
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Are you integrating or building
distributed applications?

A P I 3 0 8

Gregor Hohpe (any)

Director, Enterprise Strategy

AWS

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Subtitle(s)

Two decades of integration: why everything changed and
still much remains the same

Reflections on integration, distributed systems, coupling,
events, abstractions, cloud, serverless, and automation

Aka “The Blue Box Talk”

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Gregor Hohpe – Enterprise Strategist

As an AWS Enterprise Strategist, Gregor helps

enterprise leaders rethink their IT strategy to

get the most out of their cloud journey.

Prior to joining AWS, Gregor served as Smart

Nation Fellow to the Singapore government, as

technical director at Google Cloud, and as Chief

Architect at Allianz SE.

@ghohpe

ArchitectElevator.com

www.linkedin.com/in/ghohpe/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Of boxes and lines

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Two system designs

A

B

C

D

A B

C D

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Great architects are like
great chefs: it’s not just about
selecting ingredients; it’s how
you put them together.

Gregor

The Software Architect Elevator

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Drawing a line

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Connecting two systems. How hard can it be?

A B

Sync/async?Interaction model?

Data format?

Pub-sub or point-to-point?

Conversation state?

Error handling?

Distributed?

Partial failures? Retries?

Idempotency?

Back-off?

Data or control flow?

Polling?

Systems or instances?

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architects see more dimensions

- Messaging

- Asynchrony

- Publish-subscribe

- Events

- Event-driven

- Distributed

“Our event-driven architecture decouples teams so that

they can add new components without side effects.

And it needs to scale, so we made it asynchronous.”

an interaction style

temporal interaction contract

message distribution, composition

specific message semantics

the role of events in the application

a deployment choice

Your typical

dev team

Your

architect

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Separate your architecture from your product
choice

- Message-oriented

- Asynchronous

- Publish-subscribe

- Events

- Event-driven

- Distributed

Most products combine several aspects

X X X X

X X X X

X X

X X

? ?

X X X X

Note: for discussion purposes only. Not a product feature matrix.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Connections and coupling

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How do you make two
systems loosely coupled?
Don't connect them.

David Orchard

BEA

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Coupling – Integration’s magic word

Coupling is a measure of independent variability
between connected systems

Decoupling has a cost, both at design and runtime

Coupling is multi-dimensional and not binary

A B

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Buzzword slaying

- What is it (in plain terms)?

- What benefit does it bring?

- When is it most valuable?

- How is it achieved?

- What has to be in place?

- What downsides does it have?

- A measure of dependency

- Limits change and error radius

- Frequent change but limited control

- Asynchrony, common data formats, …

- Tooling, messaging infrastructure

- Overhead, complexity, tool dependence

Loose coupling

Higher agility and velocity

Reliable, tolerant operations

Limit change radius

(design time)

Limit error radius

(runtime)

Cost and complexity

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The many facets of coupling

• Technology dependency: Java vs. C++

• Location dependency: IP addresses, DNS

• Data format dependency: Binary, XML, JSON, ProtoBuf, Avro

• Data type dependency: int16, int32, string, UTF-8, null, empty

• Semantic dependency: Name, Middlename, ZIP

• Temporal dependency: sync, async

• Interaction style dependency: messaging, RPC, query style (GraphQL)

• Conversation dependency: pagination, caching, retries

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Strength

• Content

• Common

• External

• …

• Volatility

• Semantic

• Functional

• Development

• Operational

• Accidental

• Distance

• Methods

• Classes

• Components

• Services

• Systems

Balancing coupling

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The appropriate level of
(design-time) coupling
depends on the level of control
you have over the endpoints.

Me, after two decades of struggling with it

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration vs.
distributed systems

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration? Distributed system?

A B

Architecture trade-offs very much depend on the context:
organization, timeline, and level of control

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Spanning teams, time, and control

Approach
Level of

control

Delivery

lifecycle
Team

Migration Low One time One off

Data synchronization/

traditional integration
Low Long Dedicated

Enterprise service bus Some

Slower than

component

development

Likely dedicated

Distributed cloud

applications
High

Same as component

development
Embedded

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Spanning teams, time, and control

Approach
Level of

control

Delivery

lifecycle
Team

Tool

(indicative)

Migration Low One time One off Amazon AppFlow

Data synchronization/

traditional integration
Low Long Dedicated Amazon AppFlow

Enterprise service bus Some

Slower than

component

development

Likely dedicated Amazon MQ

Distributed cloud

applications
High

Same as component

development
Embedded

Amazon EventBridge,

AWS Lambda

Destinations

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration differs from building
distributed systems by lifecycle,
team, and level of control.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Messages and events:
Time for some semantics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Constructing messages

Message

“Package the information into

a Message, a data record that the

messaging system can transmit

through a Message Channel.”

www.eaipatterns.com

Command Document Event

* Martin Fowler: Beware of events used as a passive-aggressive commands: “When the

source system expects the recipient to carry out an action, [it] ought to

use a command message.”

https://martinfowler.com/articles/201701-event-driven.html

(*)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Message channel semantics

Payment

processor
Order entry

PaymentProcessor

Payment

processor
Order entry

ProcessPayment

Payment

processor
Order entry

Purchase

Payment

processor
Order entry

OrderPlaced

System

Command

Entity

Event

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Matching producer and consumer

Channel instance

(explicit composition) A B

Composer refref
<<create>>

Content

(existence, value) A B

“region": [“EU“, “NA"]

region EU

Channel name

“FooChan” “FooChan”

A B
FooChan

Topic hierarchy A B

Order

EU

NewUpdate “Order.EU.*”“Order.EU.New”

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event based, event driven, or event sourced?

Event Notification

Event-carried state transfer

Event sourcing

https://martinfowler.com/articles/201701-event-driven.html

CQRS – Cmd/query segregation

Customer

mgmt

Policy

quoting

Address

changed

- Inverse dependencies

- Change as first class concern

Customer

mgmt

Policy

quoting

New

Address

Fetch

- Less chatty

- Resilience but inconsistency

Address
Application

state
Change

log

Address

change

Recreate

- Ability to change the past

- Analog to version control, ledger

- Two models for updates vs reads

- Encapsulate complex validations
UI

Command

Query

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Message coordination:
Orchestration,
choreography,
brokerage

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A

B

C

Event routing

Event Broker

Event cloud Event broker

A

B

C

Validate

Filter

Transform

Route

• Fully decentralized, “purist”

• All responsibilities in endpoints

• Coupling may be hidden in endpoints

• Historically considered more scalable

• Centralized element, “pragmatic”

• Structures event cloud

• Absorbs schema differences

• Scalability generally no longer an issue

Pub

Sub

Sub

Thanks to a Pipes-and-Filters architecture a producer doesn’t know if

it’s talking to a broker or a directly to consumer

E

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Orchestration vs. event processing

Orchestration
Eventing

(Complex Event Processing)

Event

EventEvent

EventEvent

“Event cloud”

Event correlation

Pattern detection

Event

Control

central state

Passive

responders

Command

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What could possibly go wrong?

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event-based systems are dynamic in nature

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A distributed system is one in which

the failure of a computer you didn't

even know existed can render your

own computer unusable.

Leslie Lamport

Microsoft Research

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Don’t control but observe

Loose coupling

Independent

variability

Evolving system

structure

Outdated docs,

systemic errors

AWS X-Ray – distributed tracing

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shifting control to the runtime – Control bus

- Building a system model

- At connect (open/sub) time

- Based on message flow

- Static validation

- Missing subscriptions

- Loops

- Dynamic validation

- Infinite retries

- Poison messages

- Surging queues

https://www.enterpriseintegrationpatterns.com

/ramblings/48_validation.html

Control bus

App App

Library Library

Automation

Messages

Validation

System

model

Visualization

!

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Abstractions vs illusions

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RPC – Remote procedure call

Local

call

Remote

call

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn't change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

1. Single process

2. Negligible latency

3. Call-stack built-in

4. Same language and data types

5. No partial failure

Fallacies of distributed computing:

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Failure (and physics) don’t respect abstractions

https://architectelevator.com/architecture/failure-doesnt-respect-abstraction

https://architectelevator.com/cloud/abstractions-difficult

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

Abstraction

Implementation

General

concepts

Bottom-up

Top-down

Actual usage

and needs

Outside-in

Abstraction:

Removing or generalizing details or attributes to

focus attention on details of greater importance

Illusion:

Removing or generalizing important details, which

cause the user to be misled

Law of leaky abstractions (Joel Spolsky):

All non-trivial abstractions, to some degree, are

leaky

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Enterprise Integration Patterns (2003)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Abstractions, cloud style

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The integration patterns loan broker
(2003–2022)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A cloud-native, serverless implementation

Pub-Sub Channel Msg Channel

AggregatorMsg Filter

Bank Scatter-Gather

Bank

Business domain

constructs

Integration/event

patterns
AWS CloudFormation

resources

• Bank

• Loan broker

• LoanQuote

• Message filter

• Content filter

• Aggregator

• Publish-subscribe

• Lambda function

• Amazon SQS/Amazon SNS

queues & topics

• AWS Step Functions tasks

• Amazon EventBridge rules

LoanData Quote

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Config

Composition

Serverless composition with AWS CDK

const bankRecipientPawnshop = this.createBank(

'BankRecipientPawnshop', { BANK_ID: 'PawnShop', BASE_RATE: '5',

MAX_LOAN_AMOUNT: '500000', MIN_CREDIT_SCORE: '400‘ }, mortgageQuotesBus);

nonEmptyQuotesOnly = MessageFilter.fieldExists(this, 'nonEmptyQuotes’, ‘bankId’);
payloadOnly = ContentFilter.payloadFilter(this, 'PayloadContentFilter’);

new MessageContentFilter(this, 'FilterMortgageQuotes’,
{ sourceEventBus: mortgageQuotesEventBus, targetQueue: mortgageQuotesQueue,

messageFilter: nonEmptyQuotesOnly, contentFilter: payloadOnly });

Business domain

constructs

Integration/

event patterns

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless composition with AWS CDK

new ChoreographyBuilder(this)

.fromQueue(mortgageQuotesQueue)

.scatterGather([bankPawnshop, bankUniversal, bankPremium])

.messageFilterIfFieldExists("bankId")

.contentFilter("$.detail.responsePayload")

.aggregate({

condition: AggregatorCondition.MIN_COUNT,
threshold: 2,
aggregation: AggregatorStrategy.APPEND,

})

.toQueue(loanQuoteQueue);

Describe composition and intent instead of provisioning resources

Code the lines, not just the boxes

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CDK automation and abstraction
allows you to code your application
topology using design patterns as
vocabulary.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Time for a recap – Two decades on one slide

- Lines are at least as interesting as the boxes.

- Don’t let the products choices define your architecture. You’re the chef!

- Coupling has many facets. The right level of design-time coupling depends on
the level of control you have.

- Integration vs. distributed systems isn’t a technical distinction but about
lifecycle, org structures, and level of control.

- Events are messages. They invert dependencies from producer to consumer.

- Not all “Event Architectures” are created the same.

- The runtime – don’t control but observe.

- Build abstractions, not illusions!

- Code your cloud abstractions – with AWS CDK and patterns.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Want more?

ArchitectElevator.com

• Multi-cloud: From Buzzword to Decision Model

• Concerned about Serverless Lock-in? Consider

Patterns!

• Good abstractions are obvious but difficult to

find, even in the cloud.

EnterpriseIntegrationPatterns.com

• Loan Broker on AWS Serverless

• Integration patterns with CDK

Architect Elevator

Blog

linkedin.com/in/ghohpe/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

Please complete the session
survey in the mobile app

Gregor Hohpe

@ghohpe

ArchitectElevator.com

linkedin.com/in/ghohpe/

