retval
c2: v = 243

t2 = retval
c3: v = 243

t3 = retval
t4=t1+t2
t5=t4+t3
X[i]=t5
i = i+1

i = 0

if i<n goto L

c1: v = 0 ...

f1: retval = v + 1

t1 = retval
c2: v = 243

f2: retval = v + 1

t2 = retval
c3: v = 243

f3: retval = v + 1

t3 = retval
t4=t1+t2
t5=t4+t3
X[i]=t5
i = i+1

The CFG on the left does not distinguish context, the one on the

right does



k-level Context-Sensitive Analysis

for(i = 0; i < n; i++) {
c1: t1 = g(0);
c2: t2 = g(243);
c3: t3 = g(243);

X[i] = t1 + t2 + t3;
}

int g(int v) {
if(v > 1)

return f(v);
else

return (v+1);
}

int f(int v) {
return (v+2);

}

To what depth shall we clone functions?



k-level Context-sensitive analysis

� A function call may be distinguished by its context

� Calling functions or

� Call-sites (i.e. call stack)

� If we do not distinguish contexts,

� context-insensitive

� k = 0

� Different values of k may yield different precision

� No value of k may be sufficient

� recursive function calls

� indirect function calls



Some numbers

� If there are N functions in a program, how many calling
contexts are possible

� if no recursion is involved?

� if recursion is involved?



Handling Recursion in Contexts

� Consider nodes in a call
graph

� non-recursive functions

� self-recursive functions

� mutually recursive

functions

� Look for strongly-connected
components

� trivial (non-recursive)

� non-trivial (the latter two)

f g h

i



Methods to “finitize” Recursion

f g

h

j

i

� Model them using regular expressions

� f(g h i)*j

� Eliminate all call information within SCC

� f g j



Have contexts, will analyze!

� Cloning-based analysis

� Clone functions, once per context

� Followed by context-insensitive analysis

� Summary-based analysis

� (Bottom-up phase) Compute summaries of each function for

an analysis (e.g. constant propagation) in terms of input

parameters

� (Top-down phase) Pass inputs to summaries, one per context

OR merge contexts using meet operator

� Based on Region-based analysis



Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript



Region-based Analysis Framework

� Operates on regions of the control flow graph

� A region is defined (informally) as a portion of code with a
single entry and single exit

� Basic blocks are regions

� Recall we need to iterate (in iterative data flow analysis,

IDFA) because of loops

� Can we get rid of loops in some way?



Region

A region is a subset N of the nodes, and E of the edges of a

(control) flow graph such that:

� There is a header node h that dominates all nodes in N

� If there is a path from m to n that does not go through h,

then m ∈ N

� E is the set of edges that connect two nodes n1 and n2 in N

� edges into h from outside the region are not part of E

Additionally, if the flow graph is reducible, we can organize the

regions into a hierarchy



Reducible Graphs

The T1–T2 definition of reducible graphs:

� T1: Remove all self edges on a node

� T2: If a node n has a single predecessor m, combine them

into a single node x . Edges into m and out of n are connected

to x instead.

� Repeat until neither T1 nor T2 can be applied

A graph is a reducible if at the end of the above procedure the

entire graph is reduced to a single node.



Example: Repeated applications of T2

B0

B1

B2 B3

B4

B0

B1+B2

B3

B4

B0

B1+B2+B3

B4

B0

B1+B2+B3+B4



Example: Application of T1 and T2

B0

B1+B2+B3+B4

B0+B1+B2+B3+B4



Non-reducible (or Irreducible) graphs

� Structured code usually produces reducible graphs

� Can you construct an irreducible graph?

� Textbook details some ways of transforming irreducible graphs

into reducible graphs



Region Hierarchy

� The smallest regions form leaf regions

� Basic blocks are leaf regions

� Using a process similar to T1/T2 we combine regions into

bigger regions

� Until we obtain a single large region

The largest region (i.e. final node) has no loops, and if we could

construct an appropriate transfer function, we could analyze this

region just as we analyze a basic block.



Basic ideas

� If the region consists of a “linear” sequence of basic blocks

� Say B1 followed by B2, with transfer functions f1 and f2
respectively

� We need to construct the composition f2 ◦ f1
� This can be extended to regions, i.e. if we have a linear

sequence of regions

� If you encounter alternate paths (akin to join nodes)

� Apply the meet operator on the transfer functions (not the

values!)

� i.e. (f1 ∧f f2)(x), which is defined as f1(x) ∧ f2(x)

� Note the second ∧ is the meet operator on data-flow values



Example: Composition for Reaching Definitions

� Recall that reaching
definitions has a gen, kill
form for its transfer
functions

� fb(x) = genb ∪ (x − killb)

� Here:

� f1(x) = {d1, d2}∪ (x −∅)
� f2(x) = {d3}∪ (x −{d1})

� The composed function is:

� (f2 ◦ f1)(x) =

{d2, d3} ∪ (x − {d1})
� Which is also in gen–kill

form

B0
d1: x = 1
d2: y = 2

gen={d1, d2}
kill={}

B1
d3: x = 3

gen={d3}
kill={d1}



Working out the composed gen-kill form

� Here:

� f1(x) = {d1, d2} ∪ (x − ∅)
� f2(x) = {d3} ∪ (x − {d1})

� Working it out:

� f2(f1(x)) = {d3} ∪ (({d1, d2} ∪ (x − ∅))− {d1})

� Symbolic form worked out in the textbook



For gen–kill form

� Composition for gen–kill form is then

� kill◦: Union of all kill sets

� gen◦: Union of all gen sets - kill◦

� f◦(x) = gen◦ ∪ (x − kill◦)



Meet for Reaching Definitions

� Merging B0 and B1, we
would get:

� fB0(x) = {d1, d2}∪(x−∅)
� fB1(x) = {d3}∪(x−{d1})

� Recall that ∧ for reaching

definitions is ∪
� (fB0 ∧f fB1)(x) =

fB0(x) ∪ fB1(x)

� (fB0 ∧f fB1)(x) =
{d1, d2, d3} ∪ (x − ∅)

� gen∧ = genB0 ∪ genB1

� kill∧ = killB0 ∩ killB1 = ∅

� f∧(x) = gen∧ ∪ (x − kill∧)

B0
d1: x = 1
d2: y = 2

gen={d1, d2}
kill={}

B2
d4: y = 2

gen={d4}
kill={d2}

B1
d3: x = 3

gen={d3}
kill={d1}



Working out the meet

� fB0(x) = {d1, d2} ∪ (x − ∅)
� fB1(x) = {d3} ∪ (x − {d1})
� (fB0 ∧f fB1)(x) = fB0(x) ∪ fB1(x)

� ({d1, d2} ∪ (x − ∅)) ∪ ({d3} ∪ (x − {d1})
� {d1, d2} ∪ {d3} ∪ (x − ∅) ∪ (x − {d1})
� {d1, d2, d3} ∪ (x − (∅ ∩ {d1}))

� Hints:

� X − Y = X ∩ Y C

� (AC ∪ BC ) = (A ∩ B)C



Loop regions for reaching definitions

� Loop region (L) is BH, B1,

and B2

� If L is not executed:

� f 0L (x) = x

� If L is executed once?

� BH → B1 → B2 → BH

(ignore edge from B0 to

BH)

� f 1L (x) =

{d3, d4} ∪ (x − {d1, d2})
� If L is executed twice?

� f 2L (x) = fL(fL(x))

� f 2L (x) =

{d3, d4} ∪ (x − {d1, d2})

B0
d1: x = 1
d2: y = 2

gen={d1, d2}
kill={}

BH

B1
d3: x = 3

gen={d3}
kill={d1}

B3

B2
d4: y = 2

gen={d4}
kill={d2}



Loop regions for reaching definitions (2)

� Loop region (L) is BH, B1,

and B2

� We have:

� f 0L (x) = x

� f 1L (x) =

{d3, d4} ∪ (x − {d1, d2})
� f 2L (x) = fL(fL(x))

� f nL (x) =

{d3, d4} ∪ (x − {d1, d2})

� The gen set for a loop is

simply the gen set of its

body, and likewise for its kill

set

B0
d1: x = 1
d2: y = 2

gen={d1, d2}
kill={}

BH

B1
d3: x = 3

gen={d3}
kill={d1}

B3

B2
d4: y = 2

gen={d4}
kill={d2}



Dealing with loop regions

� If the region consists of a loop,

� Compose the transfer functions for the body, obtaining fbody
� Compute the effect of one iteration (or one cycle), f

� Compute the closure of f , denoted f ∗

� f ∗ is the transfer function of the loop region

� f ∗ =
∧

n≥0 f
n

� f n is f applied to itself n times

� f 0 is loop does not execute, so identity

� Informally:

� Compute the transfer function of not going into the loop

(essentially, identity), meet it with

� Compute the transfer function of executing the loop once, and

meet it with

� the transfer function of executing the loop twice, and meet it

with

� ...



Loop regions for Reaching Definitions

� f ∗ = f 0 ∧ f 1 ∧ f 2...

� f ∗ = x ∪ (gen ∪ (x − kill)) ∪ (gen ∪ (x − kill))...

� f ∗ = x ∪ (gen ∪ (x − kill))

� f ∗ = x ∪ gen ∪ x

� f ∗ = gen ∪ (x − ∅)

For a loop region, in reaching definitions, the transfer function

(i.e., the closure) only generates definitions, but doesn’t kill any

definition



Why we need reducible graphs

� In reducible graphs:

� loops are properly nested or are disjoint

� Repeat composition, meet and closure until you obtain the

transfer function for the whole region



The Region-based Analysis Framework

� Compute regions of the flow graph

� Compute, in a bottom-up fashion (from innermost region to

outermost), the transfer functions for each region

� Compute, in a top-down fashion (from outermost to

innermost), the results of the analysis

� Algorithm 9.53 in the Dragon Book

� Work out Example 9.54 in the Dragon book

� Example 12.8 in the textbook uses summary-based analysis for

interprocedural constant propagation



Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript



Recall

Recall how we compute and update pointsTo sets from last class...



Flavours

� Flow-sensitive/Flow-insensitive

� Context-insensitive

� Context-sensitive

� Cloning-based

� Summary-based



What the textbook describes

� Flow-insensitive

� Context-sensitive

� With non-trivial SCCs treated as a single node

� Cloning-based

Additionally, the Dragon book formulates the points-to analysis as

a (datalog) logical formula to be solved.



Dynamic Call Graph Construction

class t {
t n() { return new r(); } /* call site g */

}

class s extends t {
t n() { return new s(); } /* call site h */

}

class r extends s {
t n() { return new r(); } /* call site i */

}

main() {
t a = new t(); /* call site j */
a = a.n();

}

What is a potential call graph for a.n() from the points-to

relationships?



Outline

Interprocedural Analyses

Region-based Analysis Framework

Interprocedural Points-to Analysis

Postscript



References

� Chapter 12 of the Dragon Book

� Region-based analysis is from Chapter 9, Section 9.7

� Paper recommended:

� Reps et al. ”Precise interprocedural dataflow analysis via

graph reachability”


	Interprocedural Analyses
	Region-based Analysis Framework
	Interprocedural Points-to Analysis
	Postscript

