AWS

NOV. 28 - DEC. 2, 2022 | LAS VEGAS, NV l

e [Nvent

AP1308

Are you integrating or building
distributed applications?

Gregor Hohpe (any)

Director, Enterprise Strategy
AWS

aW% © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Subtitle(s)

Two decades of integration: why everything changed and
still much remains the same

| Reflections on integration, distributed systems, coupling,
events, abstractions, cloud, serverless, and automation

Aka “The Blue Box Talk”

aWS, © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Gregor Hohpe - Enterprise Strategist

OREILLY by -~ oy : =

Mo Sioditbsorn Ho 3bogy Yegnatte . Foriz

ENTERPRISE 3,
INTEGRATION ™
PATTERNS

STRATEGY

proach t«

GREGOR Honpe 9%
Bossy WooLr
W TR

Forcuwnds by Johw Crupi and Martin Fowler

As an AWS Enterprise Strategist, Gregor helps
enterprise leaders rethink their IT strategy to

get the most out of their cloud journey.

Prior to joining AWS, Gregor served as Smart @ghohpe
Nation Fellow to the Singapore government, as .
technical director at Google Cloud, and as Chief ArchitectElevator.com

Architect at Allianz SE. : : '
rchitect at Allianz www.linkedin.com/in/ghohpe/

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

Of boxes and lines

aws © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
U

Two system designs

aws © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\-—-;’

““Great architects are like
great chefs: it's not just about
selecting ingredients; |t's how
you put them together.”

Gregor
The Software Architect Elevator

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Drawing a line

aws © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
U

Connecting two systems. How hard can it be?

Data or control flow? Pub-sub or point-to-point?

Polling?

Interaction model? Sync/async?

Data format? Distributed?

Conversation state? Systems or instances?

Error handling? ldempotency?
Partial failures? Retries? Back-off?

aws © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved
N7

Architects see more dimensions

“Our event-driven architecture decouples teams so that
they can add new components without side effects. Your typical

% And it needs to scale, so we made it asynchronous.” dev team
ﬂMessaging an interaction style

- Asynchrony temporal interaction contract

- Publish-subscribe message distribution, composition Your

- Events specific message semantics architect

- Event-driven the role of events in the application
kDistributed a deployment choice /

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Separate your architecture from your product
choice

Most products combine several aspects

- Message-oriented X X X X
- Asynchronous X X X X
- Publish-subscribe X X
- Events X X
- Event-driven 5 é
- Distributed 2 X X X

Note: for discussion purposes only. Not a product feature matrix.

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
)

Connections and coupling

aws,1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

“How do you make two
systems loosely coupled?
Don't connect them”

David Orchard
BEA

aW% © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Coupling - Integration’s magic word

Coupling is a measure of independent variability
between connected systems

Decoupling has a cost, both at design and runtime

Coupling is multi-dimensional and not binary

dws
-]

Buzzword slaying

What is it (in plain terms)?
- What benefit does it bring?
- When is it most valuable?

A measure of dependency

Limits change and error radius

Frequent change but limited control
- How is it achieved?

Asynchrony, common data formats, ...
- What has to be in place?

Tooling, messaging infrastructure
- What downsides does it have?

Overhead, complexity, tool dependence

Limit change radius . - ,
‘ (design time) - Higher agility and velocity

Loose coupling P Cost and complexity
‘ Limit error radius

(runtime) # Reliable, tolerant operations

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

-

The many facets of coupling

- Technology dependency:
 Location dependency:

- Data format dependency:
 Data type dependency:

- Semantic dependency:

« Temporal dependency:

* Interaction style dependency:

 Conversation dependency:

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved
)

Java vs. C++

IP addresses, DNS

Binary, XML, JSON, ProtoBuf, Avro
int16, int32, string, UTF-8, null, empty
Name, Middlename, ZIP

Sync, async

messaging, RPC, query style (GraphQL)

pagination, caching, retries

Balancing coupling

« Strength Distance Volatility
« Content « Methods * Semantic
« Common » Classes e Functional
 External « Components Development
. ... * Services

« Operational

- Systems * Accidental

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

“The appropriate level of
(design-time) coupling
depends on the level of control
you have over the endpoints.”

Me, after two decades of struggling with it

aW% © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Integration vs.
distributed systems

aWS, © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Integration? Distributed system?

Architecture trade-offs very much depend on the context:
organization, timeline, and level of control

dws
-]

Spanning teams, time, and control

Spanning teams, time, and control

“Integration differs from buildin
distributed systems by llfecycle
team, and level of control.”

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Messages and events:
Time for some semantics

aWS, © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Constructing messages

“Package the information into
a Message, a data record that the
messaging system can transmit
through a Message Channel."

sender Message Receiver

JAN

www.eaipatterns.com

* Martin Fowler: Beware of events used as a passive-aggressive commands: “When the
source system expects the recipient to carry out an action, [it] ought to
use a command message.”
https://martinfowler.com/articles/201701-event-driven.html

dws

N7

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Message channel semantics

PaymentProcessor
ProcessPayment
Purchase
OrderPlaced
H Event

aws © 2022, Amazon Web Services, Inc. or its affiliates. All rights r
p

Matching producer and consumer

Channel instance :

4 ;<<create>>
(explicit composition) m

Channel name

FooChan
“FooChan” “FooChan”

Order
Topic hierarchy - EU

“Order.EU.New" Update New “Qrder.EU.*"

Content
(existence, value)

-—> region | EU
Vv

Mregionll: [HEUM' IINAII]

dws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

Event based, event driven, or event sourced?

Address
- Inverse dependencies

changed
- L Fetch
- Change as first class concern
Event-carried state transfer - New .
- Less chatty - -
- Resilience but inconsistency Al

Event sourcing Change

- Ability to change the past log
- Analog to version control, ledger

Event Notification

Application
state

CQRS - Cmd/query segregation

- Two models for updates vs reads
- Encapsulate complex validations

aW% © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. https://ma rtl nfowle r.co m/a rticles/ZO‘l 701 -eve nt_d riven.html

Message coordination:
Orchestration,
choreography,
brokerage

aWS, © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Event routing

Validate
Filter
Transform

Route ’

)

Sub
Event cloud Event broker
* Fully decentralized, “purist” Centralized element, “pragmatic”
« All responsibilities in endpoints e Structures event cloud
» Coupling may be hidden in endpoints Absorbs schema differences
« Historically considered more scalable » Scalability generally no longer an issue

aws © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

Orchestration vs. event processing

Event correlation
Pattern detection

Control
central state

“Event cloud”
Passive

responders

Eventing

Orchestration (Complex Event Processing)

aws © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

What could possibly go wrong?

aWS, © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Event-based systems are dynamic in nature

/A Important

In EventBridge, it is possible to create rules that lead to infinite loops, where a rule is fired repeatedly.
For example, a rule might detect that ACLs have changed on an S3 bucket, and trigger software to
change them to the desired state. If the rule is not written carefully, the subsequent change to the
ACLs fires the rule again, creating an infinite loop.

To prevent this, write the rules so that the triggered actions do not re-fire the same rule. For
example, your rule could fire only if ACLs are found to be in a bad state, instead of after any change.

An infinite loop can quickly cause higher than expected charges. We recommend that you use

budgeting, which alerts you when charges exceed your specified limit. For more information, see
Managing Your Costs with Budgets.

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html

aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

“A distributed system is one in w
the failure of a computer you did
even know existed can render you
own computer unusable.” 7

Leslie Lamport

Microsoft Research

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Don’t control but observe

. ﬂ'

%N
Y 2

Software Architect

- 97ThingA Every |

Should Know

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N1

Loose coupling

Independent
variability

Evolving system
structure

Outdated docs,
systemic errors

Fault: 40%

Throttle: 0%

Error: 0%

OK: 60%

AWS X-Ray - distributed tracing

Shifting control to the runtime — Control bus

- Building a system model

- At connect (open/sub) time

- Based on message flow

- Static validation

- Missing subscriptions

- Loops

- Dynamic validation

- Infinite retries
C B B B Visualization

Validation

https://www.enterpriseintegrationpatterns.com
/ramblings/48_validation.html

- Poison messages

- Surging queues

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

Abstractions vs illusions

aws,1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

RPC - Remote procedure call

1. Single proces: .
> 2 pagd \)6\0(\
Local 0o W in
call (0 figuage and data types

e
63(\9 lo partial failure

Fallacies of distributed computing:

The network is reliable
Latency is zero

Bandwidth is infinite

The network is secure
Topology doesn't change
There is one administrator
Transport cost is zero

The network is homogeneous

o9 =hom P s B =

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

Failure (and physics) don’t respect abstractions

Abstraction:

Removing or generalizing details or attributes to
focus attention on details of greater importance

Illusion:

Removing or generalizing important details, which
cause the user to be misled

Outside-in

Law of leaky abstractions (Joel Spolsky):

All non-trivial abstractions, to some degree, are
leaky

https://architectelevator.com/architecture/failure-doesnt-respect-abstraction
https://architectelevator.com/cloud/abstractions-difficult
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

L

Enterprise Integration Patterns (2003)

Message Construction

Message

I : g h',“} ‘ Lmant . Message Routing Transformation
w -~
N TE RP RI S E ST ent Mes i -Fillers Aggregator Message Translator
2N _}\y‘ v s X d R .

g Uencer E e

G \"‘é _ Content-Ba Raouter ; sed Msg. Processor Content En

I N I E G R.A I I ()N Rl Halic ¢ / ge Filter - 3 Content Filt
ge Sequence Jynamic Filter Routing Slip Claim Check

sage Expiration - i Process Manager Mormalizer
= Message Broker Cano | Data Model

PATTERNS

.~ Endpoint

fessag ch I Router Translator ~
' " A1ENNE v = ¥ "
Application I PR LS Application
A

B

GREGOR HOHPE
Bossy WooLi

Messaging Endpoints

Wrin Comrmssuteiet ¥ Message Endpoint Competing Consumers Message Channel ; Control Bus

Kyie Browx Point-to-Point Channel Detour

& Lo Publish-Subcr. Channet

MAxTN Fowm s)

History

SEAN Niviies *

MicHAn). Rernc Idempotant Receiver i Message Store

JONATHAN Sivon Event-Driven Consumer Service Aclivalor M Smart Proxy

’ Guarantesd M ing Message
Channel Adap Channel Purger
Messaging Bridge

Forcwonds by Johw Crupi and Martin Fowler Message Bus

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Abstractions, cloud style

aws,1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

The integration patterns loan broker
(2003-2022)

/ 7 *
ENTERPRISE 3 £% Bank 1
INTEGRATION ™% Customer Loan Broker
PATTERNS
— Bank 2
GREGOR l'-l()m*l: I
o = Bank 3
- Credit Bureau
aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N1

A cloud-native, serverless implementation

LoanData

Business domain
constructs

« Bank
 Loan broker
 LoanQuote

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve

N1

Integration/event
patterns

Message filter
Content filter
Aggregator
Publish-subscribe

Aggregator

AWS CloudFormation
resources

Lambda function

Amazon SQS/Amazon SNS
queues & topics

AWS Step Functions tasks

Amazon EventBridge rules

Serverless composition with AWS CDK

1/4 Config

const bankRecipientPawnshop = this.createBank(
'BankRecipientPawnshop', {

IMAXZEOANTAMOUNT 500000 SN MINECREDTTESCORESII00M]] mortgageQuotesBus) ;

Composition

nonEmptyQuotesOnly = MessageFilter.fieldExists(this, 'nonEmptyQuotes’, f‘bankId’);
payloadonly = ContentFilter.payloadFilter(this, 'PayloadContentFilter’);

new MessageContentFilter(this, 'FilterMortgageQuotes’,
{ sourceEventBus: mortgageQuotesEventBus, targetQueue: mortgageQuotesQueue,
messageFilter: nonEmptyQuotesOnly, contentFilter: payloadOnly });

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N7

Serverless composition with AWS CDK

new ChoreographyBuilder(this)
. fromQueue (mortgageQuotesQueue)
.scatterGather ([bankPawnshop, bankuniversal, bankPremium])
.messageFilterIfFieldeExists("bankId")
.contentFilter("$.detail.responsePayload")

.aggregate({

condition: Aggregatorcondition.MIN_COUNT,
threshold: 2,
aggregation: AggregatorStrategy.APPEND,

)

.toQueue (loanQuoteQueue) ;

aw% © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“* CDK automation and abstracti
allows you to code your applica
topology using design patterns a
vocabulary.”

aW% © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Time for a recap - Two decades on one slide

- Lines are at least as interesting as the boxes.
- Don't let the products choices define your architecture. You're the chef!

- Coupling has many facets. The right level of design-time coupling depends on
the level of control you have.

- Integration vs. distributed systems isn't a technical distinction but about
lifecycle, org structures, and level of control.

- Events are messages. They invert dependencies from producer to consumer.
- Not all “Event Architectures” are created the same.

- The runtime - don't control but observe.

- Build abstractions, not illusions!

- Code your cloud abstractions — with AWS CDK and patterns.

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
)

Want more?

% ArchitectElevator.com

o — * Multi-cloud: From Buzzword to Decision Model
:" . @ « Concerned about Serverless Lock-in? Consider
iy N Patterns!

 Good abstractions are obvious but difficult to
find, even in the cloud.

I =] 3
:-'IF_':_'I_
Of !

EnterpriselntegrationPatterns.com

Architect Elevator - Loan Broker on AWS Serverless
Blog * Integration patterns with CDK

in linkedin.com/in/ghohpe/

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
)

O'REILLY

eﬁéﬁning the Architect’s Role

in the Digital Enterprise

CLOU ATEGY
A Decision-Based Approach to
Successful Cloud Migration

Thank

Gregor Hohpe
® @ghohpe

ArchitectElevator.com
linkedin.com/in/ghohpe/

survey in the mobile app

[waeres] Please complete the session
'8

