
Integrated Task and Message Scheduling
in Time-Triggered Aeronautic Systems

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)
durch die Fakultät Wirtschaftswissenschaften der

Universität Duisburg-Essen
(Campus Essen)

vorgelegt von
Dipl. Wirt.-Inf. Sebastian Voss

aus Geldern
München 2010

Tag der mündlichen Prüfung: 21.07.2010
Erstgutachter: Prof. Dr. Klaus Echtle
Zweitgutachter: Prof. Dr. Bruno Müller-Clostermann

Kurzfassung

Diese Arbeit präsentiert Techniken zur Generierung von integrierten Task- und Message Konfig-
urationen für zeitgesteuerte IMA Architekturen. Den präsentierten Ansätzen liegt das Problem
der Erzeugung von integrierten Task und Message Schedules für zeitgesteuerte Netzwerke zu-
grunde. Die entwickelten Ansätze generieren dabei automatisch integrierte Task und Message
Schedules, die speziellen Systemanforderungen genügen.

Unser erster Ansatz löst das Task und Message Scheduling Problem mittels Transformierung
in ein Graphen - Problem. Ein Algorithmus wird entwickelt, der den Abhängigkeitsgraphen
durchläuft und dabei sowohl das Task Scheduling auf Systemebene, als auch das Message Sched-
uling auf Kommunikationsebene einbezieht. Der präsentierte Ansatz arbeitet iterativ und enthält
Überprüfungs- und Pfad-Erweiterungs-Funktionalität, die die zeitliche Konsistenz des entwick-
elten Schedules garantieren. Einer der Vorteile dieses Ansatzes ist die Skalierbarkeit, die es
ermöglicht, auch größere aeronautische Architekturen zu untersuchen und entsprechende Kon-
figurationen bereitzustellen.

Ein zweiter Ansatz beschreibt und löst erstmals das gegebene Problem mit Hilfe von Model -
Checking Techniken. Diese Arbeit zeigt, dass aktuelle Model - Checking und Bounded Model
- Checking Techniken genutzt werden können, um integrierte Task und Message Schedules zu
berechnen, die speziellen Systemeigenschaften genügen. Wir präsentieren einen Ansatz, der
das Prinzip der Zustandsraumexploration zur Scheduling Synthese nutzt. Dazu entwickeln wir
eine symbolische Kodierung, die es nicht nur ermöglicht gültige Konfigurationen zu finden,
sondern auch solche, die optimal sind bezüglich der Minimierung der Ende-zu-Ende Latenz.
Zusätzlich präsentieren wir einen heuristischen Ansatz, der es erlaubt, die Skalierbarkeit deut-
lich zu verbessern, indem er das Problem der erschöpfenden Suche einschränkt. Die entwickelte
Heuristik führt dabei eine gesteuerte, gewichtsbasierte Erkundung des Zustandsraumes durch.

Die entwickelten Ansätze sind in einem Framework zur Scheduling Synthese implementiert.
Dieses Framework erlaubt die Generierung von geeigneten System Konfigurationen als auch
Komplexitätsuntersuchung für verschiedene Systemarchitektur - Szenarien. Dazu wird ein
Ansatz zur Evaluierung von Komplexitätsuntersuchungen entwickelt.

III

IV

Abstract

This thesis presents generation techniques for task and message configurations in time-triggered
IMA architectures. The commonality among the given techniques is the problem of integrated
task and message scheduling for time-triggered networks. The proposed approaches allow the
automatic generation of task and message schedules, which comprises certain system require-
ments.

Our first approach solves the task and message scheduling problem by regarding it as a graph
problem. We present an off-line scheduling algorithm that traverses the precedence graph. The
approach integrates task scheduling at system level and message scheduling at communication
level by iteratively traversing the given precedence graph. The algorithm incorporates backtrack-
ing and path extension functionality, guaranteeing the consistency of the developed schedule.
The main advantage of the algorithm is that it scales up well even for large avionics applications.

Furthermore, this thesis extends ongoing research into task and message scheduling based on
time-triggered networks by first using model checking techniques for solving this kind of prob-
lem. We demonstrate that state-of-the-art model checking and bounded model checking tech-
niques can be used to compute a schedule that fulfills certain system requirements. Therefore,
we introduce an approach that adopts the principle of symbolic state space exploration to sched-
ule synthesis and provides a symbolic encoding which makes it possible to guarantee an optimal
solution with respect to minimizing the system’s end-to-end latency. A developed heuristic ap-
proach extends this approach in order to increase scalability by preventing from an exhaustive
search through a guided, weight-based state-space exploration.

The developed approaches are implemented in a framework for scheduling synthesis. This frame-
work enables the generation and investigate certain system configurations in terms of complexity.
This is done by using a complexity evaluation approach, which is developed is this thesis.

V

VI

Acknowledgments

First of all, I am especially grateful to Prof. Klaus Echtle for offering me the opportunity to
prepare a PhD thesis under his supervision. I am very thankful for his continuous technical and
personal support in all phases of this thesis. He always offered time to discuss my ideas and
supported me with constant and motivating encouragement. I am also grateful to Prof. Bruno
Müller-Clostermann for his constructive support and his attendance to write the second expertise.

I particularly like to thank my mentor Dr. Maria Sorea for supporting me with endless patience
and guidance. It has been a pleasure to discuss with her and gave me the chance to learn a lot.
This thesis would not have been possible without her.

Many thanks to my teamleader at EADS Innovation Works, Josef Schalk, who offered me the
chance to prepare this thesis in the industrial context.

I wish to express sincere appreciation to my friends, who contributed by talks, visits, their friend-
ship and many other non-research ways, making my life more beautiful.

Very special thanks go to my family for all their support and love. My parents Wilhelm and
Katharina, for the wonderful education and all the opportunities they offered me. They have
contributed more than a lot to make this thesis possible. Many thanks to my sister Simone for
her visits, talks and enjoyable times not only in Munich. It helped me going on.

Finally, my deepest thanks to my wonderful girlfriend Nicole, for her constant and beloved
support over all the recent years. Even with larger distance she supported me by trusting in me
and gave me confidence during this work. Thank you for your patience and your love. Without
her, this thesis would not have been possible.

Danke!

VII

VIII

Contents

Contents IX

1 Introduction 1
1.1 Avionics Systems . 1
1.2 Motivation . 2
1.3 Objectives and Contributions of this Thesis . 3
1.4 Structure of this Thesis . 7

2 Concepts and Terms 9
2.1 Time-Triggered Architecture . 9
2.2 Basic Notations for Scheduling in Distributed Systems 10
2.3 Problem Formulation . 13
2.4 Model Checking . 14

3 Scheduling Algorithms for (Hard) Real-Time Systems 17
3.1 Classification of Scheduling Algorithm . 17

3.1.1 Static vs. Dynamic Scheduling . 18
3.1.2 Online vs. Offline Scheduling . 18
3.1.3 Preemptive vs. Non-Preemptive Scheduling 19

3.2 Scheduling for Uni- and Multiprocessor Systems 19
3.2.1 Scheduling for Uni-Processor Systems 19
3.2.2 Scheduling for Multi-Processor Systems 20

3.3 Scheduling for Distributed Systems . 21
3.4 Related Research . 22

3.4.1 Holistic Schedulability Analysis . 22
3.4.2 Combined Task and Message Scheduling using Branch-and-Bound . . . 23
3.4.3 Combined Task Message Scheduling using Satisfiability Checking 23
3.4.4 Scheduling Multi-Mode Real-Time Distributed Components 24
3.4.5 An Improved Scheduling Technique for Time-Triggered Embedded Sys-

tems . 25
3.4.6 Optimal Task Graph Scheduling with Binary Decision Diagrams 26

4 Algorithm for Integrated Task and Message Scheduling 27

IX

X CONTENTS

4.1 Functional description of new scheduling algorithm 27
4.1.1 Calculation of longest path . 28
4.1.2 Initial starting point . 28
4.1.3 Precedence Graph Traversal . 29
4.1.4 Backtracking and path extension . 33

4.2 Discussion . 35
4.2.1 Cases of guaranteed optimality . 35
4.2.2 Deviation from expected optimum in worst case scenario 36

5 Symbolic Task and Message Scheduling 37
5.1 Basic idea of using model checking for solving scheduling problems 37
5.2 Requirements to Symbolic Task and Message Scheduling 38
5.3 The Task and Message Scheduling Model . 41

5.3.1 State Representation . 41
5.3.2 Initial State . 43
5.3.3 Goal State . 43
5.3.4 Transitions . 43

5.3.4.1 Start Task Transition . 44
5.3.4.2 Run Task Transition . 45
5.3.4.3 Change Task Transition . 45
5.3.4.4 End Task Transition . 46
5.3.4.5 Start Message Transition . 47
5.3.4.6 End Message Transition . 47
5.3.4.7 Wait Message Transition . 48

5.4 SAL Representation . 48
5.4.1 Representation of a state . 49
5.4.2 The basic module . 51
5.4.3 Initialization . 51
5.4.4 Transitions . 52

5.5 Transition Ordering . 57
5.6 The ’Time’ variable . 58
5.7 Solving (Hard) Real-Time Scheduling Problems using SAL 59

5.7.1 Task and Message Scheduling using SAL-SMC 60
5.7.2 Task and Message Scheduling using SAL-INF-BMC 61
5.7.3 Counterexample and Schedule . 62

5.8 Binary Search Algorithm for finding the optimal solution 64

6 Weighted Symbolic Scheduling 67
6.1 Goal . 68
6.2 An approach for state space reductions . 69
6.3 Results and Discussion . 73

7 Framework for Scheduling Synthesis 75

CONTENTS XI

7.1 Graph Generation . 75
7.1.1 Single Graph Generation . 76
7.1.2 Multiple Graph Generation . 77
7.1.3 General Parameter for Graph Generation 80
7.1.4 Precedence Graph Editor . 81

7.2 Code Generation . 82
7.3 Result Generation . 82

8 Analysis and Results 85
8.1 Complexity evaluation for scheduling configurations 85
8.2 Design of experiments . 87
8.3 Results . 88

8.3.1 General Results of Task and Message Scheduling 89
8.3.2 Relation of Task and Nodes . 90
8.3.3 Variation in Precedence Graph Layouts 93
8.3.4 Effects of dynamic reordering . 97
8.3.5 Effects of an additional transition . 98
8.3.6 Weighted Symbolic Task and Message Scheduling 99

8.4 Discussion of Results . 102

9 Conclusion and Future Work 105
9.1 Accomplishments . 105
9.2 Perspectives . 106

List of Figures 109

List of Tables 111

A SAL Code Example 113

B Abbreviations 119

Bibliography 121

XII CONTENTS

Chapter 1

Introduction

1.1 Avionics Systems

There is an ongoing revolution in designing avionics systems. Current avionics systems are pre-
dominately federated. Federated avionics architectures make use of distributed avionics func-
tions that are deployed in self-contained units. Separate Line Replaceable Units (LRUs) or Line
Replaceable Modules (LRMs) contain independent collections of dedicated computing resources
(computing processor, communication and I/O) for each avionics function. These federated ar-
chitectures lead to increasing quantities of hardware and wiring. A further increase results from
the ever-rising number of software controlled systems manifested by new functionality for per-
formance (e.g. flight management systems), improved safety (e.g. traffic collision avoidance),
improved maintenance (e.g. aircraft condition monitoring) or improved passenger comfort (e.g.
cabin environment control). Furthermore, during an aircraft life cycle, costs of modifications
including parts obsolescence mitigation and functional upgrades become more significant. Al-
though federated systems provide a robust avionics architecture, they have high realization and
maintenance costs and therefore modern design favors a more integrated approach, in terms of
modularity and system integration.

The ongoing trend from federated to integrated modular avionics systems leads to avionics with
Integrated Modular Avionics (IMA) architectures. The IMA concept is one of the major trends in
building current state-of-the-art avionics systems. New developments such as the Airbus A380
or Boeing 787 already favor a migration of federated and integrated architecture.

IMA architectures are based upon a set of modular systems that share a set of computing, com-
munication and I/O resources in order to reduce weight, volume/size, and power of hardware for
more fuel-efficiency. These advances in IMA promise to increase the performance and reliability
of avionics systems while simplifying the development and certification of flight software and
avionics hardware. But these advantages come at a price: the IMA approach allows multiple ap-
plications of different criticality levels to share common computing resources, it is important to

2 CHAPTER 1. INTRODUCTION

keep individual applications away from potential interference. Protection of integrated applica-
tions and system resources is possible via temporal and spatial partitioning. Spatial partitioning
guarantees that an application has exclusive control over its own data and state information. With
spatial partitioning, an application can be protected from any erroneous behaviors of other ap-
plications while sharing the same physical resources. Temporal partitioning guarantees that an
application has temporal exclusive access to its pre-allocated computing, communication and I/O
resources. As a shared resource for communication, IMA replaces some of the point-to-point ca-
bling with shared communication buses (e.g. high-speed multiplexed networks). At the point of
writing this thesis, integration level reached in air transport commercial avionics is characterized
by a common open system bus ARINC664 [ARI05], with interfaces to different systems includ-
ing flight control, engine control and passenger entertainment. But also different (fault-tolerant)
shared bus systems have a promising role in IMA architectures.

In recent years, time-triggered (TT) architectures [KB01] have gained momentum for platform-
based applications. Time-triggered system architecture, such as Flexray [Con05], Time Trig-
gered Protocol (TTP) [AG03] or SAFEbus [ARI93, HD93], are widely used in embedded sys-
tems for safety-critical applications [Pau02]. The FlexRay communication standard [Con05]
for instance, has gained industry-wide acceptance as the next-generation automotive networking
standard [PH08, SJ08].

As time-triggered systems provide predictable communication behavior in a timely deterministic
way, it leverages their potential use for the mentioned class of IMA systems as well. For en-
forcing temporal partitioning, the time-triggered shared resources have to be scheduled, while
guaranteeing timing constraints of the application. With guaranteed pre-scheduled temporal par-
titioning, applications can meet their timing requirements.

The question whether given applications meet safety-critical system requirements always de-
pends on the proper design and configuration of these systems. The challenge is to find such a
configuration.

1.2 Motivation

Safety-critical system design incorporates several fundamental functional and non-functional re-
quirements: availability, integrity, predictability and reliability. These requirements should be
reflected in the system design and configuration. The IMA architecture, including spatial and
temporal partitioning, provides a concept for safety-critical system design. But this IMA con-
cept needs to be supported by a system configuration appropriate to the timing requirements of
the actual application. In order to obtain such a configuration, efficient techniques are needed.

In IMA, several applications may be integrated and communicate on a shared resource with each
other or with distributed applications. Applications consist of a number of communication tasks
with precedence constraints, i.e. constraints specifying their execution ordering. These tasks
communicate via message passing over the shared communication resource, which can be im-

1.3. OBJECTIVES AND CONTRIBUTIONS OF THIS THESIS 3

plemented as a time-triggered network. Communication in time-triggered networks is realized
by a time-division multiple-access (TDMA) discipline with a fixed slotting scheme and defined
communication cycles. A further characteristic is that the application is synchronous with the
underlaying communication bus. For such a system composed of a number of communicating
applications on a distributed network connected by a time-triggered bus, effective configuration is
needed to guarantee functional and non-functional avionics system requirements [PRS08]. This
configuration leads to a scheduling policy that determines the temporal behavior of a system
configuration. Therefore, a scheduling policy has to take into account not only the constraints
imposed by the applications (e.g. precedence relations of the application tasks) but also the char-
acteristics and efficient usage of the underlying communication system [PEP99, TV99]. Message
slot allocation cannot be accurately computed before a task schedule is computed (from which,
for example, we may want to know the time to send these messages). If the task scheduling
problem and the message scheduling problem are regarded independently, further timing incon-
sistencies can arise. A task, for instance, never receives the actual correct value, because the
message slot containing that information is allocated after the starting time of the task. These
inconsistencies become worse as the number of tasks in a given application increases, with the
resulting increase in the complexity of the precedence graph. Thus, the problems of task sched-
uling and message scheduling should be regarded in an integrated way. As embedded systems
become larger and more complex, this task becomes more and more difficult, especially for the
system designer. As complexity rises rapidly this cannot be performed manually any more.

From an academic point of view, several solutions for task and message scheduling for time-
triggered networks are known: constrained-based approaches, e.g. [MFHS05, JLL04], the usage
of branch-and-bound techniques [AS99] as well as the application of different techniques for
solving the task and message scheduling problem, e.g. [TC94, PEP99]. However, these ap-
proaches are not applicable for calculating a scheduling policy for IMA systems, because they
mostly consider different optimization parameters. Furthermore, commercial scheduling tools
are provided by a range of different suppliers (e.g. DECOMSYS, TTTech, Vector). Most of
these tools do not take into account any efficient techniques for combining the task and mes-
sage scheduling problem. Furthermore, the optimization of different parameters (e.g. maximum
latency), is not supported either.

In order to guarantee timing requirements in a given IMA architecture, integrated and efficient
techniques for system configuration are needed. These techniques need to incorporate pre-
scheduled application behavior as well as a time schedule of the underlaying communication
system to meet (hard) real-time requirements of the application. It is the main objective of this
thesis to develop and implement such methods.

1.3 Objectives and Contributions of this Thesis

We address in this thesis the generation of task and message configurations in time-triggered
IMA architectures. We propose several approaches that allow the automatic generation of task

4 CHAPTER 1. INTRODUCTION

and message configurations that are optimal with respect to given system requirements, such as
end-to-end latency.

Scheduling Algorithm for Integrated Task and Message Scheduling

Our first approach regards the task and message scheduling problem as a graph problem. An off-
line scheduling algorithm is developed for traversing this graph, which augments conventional
scheduling rules with algorithms addressing the specific problems of scheduling messages on
time-triggered communication busses. The algorithm allows to automatically compute schedules
even for large aeronautic applications. Our approach integrates task scheduling at system level
with message scheduling at the communication level.

At system level the task scheduling problem is represented by a directed acyclic weighted graph.
This graph incorporates the task precedence relations given by the application and is therefore
called a precedence graph. Tasks are represented by vertices, and the precedence relations be-
tween them are represented by edges. Thus, the precedence graph induces a partial order on the
task set. At the communication level a set of messages needs to be allocated to a certain com-
munication slot. Therefore, each edge of the precedence graph is labeled with a given weight.
This weight defines the number of messages to be transferred from the sending task to the re-
ceiving task. In this context, the addressing sending and receiving task correlates according to
the direction of the connected edge. The weight of the vertices is given by the task duration.

The algorithm starts by using a weighted precedence graph as an input. In a first step the al-
gorithm calculates the longest path through the given graph with respect to the task length of
vertices and the amount of messages of the edges. Here, a depth-first-search algorithm is used,
slightly adapted to deal with vertices and edge weights. Starting from the sink vertex of the
longest path, the algorithm incrementally traverses backwards along the calculated longest path
until the source vertex is reached. The sink vertex (task) is allocated to the end of the given
communication cycle, while its starting time is calculated by subtracting its computation time.
In each step of this graph traversal, whenever a new task on the longest path is reached, the algo-
rithm searches for both successor and predecessor tasks according to the task ordering. Messages
are allocated to the next available time slot on the communication bus, with minimal intertask
communication. This slot is known by the application due to the synchronization of the applica-
tion and the time-triggered communication bus(es).

The main challenge of the task and message scheduling problem is to handle complex appli-
cations that have a highly concurrent precedence graph. The reason, for instance, is that two
different tasks are trying to allocate the same computing resource. In this case a distinction is
made which causes one task to wait until the favored task is processed. When optimizing for
minimal end-to-end latency this might lead to suboptimal solutions. This problem is solved by
the mentioned incremental successor and predecessor calculation in each step.

The main advantage of the algorithm is that it scales up well for large applications. The price
to pay is that the algorithm does not always find an optimal solution. However, the algorithm

1.3. OBJECTIVES AND CONTRIBUTIONS OF THIS THESIS 5

delivers its result very fast. Even precedence graphs with 100 or 1000 different (concurrent) task
sets can be handled in minutes. The presented algorithm is therefore highly scalable and thus
applicable for large avionics systems.

Symbolic Task and Message Scheduling

This thesis extends ongoing research in task and message scheduling based on time-triggered
shared resources by first using Model Checking techniques for solving this kind of problems.
This thesis proves that state-of-the-art model checking and bounded model checking techniques
can be used to compute a schedule that fulfills certain system requirements.

We adopt the principle of symbolic state space exploration to scheduling synthesis and propose
Symbolic Task and Message Scheduling as a novel approach to the problem of task and mes-
sage scheduling for TDMA-based avionics applications. This approach allows to automatically
compute schedules with minimal end-to-end latency. Here, the framework of Model Checking
is used to carry out the verification performed on finite-state space. We use SAL (Symbolic
Analysis Laboratory, http://sal.csl.sri.com) [dMOR+04] from SRI International as
a framework for specification and scheduling synthesis. In particular, we use state-of-the-art
model checking and bounded model checking techniques to compute the schedules. Experimen-
tal results demonstrate how the latest generation of model-checking tools meets the challenges of
providing both a convenient modeling language and the performance to solve given scheduling
problems.

Our approach relies on a symbolic encoding which makes it possible to guarantee an optimal so-
lution of the given scheduling problem. The symbolic encoding is done by transferring and defin-
ing the task and message scheduling problem as a finite-state model-checking problemM |= ϕ.
Therefore, we define a basic model, containing all state variables (e.g. for tasks, messages, nodes,
etc.). The initial state is specified as a situation in which no task is started. The goal states are
those states where all task have finished and all messages have been sent.

The proposed approach works by gradually constructing a schedule, beginning in a state where
no task has started and no messages have been sent on the bus yet, and proceeding one step at a
time assigning starting times to tasks and slot positions to messages. This construction process is
mapped onto a set of transitions, specified as guarded commands. Six transition relations are used
to model the problem of integrated task and message scheduling. Four different transitions are
needed to define task level transitions, while two more transitions are used for the message level.
These transitions are encoded as a conjunction of constraints over the current state variables. The
reason we use a set of transition relations instead of a single one can be seen in the complexity
of the integrated task and message scheduling problem and its consequently large and complex
number of constraints for a single transition. Although the transitions are in arbitrary order, they
cannot be executed non-deterministically since arbitrary execution would lead to an inaccurate
schedule. The ordering of transitions has to take into account aspects such as task precedence,
the duration of a certain task and its amount of messages sent. Therefore, the encoding explicitly

http://sal.csl.sri.com

6 CHAPTER 1. INTRODUCTION

defines and restricts how a task and message schedule for time-triggered networks can be built.
The given precedence graph is traversed from source to sink. Whenever the precedence graph
allows for different possible solutions, characterized by concurrent access to a shared resource
(either different messages trying to allocate the next available time slot on the communication
bus or several tasks waiting for access to the shared computing resource), we use the model
checker’s capabilities to explore all interleaved possibilities. The model checker analyzes the
specified task and message scheduling model with respect to a given property, stating that there
is no possible schedule fulfilling the given system requirement. By failing the property we obtain
a counterexample containing a task and message schedule. This schedule might not be optimal
with respect to end-to-end latency because the transition system is allowed to make timeless
transitions. To obtain an optimal task and message schedule we further use a binary search for
finding that solution. Thus, schedule generation that is automatically optimal is guaranteed by
construction.

The major challenge is the scalability of the given approach. Increasing the number of tasks in
a precedence graph would increase the state-space and thus the computation time exponentially.
Thus, schedules can be computed until an upper bound of tasks in a precedence graph (depending
on the model checker used and computer resources). In order to reduce the state-space and
enlarge the given number of tasks in a precedence graph, we have developed a heuristic approach
that reduces the state space significantly and thus the computation time for finding an optimal
solution.

Using model checking techniques for solving scheduling synthesis for avionics has further ad-
vantages. Aeronautic requirements for communication systems are mainly driven by certification
and non-functional needs, as manifested in recent efforts to improve system verification and de-
sign assurance. Achieving Level B or even Level A with respect to DO-178B [RTCfA] is one of
the biggest cost drivers for aeronautical issues. Thus, methods, technologies and algorithms are
needed to support the system designer on the one hand and implicitly provide assured awareness
for supporting the process of system validation and verification on the other hand. The reduc-
tion of system verification time and design assurance time is highly cost-effective and can be
supported by using efficient techniques such as model checking.

Framework for Scheduling Synthesis

We have developed a framework for integrating both methods for scheduling synthesis. This
framework is composed of different elements. A graph generator is included which is able to
generate precedence graphs, including all necessary parameters (e.g. number of nodes, tasks,
precedence relations, etc.). This can be done explicitly (e.g. according to a given aeronautic
application) or randomly. In the latter case, numerous generated graphs can be randomly gener-
ated and used for the experimental series. Experimental series lead to statements about average
computation time, as well as the influence of parameter variations. Furthermore, the framework
consists of an interface to import certain communication-dependent parameters (e.g. FIBEX -
file including a FlexRay configuration).

1.4. STRUCTURE OF THIS THESIS 7

The framework includes the integrated task and message scheduling algorithm, as well as a
code generator for the symbolic approach. The precedence graphs are automatically translated
into SAL specifications according to the symbolic encoding scheme presented in chapter 5. The
framework has an interface to the SAL framework for executing the task and message scheduling
problem. The calculated results are transferred back. Experiment series, composed of different
precedence graphs containing certain property settings, can be computed and compared as well.
For visualization, textual as well as gnuplot-based graphical elements are available.

The presented framework can be used for solving the task and message scheduling problem with
the approaches presented in this thesis.

1.4 Structure of this Thesis

This thesis is structured as follows. Chapter 2 presents background information and basic no-
tions. Therefore, we review the basic concepts of Time-Triggered Architectures (TTA) and in-
troduce the basic notations in the domain of scheduling in distributed systems. Furthermore, the
problem statement of this thesis is introduced and we briefly highlight the principles of model
checking. We give an overview on the SAL framework from SRI International used in this thesis.
Chapter 3 introduces algorithms used for (hard) real-time systems in the domain of scheduling.
We survey a classification scheme of scheduling algorithms to better classify the algorithms pre-
sented in this thesis. An overview and discussion of related academic work is given as well.

Chapter 4 introduces the newly developed scheduling algorithm for integrated task and message
scheduling. We present a detailed functional description and provide a discussion of it. Symbolic
Task and Message scheduling is introduced in chapter 5. A particular and detailed formal de-
scription of the algorithm is provided as well as implementation issues. Furthermore, a heuristic
approach for state space reduction is introduced in Chapter 6. Chapter 7 presents the imple-
mented framework for scheduling synthesis, including the description of the various steps and
the design and implementation of the scheduling approaches presented.

Chapter 8 presents analysis and results for the developed techniques and algorithms. An approach
for complexity evaluation of different scheduling configurations is introduced. Furthermore, the
design of experiments and their results are presented. These results are discussed to evaluate the
new approaches of this thesis. We conclude in chapter 9.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Concepts and Terms

This chapter gives an overview about time-triggered architecture (section 2.1), introduces terms
and basic notations of scheduling in distributed systems (section 2.2) and defines the given sched-
uling problem (section 2.3) on which the objectives and contributions of this thesis are based.
Finally, we introduce the general concepts and terms of model checking (section 2.4).

2.1 Time-Triggered Architecture

This section describes the basic concepts of Time-Triggered Architecture (TTA). In recent years,
time-triggered (TT) architectures [KB01] have gained momentum for platform-based applica-
tions. Time-triggered system architecture, such as Flexray [Con05], Time Triggered Protocol
(TTP) [AG03] or Safebus [ARI93, HD93], are widely used in embedded systems for safety-
critical applications [Pau02].

As time-triggered systems provide predictable communication behavior in a timely determinis-
tic way, it leverages their potential use for the mentioned class of IMA systems as well. For
enforcing temporal partitioning, the time-triggered shared resources have to be scheduled, for
guaranteeing timing constraints of the application. With guaranteed pre-scheduled temporal par-
titioning, applications can meet their timing requirements.

Communication in time-triggered networks is realized by a time-division multiple-access
(TDMA) discipline, in which n nodes share a time-triggered bus based on a cyclic schedule
γ. Each node Node i can transmit only during a predetermined time interval, denoted as TDMA
(or time) slot. A slot has a fixed size, in the sense that if a node does not have a message to send
in his slot, the network remains idle for this period. A sequence of slots forms a TDMA round.
The time intervals associated to each slot are disjoint. Several rounds are combined into a com-
munication cycle that is repeated periodically. Tasks are executed on nodes, and communicate
with each other by message passing. A node Node i might send one or more messages in several
slots in a TDMA round.

10 CHAPTER 2. CONCEPTS AND TERMS

TDMA protocols require clock synchronization and an off-line schedule containing the allocation
of slots. Not only the assignment of nodes to slots, but also the assignments of messages to
time slots is done. Thus, the entire schedule is generated off-line and therefore guarantees a
predictable behavior of the system.

2.2 Basic Notations for Scheduling in Distributed Systems

A real-time system consists of several components for providing various functions. These func-
tionalities can be described as computational activities, which run in parallel. We use the term
tasks to denote a logical unit of computation and we represent a program as a set of tasks. In
the literature, terms as task, job and process are used interchangeable, representing a sequential
computation. Therefore, a task can be described as a computation that is executed by the CPU in
a sequential fashion [But04].

A computation resource may execute a set of concurrent tasks, that is, tasks that can overlap in
time. In this case, the CPU needs to be assigned to the various tasks according to a predefined
criterion, these scheduling rules are also called a scheduling policy [But04].

Furthermore, tasks can be classified as periodic or aperiodic. Periodic tasks are triggered regu-
larly, in a time-triggered fashion, whereas aperiodic tasks are triggered by events, which can be
completely random. Sporadic tasks [Mok83] can be seen as a subclass of aperiodic tasks but with
a minimum time between any two activation events. Most scheduling algorithms are defined for
periodic tasks and are also valid for sporadic tasks.

In general, a real-time task ti is characterized by the following parameters [But04] (cf. fig-
ure 2.1):

• Arrival time ai (also known as request time or release time): the time at which a task
becomes ready for execution;

• Computation time ci: time necessary to the processor for executing the task without inter-
ruption;

• Absolute deadline di: time before which a task should be completed to avoid damage /
degradation;

• Relative Deadline Di: difference between absolute deadline and the arrival time:
Di = di − ai;

• Start Time si: time at which a task starts its execution;

• Finishing Time fi: time at which a task finishes its execution;

• Response Time Ri: difference between the finishing time fi and the arrival time
ai: Ri = fi − ai.

2.2. BASIC NOTATIONS FOR SCHEDULING IN DISTRIBUTED SYSTEMS 11

Figure 2.1: Typical Task Parameters

Typical attributes specific to a real-time task ti are:

• Period Pi: the time interval between successive releases, in case of periodic tasks.

• Worst-case execution time wceti or Ci: the maximum execution or computation time
needed to execute the task without interruption on a particular processor. An obvious
assumption is Ci ≤ Pi.

• Phase Φi : the time elapsed between time 0 and the release of the first instance of the task:
Φi = ai. The phase is the offset at system start-up.

• Processor-utilization Ui: the fraction of the processor time used for the execution of the
task (task-specific utilization): Ui = Ci/Pi.

In traditional real-time applications, especially in the aeronautic domain, the set of tasks does not
change at run-time. Therefore, most algorithms consider the problem of scheduling at a fixed set
T of n tasks: T = {t1, t2, ..., tn}. The following concepts were defined for a task set and they are
used in the schedulability analysis of different algorithms:

• The overall processor-utilization [LL73] for the set of tasks T is computed as

U =
n∑
i=1

Ci/Pi; a necessary condition for the schedulability of a task set is U ≤ 1.

• The hyperperiod H = lcm n
i=1Pi is the time after which the pattern of periodic task arrivals

repeats itself, where lcm denotes the least common multiple.

• A task set is called harmonic when ∀(Pi, Pj), if Pi > Pj then Pi is an integer multiple of
Pj .

• A task set is called synchronous if the phases of all tasks are equal: Φi = Φj , ∀i, j =
1, ..., n.

In order to describe the functionality of a real-time system, tasks have been introduced to de-
scribe the computational activities of the system. However, depending on the different system
requirements and functionalities, tasks often cannot be executed in arbitrary order. Therefore,
the interaction of tasks need to be described with respect to their precedence relations. These re-
lations define the execution ordering and are captured by a directed acyclic labeled graph, called
precedence graph G, as illustrated in figure 2.2.

12 CHAPTER 2. CONCEPTS AND TERMS

Thus, a precedence graph G = {V,E} can be seen as an abstract model for a functional system
representation. Each vertex V in this graph represents a task t, whileE ⊆ V ×2M×V represents
a set of edges between the tasks, where M denotes the set of messages. A directed edge eij =
〈ti, {m1, . . . ,mk}, tj〉 shows the direct precedence between the sending task ti and the receiving
task tj . This precedence relation is formally depicted as ti ≺ tj (to be read as ti precedes
tj). Intuitively, ti ≺ tj means that ti and tj must be scheduled such that fi < sj , where fi is the
finishing time for the task ti and sj is the starting time for the task tj . The setM = {m1, . . . ,mk}
denotes the messages that ti sends to tj .

For an edge eij ∈ E, its weight uij gives the number of messages to be transfered from task ti to
tj , that is the cardinality of the associated message set. For instance, the edge from task t1 to task
t2 in figure 2.2 has one message associated with it, namely, m1. The weight w of an edge can be
assumed as the duration of a sending slot. The weight of a vertex is given by the task duration of
the task associated to the vertex, that is, wti = ci, where ci is the computation time for task ti.

Definition 1 Given G = (V,E) with V = T , for a task t ∈ T and a message m, we define
the destination D of t under m, as the function D : T × M → T , with D(t,m) = {t′ ∈
T |〈t, {m}, t′〉 ∈ E}.

A scheduling algorithm provides the order in which computational activities get access to active
resources such as computation (CPUs) or communication (networks) resources. Scheduling is
the process of creating such an ordered list, called the schedule γ.

Definition 2 A schedule γ is defined by γ = {ti 7→γi|∀ti ∈ T}, where γi is described as the tuple
γi = 〈si, {σ(m1), . . . , σ(mj)}〉. σ is a function σ : M → SL that allocates slots to messages
(compare section 2.3).

As stated before, the objective is to find a task schedule which as well incorporates a message
schedule and guarantees (hard) real-time system requirements while considering reliable and
predictable communication on a time-triggered network. Therefore, we start by defining a valid,
feasible, and an optimal schedule in the context of this thesis.

Definition 3 A schedule γ is said to be valid, iff:

• Each task ti in γ has an exclusively access to the CPU of the task’s node (non-preemptive
access)

• All precedence relations must be satisfied.

• Intertask communication caused by the transmission of messages according to the prece-
dence relations must be guaranteed. For instance, a task ti sends a message m1 to task
tj . The duration for the intertask communication (represented by length/duration of m1)
between ti and tj is denoted dtti,tj . Hence, fi + dtti,tj <= sj must be satisfied.

Definition 4 A valid schedule γ is said to be feasible for (hard) real-time systems, if it guarantees
the arrival times and deadlines of each task, formally, ∀ ti ∈ T : si ≥ ai and fi ≤ di.

2.3. PROBLEM FORMULATION 13

An optimal scheduling algorithm is the best one according to some criteria. In this thesis, we
optimize the schedule with respect to the given system requirement of minimizing the end-to-end
latency.

Definition 5 A feasible schedule γ is called optimal, if the length |γ| = fsink− ssource is minimal
for a given task precedence graph G.

2.3 Problem Formulation

Formally, the task and message scheduling problem is defined as follows:

Let N = {n1, n2, ..., nm} be a set of nodes, T = {t1, t2, ..., tn} a set of tasks, and M =
{m1,m2, ...,mo} a set of input/output messages of the tasks. The dependencies between the
tasks in T are captured by a precedence graph G. Furthermore, let η : N → 2T be a func-
tion that assigns to every node a task running on it, and τ : T → 2M a function that assigns a
set of messages to tasks. The set of time slots is denoted by SL = {sl1, . . . , slk}. A function
σ : M → SL allocates slots to messages. The scheduling problem consists in determining the
starting time and slot(s) position of the tasks in T that is, to calculate for every task ti ∈ T , the
tuple γi = 〈si, {σ(m1), . . . , σ(mj)}〉, such that the overall schedule γ is optimal.

Example 1 This simple example is used to describe the concepts of a precedence graph G.
Consider a set of tasks T = {t0, t1, t2, t3}, and a set of messages M = {m0,m1,m2,m3},
cf. figure 2.2. Furthermore, τ(t0) = {m0,m1}, τ(t1) = {m2}, τ(t2) = {m3}, τ(t3) = {},
η(n0) = t0, η(n1) = {t1, t2} and η(n2) = {t3}. For simplicity reasons we just use time units,
and assume an equal computation time for each task with ci = 2 time units. Furthermore,
D(t0,m0) = t1, D(t0,m1) = t2, D(t2,m3) = t3, D(t1,m2) = t3.

Figure 2.2: Simple Example of a Precedence Graph G

Remark 1 We consider the hyperperiod H of a task to be equivalent to the communication
cycle, thus identical for all tasks in T . Hence, the arrival times ai, which denote the earliest time
a task can be invoked is equivalent to the beginning of the communication cycle for all tasks.
The deadline di, which is the latest time it can finish its execution corresponds to the end of the
communication cycle. Preemption of tasks is not considered.

14 CHAPTER 2. CONCEPTS AND TERMS

2.4 Model Checking

A very attractive alternative to simulation and testing is the approach of formal verification.
While simulation and testing explore only some of the possible behaviors and scenarios, formal
verification conducts an exhaustive exploration of all possibilities. In this thesis, we concentrate
on the method of model checking as a formal verification technique by which a desired behavioral
property of a defined system model is analyzed.

Compared to other approaches, the model checking method has two advantages [EMCGP99]:

• The completely automatic verification of finite-state concurrent systems, which needs no
further user supervision or expertise in mathematical discipline.

• By failing the desired property, the model checker always produces a counterexample that
demonstrates the behavior which falsifies the property. This characteristic is used in this
thesis to generate integrated task and message schedules.

The main disadvantage of model checking is the state explosion that can occur if the system
being verified has many components.

In this thesis, we use model checking techniques by adopting the principle of state space ex-
ploration to scheduling synthesis. In the following the basic principles of model checking are
explained.

Principles in Model Checking

Consider a set of variables V = {v1, ..., vn} interpreted over nonempty domains P1 through
Pn together with a type assignment φ such that φ (vi) = P i. For a set of typed variables V , a
variable assignment is a function ν from variables v ∈ V to an element of φ(v). The variables
in V = {v1, ..., vn} are also called state variables, and a program state is a variable assignment
over V .

Definition 6 (T -Programs) A quadrupel M = 〈V, I,G, T 〉 is a T - program (or a model M)
over V , where interpretations of the typed variables V describe the set of states. For a given
program T , the set of boolean constraints Bool(T) includes all constraints in T and it is closed
under conjunction ∧, disjunction ∨ and negation ¬. A state of a concurrent system can be
described by giving values for all the variables vi ∈ V . In other words, a state s is a function
that associates a value in P with each variable v ∈ V , thus state : V → Pn. The predicate
I ∈ Bool(T) describes the initial states, and G ∈ Bool(T) describes the final goal states.
T ∈ Bool(T (V∪V ′)) specifies the transition relation between current states and their successor
states. V ′ is a primed, disjoint copy of V . V denotes the current state variables, while V ′ specifies
the next state variables. The set of T - programs over V is denotes by Prog(T).

For a program M = 〈V, I,G, T 〉 a sequence of states π(s0, s1, ..., sn) forms a path through M ,
if
∧

0≤i<n T (si, si+1). A state s is reachable in M if there is a path π(s0, s1, ..., sn−1, s) through

2.4. MODEL CHECKING 15

M and I(s0). A state property ϕ ∈ Bool(T (V)) is invariant in M , if ϕ(s) holds for every
reachable state s in M . A counterexample for a property ϕ is a path π(s0, ..., sn) such that I(s0)
and ¬ϕ(sn), and the length len(π) of such a counterexample is given by the number of steps in
this path (len(π) = n).

Let M= 〈V, I,G, T 〉 be a T - program. The model checking problem is to decide whether
M |= ϕ holds or not. If not, the model checker should provide a counterexample. In accor-
dance with the two parameters of the model checking problem (M and ϕ), there are two basic
strategies when designing a model checking algorithm: ”Global” algorithms recurse on the struc-
ture of ϕ and evaluate each of its subformulas over all ofM. ”Local” algorithms, in contrast,
explore only parts of the state space ofM, but check all subformulas of ϕ in the process. Tra-
ditionally, propositional tree logic (PTL) [EMCGP99] model checking has been based on the
local approach, while model checkers for computational temporal logic (CTL) [CE82] and other
branching-time logics have used global algorithms [Mer01]. In this thesis, we assume ϕ to be a
CTL formula.

Any finite-state system can be encoded as a programM. As these programs are called symbolic,
model checking algorithms that work on symbolic representations are called symbolic model
checking (SMC) techniques [BCM+92]. Binary decision diagrams (BDD) [And97] are a data
structure for the symbolic representation.

Further details on model checking algorithms, theorems and proofs may be found in textbooks
such as Model Checking from Clarke, Grumberg and Peled [EMCGP99].

An Overview of SAL

SAL stands for Symboblic Analysis Laboratory (see http://sal.csl.sri.com). SAL
provides a framework for combining different tools for abstraction, program analysis, theorem
proving, and model checking toward the calculation of properties (symbolic analysis) of tran-
sition systems [dMOS03]. The key part of the SAL framework is the language [BGL+00] for
describing transition systems, which provide notations for specifying state machines and their
properties. Thus, the framework can be used for the specification and analysis of concurrent sys-
tems. SAL provides model checkers and several other tools for analyzing properties of state ma-
chines specifications. These model checkers are of interest for our analysis. These include a sym-
bolic model checker (SMC), a witness and counterexample generating model checker (WMC)
for finite-state systems, a SAT-based bounded model checker for finite-state systems (BMC), and
a bounded model checker for infinite systems (infBMC).

The symbolic model checker sal-smc [dMOR+04] uses the CUDD BDD package and provides
access to many options for variable ordering, and for clustering and partitioning the transition
relation. Experiments in this thesis mainly uses the symbolic model checker sal-smc of the SAL
framework as well as SAL’s infitite-state bounded model checker sal-inf-bmc.

http://sal.csl.sri.com

16 CHAPTER 2. CONCEPTS AND TERMS

Model Checking in the Aeronautic Context

System verification and design assurance in the aeronautic industry is a big issue. Aeronautic
requirements for communication systems are mainly driven by certification and non-functional
needs, as manifests in recent efforts of involving a system design process in the development
of aeronautic systems. Customer needs for additional or modified system functionality, as well
as unpredictable obsolescence policies request for a proper system design process. Achieving
certification (according to Level B or even Level A with respect to DO-178B) is one of the
biggest cost driver for aeronautical developments. Thus, methods, technologies and algorithms
are needed which support on the one hand the system designer on a technical level, and on the
other hand implicitly provide assured awarenesses for supporting the process of system validation
and verification. Model checking is a promising technology for dealing with these issues.

Chapter 3

Scheduling Algorithms for (Hard)
Real-Time Systems

In concurrent distributed systems, several computational activities compete for the set of re-
sources, such as CPUs and networks. The scheduling discipline tries to solve the problem of
efficient use of these shared resources. This chapter presents a classification (section 3.1) of
scheduling algorithms and a brief overview of scheduling algorithms for uni- and multiprocessor
systems (section 3.2). This provides a basis for introducing scheduling algorithms for distributed
systems that incorporate both task scheduling at system level and message scheduling at com-
munication level. We present the problem for scheduling in distributed systems in section 3.3
and introduce related research in this domain in 3.4).

Further details on scheduling algorithms, theorems, and proofs may be found in textbooks such as
Buttazzo’s Scheduling Hard Real-Time Computing Systems [But04] or Liu’s Real-Time Systems
[Liu00].

3.1 Classification of Scheduling Algorithm

Real-time systems consist of several computational activities that describe the functionality of
the given system. A precedence graph highlights the interaction of these activities, as they can-
not be executed in arbitrary order. Thus, scheduling algorithms refer to the problem of assigning
computational activities to shared resources such as CPUs and networks in an effective way. The
scheduling literature provides a variety of algorithms, depending on the restrictions enforced,
ranging from independent periodic tasks in uniprocessor systems to periodic and aperiodic de-
pendent tasks running on distributed systems.

In the literature, scheduling algorithms can be classified as follows (compare [But04]).

18 CHAPTER 3. SCHEDULING ALGORITHMS FOR (HARD) REAL-TIME SYSTEMS

3.1.1 Static vs. Dynamic Scheduling

In static scheduling, all scheduling decisions are based on fixed parameters, assigned to tasks
before their activation; whereas in dynamic scheduling, all decisions are based on dynamic pa-
rameters that might change at run-time (compare Buttazzo [But04]). Static scheduling needs a
priori knowledge of all task attributes; therefore it is less flexible. Dynamic scheduling can pro-
vide a better processor utilization and supports non-predicted events, but it has a higher runtime
overhead than static scheduling.

Static and dynamic scheduling have a further meaning in multiprocessor and distributed systems,
depending on how these systems are configured. In a static system, the tasks are partitioned into
subsystems and they are statically allocated to processors. The tasks on one processor are sched-
uled independently, except the cases when they must be synchronized. In a dynamic system, the
tasks are dynamically dispatched to processors. There is a common queue for all processors and
the task in the head of the queue is dispatched to the first processor that becomes idle. If pre-
empted, a task can migrate from one processor to another in order to resume its execution. This
thesis focuses on static scheduling, because the architecture and allocation of task to computing
resources is (in most cases) given in avionic real-time systems.

3.1.2 Online vs. Offline Scheduling

Off-line scheduling computes all decisions at compile time and stores them in a dispatcher ta-
ble. At run-time no scheduler is needed, but only a dispatcher which takes the next entry from
the table. Off-line scheduling is also called table-driven scheduling, that incorporates a table
determining which tasks to execute at which points in time. Thus, feasibility is proven construc-
tively [BS05]. Off-line scheduling methods are capable of managing distributed applications
with complex constraints (e.g. precedence, end-to-end deadlines, etc.). On the other hand, the
a-priori knowledge about all system activities may be hard or impossible to obtain. Its rigidity
enables deterministic behavior, but limits flexibility drastically. The off-line scheduling approach
is the one usually associated with time-triggered architectures [BS05].

On-line scheduling, however, takes all decisions at run-time, meaning that the scheduler decides
when a new task is released or when a task terminates its execution. Nevertheless, on-line sched-
uling anomalies have to be handled. Consider for instance tasks sharing resources in a nested
way. Due to on-line priority rules, a higher priority task ti can be blocked by a lower priority
task tj holding a resource. Assume that an independent task tk is released with an intermediate
priority level. Then, task tk is executed although there exists an available higher priority task.
This is known as the priority inversion phenomenon.

Thus, off-line scheduling needs a priori knowledge of all task attributes, including release times
and precedence relations; whereas in on-line scheduling the attributes of tasks become available
only when the tasks are released. In this thesis, we focus on off-line scheduling in order to pro-
vide a deterministic and predictable time schedule, which is an on avionic system requirement.

3.2. SCHEDULING FOR UNI- AND MULTIPROCESSOR SYSTEMS 19

3.1.3 Preemptive vs. Non-Preemptive Scheduling

A preemptive scheduler can interrupt a task execution, when some higher-priority task needs to
be executed, and resume it later, when the higher-priority task terminates. The executions of
tasks are interleaved. In contrast, a non-preemptive scheduler will execute a task until the task is
completed, regardless of which requests became enabled in the meantime.

Some tasks require explicitly non-preemptive scheduling because of their functionality, for exam-
ple an interrupt handler that saves the state of the processor. If the application has no restrictions
on preemption, it is not trivial to answer which alternative is better. Typically, the maximum
response time from all tasks is smaller for an optimal preemptive algorithm than for an optimal
non-preemptive one, but the cost of preemption is most of the times ignored in the analysis.
The question remains whether the benefit of preemption compensates for the context-switch
overhead. However, these scheduling analysis is focused on task scheduling, without including
constraints from intertask communication. For simplicity reasons, we focus on non-preemtive
scheduling in this thesis. A preemptive scheduling policy can be estimated as well.

3.2 Scheduling for Uni- and Multiprocessor Systems

Scheduling for uni- and multiprocessor systems have been intensively studied for the past
decades. This section provides an overview about scheduling algorithms for both, uni-processor
and multi-processor systems. These commonly used approaches to real-time scheduling may
be used for scheduling tasks on a processor or messages on a network (i.e., traffic or commu-
nications scheduling). In the following, we briefly classify the scheduling domains for uni- and
multi-processor systems.

3.2.1 Scheduling for Uni-Processor Systems

The scheduling problem for uni-precossor systems can be defined as a set of tasks T =
{t1, t2, ...tn} that need to be allocated to a uni-processor system such that all constraints are
satisfied. An implicit assumption is that a processor can execute at most one task at a time, and
vice versa, a task can be processed by at most one processor at a time. In the following, we
distinguish between clock-driven and priority-driven approaches.

Clock-driven approaches

Clock-driven approaches can be used, when all tasks are periodic and their release times are
known. In this case, a static off-line schedule can be build. Task dependencies are constraints to
the scheduler, which have to be met. If all tasks are released synchronously, the schedule is build
for the length of a hyperperiod. This concludes in a periodic schedule, which is called cyclic

20 CHAPTER 3. SCHEDULING ALGORITHMS FOR (HARD) REAL-TIME SYSTEMS

schedule. Generally, the schedules can be constructed with any algorithm, including those from
priority-driven scheduling, when the tasks are independent. In case there are any precedence or
exclusion constraints, the scheduling problem becomes NP-complete.

Priority-driven approaches

In priority-driven scheduling approaches the scheduler assigns properties to task, which may be
fixed or dynamic. This assignment is done at compile time to each task in the task set. The online
scheduler maintains an ordered queue of ready tasks and executes the tasks in the order defined
by their priority. Priority-driven task scheduling is classified into fixed-priority and dynamic-
priority scheduling. In this section, we briefly describe both domains and name two exemplary
algorithms, one for each class.

The fixed-priority scheduling (FPS) is also called strict-priority scheduling. The Rate-Monotonic
(RM) algorithm, proposed by [LL73], is an example for a priority-driven algorithm with static-
priority assignment in the sense that the priorities of all instances are known before their arrival.
The RM-algorithm requires a preemptive scheduler that assigns priorities inverse proportional
to the task periods. Thus, a task with a shorter period (i.e., higher request rate) gets a higher
priority. The RM algorithm can be used for task sets with any relation between deadlines and
periods. However, when Di = Pi,∀ i = 1, ..., n, meaning that the relative deadlines of all tasks
are equal to their periods, RM is optimal among all fixed-priority algorithms [LL73]. The least
upper bound of the processor utilization can be computed by Ulub(n) = n(21/n−1), with the limit
lim
n→∞

= ln 2' 0.693, where n is the number of given tasks [LL73]. The optimality is maintained
if the relative deadlines of tasks are less than this limit but proportional to the periods.

Another domain in priority-driven approaches is the dynamic-priority scheduling (DPS), where
individual instances of the same task may have different priorities at run-time. The Earliest-
Deadline-First (EDF) approach, proposed by [LL73], is such a priority-driven algorithm. This
algorithm chooses at each instant in time that task of the currently active tasks, which has the
smallest deadline. Thus, a task instance with an earlier deadline will get a higher priority and
is scheduled first. EDF requires a preemptive scheduler and it is called the deadline-monotonic
(DM) scheduling algorithm. EDF is optimal (compare [Der74]) among all algorithms; therefore,
any feasible task set complaining with the given requirements, can be scheduled by EDF. The
EDF algorithm remains optimal also in case of hybrid systems, which have both periodic and
sporadic tasks [Mok83]. Optimality gets lost, if tasks cannot be preempted.

3.2.2 Scheduling for Multi-Processor Systems

Another interesting line of research in the scheduling context focuses on scheduling task sets for
more than one processor. Scheduling multi-processor systems can be defined by a set of tasks
T = {t1, t2, ..., tn} and a set of processors P = {p1, p2, ...pn}. In that context, scheduling algo-
rithms define the assignment of tasks from T to processors from P , such that all tasks meet their

3.3. SCHEDULING FOR DISTRIBUTED SYSTEMS 21

constraints. Dhall and Liu [SL78] distinguish between two general approaches to scheduling
periodic task sets on multiprocessor system: global scheduling vs. partitioning. In the following
the different approaches are briefly described.

Global Scheduling

Global scheduling algorithms store the tasks waiting for execution in one queue, which is shared
among all processors of P . Practically, the problem can be described as follows: In a sys-
tem consisting of n processors, the processors select the n highest priority tasks of the queue
at every moment. As a consequence, each processor has to maintain the tables necessary for
multi-processor scheduling algorithms. However, special algorithms need to be developed, be-
cause Mok and Dertouzos[MD78] has proven that scheduling algorithms that are optimal for
uniprocessor systems are no longer optimal for multiprocessor systems.

Partitioning

Partitioning paradigm provides a diversification of tasks, such that all tasks in a partition are
assigned to the same processor. Tasks are not allowed to migrate. Thus, partitioning has the ad-
vantage of reusing the well known results from uniprocessor scheduling. However, partitioning
has negative consequences. Finding a minimal schedule for a given set of tasks in a multipro-
cessor system has proven to be a NP-hard problem [LW82]. Therefore, heuristic algorithms are
used. However, these algorithms do not guarantee an optimal allocation. The First Fit (FF) and
Best Fit (BF) are examples for heuristic algorithms.

3.3 Scheduling for Distributed Systems

Distributed systems are uniprocessor systems that exchange data over networks. There is no
shared memory. Usually, a task gets its input message at its beginning and sends its output
messages at its end. In a systems view, applications consist of a number of communication tasks
with precedence constraints, that is, constraints specifying their execution ordering. A task is
activated when all its input messages have been delivered by the communication interface. The
set of tasks is allocated to a set of computing resources and communicate via message passing
over the shared communication resource.

Therefore, a scheduling policy has to take into account not only the constraints imposed by the
applications (e.g. precedence relations of the application tasks) but also the characteristics and
efficient usage of the underlying communication system. Message to slot allocation cannot be
accurately computed before a task schedule is computed. If the task scheduling problem and
the message scheduling problem are regarded independently, further timing inconsistencies can
arise. A task, for instance, never receives the actual correct value, because the message slot

22 CHAPTER 3. SCHEDULING ALGORITHMS FOR (HARD) REAL-TIME SYSTEMS

containing that information is allocated after the starting time of the task. These inconsistencies
are getting worse by increasing the number of tasks in a given application and thus the complexity
of the precedence graph.

In this thesis, the problems of task scheduling and message scheduling are regarded in an inte-
grated way. We focus on a set of processors P , which are mapped on a set of distributed commu-
nication resources N , communicating over a shared resource (communication medium). We fo-
cus only on clock-driven protocols (e.g. FlexRay [Con05]), in contrast to fixed-priority protocols
(e.g. CAN [fS98]) or token-passing protocols (e.g. FDDI [FDD89], or PROFIBUS [Com99]).
Therefore, the shared communication resource is implemented as a time-triggered network. For
such a system composed of a number of communicating applications on a distributed network
connected by a time-triggered bus, effective configuration is needed to guarantee functional and
non-functional avionics system requirements [PRS08]. Several related research approaches that
deal with this problem of combined task and message scheduling, are presented in section 3.4.

3.4 Related Research

Task scheduling for various kinds of systems has been intensively studied in literature. Well-
known preemptive and non-preemptive task scheduling approaches do not take into consideration
bus-related communication aspects. Specific issues, such as communication protocols, assign-
ment of messages to slots, etc. are not addressed. These aspects are, however, highly necessary
in (hard) real-time systems configuration. Therefore, an effective scheduling policy for TDMA-
based avionics applications needs to consider an integrated task and message scheduling. Related
approaches considering this integrated view are reviewed in the following.

3.4.1 Holistic Schedulability Analysis

Tindell and Clark [TBW94] provide a holistic scheduling technique. Based upon a distributed
real-time system, where fixed-priority tasks with arbitrary deadlines communicate by message
passing with a simple TDMA protocol. Tindell et al. assumes that all CPUs and networks are
scheduled according to a fixed-priority policy for tasks with arbitrary deadlines. Furthermore,
if a task t2 needs the output of task t1 and they are on different processors, then a delay is
identified, because task t1 will produce and send a message m1, that produces a release jitter for
task t2. The message m1 itself has a release jitter resulting from time variations in the producer
task. Thus, the receiver task t2 inherits the release jitter from the message, because it is released
when the message is delivered. Thus, Tindell and Clark use the schedulability analysis for fixed-
priority task with arbitrary deadlines to determine the worst-case response times of messages
sent between related task sets.

The holistic approach uses the response-time analysis and end-to-end deadlines to compute the
worst-case response time of the distributed task set and messages communicating between these

3.4. RELATED RESEARCH 23

tasks. As the equations for task and message scheduling depend on each other, this approach is
called holistic and is solved by forming recurrence relations. For further details, compare Tindell
et al. [TBW94].

3.4.2 Combined Task and Message Scheduling using Branch-and-Bound

The algorithm provided by Abdelzaher and Shin [AS99] uses a branch-and-bound technique a
combined task and message schedule in distributed real-time systems. The algorithm provides
an off-line scheduling of communication tasks with precedence and exclusion constraints. Tasks
are assumed to communicate via message passing based on a time-triggered real-time channel.

As a basis, the algorithms use a given task set, which includes the allocation of task to comput-
ing resources, the computation times of each task, the deadline and arrival times, as well as the
period. The algorithm analyzes the system within an interval of time equal to the least common
multiple (LCM) of all task periods, called the planning cycle. This planning cycle is derived
by the definition of a module set, where a module corresponds to a task invocation of a certain
task. These modules may have synchronization or mutual exclusion constraints. The approach
generates a complete schedule at each vertex in the search tree. Generally, this is done in con-
ceptually two orthogonal dimensions: The first searches the message-priority space, the second
searches the space of all possible task schedules for a schedule that minimizes the maximum task
lateness. A message-priority order, based on the relative deadline calculated for each message
is used for message scheduling, and the Earliest Deadline First (EDF) algorithm is used for task
scheduling. The branch-and-bound technique can be viewed as traversing a search tree, where
all vertices are pruned whose lateness of a schedule is higher than an already found schedule.
Thus, the algorithm yields a feasible schedule or alternatively proceedes the search tree until an
optimal task schedule is found.

Furthermore, a greedy heuristic can be used, which performs depth-first search with no back-
tracking. This would expand each vertex by generating all its children, then branches to the
minimum-cost child, ignoring all others. Child vertices, whose schedule lateness is more than
that of the parent are pruned.

For a more detailed description, e.g. concerning the branching functionality, compare [AS99].

3.4.3 Combined Task Message Scheduling using Satisfiability Checking

Metzner et al. [MFHS05] introduces a SAT-based approach to the task and message scheduling
problem of distributed real-time systems. The approach proposes an optimal strategy to as-
sign task and messages to computing resources (ECUs) and communication resources (network
busses) and delivers an optimal allocation respectively.

As a basis, abstract models of the system architecture and the task model, including timing
constraints are defined. In order to find an optimal allocation scenario, timing and resource

24 CHAPTER 3. SCHEDULING ALGORITHMS FOR (HARD) REAL-TIME SYSTEMS

restrictions are modeled as a set of integer formulae. This approach uses the deadline monotonic
algorithm with preemption (a preemptive, fixed-priority algorithm) to schedule the set of tasks.
A cost function is added, which reflects the runtime overhead of a certain task allocation for
both, memory allocation of certain tasks set to a computing resource, as well as worst-case
execution time including possible preemption cost on a processor. The given approach is based
on the transformation of this problem into nonlinear integer optimization problems, solved by an
appropriate propositional SAT checker (compare [FH03]). For each given allocation, scheduling
analysis evaluates whether all tasks can meet their timing constraints by calculating the response
times of all task chains. Afterwards, a binary search is used in order to find the optimal solution.

3.4.4 Scheduling Multi-Mode Real-Time Distributed Components

Farcas et al. [Far06] introduces algorithms for automatic schedule generation for task and mes-
sage scheduling. This approach is based on the so-called Logical Execution Time (LET) abstrac-
tion (cf. figure 3.1), which abstracts from the physical execution time on a particular platform and
thereby abstracts from both the underlying execution platform and the communication topology.
The LET forms the basis for component-oriented development of real-time systems. Languages
such as Giotto [HHM+, HHK01b, HHK01a] and the Timing Definition Language (TDL) harness
the LET abstractions.

The Logical Execution Time (LET) conforms to a timed model, where all computational activi-
ties and communications logically consume a fixed amount of time, regardless of whether they
actually need less time to execute. The basic idea is, that a given program will produce the
output exactly at the required response time, even if the task execution is completed earlier. Log-
ically, the previous value remains unchanged, until it is updated with the new one. This concept
provides determinism and predictability as the behavior of the program does not depend on the
platform but only on the task properties and the environment. Pree and Templ [PT08] describe
this abstraction from a time-triggered platform, using the FlexRay protocol.

Figure 3.1: Logical Execution Time (LET)

This approach is based on the TDL component model, which supports the decomposition of hard
real-time applications into modules that are executed logically in parallel. The scheduling is the

3.4. RELATED RESEARCH 25

backbone to maintain the concepts of LET and transparent distribution. For processor scheduling
algorithms are introduced for generating clock-driven schedules. For communication schedul-
ing algorithms are introduced, which identify the required messages, assign timing constraints,
map messages to frames, and schedule them. This approach is based on traditional hyperperiod
scheduling.

The task and message schedules are generated in two steps. First of all, the messages and af-
terwards the tasks are scheduled with deadline constraints from the bus schedule. Then, a dead-
line corresponds to the situation where a producer task have to finish before the corresponding
message is sent on the bus. The strategy is to schedule the message as late as possible. For
task scheduling the Earliest Deadline First (EDF) with precedence constraint algorithm is used
[But04]. For message scheduling, an heuristic algorithm, adapted from Reversed EDF, also
called Latest Release Time (LRT) [Liu00] is used. Further details can be found in [FFPT05].

However, using the LET abstraction and the provided concepts for component-oriented develop-
ment of real-time systems, several drawbacks have to be taken into account. The basic assump-
tion of the LET concept is that the platform, run-time system, and the scheduling mechanisms
used for the physical execution allow each task to complete before the end of its LET. This, how-
ever, introduces a so-called unit-delay, because dependent tasks exchange information only at
LET boundaries. In the context of scheduling for (hard) real-time aeronautic system, as it is in-
vestigated in this thesis, this means that a calculated communication period has at least the length
of the least common multiples of all all task periods. Given a certain precedence graph G, the
end to end latency of this precedence graph could be even longer because the logical execution
time is equal to the task period. Thus, the LET concept does not appear to be a feasible solution
for the given scheduling problem.

3.4.5 An Improved Scheduling Technique for Time-Triggered Embedded
Systems

Pop, Eles and Peng [PEP99] provide an improved scheduling technique for scheduling synthesis.
Based on developed older approaches ([DE98] and [EKP+98]), where the worst case delay for
a system execution was derived by a function depending only on the amount of date exchanged
by the processes, the new approach is based on the concrete underlaying TDMA bus system
(TTP Protocol). The given approach produces a schedule table that contains both the flow of
data (communication on the TDMA bus system) and that of control (task execution times of the
application).

Therefore, the abstract system model is given by a directed, acyclic graph with conditional edges.
It captures both the process graph description, highlighting the processes (tasks) and their depen-
dencies (represented by a graph node), as well as communication messages, which are repre-
sented by a conditional edge. Furthermore, the notation of disjunction node and conjunction
node is introduced. Further details can be found in [PEP99].

26 CHAPTER 3. SCHEDULING ALGORITHMS FOR (HARD) REAL-TIME SYSTEMS

A priority based schema is used to decide which processes or tasks are extracted in order to be
scheduled at a given time. This priority scheme depends on the Partial Critical Path function,
which includes knowledge of the bus access scheme into the priority function. Based on this first
schedule, the schedule is then improved by using a proposed heuristic to determine an ordering of
the slots an the slot lengths so that the execution delay of the application is as small as possible.
Starting from the first slot, the given schedule is improved, by successively trying every not yet
allocated node to that slot, in order to minimize the overall system worst case delay. Thus, for
each candidate node, the schedule length is calculated. This is done, as well, for every possible
slot length, to obtain even better results.

3.4.6 Optimal Task Graph Scheduling with Binary Decision Diagrams

Precedence task graph scheduling is considered by Jensen, Lauritzen and Laursen [JLL04]. The
given approach solves the task graph scheduling problem with uniform processors and arbitrary
task execution times by using BDDs for representing the task graph scheduling problem. A
breadth-first search and an A*-based algorithm is employed for finding optimal schedules.

This approach is based on the task graph scheduling problem, which can be given by a directed
acyclic graph of dependencies between tasks with arbitrary execution times and an arbitrary
number of available homogenous processors. The task graph scheduling problem is represented
as a BDD state space exploration problem and approached by a breadth-first and an A* search
algorithm for finding optimal schedules. The BDD algorithm used can be described by three
major phases: The first phase generates the states with possible combinations of tasks that can
be started, the second phase runs them one step and the last phase stops them if they have fin-
ished [JLL04]. Thus, the given task precedence graph is traversed according to their given de-
pendencies.

Furthermore, Jensen, Lauritzen and Laursen provide a guided search, in order to prevent from
searching exhaustively for an optimal schedule configuration. Therefore, a cost function is pro-
vided, which estimates the number of free time slots at the next step of the schedule as an estimate
of the remaining free slots. A free slot can be seen as a time interval of a processor, which is
not used during this interval. As the approach tries to find the optimal schedule, which is the
schedule with the fewest possible free time slots, this cost weight estimation is used as a lower
bound on the total cost of the set of states, which means that promising states with a lower cost
can be examined first.

The representation of tasks is similar to the presented Symbolic Task and Message Scheduling ap-
proach, however, they do not consider underlying network communication aspects, and message
scheduling.

Chapter 4

Algorithm for Integrated Task and
Message Scheduling

This chapter presents an off-line scheduling algorithm for the task and message scheduling prob-
lem based on precedence graph traversal. We propose an approach that integrates task scheduling
at system level with message scheduling at communication level. This algorithm augments con-
ventional scheduling rules with algorithms addressing the specific problems of scheduling mes-
sages on time-triggered communication busses. The algorithm allows to automatically compute
schedules even for large aeronautic applications.

4.1 Functional description of new scheduling algorithm

Our approach relies on an off-line scheduling algorithm for traversing a precedence graph Gthat
computes an integrated task and message schedule. Thus, on the one hand, the order of tasks,
defined by the precedence graph relations has to be considered. On the other hand, a message
schedule has to be defined, which assigns messages to specific time slots that are used to transmit
the information over the time-triggered bus. On system level, the task scheduling problem is
represented by a directed acyclic weighted graph, as described in section 2.3.

In general, the algorithm starts by using a weighted precedence graph as an input. Starting at
the sink vertex the precedence graph is traversed backwards along the longest path through the
precedence graph. In each step of this graph traversal, whenever a new task on the longest path
is reached, the algorithm searches for both successor and predecessor tasks according to the task
ordering. In order to minimize end-to-end latency, messages are allocated to the next available
time slot on the communication bus, with the minimal intertask communication. This slot is
known by the application due to the synchronization of application and communication bus. By
reaching the sink vertex of the precedence graph an integrated task schedule has been found.

28CHAPTER 4. ALGORITHM FOR INTEGRATED TASK AND MESSAGE SCHEDULING

4.1.1 Calculation of longest path

As a first step the longest path through the precedence graph G is calculated. This is done with
respect to the task length or computation duration comp(ti) of a certain task ti and the duration of
a message send by task ti to the successor task tj . Using these parameters an off-line calculation
of the longest path lP can be done. This calculation is done by using the depth-first search (DFS)
algorithm [CLRS01] on the given precedence graph G for the calculation of the longest path
|lP |.

The longest path lP is stored in a linked list of task elements ti ∈ T , storing the task sequence
that incorporates all tasks on the longest path length lP . In the following example we introduce
a precedence graph highlighting the benefits of a linked list in that context.

Example 2 We consider a set of three tasks T = {t1, t2, t3} and a set of messages M =
{m1,m2,m3}. Furthermore, τ(t1) = {m1,m3}, τ(t2) = {m2} and η(ni) = ti, ∀ i ∈ {1, 2, 3}.
The functionD is given asD(t1,m1) = t2,D(t1,m3) = t3,D(t2,m2) = t3. Consider the longest path
to be determined as the task sequence: lP= [t1, t2, t3]. In this case, both task t1 and task t2 are
predecessors of task t3 and are both on the longest path lP , as illustrated in figure 4.1. Because
the algorithm traverses backwards along the longest path, the selection of the next task to be
considered remains on the linked list. In this case t2 would be the next task to be considered,
since this task is the direct predecessor of t3 according to the longest path list.

Figure 4.1: Simple Precedence Graph G

4.1.2 Initial starting point

The initial starting point of the algorithm is given by the sink vertex (task tsink). In case the
precedence graph G consists of multiple sink vertices, e.g an aeronautic system with a server
sending its information to multiple actuators, we introduce a sink dummy task tdummy. This
dummy task tdummy serves as a successor task for all sink vertices. Thus, task tdummy takes a
virtual input message mv from all sink vertices as an input. A virtual input message mv can be
described by a message that consumes no time. The dummy task itself consumes no time as
well. In case there are precedence graphs with multiple source vertices, the same introduction
of task tdummy is done for these source tasks, respectively. The following example illustrates the
scenario of multiple sink vertices.

4.1. FUNCTIONAL DESCRIPTION OF NEW SCHEDULING ALGORITHM 29

Example 3 We consider a set of four tasks T = {t1, t2, t3, t4} and a set of messages M =
{m1,m2,m3}. Furthermore, τ(t1) = {m1,m2,m3} and η(ni) = ti, ∀ i ∈ {1, 2, 3, 4}. The
function D is given as D(t1,m1) = t2, D(t1,m2) = t3, D(t1,m3) = t4. All sink vertices, namely
task t2, task t3 and task t4 are connected to the dummy task, tdummy. The corresponding edges
are allocated with a weight of 0. In this case, we consider task tsink = tdummy. For instance, the
longest path lP can be considered as the task sequence: lP= [t1, t2, tdummy].

Figure 4.2: Integration of a dummy task tdummy in a precedence graph

The integration of dummy tasks, either as a source or a sink task, enables the calculation of the
longest path lP for a given precedence graph G , that might have multiple source or sink tasks.

4.1.3 Precedence Graph Traversal

Starting from the sink vertex (task tsink), the algorithm incrementally traverses backwards along
the calculated longest path lP until the source vertex (task tsource) is reached. This precedence
graph traversal is done iteratively.

CALCULATE TASK SCHEDULE (G)

The basic algorithm, called Calculate Task Schedule, takes a weighted precedence graph G as
input. Several global variables are accessible: the set of messages M , tasks T , as well as the
functions τ , η, σ and the corresponding destination functions D. The current time ct is a global
variable as well.

In a first step (line 1) the longest path lP through the precedence graph G is calculated. The
sink vertex tsink in the precedence graph ordering is allocated to the end of the communication
cycle and its starting time is calculated by subtracting its computation time c(tsink) as s(tsink) =
end of cycle − c(tsink) (cf. line (2)). The traversal of the precedence graph starts by calling a
simple for-loop (line 3). Then the backward traversal starts by following the calculated longest
path lP until the source vertex (task tsource) is reached. Whenever a new task ti on the longest
path lP is reached, the algorithm searches for both output precedence relations (lines (4)-(6)) and
for input precedence relations (lines (7)-(9)).

30CHAPTER 4. ALGORITHM FOR INTEGRATED TASK AND MESSAGE SCHEDULING

Algorithm 1 Calculate Task Schedule (G)

1: lP ← CALCULATE LONGEST PATH(G)
2: s(tsink) = ct = end of cycle - c(tsink)
3: for each vertex ti ∈ G, starting from tsink to tsource along lP do
4: if there exists tj ∈ G where ti ≺ tj then
5: SET OUTPUT TASK(ti, ti)
6: end if
7: if there exists tj ∈ G where tj ≺ ti then
8: SET INPUT TASK(ct , ti)
9: end if

10: end for

Depending on whether output or input precedence relations are found the following two functions
are called: For input precedence relations (SET INPUT TASK) and for output precedence relations
(SET OUTPUT TASK), respectively. These functions are described in the following.

SET INPUT TASK

Starting from a certain task treceive , in a first step, all input precedence relations are investigated
to treceive are computed (cf. line (2)). These tasks are called the set A. As long as the certain
task treceive is not the sink tasks there exists a set of input tasks relations A. At least one task of
the task set A corresponds to the longest path lP . This task is called task tsend and selected first
(line (3)). In case there are multiple longest paths in a given precedence graph, the predecessor
of task treceive is chosen non-deterministically. Then, all messagesMi that comply toD(tsend ,Mi)
= treceive are schedules, using the MSGTOSLOT function (cf. line (4)). After scheduling the
predecessors on the longest path, all remaining predecessors in A are scheduled (line (5)-(7)).

1: function SET INPUT TASK(ct, treceive)
2: A = {t1, ..., tn | ti ≺ treceive , ∀i ∈ {1, ..., n}}
3: tsend = ti with ti ∈ A ∩ lP
4: MSG TO SLOT (treceive , tsend)
5: for each ti ∈ A \ tsend do
6: MSG TO SLOT (treceive , ti)
7: end for
8: ct = s(tsend)
9: end function

The MSG TO SLOT function assigns messages send from a given task ti to treceive . This function is
described in the following.

4.1. FUNCTIONAL DESCRIPTION OF NEW SCHEDULING ALGORITHM 31

MSG TO SLOT

The function MSG TO SLOTS(treceive, tsend) is responsible for the allocation of all messages
mi ∈ Mi, that are sent from task tsend to task treceive , to slots sl i ∈ SL. These messages
are computed by the destination function D(tsend ,Mi) = treceive . In the following this set of mes-
sages is called B (cf. line (3)). In order to schedule the message, the next available time slot sl i
needs to be identified. Therefore, the current time basis ct is updated by assigning it to the start-
ing time of the receiving task treceive . As all slots are allocated to time slots, using the minimal
distance dttsend ,treceive to their corresponding sending and receiving tasks, the next available slot
sl i can easily be chosen (line (5)). In a next step the assignment of message mi to the slot sl i is
done, cf. line (6). start slot(sl i) indicated the start time of the assigned time slot, which in turn
enables for calculating the starting time of the sending task s(tsend), as depited in line (7).

1: function MSG TO SLOT (treceive , tsend)
2: ct = s(treceive)
3: B ⊆M = {m1, ...,mo | mi ∈ τ(t) and D(t,mi) = treceive}
4: for each m ∈ B do
5: Choose sl i ∈ SL such that [ct − (start slot(sl i) + duration slot(sl i))] minimal
6: σ(mi) = sl i
7: s(tsend) = start slot(sl i)− c(tsend)
8: end for
9: end function

SET OUTPUT TASK

After allocating all incoming messages by the function SET INPUT TASK, all outgoing messages
need to be scheduled as well. Therefore, all direct successors of a task tsend (corresponds to the
receiving task treceive in MSG TO SLOT-function) are investigated as well. A direct successor of a
certain task tsend corresponds to a partial precedence graph and is therefore called a branch.

First, all branches from a certain task tsend are determined (cf. line (2)). This set of tasks is
called C. In a next step, for each task ti in C, we check, whether the successor task ti has already
an assigned starting time, namely has already been scheduled or not (cf. line (4)). In case the
starting time has not been calculated, the function MSG TO SLOTS OUT is called to schedule all
messages Mj , corresponding to D(tsend ,Mj) = ti.

When allocating all messages Mj from D(tsend , Mj) = ti, time consistency needs to be checked,
because the algorithm might generate a schedule that does not fulfill the timing given by the
precedence relations. In order to guarantee that all precedence relations, defined by the prece-
dence graph, are in a consistent chronology, the CONSISTENCY CHECK function is called. This
function checks, whether all successor tasks in C fit according to the precedence relation in
G(cf. line (6)). In case of inconsistencies, a recalculation is done by the RECALCULATE SRC TASK

function (line (7)). This recalculation is limited to that branch, where timing inconsistencies are
detected (a detailed description is given in section 4.1.4). A branch starts always from a task on

32CHAPTER 4. ALGORITHM FOR INTEGRATED TASK AND MESSAGE SCHEDULING

the longest path. This task is called task tfix. Thus, the entry point to that certain branch, namely
the starting time s(tfix) of that task on the longest path tfix, is recalculated.

1: function SET OUTPUT TASK(tfix, tsend)
2: C = {ti | tsend ≺ ti,∀i ∈ {1, ..., n}}
3: for each task ti ∈ C do
4: if s(ti) exists then
5: MSG TO SLOT OUT (ti, tsend)
6: if (CONSISTENCY CHECK(treceive) == false) then
7: RECALCULATE SRC TASK(tfix)
8: end if
9: else

10: MSG TO SLOT OUT (ti, tsend)
11: end if
12: end for
13: end function

In case the receiving task ti is not set (its starting time is not yet calculated, cf. line (10)), the
function MSG TO SLOTS OUT is called. This function schedules all messages sent by task tsend to
task ti. In this case the SET OUTPUT TASK function is called, with the new successor task ti, until
a task is reached, whose starting time is already calculated(cf. line (10)).

MSG TO SLOT OUT

1: function MSG TO SLOTS OUT (treceive , tsend ,M, σ)
2: ct = f(tsend)
3: B ⊆M = {m1, ...,mo |mi ∈ τ(tsend) and D(tsend ,Mk) = treceive}
4: for each m ∈ B do
5: if σ(mi) = ∅ then
6: Choose sl i ∈ SL such that
7: [(start slot(sl i)− ct)] minimal
8: σ(mi) = sl i
9: end if

10: if s(treceive) not exists then
11: s(treceive) = end slot(σ(mi))
12: end if
13: end for
14: end function

The MSG TO SLOT OUT function identifies all messages Mk send by the sending task tsend , cor-
responding to D(tsend , Mk) = treceive . This set of messages is called B (cf. line (3)). For
each message mi ∈ B is checked, whether the message is already allocated to a certain slot
(σ(mi) = {sl i}) (cf. line (5)). If this is not the case, the allocation is done on the next avail-
able slot with a minimal distance dttsend ,treceive after f(tsend). This is done for all messages in
B, as illustrated in lines (5) - (9). The MSG TO SLOT OUT function furthermore checks, whether
task treceive has already an assigned staring time (line (10)). In case there is no starting time

4.1. FUNCTIONAL DESCRIPTION OF NEW SCHEDULING ALGORITHM 33

allocated to the task treceive , the task can be scheduled right after the dedicated slot, namely
end slot(σ(mi)).

CONSISTENCY CHECK

Time consistency is analyzed, after allocating all messages in SET OUTPUT TASK (cf. line (2)).
This is done, because the SET OUTPUT TASK function allocates all successor tasks that have not
been scheduled yet, until an already scheduled task is found on that branch. Time consistency,
in this context, checks whether all precedence relations are satisfied. This is done by comparing
the finishing time of the last allocated slot (end slot(sl i)) with the starting time of the already
calculated receiving task s(treceive). If end slot(sl i) ≤ s(treceive) is true, a consistent chronology
is guaranteed. Otherwise, the SET OUTPUT TASK function needs to recalculate the starting time of
that task, which initializes the branch in the precedence graph G, that fails the consistency check.
This recalculation and path extension is described in the following.

1: function CONSISTENCY CHECK(treceive)
2: if end slot(sli) ≤ s(treceive) then return true;
3: elsereturn false;
4: end if
5: end function

4.1.4 Backtracking and path extension

The presented algorithm is designed to start at the sink vertex (task tsink) of a given precedence
graph G. While incrementally traversing backwards along the calculated longest path lP , starting
times are allocated to tasks and messages to slots. This is done iteratively using the described
graph traversal. As described in the previous sections, timing inconsistencies might occur. There-
fore, the CONSISTENCY CHECK function checks, whether time consistency can be guaranteed. In
case of inconsistencies, a recalculation of precedence graph branches becomes necessary.

In order to highlight the process of time consistency check and potential recalculation of already
calculated starting times and message slots, we consider the following example:

Example 4 Given a set of four tasks T = {t0, t1, t2, t3}, and a set of messages M =
{m0,m1,m2,m3}. Furthermore, τ(t0) = {m0,m3}, τ(t1) = {m1}, τ(t2) = {m2} and
τ(t3) = {}. The task to node allocation set is given by η(ni) = ti, forall i ∈ {0, 1, 2, 3}.
The destination function is given as D(t0,m0) = t1, D(t0,m3) = t2, D(t1,m1) = t3 and D(t2,m2) =
t3. We consider the longest path lP as the task sequence: lP= [t0, t1, t3]. The precedence graph
is depicted in figure 4.3a.

Figure 4.3b highlights the situation in which - starting from the sink task t3 - all incoming mes-
sages, namely message m1 and m2 are scheduled with a prioritization of messages on the longest
path. Furthermore, the corresponding sending tasks (t1 and t2) are scheduled. According to the

34CHAPTER 4. ALGORITHM FOR INTEGRATED TASK AND MESSAGE SCHEDULING

(a) Precedence Graph G (b) Backwards Traversal

(c) Forward Traversal (d) Time Consistency Correction

Figure 4.3: Precedence Graph and Graphical Representation of the Algorithm

described algorithm, the precedence graph is traversed along the longest path lP . Figure 4.3c
shows that all tasks on the longest path have already been scheduled. As task t0 is described
by D(t0,m3) = t2 the algorithm uses the SET OUTPUT TASK function to schedule message m3 as
described in section 4.1.3.

By using the SET OUTPUT TASK-function, a consistent chronology needs to be checked and guar-
anteed. Time consistency is checked by comparing starting time of tasks, which are set by
backwards traversing with message slots allocated by a branch forward traversal. In this sim-
ple example, figure 4.3c, highlights the time inconsistency. By comparing the finishing time of
message m3 to the starting time of task s(t2), according to D(t0,m3) = t2, message m3 should be
finished before task t2 is started. This check fails.

In order to resolve this situation a recalculation of starting times becomes necessary. This recal-
culation is bounded to the precedence graph branch, which fails the consistency check function.
The entry point, namely the task on the longest path lP that serves as a starting point for that
branch is identified. In the given example, task t0 is the calculated entry point. The recalcula-
tion is performed on this entry point task: s(t0) is incrementally decreased by one time unit, as
shown in figure 4.3d. As a consequence, each successor task and message on that branch, that
has already been scheduled, is rejected. A recalculation starting with the new starting time of t0
(entry point task) is done. This recalculation might be repeated several times, until a consistent
chronology is guaranteed. In the given example, a decrease of one single time unit is sufficient
to guarantee consistent chronology.

4.2. DISCUSSION 35

Such a recalculation becomes necessary for every branch that fails the CONSISTENCY CHECK-
function.

4.2 Discussion

4.2.1 Cases of guaranteed optimality

The algorithm calculates a schedule γ with respect to the minimal inter-task communication
time. This schedule, described by γ = {ti 7→ γi|∀ti ∈ T}, is the solution to the task and
message scheduling problem. As a consequence, the length of a schedule |γ| can be defined by
the following equation (4.1).

|γ| = max
∀ ti ∈ T

f(ti) − min
∀ ti ∈ T

s(ti) (4.1)

In each step of the algorithms’ graph traversal, whenever a new task on the longest path is
reached, the algorithm searches for both successor and predecessor tasks according to the task
ordering. Messages are allocated to the next available time slot on the communication bus, with
the minimal inter-task communication time. From this characteristic and the fact of lP being the
longest path in G , it follows:

The length of a feasible schedule |γ| has to be at least the length of |lP |:

|γ| ≥ |lP | (4.2)

In order to obtain a schedule which is optimal in terms of minimizing the end-to-end latency, we
are able to define:

A schedule γ is an optimal (minimal end-to-end latency) schedule, iff |γ| = |lP |, where |γ|
is the length of the schedule, as defined in equation 4.1, and |lP | is the length of the longest
path. However, this optimal schedule might not always exist, e.g. systems, that are characterized
by a highly concurrent precedence graph and numerous resource constraints (several tasks are
allocated to a single computing resource). Thus, an optimal schedule of these systems might
be longer than the longest path |lP |. The presented algorithm might calculate such an optimal
schedule, because the algorithm is not designed to always find an optimal schedule. Only in
one case, namely that the length of a calculated schedule γ corresponds to the length of the
longest path lP , it is assured that the algorithm has found an optimal schedule. Other scenarios
are considered in the following.

36CHAPTER 4. ALGORITHM FOR INTEGRATED TASK AND MESSAGE SCHEDULING

4.2.2 Deviation from expected optimum in worst case scenario

The algorithm returns a feasible schedule γ. If the length of the calculated schedule is larger than
the length of the longest path, namely |γ| > |lP |, the obtained solution might differ from the
optimal solution under consideration.

The reason for finding schedules with longer end-to-end latency than the longest path is that the
algorithm fails the time consistency check. In case of inconsistencies, a recalculation of prece-
dence graph branches becomes necessary. A recalculation always induces a path extension, as
described in section 4.1.4. This incremental increase of schedule length results in the discrep-
ancy between |γ| and |lP |. However, as the designed algorithm not always delivers a schedule
that equals the length of the longest path, the calculated schedule γ, with a length greater than
|lP |, might be an optimal schedule for the given precedence graph G. Therefore, in case of
|γ| > |lP |, it seems impossible to identify whether the calculated schedule γ is an optimal
schedule with respect to minimal end-to-end latency.

However, the maximum deviation can be specified by determining the worst case scenario. In
the worst case scenario an optimal solution complies to a schedule length of |lP |. The calculated
schedule length |γ| is greater than the optimal schedule length |lP |. Therefore, we define the
maximum possible deviation wcd (worst case deviation) as:

wcd = |γ| − |lP | (4.3)

The given scheduling approach scales up very well, even for large aeronautic systems. As stated
above, the optimal solution cannot be guaranteed. Nevertheless, if the optimal schedule length
is unknown, each calculated schedule |γ| might be the optimal solution under consideration.
However, the maximum deviation, given by wcd, indicates the worst deviation from a potential
optimum.

Chapter 5

Symbolic Task and Message Scheduling

This chapter describes how we adopt the principle of symbolic state space exploration to the
task and message scheduling problem. We propose Symbolic Task and Message Scheduling
as a novel approach to the problem of task and message scheduling for TDMA-based avionics
applications. This approach allows to automatically compute schedulers with minimal end-to-
end latency.

5.1 Basic idea of using model checking for solving scheduling
problems

The framework of model checking is used to carry out verification, which is performed on finite-
state space. In particular, we use state-of-the art model checking and bounded model checking
techniques to compute the schedules. This approach extends ongoing research in task and mes-
sage scheduling based on time-triggered shared resources by first using model checking tech-
niques for solving this kind of problems. This thesis proves that state-of-the-art model checking
and bounded model checking techniques can be used to compute a schedule that fulfills certain
system requirements.

Our approach relies on a symbolic encoding of the task and message scheduling problem which
guarantees an optimal solution of the given scheduling problem. The symbolic encoding is done
by transferring and defining the task and message scheduling problem as a finite-state model
checking problemM |= ϕ, whereM is the transition system representing the scheduling prob-
lem, while the temporal logic formula ϕ expresses the desired scheduling property, such as min-
imal end-to-end latency. We define a basic model M, containing all state variables (e.g. for
tasks, messages, nodes, etc.) and a set of transitions. The initial state is specified as a situation
in which all tasks are not started and not finished. The goal states are those states where all tasks
have finished and all messages have been sent.

38 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

The proposed approach is working by constructing gradually a schedule, beginning in a state
where no task has started and no messages have been sent on the bus yet, and proceeding one
step at a time assigning starting times to tasks and slot positions to messages. This construction
process is mapped onto a set of transitions, specified as guarded commands.

The precedence graph is traversed from source to sink. Whenever the precedence graph allows
for different possible solutions, characterized by concurrent access to a shared resource (either
different messages trying to allocate the next available time slot on the communication bus or
several tasks waiting for access to the shared computing resource), we use the model checker’s
capabilities to explore all interleaved possibilities.

The model checker analyzes the specified task and message scheduling modelM with respect
to a given property ϕ stating that there is no possible schedule that fulfills the given property
(system requirement). The model checker returns either verified or falsified, depending whether
the given property is fulfilled by the model or not. In the latter case, the model checkers usually
outputs a counterexample from which a task and message schedule can directly be obtained. To
find such a counterexample we can either use SAL’s bounded model checker [dMRS03], sal-bmc,
or one of SAL’s symbolic model checkers, sal-smc or, sal-wmc [SS03].

The obtained schedule might not be optimal, with respect to end-to-end latency, because the
transition system is allowed to take transitions at which no time is consumed. To obtain an
optimal task and message schedule, we further use a binary search for finding that solution (cf.
section 5.8). Thus, an automatically optimal schedule generation is guaranteed by construction.

Experimental results demonstrate how the latest generation of model checking tools meets the
challenges of providing both a convenient modeling language and the performance to solve given
scheduling problems. We use SAL (Symbolic Analysis Laboratory, http://sal.csl.sri.
com) [dMOR+04] from SRI International as a framework for specification and scheduling syn-
thesis. However, the presented approach is not limited to the specific framework of SAL. The
presented task and message scheduling model (cf. section 5.3) can be used by different model
checking frameworks as well. However, we illustrate a way how the presented approach is trans-
lated into SAL specifications (cf. section 5.4).

5.2 Requirements to Symbolic Task and Message Scheduling

Constructing a task and message schedule requires a set of scheduling rules. These scheduling
rules are explicitly defined by the set of transitions, stating how a precedence graph is traversed.
Moreover, for constructing an optimal task and message schedule, that is to minimize the end-to-
end latency, these scheduling rules need to be adapted according to the optimality criteria. This
enables to obtain an optimal task and message schedule.

The crucial point in construction is to deal with concurrent precedence graph scenarios. Con-
currency can either be caused by a shared computing resource or a communication resource at a

http://sal.csl.sri.com
http://sal.csl.sri.com

5.2. REQUIREMENTS TO SYMBOLIC TASK AND MESSAGE SCHEDULING 39

certain point in time. Decisions in concurrent situations have a direct impact on optimality, es-
pecially when considering highly concurrent precedence graphs. While constructing a schedule
gradually, it cannot be decided which decision might lead to an optimal solution with respect to
a given optimality criterion, such as end-to-end latency. Therefore, we use the model checker’s
capabilities for constructing a task and message schedule to explore all specified interleaved
possibilities defined in the given scenarios. In the following we specify these different scenarios:

Scenario 1

Different tasks (task ti and task tj) are allocated to the same computing resource (Node i) and are
waiting for access. In this situation both interleaved scenarios are investigated in a next state s′,
namely in Case 1 task ti is handled prior to task tj (s′ = ti � tj) while in Case 2, task tj is given
priority over ti (s′ = ti ≺ tj).

Figure 5.1: Different task trying to allocate to the same computing resource

Scenario 2

Task ti and task tj are allocated to the same computing resource, for instance node Node i. A task
tj tries to allocate an already blocked computing resource, which is used by task ti. Thus, two
different options are possible (cf. figure 5.2). Task tj needs to wait until the computing resource
is released (Case 1). On the other hand, task tj might interrupt the current computing task ti on
node Node i (Case 2). Subsequently, this interrupted task ti can be restarted again, because we
do not allow preemptive scheduling.

40 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

Figure 5.2: Task trying to allocated a already blocked computing resource

Scenario 3

The communication resource (in this thesis a time-triggered communication bus system) might
also be the concurrent resource. Scenario 3 describes a situation in which different messages,
namely mi and mj , are trying to allocate the same sending slot slk. It is irrelevant, whether these
messages are allocated to identical sending task or to different ones. Obviously, two different
options are possible: On the one hand message mi is scheduled prior to message mj (Case 1),
using the communication slot slk (s′ = mi ≺ mj). On the other hand message mj is allocated to
the first available communication slot slk (s′ = mi � mj) (Case 2). This scenario is depicted in
figure 5.3.

Figure 5.3: Different messages trying to allocate the same communication resource

Scenario 4

The fourth scenario is rather related to the usage of SAL’s bounded model checker than to a
situation of concurrency. The technique of bounded model checking determines if there is a
counterexample of length k to the hypothesis thatM satisfies the property ϕ. In order to be able

5.3. THE TASK AND MESSAGE SCHEDULING MODEL 41

to calculate a counterexamples with the given amount of steps k, the accurate schedule might
vary in parameter length l as well. Therefore, we define a scenario, where a message mi might
not be sent in the actual available slot slk, but wait for the next slot sl l. This enables to obtain
schedules with variable length l for any given length of the desired counterexample k.

Figure 5.4: Message mi can be sent in both of the next available slots

5.3 The Task and Message Scheduling Model

We describe the task and message scheduling problem as a T - Program. Therefore, we specify
the modelM by the following definition:

Definition 7 (Task and Message Scheduling Model) A task and message scheduling model is
defined as a tuple M = 〈 V, I,G,T 〉, where interpretations of the typed variables V describe
the set of states. I ⊆ V is a predicate that describes the initial states, G describes the goal states
and T describes the transition relation between current states and their successor states.

The model´s variables and parameters V are described in section 5.3.1. Interpretations of these
typed variables V describe the set of states S. The initial state(s) I are specified in 5.3.2. A set
of transitions T is introduced in section 5.3.4.

The SAL framework is used for specification of the task and message scheduling problem. In
section 5.4 we will illustrate a way of translating the state space - based on the representation of
the scheduling problem to SAL specifications. However, the presented approach is not limited to
this specific framework and can be applied to different frameworks as well.

5.3.1 State Representation

The given precedence graph G, as specified in section 2.2 (cf. example 1), comprises several
elements needed for the definition of a system state. These elements are a set of tasks T , a set of

42 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

messages M , a set of nodes N and a bus B. Thus, we start by defining the system state V as a
conjunction of these elements:

V = T ∪ M ∪ N ∪ B (5.1a)

Furthermore, a type declaration for these precedence graph elements is given, (5.2a) - (5.2d). To
specify tasks, messages, nodes and the bus, several parameters are needed for the definition of
all state variables V in a system state si.

T = {ti,started, ti,finished, ti,start, ti,clock, ti,comp, ti,node} (5.2a)
M = {mi,started,mi,set,mi,slot} (5.2b)
N = {Node i,free,Node i,task} (5.2c)
B = {Busfree} (5.2d)

Each task ti is represented by two boolean variables ti,started and ti,finished and three integer
variables ti,clock, ti,comp, and ti,start interpreted over N ∪ {0}, meaning:

ti,clock = {0, 1, 2, ...} (5.3a)
ti,comp = {0, 1, 2, ...} (5.3b)
ti,start = {0, 1, 2, ...} (5.3c)

(5.3d)

When ti,started is true, task ti is running and monitors that its execution time ti,clock does not in-
crease the computation time ti,comp. The task is finished, when its execution time equals the given
computation time. Upon termination the variable ti,finished is set to true. ti,start incorporates the
actual starting time of task ti. ti,node, interpreted over the set of nodes N , is defined to hold the
node ni, which the current task ti is allocated to, e.g, η(ni) =ti.

Each message is represented by two boolean variables mi,started and mi,set and the variable mi,slot,
which is interpreted over N. When mi,started is true, message mi is assigned to a certain slot sl j .
This slot sl j corresponds to σ(mi) and is held by the variable mi,slot. mi,set indicates that the
message has been scheduled successfully.

Additionally, the variables Node i,free, Node i,task and Busfree represent the communication in-
frastructure. Node i,free denotes the state of the CPU at certain node Node i. Busfree indicates
whether the current slot sl i on the time-triggered bus is already allocated to a node or not. If the
CPU of node ni and the current time slot on the time-triggered bus are not used, Node i,free and
Busfree are set to true. The variable Node i,task holds the actual task ti ∈ T , which currently uses
the CPU of node Node i. The Time variable indicates a common understanding of the current
time in the system.

5.3. THE TASK AND MESSAGE SCHEDULING MODEL 43

5.3.2 Initial State

Having defined all state variables V, the initial state I (V) is specified as follows:

I(V) =
∧

ti∈T, mi∈M, Node i∈N

ti,started ∧ ti,finished ∧ (ti,clock = 0) (5.4a)

∧ mi,started ∧ mi,set ∧ (mi,slot = null) (5.4b)
∧ Node i,free ∧ Busfree ∧ Node i,task = null (5.4c)
∧ (Time = 0) (5.4d)

In the initial state all tasks are not started and not finished. The actual clock computation is set
to zero (5.4a). Also all messages are not started and not allocated (5.4b). Each CPU of a node is
not used and the current starting slot is free (5.4c).

5.3.3 Goal State

The goal states G(V) are those states where all tasks have finished and all messages are assigned
(5.5a):

G(V) =
∧

ti∈T,mi∈M

ti,finished ∧ mi,set (5.5a)

5.3.4 Transitions

A set of transitions T = {tr1, tr2, ..., trn}, as part of the defined modelM, specifies the transition
relations between current states s and their successor states s′. A given transition, specified as
a guarded command, is invoked if and only if its guard is true. By this requirement the number
of possible transition invocations depends on the actual status of a given state s in time. This
depends, while constructing a schedule, on the current status of the traversal of the precedence
graph. Thus, the selection of possible transitions is limited to the set of active transitions in a
certain situation. Active transitions are all transitions whose guards are satisfied in a state s.

In this section we describe the set of transitions T specified in the context of symbolic task and
message scheduling. We specify six transition relations used to model the problem of integrated
task and message scheduling. Four different transitions are needed to define task level transitions:
the Start Task Transition (Tst), the Run Task Transition (Trt), the End Task Transition (Tet) and
the Change Task Transition (Tct). Two more transitions are used for the message level: Start
Message Transition (Tsm) and the End Message Transition (Tem). These transitions are encoded

44 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

as a conjunction of constraints over the current state variables V, while V’ specifies the next state
variables, cf. (5.6a):

T(V,V’) = Tst ∨ Trt ∨ Tet ∨ Tct ∨ Tsm ∨ Tem (5.6a)

The reason we are using a set of transition relations instead of a single one, is due to the com-
plexity of the integrated task and message scheduling problem and its consequently large and
complex number of constraints for a single transition. Although the transitions are in arbitrary
order, they cannot be executed non-deterministically since an arbitrary execution would lead to
an inaccurate schedule, e.g. finishing a task that has not been started. Therefore, rules for setting
the execution ordering of transitions are introduced in section 5.5. The set of transitions T is
introduced in the following.

5.3.4.1 Start Task Transition

The Start Task Transition Tst allows for starting all tasks, whose predecessors are already set.
Predecessors of a task tj are defined as all messages mk, that fulfill D(ti,mk) = tj .

Tst(V,V’) =
∨
ti∈T

(
ti,started ∧ NodegetNode(ti),free ∧

∧
j∈getPrecMsg(ti)

mj,set (5.7a)

∧ t′i,started ∧ t′i,start = Time (5.7b)
∧ Node ′getNode(ti),task = ti ∧ (t′i,clock = 0) (5.7c)

∧ Node ′getNode(ti),free

)
(5.7d)

The Start Task Transition Tst has several preconditions: (5.7a) demands that task ti has not been
started yet and the CPU of the tasks should be available. Furthermore, all input messages of task
ti need to be set (5.7a).

If there is a state s that satisfies these preconditions, Tst can be executed. Thus, task ti is started
(t′i,started = true) and the starting time t′i,start is set to the current global Time variable (5.7b).
t′i,clock stores the actual counter of computation duration and is set to 0. Furthermore, the tasks’
node CPU is allocated with the current task ti (5.7c) and therefore the resource is not free any-
more (5.7d).

5.3. THE TASK AND MESSAGE SCHEDULING MODEL 45

5.3.4.2 Run Task Transition

The Run Task Transition Trt ensures that either the task has not started, it has finished or the
clock of the task is incremented by one (5.8a).

Trt(V,V’) =
∨
ti∈T

(
ti,started ∧ ti,finished ∧ (t′i,clock = ti,clock + 1)

)
(5.8a)

Thus, the Run Task Transition Trt ensures that a started task can be executed on its allocated
node. However, the execution of the run task transition is bounded by several conditions. This is
caused by the fact that at a given point in time several transitions need to be handled prior, caused
by the characteristic of the given precedence graph G (compare section 5.5). This prioritization
is necessary, because the run task transitions will increase the global time variable Time and the
variable t′i,clock by one if and only if the following conditions are fulfilled:

There exists a task ti with:

• ti,started ∧ (ti,clock < ti,comp)

• No other task tj is able to start (condition of Tst is not fulfilled)

• No other task tk is able to be finished (condition of Tet is not fulfilled)

• No message ml is able to start (condition of Tsm is not fulfilled)

• The change task transition Tct can not be executed

The Run Task Transition Trt allows tasks to run on their allocated node (nodes’ CPU) by incre-
menting the time variable Time, respectively the task clock variable t′i,clock by one (t′i,clock =
ti,clock + 1). Basically, the run task transition controls the progress of time. Each task, which has
already started and whose computation duration is not actually reached, can proceed its execution
time, controlled by the ti,clock variable.

These pre-conditions describe the exact situation in which the Run Task Transition Trt is used,
that is, the situation in which tasks execute and time is allowed to pass.

5.3.4.3 Change Task Transition

The Change Task Transition Tct models the stopping of an already started task tj by another task
ti allocated to the same resource Node i. This is necessary, if the precedence graph G consists
of concurrent task precedence relations which might originate two competitively tasks (share
the same resource) at the same point in time. In order to find an optimal solution in terms of
total length of the final schedule, it might be necessary to abort such an already started task tj
and to enable to start the concurrent task ti instead. However, the Change Task Transition does

46 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

not support preemption, meaning that the stopped task tj needs to start again (cf. scenario 2 in
section 5.2).

Tct(V,V’) =
∨
ti∈T

(
ti,started ∧ NodegetNode(ti),free ∧

(∧
j∈getPrecMsg(ti)

mj,set

)
(5.9a)

∧ t′i,started ∧ t′i,start = Time ∧ t′i,clock = 0 (5.9b)

∧ t ′j,started ∧ t′j,start = 0 ∧ t′j,clock = 0 (5.9c)

∧ Node ′getNode(ti),task = ti

)
(5.9d)

The condition of Tct are nearly the same as the condition for the Start Task Transition Tst, except
of the variable NodegetNode(ti),free, which denotes that the resource is already used, (5.9a), and
thus set to false. For instance, task ti is willing to start at a current point in time. But the
CPU of the node is already allocated by the concurrent task tj . The task tj is obtained as tj
= NodegetNode(ti),task, which stores the actual task currently using the resource.

If there is a state satisfying these preconditions, the waiting task ti is able to stop task tj . Thus,
task ti is started, the starting time t′i,started is set to the current Time variable (5.9b) and the
computation time counter t′i,clock is set to 0. The variables for task tj , which previously used the
nodes’ CPU, are reset (5.9c) and the resource is handed over to task ti (5.9d).

5.3.4.4 End Task Transition

The End Task Transition Tet ensures that a task ti can be finished and the resource can be released
for another task execution.

Tet(V,V’) =
∨
ti∈T

(
ti,started ∧ ti,finished ∧ ti,clock = ti,comp (5.10a)

∧ t′i,finished ∧ Node ′getNode(ti),free (5.10b)

∧ Node ′getNode(ti),task = 0

)
(5.10c)

The preconditions in (5.10a) demand that a task ti has already started and has not yet finished.
Furthermore, the execution time, measured by the variable ti,clock, should be equal to the com-
putation duration stored in ti,comp, which implies that the end of the tasks execution has been
reached. If these conditions are satisfied, the variable t′i,finished can be set to true. Further-
more, the node’s resource can be released for the next task (5.10b), (5.10c). In that case the task

5.3. THE TASK AND MESSAGE SCHEDULING MODEL 47

execution is finished and the node’s resource is released for the possible execution of the next
task.

5.3.4.5 Start Message Transition

The Start Message Transition Tsm is one of two transitions that schedules the message on the
bus level. This transition allocates the messages to time slots of the underlying time-triggered
protocol.

Tsm(V,V’) =
∨

mi∈M

(
mi,started ∧ Busfree (5.11a)

∧

(∧
j∈getPrecTask(mi)

tj,finished

)
(5.11b)

∧ m ′i,started ∧ m ′i,slot = Time ∧ Bus ′free

)
(5.11c)

(5.11a) demands that the message mi has not started and the next time slot is not allocated
yet by another message. The predecessor task, which sends this message, is calculated by the
function getPrecTask(mi). In this context the predecessor task ti to message mi is that task,
that fulfills D(ti,mi) = tj . If this calculated task ti is finished (ti,finished = true), the transition is
used (5.11b). The message variable m ′i,started is set to true in the next state s′, the slot allocation
(σ(mi)) uses the current time reference (5.11c), the bus is allocated Busfree = false and the time
variable Time is incremented by one. (5.11c).

Furthermore, under certain conditions, e.g if no other task has been started or finished, Tsm (like
Trt) is able to progress time by one time unit (for a more detailed description compare section
5.5 and 5.6).

5.3.4.6 End Message Transition

The End Message Transition Tem ensures that a message mi can be finished after its allocation
to a time slot sl i.

Tem(V,V’) =
∨

mi∈M

(
mi,set ∧ mi,started (5.12a)

∧ Time = mi,slot + 1 (5.12b)

∧ m ′i,set ∧ Bus ′free

)
(5.12c)

48 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

(5.12a) demands that the message mi is not set yet, but already allocated to a certain slot, namely
the one already started. Furthermore, the communication slot mi,slot, respectively the global time
has been incremented by one, that is the next time slot (5.12a).

If there is a state s that satisfies these conditions, the message mi is set, m ′i,set = true, and the
communication resource is released (Bus ′free = true) (5.12c).

5.3.4.7 Wait Message Transition

The Wait Message Transition Twm is rather related to the usage of SAL’s bounded model checker,
as described in scenario 4 in section 5.2. In order to calculate counterexamples with the given
length k, we define that a message mi might not be sent in the actual available slot slk, but wait
for the next slot slk+1. This allows for schedules with variable length l.

Twm(V,V’) =
∨

mi∈M

(
mi,started ∧ Busfree (5.13a)

∧

(∧
j∈getPrecTask(mi)

tj,finished

)
(5.13b)

∧ m ′i,started ∧ Busfree

)
(5.13c)

The conditions of the Wait Message Transition Twm are the same as for the Start Message Tran-
sitions Tsm. (5.13b) demands that the message mi has not started and the next time slot is not
yet allocated by another message. The predecessor task, which sends this message is calculated
by the function getPrecTask(mi). The predecessor task ti to message mi is the task, that ful-
fills D(ti,mi) = tj . If this calculated task ti is finished (ti,finished = true), the transition can
be fired (5.13c). The message variable m ′i,started is kept false in the next state s′, because the
message is waiting for the next available slot. The communication resource remains free as well
(Busfree = true).

In certain conditions, e.g if no other task may be started of finished, the start message transition
Tsm, like the run task transition Trt, is able to progress time by one time unit. If the given
conditions are fulfilled the time variable Time is incremented by one.

5.4 SAL Representation

We use SAL (Symbolic Analysis Laboratory, http://sal.csl.sri.com) [dMOR+04]
from SRI International as a framework for specification and scheduling synthesis. Thus, we

http://sal.csl.sri.com

5.4. SAL REPRESENTATION 49

take the formal model, as specified in section 5.3, as a basis for translating scheduling synthesis
problem to SAL specifications, as published in [VSE09].

5.4.1 Representation of a state

In order to implement a state representation in SAL, we use the different elements of the prece-
dence graph, specified in section 5.3.1, namely a set of tasks, a set of messages and a set of
nodes.

As an example, we consider a precedence graph G consisting of four tasks deployed on three
different nodes and connected with 4 edges. We begin by defining all given tasks via the enumer-
ation type TASKS. Furthermore, the enumeration types MESSAGES and NODES specify, respectively,
all messages and all nodes of the given precedence graph.

TASKS : TYPE = {Task0, Task1, Task2, Task3};
MESSAGES : TYPE = {Edge0, Edge1, Edge2, Edge3};
NODES : TYPE = {Node0, Node1, Node2};

We assume that time is discrete. Thus, we define the Time - variable in this manner. Possible
clock values are nonnegative integers and events can only occur at integer time values.

TIME : TYPE = [0..100];

As a next step, the type declaration for these precedence graph elements are specified in SAL.
Therefore, several parameters are defined in dedicated data structures. In SAL, tasks, messages
and nodes are defined as a task, a message, and a node record, respectively (cf. figure 5.5).

Task Record Message Record Node Record

taskrecord:TYPE= msgrecord:TYPE= noderecord:TYPE=

[# [# [#

t started:BOOLEAN, m started:BOOLEAN, node free:BOOLEAN,

t finished:BOOLEAN, m set:BOOLEAN, node task:TASKS

t start:NATURAL, m slot:NATURAL #];

t clock:NATURAL, #];
t comp:NATURAL,

t node:NODES

#];

Figure 5.5: Declaration of task, message and node records

The defined task record taskrecord, for instance, stores the parameter information of a single
task ti. The variable t started indicates whether ti has already started or not. Because a tasks’
computation time can last for more than one time step, the variable t finished indicates whether
task ti has finished or not. In combination with the variable t clock, which holds the actual task

50 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

computation duration, the current status of a task can be exactly described. To obtain a time
schedule, each task needs to store its calculated starting time. This is done by the variable
t start. Furthermore, t comp stores the given computation duration of task ti, and t node

represents the node a task is allocated to. We specify and store the parameters of all tasks defined
for the given precedence graph G as an array of records:

TASKARRAY : TYPE = ARRAY TASKS OF taskrecord;
MSGARRAY : TYPE = ARRAY MESSAGES OF msgrecord;
NODEARRAY : TYPE = ARRAY NODE OF noderecord;

Precedence Relations in SAL

The current state definition does not include any precedence relations. By modeling precedence
relations for a given precedence graph in SAL, a distinction between task and message prece-
dence relation needs to be done. For each given task ti, and message mi respectively, the direct
predecessor is stored to cope with all kinds of precedence graph characteristics. A predecessor of
a task is defined as a message, except when the task is the starting task (source of the precedence
graph). In that case the source task has no predecessors. For instance, a task ti may receive two
messages. These messages are stored as predecessors of that task. A predecessor of a message
is always a single task. These precedence relations are represented via an array structure, as

PREC_TASK : ARRAY INDEX OF MESSAGES
PREC_MSG : ARRAY INDEX OF TASKS;

The allocation of tasks to nodes, defined as τ : T → 2M (cf. section 2.3), is specified by an array
structure as:

NODETASKS: TYPE = ARRAY INDEX OF NODES

The unique precedence relation of each single task is modeled as follows:

prec_TASK1 : PREC_TASK = [[i:INDEX]Edge0];
prec_TASK2 : PREC_TASK = [[i:INDEX]Edge1];
prec_TASK3 : PREC_TASK = [[i:INDEX]];

The precedence relations for all messages are modeled in the same way:

prec_Edge1: PREC_MSG = [[i:INDEX]Task0];
prec_Edge2: PREC_MSG = [[i:INDEX]Task1];
...

Precedence functions

Two functions getPrecTask and getPrecMsg are implemented and used as a condition request
about a task’s or a message’s predecessors. The getPrecTask function is used by a message
to check whether its predecessor (namely the task who sends this message) is already finished

5.4. SAL REPRESENTATION 51

(t finished = TRUE). Hence, getPrecTask has two parameters: the message m, whose pre-
decessors’ condition is requested and the task record array taskarry. If the task, which is
predecessor (or sender) of message m is found, the current status (condition) can be detected. If
and only if the predecessor task is already finished the function returns TRUE. This scenario is
specified in SAL as follows:

getPrecTask(m : MESSAGES, taskarray : TASKARRAY) : BOOLEAN =
IF(m=Edge0 AND(EXISTS(j:INDEX1):taskarray[prec_Edge0[j]]

.t_finished=FALSE)) THEN FALSE
ELSIF (m=Edge1 AND(EXISTS(j:INDEX1):taskarray[prec_Edge1[j]]

.t_finished=FALSE)) THEN FALSE
ELSIF ...
ELSE TRUE
ENDIF;

The function getPrecMsg(t:TASKS, msgarray:MSGARRAY) : BOOLEAN detects for a task ti if
all predecessors, namely all messages mj with D(tx,mj) = ti are already set. If all predecessors
messages are already scheduled, the function returns TRUE. Initially, only the source task fulfills
this request. Thus, it can be said, that the schedule is build according to the precedence graph
from source to sink. The function getNodeTask(t:TASKS):NODES is modeled to detect and
return the node n, a task ti is allocated to. Accordingly, the function getPrecTask(m:MESSAGES,

taskarray:TASKARRAY):BOOLEAN detects for a message mi if its predecessor, namely the task
ti with D(ti,mi) = tj is already set.

5.4.2 The basic module

The basic construct in SAL is a module. A module contains the definition of variables (including,
local, global, input and output), the initial state, and the transition relations. We specify this
discrete model in the language of SAL as follows. The discrete-time variable Time is used for
specifying the global system time.

scheduler : MODULE =
BEGIN

GLOBAL currenttaskarray : TASKARRAY
GLOBAL currentmessagearray : MSGARRAY
GLOBAL currentnodearray : NODEARRAY
GLOBAL Time : TIME
GLOBAL Bus_free:BOOLEAN

5.4.3 Initialization

The initial state is specified in the language of SAL as follows.

52 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

INITIATLIZATION
currenttaskarray[Task0].t_comp = 2.0;
currenttaskarray[Task1].t_comp = 2.0;
...
currenttaskarray[Task0].t_node = Node0;
currenttaskarray[Task1].t_node = Node1;
...
Time = 0;
Bus_free = TRUE;
...
(FORALL (i:TASKS): currenttaskarray[i].t_started = FALSE);
(FORALL (i:TASKS): currenttaskarray[i].t_finished = FALSE);
(FORALL (i:TASKS): currenttaskarray[i].t_start = 0);
(FORALL (i:TASKS): currenttaskarray[i].t_clock = 0);
(FORALL (i:MESSAGES): currentmessagearray[i].m_started = FALSE);
(FORALL (i:MESSAGES): currentmessagearray[i].m_set = FALSE);
(FORALL (i:MESSAGES): currentmessagearray[i].m_slot = 0);
(FORALL (i:NODES): currentnodearray[i].node_free = TRUE);
(FORALL (i:NODES): currentnodearray[i].node_task = Task3);

Initially, the given computation time for each task cureenttaskarray[Task0].t comp is set.
This is done for each task individually. In this case all computation times corresponds to
the length of two time units. Furthermore, the allocation of tasks to nodes is initialized, e.g.
currenttaskarray[Task0].t node=Node0. The global variable Time is set to 0. The time-
triggered communication bus is represented by the variable Bus free, which indicates whether,
at a certain point in time, the bus, respectively the current time slot, is allocated by a node.
Initially, the bus is not used (Bus free=TRUE). Initialization of the record arrays for tasks, mes-
sages and nodes can be described as follows: None of the tasks has started, thus the variable
t started is set to FALSE. No task has finished (t finished = FALSE) and the starting time
variable (t start) is set to 0. The clock variable t clock is also set to 0. The initialization for
all given messages is done in the same way. All messages are not started (m started=FALSE).
The variable m set=FALSE points out that no messages has been scheduled yet, which implies
that also no slot has been allocated by a certain message (m slot=0). For the node record the
parameter node free is initially set to the sink task in the given precedence graph G.

5.4.4 Transitions

State transitions are specified in SAL via guarded commands. Here, the [character introduces a
set of guarded commands, which are separated by the [] symbol. A SAL guarded command is
eligible for execution in the current state if its guard (i.e., the part before the --> arrow) is true.
The SAL model checker nondeterministically selects one of the enabled commands for execution
at each step. In case no command is eligible, the system is deadlocked. State variables are
unprimed before execution of a command and primed in the new state, that is after the execution
of the command.

5.4. SAL REPRESENTATION 53

The scheduling algorithm is encoded in SAL using six different transition relations. Four transi-
tion relations (start task, run task, change task, end task) are used to model task schedul-
ing, while start message and end message encodes message scheduling on bus level.

Start Task Transition

In order to illustrate the Start Task Transition Tst, the implementation of this transition in SAL
is depicted below. The following transition is executed for all tasks ti, for which the precondi-
tion holds Thus, if any task ti, represented by the SAL code fragment currenttaskarray WITH

[i], fulfilling the three conditions defined in (5.7a), is allowed to be started ([i].t started

:= TRUE). The clock is set to 0 and the starting time can be calculated by the actual time
([i].t start := Time). Furthermore, the node’s resource is allocated by the current task ti,
therefore, the .node free variable is set to FALSE as specified below.

[([](i:TASKS): start_transition:
currentnodearray[getNodeTask(i)].node_free = TRUE AND
currenttaskarray[i].t_started = FALSE AND
getPrecMsg(i,currentmessagearray) = TRUE
-->
currenttaskarray’= currenttaskarray WITH [i].t_started:=TRUE

WITH [i].t_clock:=0
WITH [i].t_start:=Time;

currentnodearray’= currentnodearray
WITH [getNodeTask(i)].node_free:=FALSE
WITH [getNodeTask(i)].node_task:=i)

]

Run Task Transition

The Run Task Transition Trt allows tasks to run on their allocated node (using the nodes’ CPU
resource) by incrementing the time variable Time, respectively the task’s clock variable clock

by one. Basically, the run transition controls the progress of time. Each task, which has already
started and whose computation duration is not actually reached, can progress its execution time,
controlled by the t clock variable. The first part of the pre-condition (i.e., first disjunct) states
that the current task ti has already started. The value of the task’s clock variable ti,clock has to
be less than the value of the computation time variable ti,comp, otherwise the task would be a
candidate for the end transition. Additional conditions, for excluding the possibility of executing
other transitions, have to be satisfied for enabling the Run Task Transition. These conditions are
described as follows.

There exists a task ti with:

• ti,started ∧ (ti,clock < ti,comp)

• No other task tj is able to start (condition of Tst is not fulfilled)

54 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

• No other task tk is able to be finished (condition of Tet is not fulfilled)

• No message ml is able to start (condition of Tsm is not fulfilled)

• The change task transition Tct can not be executed

[]
run_transition:

(EXISTS (i:TASKS): currenttaskarray[i].t_started = TRUE AND
currenttaskarray[i].t_clock < currenttaskarray[i].t_comp AND

(NOT (EXISTS (j:TASKS): j /= i AND
(currentnodearray[getNodeTask(j)].node_free=TRUE AND
currenttaskarray[j].t_started = FALSE AND
getPrecMsg(j,currentmessagearray) = TRUE))) AND

(NOT (EXISTS (k:TASKS): k /= i AND
(currenttaskarray[k].t_comp=currenttaskarray[k].t_clock AND
currenttaskarray[k].t_finished=FALSE))) AND

(NOT (EXISTS (l:MESSAGES): (currentmessagearray[l].m_set = FALSE AND
currentmessagearray[l].m_started = FALSE AND
Bus_free = TRUE AND
getPrecTask(l,currenttaskarray)=TRUE)))

OR
(EXISTS (m:TASKS): m /= i AND

currentnodearray[getNodeTask(m)].node_free = FALSE AND
getNodeTask(m) = getNodeTask(i) AND
currenttaskarray[m].t_started = FALSE AND
getPrecMsg(m,currentmessagearray)=TRUE) AND
currenttaskarray[i].t_started = TRUE AND
currenttaskarray[i].t_clock < currenttaskarray[i].t_comp AND

(NOT (EXISTS (j:TASKS): j /= i AND
(currentnodearray[getNodeTask(j)].node_free=TRUE AND
currenttaskarray[j].t_started = FALSE AND
getPrecMsg(j,currentmessagearray)=TRUE))) AND

(NOT (EXISTS (k:TASKS): k /= i AND
(currenttaskarray[k].t_comp=currenttaskarray[k].t_clock AND
currenttaskarray[k].t_finished=FALSE))) AND

(NOT (EXISTS (l:MESSAGES): (currentmessagearray[l].m_set = FALSE AND
currentmessagearray[l].m_started = FALSE AND
Bus_free = TRUE AND
getPrecTask(l,currenttaskarray)=TRUE)))

-->
currenttaskarray’[Task0].t_clock =

IF currenttaskarray[Task0].t_started = TRUE AND
currenttaskarray[Task0].t_clock < currenttaskarray[Task0].t_comp

THEN currenttaskarray[Task0].t_clock+1
ELSE currenttaskarray[Task0].t_clock ENDIF;

currenttaskarray’[Task1].t_clock =
IF currenttaskarray[Task1].t_started = TRUE AND
...

Time’=Time+1;)

5.4. SAL REPRESENTATION 55

The first part of the pre-condition (i.e., first disjunct) states that the current task ti has already
started. The value of task clock variable tclock has to be less than the value of the computation time
variable tcomp, otherwise the task would be a candidate for the end transition. Three additional
conditions, for excluding the possibility of executing other transitions, have to be satisfied for
enabling the run transition:

• No other task is able to start on another node (handled by the start transition),

• No other task is able to be finished (handled by the end transition) and

• No message is able to start (handled by the start message transition).

The second part of the disjunction in the precondition specifies the reaction, in case of interrup-
tion of the current running task by another one (this scenario is explained in section cf. 5.3.4.3).
These conditions state that:

• Another task can be started on the same node,

• No other task can be finished and

• No message is able to start.

These pre-conditions describe the exact situation in which the Run Task Transition Trt is used,
that is, the situation in which tasks executes and time is allowed to pass.

End Task Transition

The End Task Transition ensures that a task ti can be finished and the resource
released. The guarded command detects whether the task execution time (rep-
resented by currenttaskarray[i].t clock) equals the task’s computation time
(currenttaskarray[i].t comp).

([](i:TASKS): endtransition:
currenttaskarray[i].t_started = TRUE AND
currenttaskarray[i].t_clock = currenttaskarray[i].t_comp AND
currenttaskarray[i].t_finished = FALSE
-->
currenttaskarray’[i].t_finished = TRUE;
currentnodearray’= (currentnodearray WITH [getNodeTask(i)].node_free:=TRUE

WITH [getNodeTask(i)].node_task:=Task3)
)

In case these preconditions are fulfilled the task’s execution is finished and the node’s resource
is released for the possible execution of the next task.

56 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

Start Message Transition

The Start Message Transition enables sending of a message on the bus in the next avail-
able time slot of the underlaying time-triggered protocol. As a precondition the next pos-
sible slot needs to be free (not already allocated by another message). This is checked
by the variable Bus free=TRUE. Furthermore, the message should not be started and not
finished yet, (currentmessagearry[i].m started=FALSE, currentmessagearry[i].m set

= FALSE). However, in certain conditions the start message transition, like the
run task transition, is able to progress time by one time unit. This, however, prerequires
a check of these conditions (e.g. if no other task may be started of finished) Thus, it needs to be
checked, whether these other transitions are able to be handled first.

Therefore, two more conditions, introduced by NOT (EXISTS...), are implemented in SAL to
cover these constrains:

• No task is able to start (handled by the start task transition)

• No task is able to be finished (handled by the end task transition)

([](i:MESSAGES): start_message_transition:
currentmessagearray[i].m_set = FALSE AND
currentmessagearray[i].m_started = FALSE AND
Bus_free = TRUE AND
getPrecTask(i,currenttaskarray)=TRUE AND
(NOT(EXISTS(j:TASKS):currentnodearray[getNodeTask(j)].node_free=TRUE AND

currenttaskarray[j].t_started = FALSE AND
getPrecMsg(j,currentmessagearray)=TRUE)) AND

(NOT(EXISTS(k:TASKS):currenttaskarray[k].t_started = TRUE AND
currenttaskarray[k].t_clock = currenttaskarray[k].t_comp AND
currenttaskarray[k].t_finished = FALSE))

-->
currentmessagearray’=currentmessagearray WITH [i].m_started:=TRUE

WITH [i].m_slot:=Time;
Bus_free’ = FALSE;
Time’=IF(NOT (EXISTS(j:TASKS):currenttaskarray[j].t_started=TRUE AND

currenttaskarray[j].t_finished=FALSE))
THEN Time+1

ELSE Time
ENDIF;

)

Thus, if these preconditions are satisfied, the current message, (currenttaskarray[j]), is
started and allocated to a certain slot. Hence, the bus is blocked and, if there are no further
tasks which need to be started or finished, then the time variable is incremented.

5.5. TRANSITION ORDERING 57

End Message Transition

The End Message Transition ensures that a message mi can be finished and the bus re-
source is released. The guarded command represents this requirement. Therefore it is
checked, whether time has elapsed since starting the message / slot allocation (cf. Time =

currentmessagearray[i].m slot+1). If these conditions are satisfied the bus resource is re-
leased and the message is marked as set (currentmessagarray’[i].m set = TRUE).

([](i:MESSAGES): endmessagetransition:
currentmessagearray[i].m_set = FALSE AND
currentmessagearray[i].m_started = TRUE AND
Time = currentmessagearray[i].m_slot+1
-->
currentmessagearray’[i].m_set = TRUE;
Bus_free’ = TRUE
)

For being able to generate a task and message schedule, which is optimal in the sense that to
minimize the maximum end-to-end latency is minimized, it is important that the order in which
the transitions are executed is controlled. This is done due to the optimization criteria as well as
for complying with all kinds of precedence graph characteristics (e.g., sequential or concurrent
precedence graphs). In the following we describe this transition ordering.

5.5 Transition Ordering

Although the transitions are written in arbitrary order, they cannot be executed non-
deterministically due to undesirable effects on the integrated schedule, meaning that for instance,
that tasks need to be started and computed before they can be finished. Thus, an ordering has to
be chosen such that it reflects the constraints posed on task execution and message transmission
as given by the precedence graph.

For the given example 1 in section 2.2, a possible execution ordering of transitions is illustrated
below:

The given precedence graph G is traversed from source to sink. The source task(s) tsource are
characterized by the non-existence of any predecessors (input messages). Thus, the start task
transition Tst for such source tasks are executed first. Whenever the given precedence graph G
allows for different possible solutions, characterized by the concurrency to a shared resource
(either the time-triggered bus or a nodes’ CPU), we use the Model Checker capabilities (state
space exploration) to explore all interleaved possibilities. The ordering of transitions is caused
by this requirement. Figure 5.6 points out that both Edge0 (message 0) and Edge1 (message1)
may access the next available time slot. Thus, both ways are handled via different next states
s′. Generally, from each given state s the transitions generate a next state s′ with all necessary

58 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

Figure 5.6: Example of possible transition execution order

scheduling combinations which are possible, according to the given precedence graph G. Be-
cause the time variable Time can also be increased in two transitions (compare section 5.6) the
ordering of transitions needs to be specified (compare run task transition Trt and start message
transition Tsm).

5.6 The ’Time’ variable

A discrete time variable Time is necessary in order to have a common understanding of the time
in the system. The granularity of the time variable corresponds to a slot duration. We assume the
computation time of a task (c(ti)) to be equal to a slot duration or multiples of it. This includes
the time consumed for reading and writing the buffer. The global time increases discretely by
this time unit. The Time variable is then used to allocate starting times to tasks and slot numbers
to messages.

Furthermore, we allow only the following three different transitions to increase the time variable
by one time unit: the Run Task Transition (Trt), Start Message Transition (Tsm) and the Wait
Message Transition (Twm). Before incrementing the Time variable in these transitions, certain
conditions need to be fulfilled, that is other transitions might be executed prior. As the Wait
Message Transition (Twm) is rather related to the usage of SAL’s bounded model checker it is not
used in case of using the symbolic model checker.

Before incrementing the Time variable in these three transitions, it needs to be guaranteed that
all possible other actions, namely other transitions, have been executed at this point in time. This
corresponds to the traversal of the precedence graph from source to sink. For instance: If there
are any tasks that are able to start (their starting times can be allocated), these tasks need to
start (Start Task Transition Tst) before the time is incremented. This would cause a non-optimal
schedule in terms of minimal end-to-end latency.

5.7. SOLVING (HARD) REAL-TIME SCHEDULING PROBLEMS USING SAL 59

Therefore, the three transitions (Trt, Tsm and Twm), implying an increase of time variable Time,
are executed if and only if all of the following transitions are executed prior. This is done in
arbitrary order.

The Run Task Transition Trt

• Start Task Transition Tst

• Interrupt Task Transition Tit

• End Task Transition Tet

• End Message Transition Tem

• Start Message Transition Tsm

The Start Message Transition Tsm

• Start Task Transition Tst

• End Task Transition Tet

The Wait Message Transition

• Start Task Transition Tst

• End Task Transition Tet

5.7 Solving (Hard) Real-Time Scheduling Problems using
SAL

Symbolic witnesses and counterexamples yield proofs for the validity or falsity of a CTL formula
in a model. The primary function of a model checker is the analysis of the specified model
M with respect to a given property ϕ. Let M= 〈 V, I,G,T 〉 be the model for the task and
message scheduling problem, as defined in section 2.4. Furthermore, let ϕ be a CTL formula
specifying that there exists a state where all tasks have been finished (5.14a).

ϕ = EF (∀ ti ∈ T. ti,finished) (5.14a)

60 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

The condition that all messages are sent is implicitly contained in this formula, since all task
finished implies that all messages have been sent as well. This is guaranteed by the functions
specified in 5.3.1.

For obtaining a schedule as a situation to the considered task and message scheduling problem,
we model-check the negation of the above CTL formula, specified with AG, which denotes the
always globally operator of linear temporal logic (5.15a):

ψ = ¬ ϕ = AG (∃ ti ∈ T. ti,finished) (5.15a)

The model checker returns either verified or falsified, depending whether the given property ψ is
fulfilled by the model or not. In the latter case, the model checker usually outputs a counterex-
ample for the property ψ, which is a path or trace π(s0, ..., sn) such that I(s0) and ¬ϕ(sn), that
is, ψ(sn).

In case of finding such a state, it would suggest that there is a state sn in which all tasks are
scheduled, and implicitly the messages are. The counterexample or path π(s0, ..., sn) shows how
to reach this state and gives us the path to the final integrated task and message schedule. The last
step sn of the counterexample equals the complete task and message schedule, which implicitly
fulfills the requested requirements. Thus, a schedule under consideration is found.

The SAL representation is depicted below:

th: theorem schedule |- AG (EXISTS (i:TASKS):currenttaskarray[i]
.t_finished=FALSE);

In the following we illustrate how the scheduling problem for a set of four tasks is solved by using
symbol model checking and bounded model checking techniques. For analysis and demonstra-
tion of operation, we use the simple example explained in section 2.2.

5.7.1 Task and Message Scheduling using SAL-SMC

We invoke SAL’s symbolic model checker sal-smc by the following line of code.

sal-smc -v 4 context.sal th

sal-smc search for a counterexample to the property th. SAL offers several options that can be
used for model checking the given context.sal file. The -v 1 option controls how much infor-
mation is given by the model checker. The --enable-dynamic-reordering option enables to
usage of dynamic reordering strategies for Ordered Binary Decision Diagrams (ODBBs). These
strategies may accelerate the process of computation and increase its efficiency. This is investi-
gated in section 8.3. The set of options can be displayed by the command sal-smc --help.

5.7. SOLVING (HARD) REAL-TIME SCHEDULING PROBLEMS USING SAL 61

SAL outputs a counterexample, which contains several interesting properties that are listed be-
low. The verification time of sal-smc used to find a counterexample for the given scheduling
problem is measured with 0.953 seconds. The Model Checker explores 367 states with a total
execution time of 6.985 seconds.

Verification Time: 0.953 secs
total execution time: 6.985 secs
number of system variables: 97
number of visited states: 367.0
BDD conversion time: 5.422 secs

The last state of the counterexample contains the final schedule, is depicted in section 5.7.3. This
state and the extracted schedule is depicted in section 5.7.3.

5.7.2 Task and Message Scheduling using SAL-INF-BMC

We invoke SAL’s infinite-state bounded model checker sal-inf-bmc by the following line of
code:

sal-inf-bmc -d 1 -v 1 context.sal th
...
no counterexample between depth: [0, 1].

sal-inf-bmc search for a counterexample to the property th. The -d 1 option specifies the
depth of the search, in this case, only one step. This depth comprises to the bound k that
decides weather the system satisfies the logic property ψ by exploring the underlying state
space in a depth of k. The -v 1 option controls how much information sal-inf-bmc outputs.
context.sal is the name of the SAL context in which the property th is specified (compare
section 5.3).

As expected, sal-inf-bmc does not find any counterexample at depth one. We increase the
search depth.

sal-inf-bmc -d 24 -v 1 scheduler th

This invocation finds a counterexample at exactly 24 steps. A BMC Time of 16.284 seconds and
a total execution time of 17.004 seconds are obtained. The last step of the given counterexample
equals the result from sal-smc and is depicted in section 5.7.3. Thus, the same schedule is
calculated.

BMC Time: 16.284 secs
total execution time: 17.004 secs
number of system variables: 42

However, it is possible to run the bounded model checker with iterative deeping. With this option,
sal-inf-bmc searches for counterexamples of increasing length. It stops when either a coun-
terexample is detected or the search range is covered: sal-inf-bmc -d 26 -it scheduler

62 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

th. SAL outputs a counterexample with the following parameters: The verification time of
sal-inf-bmc while finding a counterexample is measured with 152.387 seconds. The Model
Checker needs a total execution time of 153.387 seconds.

5.7.3 Counterexample and Schedule

The model checker shows that there is a state sn, that fails the correctness property ψ. This
state corresponds to the situation in which all tasks are finished. Because of the given func-
tions getPrecTask and getPrecMsg (compare section 5.3) and the sequence of transitions,
specified in section 5.5, it follows that all messages are allocated to slots as well.

By finding such a state sn that fails the correctness property, the model checker outputs a coun-
terexample. A counterexample is depicted in the form of computation traces that are generated
when a property fails to hold. The complete integrated task and message schedule is included
in the last state of this counterexample. For the given example 1 (cf. section 2.2), the model
checker outputs a counterexample that contains 24 transitions steps. The last state sn is depicted
below:

Step 24: --- System Variables (assignments) ---
currenttaskarray[Task0].t_clock = 2
currenttaskarray[Task0].t_comp = 2
currenttaskarray[Task0].t_finished = true
currenttaskarray[Task0].t_node = Node0
currenttaskarray[Task0].t_start = 0
currenttaskarray[Task0].t_started = true
currenttaskarray[Task1].t_clock = 2
currenttaskarray[Task1].t_finished = true
currenttaskarray[Task1].t_node = Node1
currenttaskarray[Task1].t_start = 3
currenttaskarray[Task1].t_started = true
currenttaskarray[Task2].t_clock = 2
currenttaskarray[Task2].t_comp = 2
currenttaskarray[Task2].t_finished = true
currenttaskarray[Task2].t_node = Node1
currenttaskarray[Task2].t_start = 5
currenttaskarray[Task2].t_started = true
currenttaskarray[Task3].t_clock = 2
currenttaskarray[Task3].t_comp = 2
currenttaskarray[Task3].t_finished = true
currenttaskarray[Task3].t_node = Node2
currenttaskarray[Task3].t_start = 8
currenttaskarray[Task3].t_started = true
currentmessagearray[Edge0].m_set = true
currentmessagearray[Edge0].m_slot = 2
currentmessagearray[Edge0].m_started = true
currentmessagearray[Edge1].m_set = true
currentmessagearray[Edge1].m_slot = 3
currentmessagearray[Edge1].m_started = true

5.7. SOLVING (HARD) REAL-TIME SCHEDULING PROBLEMS USING SAL 63

currentmessagearray[Edge2].m_set = true
currentmessagearray[Edge2].m_slot = 5
currentmessagearray[Edge2].m_started = true
currentmessagearray[Edge3].m_set = true
currentmessagearray[Edge3].m_slot = 7
currentmessagearray[Edge3].m_started = true
Time = 10
Bus_free = true

From the values of the state variables of the counterexample, a schedule γ = {ti 7→γi|∀ti ∈ T}
is extracted. For the simple example considered here, the following schedule can be extracted:

γ = {t0 7→〈0, {sl2, sl3}〉,
t1 7→〈3, {sl5}〉,
t2 7→〈5, {sl7}〉,
t3 7→〈8, {}〉}

The calculated schedule is illustrated in figure 5.7. Tasks t1 and t2 are allocated to the same node:
Node1. Hence, the execution ordering needs to be sequential for that node.

The global variable Time denotes the length of the final schedule. This variable is only
influenced by the three transitions: run task transition, start message transition and
wait message transition. As explained in section 5.5, these transitions guarantee that the
time only proceeds, if no other transitions are able to be handled. That is why the current time
reached in any certain state, represented by the variable Time, equals the schedule length. For
the given example the schedule has a length of 10 time units.

Figure 5.7: Calculated Task and Message Schedule for the given Example 1

In general, the obtained schedule might not be optimal, with respect to end-to-end latency, be-
cause the transition system is allowed to take transitions at which no time is consumed. To obtain
an optimal task and message schedule, we further use a binary search for finding that solution,
which is presented in the next section.

64 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

5.8 Binary Search Algorithm for finding the optimal solution

The model checker analyzes the specified model M with respect to a given property ψ. The
model checker returns either verified or falsified, depending whether or not a given property is
fulfilled by the model.

As illustrated in section 5.7, the solution to the task and message scheduling problem is formally
characterized by the CTL formula ϕ = EF (∀ ti ∈ T. ti,finished). Such a solution is found by
model checking the negated formula ψ = ¬ ϕ = AG (∃ ti ∈ T. ti,finished). If ψ is falsified,
the model checker outputs a counterexample of length k. This would implicitly indicate that
there are no counterexamples with k steps. However, by failing the property ψ we obtain a
counterexample containing a task and message schedule which might not be optimal from a
schedule length perspective. In this case we use a binary-search based model checking strategy
for finding the optimal solution.

The reason for finding schedules with shorter end-to-end latency is that the transition
system is allowed to take transitions at which no time is consumed. The transition
change task transition, for instance, is used to interrupt an already started task by another
task requesting for the same computing resource (cf. scenario 3 in section 5.2). This transition
does not consume any time. However, depending on the precedence graph, this transition is
necessary to compute the optimal schedule under consideration.

Therefore, a binary search strategy is introduced that is able to find the optimal schedule with
respect to the minimal end-to-end latency.

We consider V as a possible solution of AG(ϕ), namely a counterexample for the finite-state
model checking problemM |= ϕ. The solution V can be characterized by a task and message
schedule with a dedicated Time variable, indicating the length of the given schedule. In a next
step a counterexample for AG(V

2
) is investigated. If there exists a counterexample for AG(V

2
),

the true option is performed as a next search, otherwise the false option.

The binary search algorithm is specified in equation 5.16.

ψ0 = AG (∃ ti ∈ T. ti,finished)→ Time = t (MC Aufruf liefert Time = t)

ψi =

AG (∃ ti ∈ T. ti,finished OR Time ≥ t

2i) ,if ψi−1 = true

AG (∃ ti ∈ T. ti,finished OR Time ≥ t- t
2i) ,if ψi−1 = false

(5.16)

The SAL representation below depicts the usage of the presented binary search to find the optimal
solution of the task and message scheduling problem. The recursive formula starts with a first
calculation, ψ0, cf. (5.17). In this exemplary case, the solution V calculates 12 time units as
the length for a potential schedule. Thus, the next calculation ,ψ1, looks like (5.18) using t

21

according to the specified binary search and so on (5.19).

5.8. BINARY SEARCH ALGORITHM FOR FINDING THE OPTIMAL SOLUTION 65

theorem |=AG(currenttaskarray[t5].t finished=FALSE); (5.17)
theorem |=AG(currenttaskarray[t5].t finished=FALSE OR Time ≥ 12/2); (5.18)
theorem |=AG(currenttaskarray[t5].t finished=FALSE OR Time ≥ 12− ((12/2)− 2));

(5.19)

Experimental results are presented in section 8.3. These experiments illustrate that SAL’ model
checker sal-smc can be used to automatically compute optimal schedules using the presented
binary search.

66 CHAPTER 5. SYMBOLIC TASK AND MESSAGE SCHEDULING

Chapter 6

Weighted Symbolic Scheduling

Generally, formal verification techniques are a very attractive and appealing alternative to sim-
ulation and testing [EMCGP99]. While simulation and testing explore some of the possible
behaviors and scenarios of the system, formal verification conducts an exhaustive exploration of
all possible behaviors.

This thesis shows that formal verification techniques, as for example model checking, can be
used for solving scheduling synthesis problems for time-triggered networks. However, by using
formal verification techniques for this kind of problems, the main disadvantage of model check-
ing is the state explosion that can occur if the system being verified has many components. If
these components perform many transitions in parallel, the number of global system states grows
exponentially. As the precedence graph is used as the basis for the task and message schedule
calculation, an increasing number of tasks and/or messages results in an exponential increase of
the underlaying state space. In order to increase scalability, an approach for state space reduction
is needed to be explored for finding a solution to the task and message scheduling problem.

State-space reduction techniques can be grouped into two classes [BH98]: automatic and semi-
automatic techniques. Automatic techniques are those, in which substructures can be detected
and reduced with no manual intervention (e.g. partial order reduction [GCG+99, God91], or the
usage of OBDDs [Ran92]). Automatic techniques, as the usage of OBDDs, allowing for an ef-
ficient symbolic representation of the model, combined with dynamic reordering strategies may
accelerate the process of computation and increase the efficiency. Effects using these automatic
techniques are investigated in section 8.3. Semiautomatic techniques uses some degree of man-
ual effort to identify substructures that can drastically reduce the state space. In this section we
present a semiautomatic technique focusing on the specific problem of scheduling synthesis to
effectively reduce the underlying state space.

We propose such an approach, named Weighted Symbolic Scheduling, which provides a heuris-
tic that effectively decreases the state space by guiding the exploration, and which therefore
increases the scalability of the symbolic task and message scheduling method.

68 CHAPTER 6. WEIGHTED SYMBOLIC SCHEDULING

6.1 Goal

The model checker analyzes the specified task and message scheduling modelM (cf. section 5.3)
with respect to a given property ϕ. Our goal is to show that ϕ does not hold for every reachable
state s inM, as stated in section 5.1. In this case, the model checker outputs a counterexample
for the property ϕ, that is a path π(s0, ..., sn) such that I(s0) and ¬ϕ(sn). The length len(π) of
such a counterexample is given by the number of steps in this path. The goal of the Weighted
Symbolic Scheduling approach is to decrease the states of the explored state space, while finding
the desired path π and the final state sn. The perfect algorithm would choose the transition
that continues a path leading to that desired goal state sn, namely the optimal task and message
schedule. Unfortunately, this cannot be known a priori. Therefore, a mechanism is proposed that
increase the efficiency while exploring the state space.

Generally, there are two approaches on how to decrease the state space during explo-
ration [Boe07]:

1. Execute all active transitions of a global state s. Continue by searching the most ”sus-
picious” state of all resulting global states s′ in terms of finding for the solution under
consideration. Continue with this ”suspicious” one and refrain from the others

2. Define a ”suspicion-measure” (e.g. a weight ω) for all active transitions. This measure
should be based on a criterion, which is run-time independent. Thus, the weight of a
transition can be computed off-line and is valid for all explorations of the model.

For the Weighted Symbolic Scheduling, we follow the second approach, using a weight that gives
a criteria for selecting the next transition, because the weight of a transition can be computed
off-line and is valid for all explorations of the model. Unlike the first approach, transitions with
low weights are not executed at all, thus saving time and memory. Figure 6.1 gives an exemplary
illustration.

Figure 6.1: State Space Reduction Technique

States that have been explored so far are represented by black circles, unvisited by white ones.
Thus, the goal is to guide the exploration and detect unnecessary branches to be ”cut-off”. This
decreases the number of visited states, as visualized in figure 6.1.

6.2. AN APPROACH FOR STATE SPACE REDUCTIONS 69

6.2 An approach for state space reductions

The Weighted Symbolic Scheduling introduces a weighted approach to effectively reduce the
underlying state space. It is based on a heuristic for transition selection through efficient off-line
weight calculations which is used during run-time to make a selection on all active transitions.
Unnecessary branches can be detected by that calculation and ”cut-off” and thus, the number
of global system states is decreased. This might result in an improved scalability, namely an
increasing number of task and/or messages that can be handled by the presented approach.

The basic idea of detecting unnecessary branches in the explored underlying state space is based
on the precedence graph traversal. As the presented approach traverses the precedence graph
from source to sink, we define a heuristic for transition selection. This selection prefers the
longest path through the precedence graph in a situation of concurrency. All alternative possi-
bilities are not explored. In case of the given example 5 (compare also figure 6.2), the different
weights are calculated according to the presented weight calculation formula. Thus, for this
given example, the branch using Task1 (weight w1 = 7) as the starting node is investigated. The
branch, starting with Task0 (weight w0 = 5), is cut-off and not explored anymore. Therefore the
underlying state space is reduced. In the following, we describe the transition selection formally:

Consider a set of transitions T = {tr1, tr2, ..., trn}. Equation 6.1 formalizes the set Tnext of
transitions that may be selected as the next transition trnext.

Tnext(si) =
{
tri | tri ∈ activeTr(si)

}
(6.1)

where activeTr(si) denotes all transitions tri in a state si that fulfill their guard and can be
activated. Normally, these active transitions are executed non-deterministically.

In order to determine unnecessary branches, which arise from active transitions, we are focus-
ing on situations of concurrency that are characterized by the access to a shared resource. As
mentioned in section 5.2, we are using the model checker capabilities to explore all interleaved
possibilities in situations of concurrency (e.g. the request for a nodes’ CPU by several tasks at
the same point in time). Because these interleaved possibilities cause state space explosion, we
introduce an off-line weight calculation for choosing the next transition trnext by the usage of a
heuristic.

Therefore, each task ti in the precedence graph G is given two more different parameters:

• weight: integer, stores the calculated weight of a task ti

• locked: boolean, indicates whether the task is locked or not

70 CHAPTER 6. WEIGHTED SYMBOLIC SCHEDULING

The off-line weight calculation is defined as a depth-first search (DFS) algorithm [CLRS01]
using the following weight calculation formula:

weight(ti) =

comp(ti) , if ti = leaf

comp(ti) +

[
max

D(ti,m)∧mi ∈ τ(ti)
weight(ti,next) +msg

]
, otherwise

(6.2)

leaf denotes the sink task(s) in the given precedence graph G, comp(ti) corresponds to the
computation time of the certain task ti. ti,next denotes all tasks tx that are successor tasks from a
task ti that fulfills D(ti,mi) = tx and msg denotes the number of messages send by the task ti
to the successor task tj . Each message is represented as a single time unit. For each task in the
given precedence graph a certain weight is calculated. This weight corresponds to the longest
path taken from that certain task to a possible sink task. Thus, the heuristic weight decides for
the next transition on the bases of a longest path calculation.

In order to emphasize the weight calculation, we give a short example in the following (cf.
example 5).

Example 5 Consider a set of tasks T = {t0, t1, t2, t3, t4 }, and a set of messages M = {m0, m1,
m2, m3, m4 }, cf. figure 6.2a. Furthermore, τ(t0) = {m0}, τ(t1) = {m2}, τ(t2) = {m2}, τ(t3) =
{m3}. As illustrated in figure 6.2b, the tasks are allocated to the different nodes: η(Node0) =
{t0,t1}, η(Node1) = {t2}, η(Node2) = {t3} and η(Node3) = {t4}. This exemplary architecture
is depicted in figure 6.2b. For simplicity reasons, we just use time units, and assume the following
computation time for the tasks: c0 = 1, c1 = 1, c2 = 1, c3 = 3, c4 = 1. The destination function
is given as D(t0,m0) = t2, D(t1,m1) = t3, D(t2,m2) = t4 and D(t3,m3) = t4, cf. figure 6.2a.

(a) Simple Example of a Precedence Graph G (b) Architecture of Precedence Graph G

Figure 6.2: Simplified Architecture of the given Precedence Graph

Figure 6.2a shows a precedence graph with five different tasks. Each task in the precedence graph
is equipped with a computation time ct and its calculated weight wi, according to the introduced
formula 6.2.

6.2. AN APPROACH FOR STATE SPACE REDUCTIONS 71

The proposed approach is working by using the introduced weight calculation weight(ti) for
selecting the next transition Tnext(si):

Tnext(si) =
{
tri ∈ si | tri ∈ activeTr(si) ∧ max

tri∈activeTr(si)
weight(ti)

}
(6.3)

This can be done while constructing gradually a schedule, beginning in a state where no task has
started and no messages have been sent on the bus yet and proceeding one step at a time assigning
starting times to tasks and slot positions to messages. In the concurrent situation where two
different tasks are trying to start on the same computing resource, the task with the maximum
weight is preferred, while the start of the lower weighted task(s) are declined. The locked
parameter is used to indicate these lower weighted tasks. At runtime the locked parameter of the
task with the highest weight is set to false, while the locked parameter of the other tasks are
set to true. For tasks with equal weights (weight(ti) = weight(tj)), the corresponding locked
parameter are set to false. These tasks, whose locked parameter is set to true are not started
at all from that current state. In words of the precedence graph, the longest path through the
network is preferred in concurrent situations and all alternative possibilities are not explored.
Therefore the underlying state space is reduced.

SAL Representation

In SAL, the heuristic approach is defined in dedicated data structures, in particular, a heuristic
record.

Heuristic Record

heuristicrecord:TYPE=

[#

weight:NATURAL,

locked:BOOLEAN

#];

HEURISTICARRAY: TYPE = ARRAY TASKS OF heuristiccalendar;

Figure 6.3: Declaration of a heuristic records

The defined heuristicrecord stores the parameter information of a single single task ti. The
locked-parameter is used during state space exploration, indicating whether a task should be
blocked due to its lower weight calculation. This depends on the detection of a concurrency. The
variable weight indicates the off-line calculated weight for each task. For the given example 5
the calculated weights are initialized as a global array heuristicarray.

72 CHAPTER 6. WEIGHTED SYMBOLIC SCHEDULING

GLOBAL heuristicarray:HEURISTICARRAY
heuristicarray[Task0].weight=5.0;
heuristicarray[Task1].weight=7.0;
heuristicarray[Task2].weight=3.0;
heuristicarray[Task3].weight=5.0;
heuristicarray[Task4].weight=1.0;

Furthermore, a StartHeuristic function is implemented. This function detects whether a cur-
rent situation might occur in a certain state s. If this is the case, that is when task ti and task
tj are trying to allocate the same computing resource, the lower weighted task is blocked for
execution (e.g. HEURISTICARRAY WITH [t].locked:=TRUE). This locked-variable prohibits
an execution of the previously active transition. In order to detect and potentially lock (pro-
hibit) the start of a task, the function obtains five different parameters: the current task t,
the task record array TASKARRAY, the node record array NODEARRAY, the message record array
MESSAGEARRAY, and the heuristic array itself HEURISTICARRAY. If there is no situation of con-
currency the HEURISTICARRAY remains unchanged. The function implementing the heuristic is
depicted below.

StartHeuristic(t:TASKS, taskarray:TASKARRAY, nodearray:NODEARRAY,
messagearray:MSGARRAY, heuristicarray:WEIGHTARRAY):WEIGHTARRAY=

IF((EXISTS (j:TASKS): j /= t AND (nodearray[getNodeTask(j)].node_free=TRUE
AND taskarray[j].t_started = FALSE
AND getPrecMsg(j,messagearray)=TRUE)
AND (getNodeTask(j)=getNodeTask(t))
AND (heuristicarray[j].weight>heuristicarray[t].weight)

))
THEN heuristicarray WITH [t].locked:=TRUE
ELSIF ((EXISTS(j:TASKS):j/=t AND (nodearray[getNodeTask(j)].node_free=FALSE

AND taskarray[j].t_started = TRUE
AND taskarray[j].t_finished=FALSE
AND getPrecMsg(j,messagearray)=TRUE)
AND (getNodeTask(j)=getNodeTask(t))
AND (heuristicarray[j].weight>heuristicarray[t].weight)

))
THEN heuristicarray WITH[t].locked:=TRUE
ELSE heuristicarray
ENDIF;

This function is needed by the two different transitions that might be able to start a task and thus
may cause a concurrent situation (the Start Task Transition Tst and the Change Task Transition
Tct). Thus, it is used as a condition request inside these transitions, detecting whether a current
situation might occur in a certain state s.

6.3. RESULTS AND DISCUSSION 73

([](i:TASKS):
starttransition:
...
StartHeuristic(i,currenttaskarray,currentnodearray,

currentmessagearray,heuristicarray)[i].heuristic_locked = FALSE
-->
...
)

In concurrent situations the task with the maximum weight is detected and preferred, while the
start of all other task(s) is declined. The locked parameter is used to block all transitions (brances)
with lower weights. Thus, these transition (corresponding to the ”branches of a precedence
graph”) are not started at all and thus are ”cut-off”. This reduces the underlying state space,
while calculating the integrated task and message schedule.

6.3 Results and Discussion

The efficiency of the Weighted Symbolic Scheduling can be identified by comparing the same
example with and without using the state space reduction approach. Therefore, we use the given
example 5 in section 6.2. We invoke first SAL’s symbolic model checker sal-smc on this exam-
ple without using the new heuristic-based approach. SAL outputs a counterexample including
some interesting properties, as listed below. The model checker explores 1237500 states with a
total execution time of 27.923 seconds.

(Symbolic Task and Message Scheduling - without heuristic approach)

verification time: 13.907 secs
total execution time: 27.923 secs
number of visited states: 1237500.0

The same example is invoked using the Weighted Symbolic Scheduling approach. As expected,
sal-smc outputs a counterexample with smaller number of visited states. The model checker
explores 96875 states for finding the same solution. This complies to a reduction of visited states
of about 92%.

(Weighted Symbolic Scheduling - including heuristic approach)

verification time: 11.203 secs
total execution time: 24.422 secs
number of visited states: 96875.0

This enormous reduction in states can be explained as follows. As the weighted heuristic
approach searches for situations of concurrency in order to ”cut-off” identified unnecessary
branches, the point in time of identification has a major impact: While the Weighted Symbolic
Scheduling traverses the precedence graph from source to sink, a situation of concurrency in
the first steps / states has a higher impact on the reduction of the underlying state space. This

74 CHAPTER 6. WEIGHTED SYMBOLIC SCHEDULING

happens, because the branches that are identified as unnecessary, reducing a lot more states, com-
pared to a concurrent situation in the last steps of the precedence graph traversal. These reduced
states comply to possible alternative schedules. In the given example 5, this effect takes place,
as situations of concurrency occurs in the very first state. The reduction of 92% of visited states
can be explained by that fact. Thus, in contrast, the presented approach would cause no improve-
ments for a sequential precedence graph, as the obtained schedule has no concurrent resource
constraints.

The usage of the introduced mechanisms for Weighted Symbolic Scheduling enables to define a
lower scheduling bound, cf. equation 6.4. There is no shorter schedule possible than

| Schedule | ≥ max weight(ti) ∀ ti ∈ T (6.4)

The notion | Schedule | complies to the total length of a designed schedule. This obtained
lower bound complies to the longest path in the precedence graph. This is calculated a priori,
as explained above. Experimental results demonstrate that the Weighted Symbolic Scheduling
can be effectively used to reduce the underlaying state space. Average improvement results are
depicted in section 8.3.6.

However, using the Weighted Symbolic Scheduling approach and the presented heuristic for tran-
sitions selection, a probability of cutting-off the wrong branch still remains. Obviously, in this
case, this lead to negative effects on the schedule length in terms of obtaining a longer schedule
than the optimal schedule. The probability of these cases is hard to determine. Nevertheless,
there is still a possibility of using the Symbolic Task and Message Scheduling approach, in order
to check, whether the heuristic works perfect or not. However, this is only possible, in cases the
Symbolic Task and Message Scheduling approach is still capable of finding a schedule.

Chapter 7

Framework for Scheduling Synthesis

This chapter proposes a framework for Scheduling Synthesis, which integrates the presented
approaches of an Algorithm for Integrated Task and Message Scheduling (chapter 4), Symbolic
Task and Message Scheduling (chapter 5) and Weighted Symbolic Scheduling (chapter 4) in order
to find an (optimal) solution of the given task and message scheduling problem.

The framework is composed of different elements. It integrates the complexity evaluation ap-
proach (section 8.1), used to investigate various precedence graph parameter configurations and
their correlation to the calculated task and message schedules. Furthermore, a precedence graph
generator is included, which is able to generate precedence graphs, including all necessary pa-
rameters (e.g., number of nodes, tasks, precedence relations, etc.). This is done, in order to obtain
general evidence about certain parameter variations (cf. section 8.1). The graph generation can
be done explicitly (e.g. according to a given aeronautic application) or according to a given set of
parameters. In the latter case, numerous graphs can be generated following the specified param-
eter set. Furthermore, the framework consists of an interface to import certain communication
parameter sets (e.g. a FIBEX [fSoAS04] FlexRay configuration).

In order to calculate task and message schedules using the Symbolic Task and Message Sched-
uling approach, a code generator is implemented, that automatically translate the precedence
graphs into SAL specifications according to the symbolic encoding scheme (presented in chapter
5). Furthermore, the framework has an interface to the SAL framework for executing the gener-
ated SAL specifications. The calculated results are transferred back. Experiment series, that are
precedence graphs following a certain parameter set, can thus be computed and compared. For
visualization, textual as well as gnuplot-based graphical elements are available.

7.1 Graph Generation

The frameworks’ graph generation functionality generates precedence graphs, including all nec-
essary parameters. The graph generation can be done explicit as a Single Graph Generation (cf.

76 CHAPTER 7. FRAMEWORK FOR SCHEDULING SYNTHESIS

subsection 7.1.1) or according to a given set of parameters, called Multiple Graph Generation
(cf. subsection 7.1.2). In the latter case, numerous graphs can be generated following a specified
parameter set. In the following both types of graph generation are highlighted in detail.

7.1.1 Single Graph Generation

The Single Graph Generation enables to generate a certain precedence graph according to the
users needs. This can be an aeronautic use case system, with a fixed setting, namely certain
number of tasks, their allocation to nodes and given precedence relations.

Figure 7.1: Single Precedence Graph Generation

First, a network architecture needs to be specified. Network architecture in this context means
the definition of computing resources (nodes). It is implicitly assumed that the given set of
nodes communicate via a shared time-triggered communication bus, meaning that all computing
resources are connected to that shared communication resource.

We implemented two different ways to specify a network architecture for the Single Graph Gen-
eration. On the one hand, the number of nodes can be specified by a certain input field. Figure 7.1
illustrates a use case system with 5 different nodes. On the other hand, a configuration file can be
imported, which already consists of information about the network architecture. As we are using
a time-triggered communication bus, the framework supports the import of FIBEX [fSoAS04]

7.1. GRAPH GENERATION 77

configuration files. This standard enables the configuration and management of a subset of dif-
ferent communication network architectures (e.g. CAN [fS98], LIN [LK03], FlexRay [Con05],
etc.) [Ruh05].

Figure 7.2: Defining the Precedence Relations for each Task

In a next step the precedence graph can be specified. This includes the definition of a set of
tasks and their precedence relations. Figure 7.1 illustrates the definition of a certain task (e.g.
Task 2). This includes the definition of the following parameters: the expected task computation
and an allocation of the given task to a specific node. Furthermore, the precedence relations can
be specified by defining one or many parent (predecessor) or child (successor) tasks. This is
illustrated in figure 7.2. Thus, a precedence graph is built iteratively.

7.1.2 Multiple Graph Generation

The Multiple Graph Generation enables to generate a set of precedence graphs according to a
specified parameter set. This set describes certain characteristics of the generated precedence
graph with respect to the number of tasks, specific task parameters, as well as the precedence
graph layout. The Multiple Graph Generation is part of the complexity evaluation approach,
introduced in section 8.1, which can be used to evaluate and identify , whether a given parameter
configuration complies with the given system requirements.

In order to specify a set of precedence graphs, we first define the number of tasks. Figure 7.3
illustrates the generation of precedence graphs consisting of 5 tasks. The number of messages
(precedence relations) is calculated by:
number of messages = number of tasks - 1. This equation guarantees that the precedence graph

78 CHAPTER 7. FRAMEWORK FOR SCHEDULING SYNTHESIS

Figure 7.3: Multiple Precedence Graph Generation

is connected. Furthermore, it is prohibited to use duplicated precedence relations (two different
relations from task ti to task tj) as well as the generation of cyclic precedence graphs. Finally,
the number of generated precedence graphs using the defined characteristics is specified.

The generation of multiple precedence graphs requires a random-number generator in order to
randomly generate the precedence relations. We use a generator from [LSCK01], which follows
the basic design principles and methods for uniform random number generators, as described in
[L’E10]. Nevertheless, the generation of precedence graphs follows a precedence graph layout,
describing the general structure of the precedence graph.

The precedence graph layout is specified with respect to aeronautic use cases. In the following,
the different scenarios are specified:

Precedence Graph Layout

We define three different precedence graph scenarios:

1. Multiple Starts: The first scenario complies to a acyclic directed precedence graph in
which a number of nodes do not have any predecessors. These nodes are called source
nodes. One further characteristic of this scenario is that all other tasks need to lead into a
single sink task. A precedence graph with multiple source nodes is schematically shown in
figure 7.4. This scenario might comply to a system situation in which different sensors are

7.1. GRAPH GENERATION 79

depicted over an airplane measuring sensor values and transmit them to a server or various
computing nodes.

Figure 7.4: Precedence Graph with Multiple Starting Nodes

2. Multiple Ends: This scenario complies to an acyclic directed precedence graph in which
a number of nodes do not have any successors. These nodes are called sink nodes. This
scenario further requires that there exists just a single source task. A precedence graph
with multiple sink nodes is schematically shown in figure 7.5. This scenario might comply
to a system situation in which different actuators are depicted over an airplane which need
to be controlled by one or several source nodes.

Figure 7.5: Precedence Graph with Multiple Ending Nodes

3. Randomized: The randomized scenario can be described by an acyclic directed prece-
dence graph which is generated completely at random. A random precedence graph al-
lowing both multiple ending nodes and starting nodes or reconvergences. Figure 8.8a
illustrates a random precedence graph.

Figure 7.6: Precedence Graph with connected randomized nodes

80 CHAPTER 7. FRAMEWORK FOR SCHEDULING SYNTHESIS

Task Specific Parameter

The multiple graph generation requires the definition of further task specific parameters, in order
to describe the set of tasks in more detail. The computation time for each task is specified by
using the same time for all given tasks (as illustrated in figure 7.3) or by selecting a random
computation time, which is bounded by an upper and a lower bound. The computation time is
given by an integer number, representing time units.

Furthermore, an allocation of tasks to nodes needs to be defined. This is done by using one out
of three different possibilities: First of all, a one to one allocation can be specified, meaning each
task has its own computing resource (node). Second, a random allocation of the given set of
tasks to nodes can be chosen. In this case, the number of nodes needs to be specified. The third
possibility complies to a situation in which a fixed number of tasks are allocated to the set of
given nodes. This ratio implies the defined number of nodes.

7.1.3 General Parameter for Graph Generation

The Graph Generation is done explicitly as a Single Graph Generation (cf. subsection 7.1.1) or
as a Multiple Graph Generation (cf. section 7.1.2). Having specified the graph(s) in the desired
way, several general parameters need to be specified.

Figure 7.7: General Parameter for Graph Generation

Figure 7.7 illustrates all general parameters. The user is able to choose, whether to use the heuris-
tic Weighted Symbolic Scheduling or the Symbolic Task and Message Scheduling, by selection.
The Weighted Symbolic Scheduling option enables to use the heuristic approach.

As the framework is able to either use SAL’s bounded model checker, sal-inf-bmc, or SAL’s
symbolic model checker, sal-smc, the Code Generator (cf. section 7.2) is able to generate code
according to the chosen model checker.

Furthermore, the following experimental parameters can be specified: The Dynamic Reordering
option enables the usage of dynamic reordering strategies to accelerate the process of computa-
tion and increasing its efficiency (cf. section 8.3.4). Another parameter can be used to disable the
SAL’s traceability. The SAL framework creates extra variables to produce detailed information
about the path and the counterexamples. The Disable Traceability option disables the generation

7.1. GRAPH GENERATION 81

of such variables, which might lead to probably faster execution. The Include WaitTransition op-
tion comprises to the usage of an additional transition in the specified modelM. The additional
Wait Message Transistion is describend in subsection 5.3.4.7. Results of using this transtion
are given in section 8.3.5.

7.1.4 Precedence Graph Editor

The proposed framework enables user interaction at any time. User changes on the precedence
graph parameters (e.g. changing the precedence relations of the given task set or the alloca-
tion of task to nodes), are supported by the precedence graph editor. This enables to change
precedence graph based on previous results. An iterative optimization (usage of results from the
calculated schedule) according to given requirements might be able, by such an adjustment in
the parameterization of a precedence graph.

Figure 7.8: Precedence Graph Editor

Figure 7.8 illustrates the precedence graph editor for a certain graph (Graph0). As demonstrated,
task Task5 is highlighted here, consisting of 4 different predecessor tasks and no successor task.
Changes in the precedence relations are done easily.

82 CHAPTER 7. FRAMEWORK FOR SCHEDULING SYNTHESIS

7.2 Code Generation

The frameworks’ code generation functionality automatically translates the generated precedence
graph(s) into SAL specifications. The code generation can be done according to the Symbolic
Task and Message Scheduling (cf. chapter 5) or according to the heuristic Weighted Symbolic
Scheduling (cf. chapter 6).

Figure 7.9: Graphical Representation and Code Generation

We take the formal model of the system, as specified in section 5.3, as a basis for translating the
scheduling synthesis problem to SAL specifications. This includes declaration, initialization and
transition system. The process on how to construct a SAL module, containing the definition of
variables, the initial state and the transition relations is described in section 5.4. Depending on
the selected model checker (cf. section 7.1.3), the property ϕ is generated, as specified in section
5.7. Figure 7.9 illustrates the generated code for each precedence graph. This enables to double
check the relevant parameter before transferring the file to the model checker.

7.3 Result Generation

The framework has an interface to the SAL framework for analyzing the specified modelMwith
respect to the given property ϕ. The calculated results are transferred back. This is done for a
single precedence graph (e.g. aeronautic use case) as well as for experimental series.

7.3. RESULT GENERATION 83

Figure 7.10 shows how the results are illustrated and configured in the given framework. The
model checker calculates the optimal task and message schedule and transfer it back the frame-
work. All results, namely the calculated counterexamples, are stored in a folder, which needs to
be chosen (cf. figure 7.10).

Figure 7.10: Result Generation for Symbolic Task and Message Scheduling

The framework is able to generate two different kind of results automatically: On the one hand
the computation time can be extracted from all specified counterexamples. On the other hand
the calculated scheduling length is extracted by the results generation capability. This is done
by using regular expression running over the given counterexamples. In case the Multiple Graph
Generation is used, the exact values are computed, as well as the average computation time value
for the corresponding generated graph. Further parameters are calculated as well, e.g. standard
deviation (cf. chapter 8). All calculated values are written in an Excel-based file as well, in order
to provide a data basis for other calculations.

Textual (cf. figure 7.10) as well as gnuplot-based graphical elements (cf. figure 7.11) are pro-
vided for visual representation of the calculated results.

(a) Visual representation of experimental series (b) Logarithmical representation of experimental series

Figure 7.11: Visual representation of calculated computation time

84 CHAPTER 7. FRAMEWORK FOR SCHEDULING SYNTHESIS

The calculated computation time is depicted in figures 7.11a and 7.11b, whereas the graphical
scheduling length representation is illustrated in figure 7.12.

Figure 7.12: Visual representation of calculated schedule length

Chapter 8

Analysis and Results

This chapter proposes an approach for evaluating the performance and the complexity of the
integrated task and message scheduling algorithms, namely the Symbolic Task and Message
Scheduling and Weighted Symbolic Scheduling approaches (cf. chapter 5 and 6). This approach
enables to quantify various precedence graph configurations in terms of complexity and perfor-
mance evaluation. The developed evaluation approach is integrated in the framework presented
in chapter 7. Furthermore, the performance and usability of the developed Weighted Symbolic
Scheduling approach compared to the Symbolic Task and Message Scheduling can be quantified.

Experimental results demonstrate that Symbolic Task and Message Scheduling, as well as
Weighted Symbolic Scheduling are suitable for finding an optimal task and message schedule
in terms of minimizing the end-to-end latency. We have implemented both approaches using the
SAL framework (cf. section 2.4). All experiments presented in this section use SAL’s symbolic
model checker sal-smc. SAL uses Yices [DdM06] as the default solver which integrates a SAT
solver and decision procedures for a combination of logical theories.

8.1 Complexity evaluation for scheduling configurations

The proposed complexity evaluation approach is designed for two different evaluations: On the
one hand parameter configurations can be evaluated regarding their usability in the given system
design. The developed approach enables to identify, whether a given parameter configuration
complies with given system requirements (e.g. end-to-end latency). On the other hand, we
are able to quantify both presented approaches. This highlights the benefits of the developed
Weighted Symbolic Scheduling approach compared to the Symbolic Task and Message Sched-
uling approach. Results demonstrate the performance of the developed approaches in terms of
computation time, schedule length and scalability.

In order to give general statements about the usability, scalability and comparability of the devel-
oped approaches, we investigate different parameter configurations or variations. A parameter

86 CHAPTER 8. ANALYSIS AND RESULTS

configuration of a given precedence graph is characterized by the following parameters: number
of nodes, number of tasks per node and precedence graph layouts or shapes. A precedence graph
layout is characterized by the following scenarios: Multiple Starting Nodes, Multiple Ending
Nodes or complete randomized precedence graphs. These scenarios are highlighted in section
7.1.

Figure 8.1: Procedure of Complexity Evaluation

We are starting from different parameter variations (cf. figure 8.1). The frameworks’ graph
generation capability (cf. section 7.1) is then used to generate a set of precedence graphs ac-
cording to the defined parameter variations. In a next step, each of these generated precedence
graphs are automatically translated into SAL specifications according to the symbolic encoding
scheme using the Code Generator presented in section 7.2. Each precedence graph generates
its own SAL-Code file according to one of the specified scheduling approach. These code files
are incrementally transfered into the SAL framework. The model checker analyze the specified
task and message scheduling modelM with respect to a given property ϕ, stating that there is

8.2. DESIGN OF EXPERIMENTS 87

no possible schedule fulfilling the given system requirement. The model checker returns either
verified or falsified, depending whether the given property is fulfilled by the model or not. In
the latter case, the model checker usually outputs a counterexample from which a task and mes-
sage schedule can directly be obtained. To find such a counterexample we can either use SAL’s
bounded model checker [dMRS03], sal-bmc, or one of SAL’s symbolic model checker, sal-smc
or, sal-wmc [SS03]. Experimental results in this chapter uses the symbolic model checker ex-
clusively. To obtain an optimal task and message schedule, we further use a binary search for
finding that solution (compare section 5.8).

From the obtained optimal task and message schedule we are able to draw conclusions as pre-
sented in the following: We use the calculated schedule length as well as output information
from the SAL framework, namely computation time and the number of visited states to illustrate
the following three aspects:

First, for a single precedence graph evaluation (e.g., aeronautic system use case), the feasibility
of a given parameter configuration can be checked with respect to the given system require-
ments. For instance, the required cycle time of an aeronautic system can be compared to the
optimal calculated schedule length. In case of any inconsistencies (e.g. an calculated task and
message schedule is not able to meet the system requirement), this would enable to refine the
given parameterization (e.g. the number of tasks allocated to a certain node).

Second, we are able to state the general behavior of precedence graphs using the same configu-
ration scenarios. This can be done by using several generated precedence graphs containing the
same parameterization (e.g. a certain number of nodes, number of tasks per node and complying
to a given precedence graph layout or shape). This leads to a better understanding of complexity
in configuration scenarios using different parameter sets or variations.

Third, a comparison of the developed task and message scheduling approaches with respect to
their usability can be done, meaning experimental evaluation of the developed approaches itself.
The following experimental results demonstrate that the latest generation of model-checking
tools meets the challenges of providing a convenient modeling language as well as the perfor-
mance to solve given scheduling problems in terms of scalability using Symbolic Task and Mes-
sage Scheduling and Weighted Symbolic Scheduling. In this context, the presented complexity
approach enables to quantify benefits of using the heuristic approach compared to the Symbolic
Task and Message Scheduling approach.

8.2 Design of experiments

For experimental evaluation of the developed Symbolic Task and Message Scheduling and
Weighted Symbolic Task and Message Scheduling, we define a set of experiments. This set
is used to analyze the usability of the developed approaches in terms of performance and scala-
bility.

88 CHAPTER 8. ANALYSIS AND RESULTS

Multiple Starts Multiple Ends Randomized Graph

1 Task per Node (1:1) 20 precedence graphs 20 precedence graphs 20 precedence graphs
with 3 - 12 tasks with 3 - 12 tasks with 3 - 12 tasks

2 Task per Node (2:1) 20 precedence graphs 20 precedence graphs 20 precedence graphs
with 3 - 12 tasks with 3 - 12 tasks with 3 - 12 tasks

4 Task per Node (4:1) 20 precedence graphs 20 precedence graphs 20 precedence graphs
with 3 - 12 tasks with 3 - 12 tasks with 3 - 12 tasks

Table 8.1: Design of Experiments

The given set of experiments focus on two parameters: the precedence graph layouts and the ratio
of system functionalities (tasks) to computing resources (nodes). The precedence graph layouts
are described by the three different precedence graph scenarios (cf. section 7.1): Multiple Starts,
Multiple Ends or Randomized Precedence Graph. The first two scenarios represent possible
aeronautic architecture use cases: For instance, the Multiple Starts Scenario complies to an ar-
chitecture using multiple sensors transmitting a sensor value to a set of receiving components
(compare section 7.1).

The ratio of tasks to nodes is investigated using different scenarios: The allocation of a single
tasks to a node, or scenarios in which a set of concurrent task are allocated to a certain node.
This is represented by two and four tasks per node.

For each scenario listed in table 8.1, we randomly generate 20 different precedence graphs com-
plying to the specified parameter set, but using various precedence relations.

8.3 Results

We use the framework of SAL for specification and analysis of concurrent systems (cf. section
2.4). The SAL model checkers are of interest for our analysis. The symbolic model checker
sal-smc that uses the CUDD BDD package and provides access to many options for variable
ordering, and for clustering and partitioning the transition relation. Experimental results in this
chapter uses the symbolic model checker sal-smc of the SAL framework.

The experiments were carried out on an Intel(R) Pentium(R) 4CPU 2.80GHz and 2.49GB RAM.
The experiments illustrate that SAL model checkers can be effectively used to automatically
compute schedulers that minimize the transmission latency of the communication medium. De-
tails on the encoding schema can be found in section 5.4.

8.3. RESULTS 89

8.3.1 General Results of Task and Message Scheduling

In order to demonstrate general usability of the Symbolic Task and Message Scheduling ap-
proach, we first investigate the scenario using a single task per node with the Multiple Starts
precedence graph layout. As depicted in table 8.1, we use 20 random generated precedence
graphs using the previous mentioned layout and a ratio of one task per node. Furthermore, the
computation duration of a task equals the length of a transmitting slot.

The model checker incrementally processes each precedence graph, in order to automatically
compute schedules with minimal end-to-end latency. The model checker outputs a counterexam-
ple that contains the integrated task and message schedule and a set of quantitative parameters
that can be used for evaluation (cf. section 5.1). Figure 8.2 shows the computation time used by
the model checker for finding such a task and message schedule.

(a) Exponential growth of computation time (b) Logarithmic illustration of exponential growth

Figure 8.2: Computation Time for Task and Message Scheduling

All measured computation times are given by the CPU time for computing an integrated task
and message schedule using SAL 3.0. These runtimes are given in seconds. The exact com-
putation time for each precedence graph is represented by a single point (cf. figure 8.2a). For
every considered number of tasks t, the average computation time value for the corresponding
20 generated precedence graphs can be calculated as well. This average value is depicted by the
green line. By increasing the number of tasks in a precedence graph, while leaving the previously
defined settings unchanged, demonstrate the exponential growth of computation time necessary
to calculate an integrated task and message schedule for the given specification (cf. figure 8.2a
and figure 8.2b). Figure 8.2b depicts the computation time in a logarithmical diagram. The com-
putation time complies to the average value of all 20 precedence graph (cf. table 8.2). It can
be seen, that starting from precedence graphs containing a minimum of 6 tasks, an exponential
correlation can be identified. Thus, for 13 tasks an average verification time of around 10000s
can be expected.

The layout of the precedence graph has a major impact on the length of the schedule and thus on
the computation time for generating the integrated task and message schedule. A schedule for
a sequential precedence graph is computed faster than for highly concurrent precedence graphs.

90 CHAPTER 8. ANALYSIS AND RESULTS

This is explained by the fact, that by calculating a schedule incrementally, concurrent situations
offer a higher number of possibilities. A concurrent situation can either be due to several tasks
running on the same computing resource (node) or several message trying to allocate to the same
communication slot. All different possibilities have to be explored by the model checker to find
the optimal solution. Thus, by increasing the number of tasks in a precedence graph, the amount
of concurrent situations might increase as well. This effect can be quantified by the (nearly)
exponential increasing value of the mean computation time.

Further interesting values are the standard deviation as well as the coefficient of variation. Espe-
cially the coefficient of variation indicates that the dispersion of values to the mean value can be
characterized by a statistically expected behavior, as it defines the ratio of standard deviation to
the mean value.

Number of Tasks Computation Time Standard Deviation Coefficient of Variation

3 0.58 s 0.03 s 0.52
4 14.43 s 7.45 s 0.52
5 52.07 s 6.82 s 0.13
6 97.24 s 9.05 s 0.09
7 182.65 s 13.47 s 0.07
8 303.15 s 18.06 s 0.06
9 696.00 s 31.93 s 0.05

10 1127.12 s 193.17 s 0.17
11 2000.15 s 414.79 s 0.20
12 4289.76 s 1560.32 s 0.36

Table 8.2: Results of Experiment Series

Another interesting parameter that can be extracted from a counterexample produced by the SAL
framework is the visited number of states for finding such a counterexample. Figure 8.3 shows
the exponential increase of the number of visited states for an increasing number of tasks per
precedence graph.

These first experimental results demonstrate that the Symbolic Task and Message Scheduling
approach can be used to solve the integrated task and message scheduling problem. Furthermore,
it proves how the latest generation of model-checking tools meet the challenges of providing both
a modeling language and the performance to solve given scheduling problems.

8.3.2 Relation of Task and Nodes

The previous sections demonstrate that the Symbolic Task and Message Scheduling approach
is able to solve the given task and message scheduling problem and finds an optimal solution in
terms of minimizing the end-to-end latency. Furthermore, section 8.3.1 has shown that scalability

8.3. RESULTS 91

Figure 8.3: Average number of visited states

is a restricting factor. Therefore, we investigate how different relations of tasks to nodes affect
the scalability of the presented approaches. We start by investigating various ratios of tasks to
nodes.

1 Task per Node

We have already shown experimental results for precedence graph layouts with a single task
per node and a Multiple Start precedence graph layout. These results are given in the previous
section 8.3.1.

2 Tasks per Node

In a next step, we investigate precedence graph layouts with 2 tasks per node. We therefore
randomly generate 20 precedence graphs with a number of 4, 6, 8, 10 and 12 tasks on 2, 3, 4, 5
and 6 nodes, respectively.

Figure 8.4a demonstrates the exponential growth of computation time for an increasing number
of tasks per precedence graph. For every considered number of task t, the average computation
time for the corresponding 20 generated precedence graphs is indicated by the green line. Figure
8.4b shows the computation time in a logarithmical diagram. It can be seen, that starting from
precedence graphs containing 6 tasks, an exponential increase in computation time is identified.
Thus, for 14 tasks an average computation time of around 30000s can be expected.

92 CHAPTER 8. ANALYSIS AND RESULTS

(a) Exponential growth of computation time (b) Logarithmic illustration of exponential growth

Figure 8.4: Computation Time for 2 tasks per node

Comparison

Experimental results in this sections demonstrate how various relations of tasks to nodes affect
the computation time for finding an optimal schedule using the Symbolic Task and Message
Scheduling approach. An exponential increase in computation time can be measured while in-
creasing the number of tasks per node. This effect is based on an increase of the state space.
This can be explained by the fact that the crucial point in constructing a schedule is to deal with
concurrent precedence graph scenarios, as specified in section 5.1. Concurrency can either be
caused by a shared computing resource (node) or a shared communication resource (time slot of
the underlying communication bus).

In this section we investigate the case in which one or more tasks use the same computing re-
source. This might lead to concurrent situations, in which both tasks might access the resource
at the same point in time. Therefore, we use the model checker’s capabilities for constructing
a task and message schedule to explore all specified interleaved possibilities, as already speci-
fied in section 5.1. Thus, an increase of computation time for constructing an optimal task and
message schedule can be explained by this fact.

However, an exponential increase in computation time affects scalability of the presented ap-
proaches as well. In order to quantify this effect, we integrate the presented experimental results
for single task per node with two tasks per node, as illustrated in figure 8.5:

In order to make both scenarios comparable, the precedence relations remain the same. Just the
number of nodes has been reduces to 1/2. The allocation of task to nodes is randomly generated.
Thus, comparing the average computation time for generated precedence graphs using a single
task per node and two tasks per node results in a differentiated statement.

As depicted in the logarithmical diagram (cf. figure 8.5) both precedence graph scenarios grow
(nearly) exponentially while increasing the number of task. However, for precedence graphs

8.3. RESULTS 93

Figure 8.5: Comparing different relation of tasks and nodes: 2 tasks per node vs. 1 task per node

with less than 8 tasks, the task and message scheduling problem is easier to solve for precedence
graphs with 2 task per node allocation (black line). In average, the computation time is nearly 22
percent lower for graphs containing 6 tasks than precedence graphs with 1 tasks per node (red
line). This trend turns while increasing the number of tasks. This correlates with the expecta-
tions that a growing number of potential concurrent situations might occur when having multiple
number of tasks trying to allocate the same resource. This leads to an increase in concurrency.
For instance, the computation time for an integrated task and message schedule for precedence
graphs containing 12 tasks per node demonstrates the expected trend. Measured values show that
for graphs using 2 task per node the computation time (the average of 20 generated precedence
graphs) is 37 percent bigger (black line) than for precedence graph scenarios with only a single
task per node (red line).

8.3.3 Variation in Precedence Graph Layouts

Beside various relations of tasks to nodes, different precedence graph layouts affect the complex-
ity for solving the task and message scheduling problem as well. By using the model checker
sal-smc, we gradually construct an integrated task and message schedule. Whenever the prece-
dence graph allows for different possible solutions, characterized by concurrent access to a shared
resource, we use the model checker’s capabilities to explore all specified interleaved possibilities
(cf. section 5.1). This, however, impacts the number of transitions called at a certain point in
time.

94 CHAPTER 8. ANALYSIS AND RESULTS

(a) Multiple Starting Nodes Scenario (b) Multiple Ending Nodes Scenario

Figure 8.6: Precedence Graph with multiple starting nodes and multiple ending nodes

Figure 8.6 illustrates two different scenarios. In figure 8.6a the precedence graph consists of
multiple starting nodes (task t0, task t1 and task t2). The initial state is specified as a situation
in which all tasks are not started and not finished. The goal states are those states where all
tasks have finished and all messages have been sent. In case all three starting tasks in figure
8.6a are allocated to the same shared resource (node), the model checker, starting from the initial
state executes the Start Task Transition three times, following all interleaved scenarios (task t0
� task t1� task t2 or task t2 � task t1 � task t0, etc.). Thus, the number of global system
states grows exponentially with the number of concurrent situations imposed by the precedence
graph. This, however, emphasizes state space explosion. Furthermore, the same effect appears
if messages sent by several tasks are trying to allocate the same communication slot. Thus,
concurrency, either caused by a shared computing resource or a shared communication resource
extends the state space with new branches (complying to different task and message schedules)
corresponding to the number of interleaved possibilities.

In the second scenario, depicted in figure 8.6b, interleaved possible schedules may occur by the
end of the schedule, assuming that either different messages, sent by task t1 to task t2, t3 and t4
are trying to allocate the same communication slot, or the tasks (t2, t3 and t4) may try to allocate
the same computing resource.

Different precedence graph layouts may therefore cause different level of concurrency while
calculating a task and message schedule. Thus, the level of concurrency is mainly based on the
precedence graph layout. In the following, we compare different precedence graph layouts in
order to illustrate their effect on the computation time needed to calculate an optimal task and
message schedule. This, as well, affects scalability of the presented approaches.

Multiple Starting Nodes

We first investigate multiple starting nodes scenarios, as depicted in figure 8.6a. Experimental
results for these precedence graph scenarios are given in the previous section 8.3.1.

8.3. RESULTS 95

Multiple Ending Nodes

In contrast to the multiple starting nodes scenario, we focus on multiple ending nodes scenarios,
compare figure 8.6b. Therefore, we generate random precedence graphs with a number of 3 to
12 tasks in a one task per node scenario.

Figure 8.7a illustrates the exponential growth of computation time for an increasing number of
tasks per precedence graph. For every considered number of tasks, the average computation
time for the corresponding 20 generated precedence graphs is indicated by the green line. Figure
8.7b shows the computation time in a logarithmically diagram. It can be seen, that starting from
precedence graphs containing 5 tasks an exponential correlation of computation time can be
identified.

The average values (cf. green line) in figure 8.7a depict a bend in the average computation time
starting from precedence graphs containing 11 tasks. This effect can be explained by the fact that
only 17 of 20 randomly generated precedence graphs following the specified scenario could be
calculated. Calculation of the missing precedence graphs can be expected as to complex in terms
of computation resources.

(a) Exponential growth of computation time (b) Logarithmic illustration of exponential growth

Figure 8.7: Precedence graph with multiple ends

Completely randomized precedence graphs

As a third scenario, we specify completely randomized precedence graphs. However, these
precedence graphs follow a few simple rules. The number of starting and finishing tasks is
not limited. The obtained precedence graph is connected and cycle-free.

Following these rules, we generate 20 complete randomized precedence graphs with a number
of 3 to 12 tasks in a one task per node scenario. The following experimental results illustrate the
effects of using these complete randomized precedence graphs on the overall computation time
(cf. figure 8.8).

96 CHAPTER 8. ANALYSIS AND RESULTS

(a) Exponential growth of computation time (b) Logarithmic illustration of exponential growth

Figure 8.8: Precedence graph with a random composition

Figure 8.7a depicts the exponential growth of computation time for an increasing number of
tasks per precedence graph. Under the given computation resources, schedules for precedence
graphs with up to 9 task can be computed. As explained in the previous sections, the level
of complexity raises with the level of concurrency in a given precedence graph. Completely
randomized precedence graphs may combine these unfavorable properties (e.g. numerous task
per node, multiple starting nodes combined with multiple ending nodes) that lead to higher level
of complexity.

Figure 8.7b shows the computation time in a logarithmically diagram. It can be seen, that starting
from precedence graphs containing 5 tasks an exponential increase of computation is identified.
However, even results for precedence graphs containing 9 tasks are vague, because only 10 out
of 20 graphs could be calculated at all.

Comparison

In order to compare the different precedence graph layouts, we include all different scenarios in
figure 8.9. As expected, precedence graphs with a multiple starting node scenario (blue line) have
the highest computation time. Multiple ending nodes scenarios (red line), with one exception at
11 task per precedence graph, have a constantly lower average computation time. This, however,
leeds to the assumption that these kinds of precedence graph layouts can be calculated faster.
Precedence graphs using completely randomized layouts (green line) are not comparable in this
context, because the calculation of schedules was not possible for all graphs due to an increase
in complexity.

8.3. RESULTS 97

Figure 8.9: Comparison of different precedence graphs layout

8.3.4 Effects of dynamic reordering

This thesis shows that model checking can be used to solve the task and message scheduling
problem. However, efficient model checking of problems with huge state spaces is only possible
with efficient representation of the model itself. Ordered Binary Decision Diagrams (OBDDs)
allow an efficient symbolic representation of the model. As the size of the OBDDs and also
the computation time depends on the order of the input variables, dynamic reordering strategies
may accelerate the process of computation and increases its efficiency. Dynamic reordering is
supported by the SAL framework.

Figure 8.10: Effects of dynamic reordering

98 CHAPTER 8. ANALYSIS AND RESULTS

Figure 8.10 illustrates the positive effects of dynamic reordering on the computation time. Given
exactly the same precedence graphs as an input, we calculated integrated task and message sched-
ules with and without dynamic reordering, in order to highlight the positive effects in terms of
average computation time. For instance, an improvement of average computation time of 73,7
percent for precedence graphs containing 8 tasks has been obtained. By increasing the number
of tasks this effect reduces to at least 23,9 percent in average for precedence graphs containing
up to 12 tasks.

8.3.5 Effects of an additional transition

As demonstrated in previous sections, there are different reasons that increase the complexity of
the task and message scheduling problem and thus accelerate the explosion of the state space.
Beside various relations of tasks to nodes and different precedence graph layouts, we investigate
the effects of an additional transition in this section.

In section 8.3.3 we have shown, that the precedence graph layout has a major impact on the
complexity of the integrated task and message scheduling problem when using the presented ap-
proaches. This affects the scalability of the presented approaches as well. Increasing complexity
is caused by the fact, that concurrent situations (e.g., concurrent use of a computing resource
or the communication system) increase the number of global system states because the model
checker is used to check all interleaving schedules, namely by the usage of many transitions in
parallel.

Thus, finding an abstraction for the integrated task and message scheduling problem with mini-
mal number of transitions as possible has a positive effect on our approach in terms of scalability.

In the following, we present how an additional transition affects the computation time for finding
an optimal task and message schedule. The Wait Message Transition allows to skip the
next available time slot of the underlying communication bus, although this slot is free. this is
rather related to the usage of SAL’s bounded model checker. In order to calculate counterexam-
ples with the given length k, we define that a message mi might not be sent in the actual available
slot slk, but wait for the next slot slk+1. This enables to obtain schedules with variable length l.
This is already specified in section 5.3.4.7.

First, we randomly generate 20 precedence graphs containing 4 to 12 tasks. The prece-
dence graph layout is a multiple starting nodes - scenario using a single task per node. Fig-
ure 8.11 demonstrates the usage with (blue line) and without (black line) the additional
Wait Message Transition.

Figure 8.11a illustrates the computation time in a logarithmical diagram. It can be seen, that start-
ing from precedence graphs containing 6 tasks an exponential increase of the average computa-
tion time can be identified. Including the additional Wait Message Transition, solutions
can only be found for precedence graphs containing up to 9 tasks.

8.3. RESULTS 99

However, experimental results for precedence graphs containing 9 tasks are less meaningful,
because, as depicted in figure 8.11b, the number of visited states is nearly stagnating. This effect
can be explained by the fact, that only 4 of 20 precedence graphs lead to useful results.

(a) Computation Time (b) Number of states

Figure 8.11: Effects of an additional transition

Thus, the usage of additional transitions emphasizes an increase in complexity and in turn leads
to a decrease of scalability using the presented approaches. In the next section we demonstrate
how the heuristic approach decreases the state space by selecting the number of transitions.

8.3.6 Weighted Symbolic Task and Message Scheduling

We adopt the principle of symbolic state space exploration to scheduling synthesis, as described
in chapter 5. Furthermore, we propose an approach, named Weighted Symbolic Scheduling,
providing a heuristic that effectively decrease the state space by guiding the exploration and
therefore increasing scalability (compare chapter 6). The perfect algorithm would choose the
transition that continues a path leading to that desired goal state sn, namely the optimal task and
message schedule. Unfortunately, this cannot be known a priori. Therefore, a mechanism is
proposed that increase the efficiency for finding the transition that lead to the desired goal state
sn, while exploring the state space.

Keeping in mind that an additional transition leads to an increase in complexity, as demonstrated
in the previous section, we have specified a heuristic approach using a weight - calculation that
can be used as a criteria for selecting the next transition. The weight of a transition can be
computed off-line, as specified in section 6.2, and is valid for all explorations of the model.
Therefore, in each step, the weights of all possible transitions are compared. Transitions leading
to states with lower weights are not executed at all, thus saving time and memory.

In order to quantify the effect of the Weighted Symbolic Scheduling approach in contrast to the
Symbolic Task and Message Scheduling approach, we randomly generate 20 precedence graphs
containing 4 to 12 tasks each, using a Multiple Starting nodes layout with a single task per

100 CHAPTER 8. ANALYSIS AND RESULTS

node. In this case the computation duration of a each task is estimated as the same size as a
communication slot. For each precedence graph the optimal solution is calculated using both
approaches.

Figure 8.12: Effects on computation time using the heuristic approach

Figure 8.12 compares experimental results using the Symbolic Task and Message Scheduling
approach (blue line), as already depicted in section 8.3.1. The average computation time used
to calculate an optimal task and message schedule using the Weighted Symbolic Scheduling
approach is depicted by the red line. For all precedence graphs an average reduction of compu-
tation time can be estimated. For instance, an optimal task and message schedule for precedence
graphs containing 10 tasks can be computed (in average) 71,42 percent faster using the presented
heuristic approach.

This effect consequently can be seen by the visited number of system states, as depicted in figure
8.13.

After demonstrating positive effects on computation time and number of system states using
the Weighted Symbolic Scheduling approach, we furthermore demonstrate how this effect even
increases, if the complexity given by the precedence graph layout or the relation of tasks to
nodes increase. Therefore, we generated a set of precedence graphs using the following settings:
We investigate precedence graphs containing 8 tasks in a Multiple Starting nodes scenario with a
rising number of tasks per node. Each task is assumed to have a computation duration that equals
a communication slot.

As proved by experimental results in section 8.3.2, the complexity of the task and message sched-
uling problem increases by raising the relation of nodes per task. In order to demonstrate the
usability of the developed Weighted Symoblic Scheduling approach, especially under conditions
of increased complexity, we therefore investigate 20 generated precedence graphs with the fol-
lowing relations of tasks to nodes: one task per node, two tasks per node and four task per node.

8.3. RESULTS 101

Figure 8.13: Effects on number of states using the heuristic approach

The generated precedence relations between the tasks stays unchanged, just the number of nodes
the given set of tasks are allocated to, are reduced.

Figure 8.14 illustrates the increasing benefit of the developed approach.

Figure 8.14: Effects of using the heuristic approach (I)

The benefit of using the Weighted Symbolic Scheduling approach can be established by the cal-
culation of visited states for the given scenarios. Figure 8.15 highlights the reduction of states
needed for finding an optimal task and message schedule, even in concurrent scenarios, where
4 tasks are allocated to one computing resource. Especially in this scenario, a reduction of 92,3
percent in average can be obtained.

102 CHAPTER 8. ANALYSIS AND RESULTS

Figure 8.15: Effects of using the heuristic approach (II)

These results prove the benefit of using the Weighted Symbolic Scheduling approach for finding
an optimal task and message schedule. The Weighted Symbolic Scheduling approach is therefore
highly eligible for increasing scalability in contrast to the Symbolic Task and Message Scheduling
approach.

8.4 Discussion of Results

Both presented approaches, namely Symbolic Task and Message Scheduling and Weighted Sym-
bolic Scheduling, enable to find an optimal solution of the given task and message scheduling
problem. However, scalability turns out to be a restricting factor. The previous sections demon-
strate that with an increasing number of tasks per precedence graph, the state space and thus the
computation time increases (nearly) exponentially. This is caused by an exponentially growing
number of possible solutions for finding an integrated task and message schedule, when adding
tasks to the precedence graph.

Experimental results demonstrate that the Symbolic Task and Message Scheduling approach
using the SAL framework as a model checking tool is able to calculate an optimal task and
message schedule up to 13-14 tasks per precedence graph. However, this is not possible for all
randomly generated precedence graphs, especially with a concurrent precedence graph layout.
Using the heuristic approach proves to be suitable to reduce the complexity of the given task and
message scheduling problem and enables to find solution for precedence graphs with up to 16
tasks. Thus, the Weighted Symbolic Scheduling approach is eligible for increasing scalability in
contrast to the Symbolic Task and Message Scheduling approach.

8.4. DISCUSSION OF RESULTS 103

Furthermore, the presented approaches enables to calculated schedules that fulfill various certain
system requirements. For instance, the generated schedule should execute a certain task until a
certain point in time, because there exist such a system requirement. The developed approach is
able to generate a counterexample, namely a task and message schedule, fulfilling this require-
ment, if there exists such a schedule. Thus, all kinds of requests to an integrated task and message
schedule, can be defined and investigated by adapting the optimization criterion.

104 CHAPTER 8. ANALYSIS AND RESULTS

Chapter 9

Conclusion and Future Work

In this thesis we have developed generation techniques for task and message configurations for
time-triggered architectures, that comply with the specific requirements given by IMA architec-
tures (e.g. static off-line schedule, minimal end-to-end latency). The commonality among the
given techniques is the problem of integrated task and message scheduling for time-triggered net-
works. We propose several approaches that allows the automatic generation of task and message
configurations. Moreover, the symbolic approaches presented provide optimal system configu-
rations with respect to given system requirements, such as end-to-end latency.

9.1 Accomplishments

Our first approach solves the task and message scheduling problem by regarding it as a graph
problem. An off-line scheduling algorithm has been developed for traversing this graph that
augments conventional scheduling rules with algorithms addressing the specific problems of
scheduling messages on a time-triggered communication medium. The approach integrated task
scheduling at system level with message scheduling at communication level. The graph traversal
generates a schedule by incremental successor and predecessor calculation in each step. The
algorithm incorporates a backtracking and path extension functionality guaranteeing the con-
sistency of the developed schedule. The main advantage is that the algorithm automatically
computes schedules and scales up well even for large applications. The price to pay is that the
algorithm does not always find an optimal solution. However, the algorithm delivers its result
very fast. Even precedence graphs with 100 or 1000 different (concurrent) tasks can be handled
in minutes. The algorithm presented is therefore highly scalable and thus applicable for large
avionics systems.

Secondly, this thesis extends ongoing research into task and message scheduling based on time-
triggered shared resources by first using model checking techniques for solving this kind of
problem. We demonstrate that state-of-the-art model checking and bounded model checking

106 CHAPTER 9. CONCLUSION AND FUTURE WORK

techniques can be used to compute a schedule that fulfills certain system requirements. We
introduce Symbolic Task and Message Scheduling as a novel approach to this class of problems.
This approach allows to automatically compute optimal schedules with respect to minimal end-
to-end latency. We adopt the principle of symbolic state space exploration to schedule synthesis
and provide a symbolic encoding which guarantees an optimal solution. The symbolic encoding
is performed by transferring and defining the task and message scheduling problem as a finite-
state model-checking problem M |= ϕ. The major challenge is the scalability of the given
approach.

Therefore, this thesis presents - thirdly - a technique focusing on the specific problem of sched-
uling synthesis to reduce the state space. The developed approach extends the Symbolic Task and
Message Scheduling approach by introducing a heuristic that decreases the state space by guid-
ing the exploration. This approach is called Weighted Symbolic Task and Message Scheduling.
This approach increases the scalability of the symbolic task and message scheduling approach
by preventing from an exhaustive search through a guided, weight-based exploration.

The developed approaches are implemented in a framework for scheduling synthesis. The frame-
work supports the developed complexity evaluation approach by integrating a graph generator as
well as a code generator for the symbolic and weighted symbolic approaches. This allows several
system specifications to be automatically translated into SAL specification according to the given
encoding schemes presented. Furthermore, the framework has several interfaces in order to im-
port configurations (FIBEX- files for FlexRay configurations) and output system configurations
(SAL framework for executing and solving the given task and message scheduling problem).
The results are transferred back and can be visualized through textual and gnuplot-based graph-
ical elements. Experimental series composed of different precedence graphs containing certain
property settings can be computed and compared by this framework.

Finally, experimental results demonstrate that both presented approaches, namely Symbolic Task
and Message Scheduling and Weighted Symbolic Scheduling make it possible to find an optimal
solution for the given task and message scheduling problem. Furthermore, it has been possible
to demonstrated that Symbolic Task and Message Scheduling is able to calculate the optimal task
and message schedule with precedence graphs consisting of up to 13-14 tasks. We have shown
that the developed heuristic approach effectively reduces the complexity by decreasing the state
space and increases the scalability by enabling the calculation of a solution for precedence graphs
with up to 16 tasks.

9.2 Perspectives

This thesis provides a basis for further research topics, especially in the developed symbolic and
weighted symbolic approaches. As it has been demonstrated in this thesis, formal methods can be
used for scheduling synthesis, generating optimal integrated task and message schedules. In this
thesis, we focus - triggered by an aeronautic use case and its requirements - on the optimization

9.2. PERSPECTIVES 107

criterion of minimizing the system’s end-to-end latency, based on a given aeronautic system
architecture - meaning a fixed allocation of tasks to nodes.

Further optimization criteria might be investigated in future work - for instance, the generation
of schedules with a minimum number of resource constraints, either on the bus or the computing
resources. This corresponds to a schedule that is characterized by a minimal amount of concur-
rent accesses to a shared computing resource or the shared communication medium. A schedule
that minimizes the resource constraints would have found an allocation of tasks to nodes which
is optimal in correspondence to the given precedence graph. This would require an approach
to effectively reallocate certain tasks to other nodes with respect to the collisions found in the
schedule calculated by our approach. However, it would be highly interesting to find a system
architecture with its corresponding configuration that fulfills such a requirement. The schedule
of such a configuration would probably be the schedule with the best end-to-end latency for a
given precedence graph.

Another interesting perspective would be to extend the presented approach by the use of different
criticality levels. One could image a system configuration comprising of several functions that
has different levels of criticality (e.g. safety-critical functions and non safety-critical functions).
The heuristic approach could be adapted to prefer tasks or messages that are safety-critical in
order to generate a schedule that is optimal with respect to criticality.

Calculating schedules that guarantee quantifiable safety-properties are conceivable as well. The
given optimization criterion might be changed according to a given safety- property (e.g. several
tasks might meet system-wide timing properties).

A promising line of research deals with different kinds of system requirements, in the sense of
multi-period task scenarios - meaning that several tasks may have various periods. In this case
a precedence graph needs to be semantically adapted. Our approach assumes, that the given
task set, can be transferred to a precedence graph which is used as a basis for the developed ap-
proaches. One possibility might be to investigate how task sets composed of tasks with different
periods may be mapped in a single precedence graph. This could possibly be performed by exact
precedence relations of these multi-period tasks and their periods. It might enable the detection
of potential redundant information generated by higher precedence tasks. This would enable the
downsizing parts of the given precedence graph to a uni-period task scenario.

108 CHAPTER 9. CONCLUSION AND FUTURE WORK

List of Figures

2.1 Typical Task Parameters . 11
2.2 Simple Example of a Precedence Graph G . 13

3.1 Logical Execution Time (LET) . 24

4.1 Simple Precedence Graph G . 28
4.2 Integration of a dummy task tdummy in a precedence graph 29
4.3 Precedence Graph and Graphical Representation of the Algorithm 34

5.1 Different task trying to allocate to the same computing resource 39
5.2 Task trying to allocated a already blocked computing resource 40
5.3 Different messages trying to allocate the same communication resource 40
5.4 Message mi can be sent in both of the next available slots 41
5.5 Declaration of task, message and node records 49
5.6 Example of possible transition execution order 58
5.7 Calculated Task and Message Schedule for the given Example 1 63

6.1 State Space Reduction Technique . 68
6.2 Simplified Architecture of the given Precedence Graph 70
6.3 Declaration of a heuristic records . 71

7.1 Single Precedence Graph Generation . 76
7.2 Defining the Precedence Relations for each Task 77
7.3 Multiple Precedence Graph Generation . 78
7.4 Precedence Graph with Multiple Starting Nodes 79
7.5 Precedence Graph with Multiple Ending Nodes 79
7.6 Precedence Graph with connected randomized nodes 79
7.7 General Parameter for Graph Generation . 80
7.8 Precedence Graph Editor . 81
7.9 Graphical Representation and Code Generation 82
7.10 Result Generation for Symbolic Task and Message Scheduling 83
7.11 Visual representation of calculated computation time 83
7.12 Visual representation of calculated schedule length 84

109

110 LIST OF FIGURES

8.1 Procedure of Complexity Evaluation . 86
8.2 Computation Time for Task and Message Scheduling 89
8.3 Average number of visited states . 91
8.4 Computation Time for 2 tasks per node . 92
8.5 Comparing different relation of tasks and nodes: 2 tasks per node vs. 1 task per

node . 93
8.6 Precedence Graph with multiple starting nodes and multiple ending nodes 94
8.7 Precedence graph with multiple ends . 95
8.8 Precedence graph with a random composition 96
8.9 Comparison of different precedence graphs layout 97
8.10 Effects of dynamic reordering . 97
8.11 Effects of an additional transition . 99
8.12 Effects on computation time using the heuristic approach 100
8.13 Effects on number of states using the heuristic approach 101
8.14 Effects of using the heuristic approach (I) . 101
8.15 Effects of using the heuristic approach (II) . 102

List of Tables

8.1 Design of Experiments . 88
8.2 Results of Experiment Series . 90

111

112 LIST OF TABLES

Appendix A

SAL Code Example

We give a short example how the presented framework is used to automatically generate SAL
Code, based on the Symbolic Task and Message Scheduling approach. The following SAL Code
Example comprises to the simple example 1 specified in section 2.3.

%**
% SYMBOLIC TASK AND MESSAGE SCHEDULING
% Author: Sebastian Voss, EADS Innovation Works
% generated: Dec/11/2009 20:00
%**
graph:CONTEXT=

BEGIN
TASKS:TYPE=Task0,Task1,Task2,Task3;
MESSAGES:TYPE=Edge0,Edge1,Edge2,Edge3;
NODES:TYPE=n0,n1,n2,n3;
TIME:TYPE = [0..14];

NATURAL1: TYPE=[0..14];
INDEX1:TYPE = [0..0];
INDEX2:TYPE = [0..1];
INDEX3:TYPE = [0..2];

PREC_MSG:TYPE = ARRAY INDEX1 OF TASKS;
prec_Edge0:PREC_MSG = [[i:INDEX1]Task0];
prec_Edge1:PREC_MSG = [[i:INDEX1]Task0];
prec_Edge2:PREC_MSG = [[i:INDEX1]Task1];
prec_Edge3:PREC_MSG = [[i:INDEX1]Task2];

PREC_TASK1 :TYPE = ARRAY INDEX1 OF MESSAGES;
PREC_TASK2 :TYPE = ARRAY INDEX2 OF MESSAGES;
PREC_TASK3 :TYPE = ARRAY INDEX3 OF MESSAGES;
prec_Task1: PREC_TASK1=[[i:INDEX1]Edge0];
prec_Task2: PREC_TASK1=[[i:INDEX1]Edge1];
prec_Task3: PREC_TASK2 = [[i:INDEX2] IF i=0 THEN Edge3 ELSE Edge2 ENDIF];

114 APPENDIX A. SAL CODE EXAMPLE

NODETASKS: TYPE = ARRAY INDEX1 OF NODES;
Task0_node:NODETASKS = [[i:INDEX1]n0];
Task1_node:NODETASKS = [[i:INDEX1]n1];
Task2_node:NODETASKS = [[i:INDEX1]n1];
Task3_node:NODETASKS = [[i:INDEX1]n2];

WAITARRAY:TYPE = ARRAY MESSAGES OF BOOLEAN;

taskcalendar:TYPE=
[#

t_started:BOOLEAN,
t_finished:BOOLEAN,
t_start:NATURAL1,
t_clock:NATURAL1,
t_comp:NATURAL1

#];
TASKARRAY:TYPE=ARRAY TASKS OF taskcalendar;

msgcalendar:TYPE=
[#

m_started:BOOLEAN,
m_set:BOOLEAN,
m_slot:NATURAL1

#];
MSGARRAY:TYPE=ARRAY MESSAGES OF msgcalendar;

nodecalendar:TYPE=
[#

node_free:BOOLEAN,
node_task:TASKS

#];
NODEARRAY:TYPE=ARRAY NODES OF nodecalendar;

%------------------------
%FUNCTIONS
%------------------------
getPrecTask(m:MESSAGES, taskarray:TASKARRAY):BOOLEAN=

IF (m=Edge0 AND(EXISTS (j:INDEX1):taskarray[prec_Edge0[j]].å
t_finished=FALSE)) THEN FALSE
ELSIF (m=Edge1 AND(EXISTS(j:INDEX1):taskarray[prec_Edge1[j]].å
t_finished=FALSE)) THEN FALSE
ELSIF (m=Edge2 AND(EXISTS(j:INDEX1):taskarray[prec_Edge2[j]].å
t_finished=FALSE)) THEN FALSE
ELSIF (m=Edge3 AND(EXISTS(j:INDEX1):taskarray[prec_Edge3[j]].å
t_finished=FALSE)) THEN FALSE
ELSE TRUE
ENDIF;

getPrecMsg(t:TASKS, msgarray: MSGARRAY):BOOLEAN=
IF (t=Task1 AND(EXISTS (j:INDEX1):msgarray[prec_Task1[j]].m_set=å
FALSE)) THEN FALSE
ELSIF (t=Task2 AND(EXISTS (j:INDEX1):msgarray[prec_Task2[j]].m_set=å
FALSE)) THEN FALSE

115

ELSIF (t=Task3 AND(EXISTS (j:INDEX2):msgarray[prec_Task3[j]].m_set=å
FALSE)) THEN FALSE
ELSE TRUE
ENDIF;

getNodeTask(t:TASKS):NODES=
IF(t=Task0) THEN Task0_node[0]
ELSIF(t=Task1) THEN Task1_node[0]
ELSIF(t=Task2) THEN Task2_node[0]
ELSE Task3_node[0]
ENDIF;

%------------------------
%MODULE
%------------------------
schedule:MODULE =
BEGIN

GLOBAL currenttaskarray:TASKARRAY
GLOBAL currentmessagearray:MSGARRAY
GLOBAL currentnodearray:NODEARRAY
GLOBAL Time:TIME
GLOBAL Bus_free:BOOLEAN

INITIALIZATION
currenttaskarray[Task0].t_comp=2.0;
currenttaskarray[Task1].t_comp=2.0;
currenttaskarray[Task2].t_comp=2.0;
currenttaskarray[Task3].t_comp=2.0;

Bus_free=TRUE;
Time=0;
%Task Calendar Array
(FORALL (i:TASKS): currenttaskarray[i].t_started=FALSE);
(FORALL (i:TASKS): currenttaskarray[i].t_finished=FALSE);
(FORALL (i:TASKS): currenttaskarray[i].t_start=0);
(FORALL (i:TASKS): currenttaskarray[i].t_clock=0);

%Message Calendar Array
(FORALL (j:MESSAGES): currentmessagearray[j].m_started=FALSE);
(FORALL (j:MESSAGES): currentmessagearray[j].m_set=FALSE);
(FORALL (j:MESSAGES): currentmessagearray[j].m_slot=0);

%Node Calendar Array
(FORALL (j:NODES): currentnodearray[j].node_free=TRUE);
(FORALL (j:NODES): currentnodearray[j].node_task=Task1);

%--------------------------------------
%TRANSISTIONS
%--------------------------------------
TRANSITION

116 APPENDIX A. SAL CODE EXAMPLE

[
([](i:TASKS): starttransition:

currentnodearray[getNodeTask(i)].node_free = TRUE AND
currenttaskarray[i].t_started = FALSE AND
getPrecMsg(i,currentmessagearray) = TRUE
-->
currenttaskarray’= currenttaskarray WITH [i].t_started:=TRUE å
WITH [i]. t_clock:=0 WITH [i].t_start:=Time;
currentnodearray’= currentnodearray WITH [getNodeTask(i)]. å
node_free:=FALSE WITH [getNodeTask(i)].node_task:=i)

[]
([](i:TASKS): interrupt_change_transition:

currentnodearray[getNodeTask(i)].node_free = FALSE AND
currenttaskarray[i].t_started = FALSE AND
getPrecMsg(i,currentmessagearray) = TRUE
-->
currenttaskarray’= currenttaskarray WITH [i].t_started:= TRUE å
WITH [i].t_clock:=0 WITH [i].t_start:=Time
WITH [currentnodearray[getNodeTask(i)].node_task].t_started:=FALSE
WITH [currentnodearray[getNodeTask(i)].node_task].t_clock:=0
WITH [currentnodearray[getNodeTask(i)].node_task].t_start:=0;
currentnodearray’= currentnodearray WITH [getNodeTask(i)]. å
node_free:=FALSE WITH [getNodeTask(i)].node_task:=i)

[]
([](i:TASKS): endtransition:

currenttaskarray[i].t_started = TRUE AND
currenttaskarray[i].t_clock = currenttaskarray[i].t_comp AND
currenttaskarray[i].t_finished = FALSE
-->
currenttaskarray’[i].t_finished = TRUE;
currentnodearray’= (currentnodearray WITH [getNodeTask(i)].å
node_free:=TRUE) WITH [getNodeTask(i)].node_task:=Task3)

[]
runtransition:
EXISTS (i:TASKS): currenttaskarray[i].t_started = TRUE AND å
currenttaskarray[i].t_clock < currenttaskarray[i].t_comp AND
(NOT (EXISTS (j:TASKS): j /= i AND

(currentnodearray[getNodeTask(j)].node_free=TRUE AND
currenttaskarray[j].t_started = FALSE AND
getPrecMsg(j,currentmessagearray)=TRUE))) AND

(NOT (EXISTS (k:TASKS): k /= i AND
(currenttaskarray[k].t_comp=currenttaskarray[k].t_clock AND å
currenttaskarray[k].t_finished=FALSE))) AND

(NOT (EXISTS (l:MESSAGES): (currentmessagearray[l].m_set = FALSE å
AND currentmessagearray[l].m_started = FALSE AND
Bus_free = TRUE AND
getPrecTask(l,currenttaskarray)=TRUE))) OR

117

(EXISTS (m:TASKS): m /= i AND
currentnodearray[getNodeTask(m)].node_free = FALSE AND
getNodeTask(m) = getNodeTask(i) AND
currenttaskarray[m].t_started = FALSE AND
getPrecMsg(m,currentmessagearray)=TRUE) AND
currenttaskarray[i].t_started = TRUE AND
currenttaskarray[i].t_clock < currenttaskarray[i].t_comp AND

(NOT (EXISTS (j:TASKS): j /= i AND
(currentnodearray[getNodeTask(j)].node_free=TRUE AND
currenttaskarray[j].t_started = FALSE AND
getPrecMsg(j,currentmessagearray)=TRUE))) AND

(NOT (EXISTS (k:TASKS): k /= i AND
(currenttaskarray[k].t_comp=currenttaskarray[k].t_clock AND å
currenttaskarray[k].t_finished=FALSE))) AND

(NOT (EXISTS (l:MESSAGES): (currentmessagearray[l].m_set = FALSE AND
currentmessagearray[l].m_started = FALSE AND
Bus_free = TRUE AND
getPrecTask(l,currenttaskarray)=TRUE)))

-->
currenttaskarray’[Task0].t_clock = IF currenttaskarray[Task0].t_started=å
TRUE AND currenttaskarray[Task0].t_clock < currenttaskarray[Task0].t_comp

THEN currenttaskarray[Task0].t_clock+1
ELSE currenttaskarray[Task0].t_clock
ENDIF;

currenttaskarray’[Task1].t_clock = IF currenttaskarray[Task1].t_started=å
TRUE AND currenttaskarray[Task1].t_clock < currenttaskarray[Task1].t_comp

THEN currenttaskarray[Task1].t_clock+1
ELSE currenttaskarray[Task1].t_clock
ENDIF;

currenttaskarray’[Task2].t_clock = IF currenttaskarray[Task2].t_started=å
TRUE AND currenttaskarray[Task2].t_clock < currenttaskarray[Task2].t_comp

THEN currenttaskarray[Task2].t_clock+1
ELSE currenttaskarray[Task2].t_clock
ENDIF;

currenttaskarray’[Task3].t_clock = IF currenttaskarray[Task3].t_started=å
TRUE AND currenttaskarray[Task3].t_clock < currenttaskarray[Task3].t_comp

THEN currenttaskarray[Task3].t_clock+1
ELSE currenttaskarray[Task3].t_clock
ENDIF;
Time’=Time+1;

[]
([](i:MESSAGES): startmessagetransition:
currentmessagearray[i].m_set = FALSE AND
currentmessagearray[i].m_started = FALSE AND
Bus_free = TRUE AND
getPrecTask(i,currenttaskarray)=TRUE AND

(NOT (EXISTS (j:TASKS): currentnodearray[getNodeTask(j)].node_free=å
TRUE AND

currenttaskarray[j].t_started = FALSE AND
getPrecMsg(j,currentmessagearray)=TRUE)) AND

118 APPENDIX A. SAL CODE EXAMPLE

(NOT (EXISTS (k:TASKS): currenttaskarray[k].t_started = TRUE AND
currenttaskarray[k].t_clock = currenttaskarray[k].t_comp AND
currenttaskarray[k].t_finished = FALSE))
-->
currentmessagearray’=currentmessagearray WITH [i].m_started:=TRUE å
WITH [i].m_slot:=Time;
Bus_free’ = FALSE;
Time’= IF (NOT (EXISTS (j:TASKS):currenttaskarray[j].t_started= å
TRUE AND currenttaskarray[j].t_finished=FALSE))

THEN Time+1
ELSE Time
ENDIF;

)

[]
([](i:MESSAGES):
endmessagetransition:
currentmessagearray[i].m_set = FALSE AND
currentmessagearray[i].m_started = TRUE AND
Time = currentmessagearray[i].m_slot+1
-->
currentmessagearray’[i].m_set = TRUE;
Bus_free’ = TRUE
)

[]
ELSE -->

]

END;

th1: theorem schedule |- AG(EXISTS (i:TASKS):currenttaskarray[i]. å
t_finished=FALSE);

END

Appendix B

Abbreviations

BDD Binary Decision Diagrams

BF Best - Fit

BMC Bounded Model Checker

CAN Controller Area Network

CPU Central Processing Unit

CTL Computational Temporal Logic

DFS Depth - First - Search

DM Deadline - Monotonic

DO - 178B Software Considerations in Airborne Systems and Equipment Certification

DPS Dynamic - Priority Scheduling

EDF Earliest Deadline First

FIBEX Field Bus Exchange Format

FF First - Fit

FPS Fixed-Priority Scheduling

IMA Integrated Modular Avionics

I/O Input / Output

LCM Least Common Multiple

LET Logical Execution Time

LIN Local Interconnect Network

120 APPENDIX B. ABBREVIATIONS

LRM Line Replaceable Modules

LRT Latest Release Time

LRU Line Replaceable Units

OBDD Ordered Binary Decision Diagrams

PTL Propositional Tree Logic

RM Rate - Montonic

SAL Symbolic Analysis Laboratory

SAL-SMC SAL’s Symbolic Model Checker

SAL-INF-BMC SAL’s Infinite - Bounded Model Checker

SAT Solver Satisfiability Solver

SMC Symbolic Model Checking

TDL Timing Definition Language

TDMA Time Devision Multiple Access

TT Time - Triggered

TTA Time - Triggered Architecture

TTP Time - Triggered Protocol

WMC Witness and Counterexample Model Checker

Bibliography

[AG03] TTTech Computertechnik AG. Time-triggered protocol TTP/C high level specifi-
cation document. Technical report, TTA Group, 2003.

[And97] H.R. Andersen. An introduction to binary decision diagrams. In Lecture nodes for
Advanced Algorithms. Department of Information Technology, Technical Univer-
sity of Denmark, 1997.

[ARI93] ARINC. Arinc specification 659: Backplane data bus, December 1993.

[ARI05] ARINC. Arinc664: Aircraft data network, part 7, avionics full duplex switched
ethernet (afdx) network, 2005.

[AS99] T. F. Abdelzaher and K. G. Shin. Combined task and message scheduling in dis-
tributed real-time systems. IEEE Trans. Parallel Distrib. Syst., 10(11):1179–1191,
1999.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

[BGL+00] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Mu noz, S. Owre, H. Rueß, John Rushby,
Vlad Rusu, Hassen Saı̈di, N. Shankar, Eli Singerman, and Ashish Tiwari. An
overview of sal. In C. M. Holloway, editor, LFM 2000: Fifth NASA Langley Formal
Methods Workshop. NASA Langley Research Center, 2000.

[BH98] J. Baumgartner and T. Heyman. An overview and application of model reduction
techniques in formal verification. In Performance, Computing and Communica-
tions, 1998. IPCCC ’98., IEEE International, pages 165–171, Feb 1998.

[Boe07] S. Boehm. Reachability Analysis of Fault-Tolerant Protocols. PhD thesis, Univer-
sity of Duisburg-Essen (Campus Essen), 2007.

[BS05] B. Bouyssounouse and J. Sifakis. Embedded Systems Design: The ARTIST
Roadmap for Research and Development (LNCS). Springer-Verlag New York,
Inc., 2005.

121

122 BIBLIOGRAPHY

[But04] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Al-
gorithms And Applications (Real-Time Systems Series). Springer-Verlag Telos,
2004.

[CE82] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In Logic of Programs, Workshop, 1982.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Second Edition. The MIT Press, September 2001.

[Com99] International Electrotechnical Commission. Iec 61158-cpf3 profibus standard.
www.profibus.com, 1999.

[Con05] FlexRay Consortium. Flexray communications system protocol specification, ver-
sion 2.1, revision A. URL http://www.flexray.com, 2005.

[DdM06] B. Dutertre and L. de Moura. Fast linear-arithmetic solver for dpll(t). In Proc.
18th Computer-Aided Verification conference, volume 4144 of LNCS, pages 81–
94. Springer-Verlag, 2006.

[DE98] A. Doboli and P. Eles. Scheduling under control dependencies for heterogeneous
architectures. In International Converence on Computer Design, 1998.

[Der74] M. L. Dertouzos. Control robotics: The procedural control of physical processes.
In IFIP Congress, pages 807–813, 1974.

[dMOR+04] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari.
Tool presentation: Sal 2. In Computer-Aided Verification (CAV 2004). Springer-
Verlag, 2004.

[dMOS03] L. de Moura, S. Owre, and N. Shankar. The sal language manual. Technical Report
SRI CSL 01-02 (Revision2), SRI International, August 2003.

[dMRS03] L. de Moura, H. Rueß, and M. Sorea. Bounded model checking and induction:
From refutation to verification. In CAV 2003, volume 2725 of LNCS, pages 14–26.
Springer-Verlag, 2003.

[EKP+98] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Prochess scheduling for
performance estimation and sythesis of hardware/software systems. In Proceed-
ings of the 24th Euromicro, 1998.

[EMCGP99] Jr. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, USA, 1999.

[Far06] E. Farcas. Scheduling Multi-Mode Real-Time Distributed Components. PhD thesis,
University of Salzburg, 2006.

[FDD89] Fibre distributed data interface (fddi) - part 2: Token ring media access conctrol
(mac). ISO INterational Standard 9314-2, 1989.

BIBLIOGRAPHY 123

[FFPT05] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent distribution of real-time
components based on logical execution time. SIGPLAN Not., 40(7):31–39, 2005.

[FH03] M. Fränzle and C. Herde. Efficient sat engines for concise logics: Accelerating
proof search for zero-one linear constraint systems. In Logic for Programming,
Artificial Intelligence, and Reasoning, 2003.

[fS98] International Organization for Standardization. Iso 11898: Road vehicles: Con-
troller area network (can), 1998.

[fSoAS04] Association for Standardisation of Automation and Measuring Systems. Mcd-
2[fbx] - fibex - field bus exchange. www.asam.net, 2004.

[GCG+99] C. Grumberg, E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space re-
duction using partial order techniques. In Software Tools for Technology Transfer,
pages 279–287. Springer-Verlag, 1999.

[God91] P. Godefroid. Using partial orders to improve automatic verification methods. In
CAV ’90: Proceedings of the 2nd International Workshop on Computer Aided Ver-
ification, pages 176–185, London, UK, 1991. Springer-Verlag.

[HD93] K. Hoyme and K. Driscoll. Safebus (tm). IEEE Aerospace and Electronics Systems
Magazine, March 1993.

[HHK01a] T. Henzinger, B. Horowitz, and C.M. Kirsch. Embedded control systems develop-
ment with giotto. In Proceedings of the International Conference on Languages.
ACM Press, 2001.

[HHK01b] T. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A time-triggered language
for embedded programming. Springer-Verlag, 2001.

[HHM+] T. Henzinger, B. Horowitz, S. Matic, C.M. Kirsch, M.A. Sanvido, and A. Ghosal.
The giotto project. http://www-cad.eecs.berkeley.edu/ fresco/giotto/.

[JLL04] A. R. Jensen, L. B. Lauritzen, and O. Laursen. Optimal task graph scheduling with
binary decision diagrams, 2004.

[KB01] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
Special Issue on Modeling and Design of Embedded Software, October 2001.

[L’E10] P. L’Ecuyer. Uniform random number generation. International Encyclopedia of
Statistical Science, 2010.

[Liu00] J. W. S. Liu. Real-Time Systems. Prentice Hall PTR, 2000.

[LK03] Motorola LIN Konsortium. Lin specification package. Revision 2.0, 2003.

[LL73] C.L. Liu and J.W. Layland. Scheduling alogrithms for multiprogramming in hard
real-time enviroments, Januar 1973.

124 BIBLIOGRAPHY

[LSCK01] P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An object-oriented random-
number package with many long streams and substreams. Operations Research,
50:1073–1075, 2001.

[LW82] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling
of periodic real-time tasks. In Performance Evaluation, 1982.

[MD78] A. K. Mok and M. L. Dertouzos. Multiprocessor scheduling in a hard real-time
environment. In 7th Texas Conference of Computing Systems, 1978.

[Mer01] S. Merz. Model checking: A tutorial overview. In MOVEP ’00: Proceedings of
the 4th Summer School on Modeling and Verification of Parallel Processes, pages
3–38. Springer-Verlag, 2001.

[MFHS05] A. Metzner, M. Fränzle, C. Herde, and I. Stierand. Scheduling distributed real-time
systems by satisfiability checking. In RTCSA ’05, pages 409–415, Washington,
DC, USA, 2005. IEEE Computer Society.

[Mok83] A. K. Mok. Fundamental Design Problems of Distributed Systems for Hard Real-
Time Enviroments. PhD thesis, Laboratory for Computer Science (MIT), 1983.

[Pau02] M. Paulitsch. Fault-Tolerant Clock Synchronization for Embedded Distributed
Multi-Cluster Systems. Doctoral thesis, Institut für Technische Informatik, Tech-
nische Universität Wien, Treitlstr. 1-3/3/182-1, Vienna, Austria, 2002. Available
at http://www.vmars.tuwien.ac.at.

[PEP99] P. Pop, P. Eles, and Z. Peng. An improved scheduling technique for time-triggered
embedded systems. In EUROMICRO Conference Proceedings, number 25, pages
303–310. ACM, 1999.

[PH08] M. Paulitsch and B. Hall. Flexray in aerospace and safety-sensitive systems. IEEE
Aerospace and Electronic Systems Magazine, 23:4–13, 2008.

[PRS08] M. Paulitsch, H. Rueß, and M. Sorea. Non-functional avionics requirements. In
Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2008, October 2008.

[PT08] W. Pree and J. Templ. Forget about flexray. Technical report, preeTEC.com - time
is on our side, 2008.

[Ran92] E. B. Randal. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv., 24(3):293–318, 1992.

[RTCfA] Inc. Radio Technical Commision for Aeronautics. DO - 178B. RTCA.

[Ruh05] J. Ruh. Entwurf von fehlertoleranten Steuergeräteapplikationen in Kraftfahrzeu-
gen unter Berücksichtigung moderner Entwicklungsmethodiken. PhD thesis, Uni-
versity of Stuttgart, 2005.

BIBLIOGRAPHY 125

[SJ08] R. Shaw and B. Jackman. An introduction to flexray as an industrial network.
IEEE Iternational Symposium on Industrial Electronics, pages 1849–1854, 2008.

[SL78] S.K.Dhall and C.L. Liu. On a real-time scheduling problem. Operations Research,
1978.

[SS03] N. Shankar and M. Sorea. Counterexample-driven model checking. Technical
Report SRI-CSL-03-04, SRI International, 2003.

[TBW94] K.W. Tindell, A. Burns, and A. Wellings. Analysis of hard real-time communica-
tions. In Real-Time Systems, 1994.

[TC94] K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard real-
time systems. Microprocessing and Microprogramming - Euromicro Journal (Spe-
cial Issue on Parallel Embedded Real-Time Systems), pages 117–134, 1994.

[TV99] E. Tovar and F. Vasques. From task scheduling in single processor environments to
message scheduling in a profibus. IPPS/SPDP Workshops, pages 339–252, 1999.

[VSE09] S. Voss, M. Sorea, and K. Echtle. Sal-based symbolic scheduling in time-triggered
networks. In IFM ’09: Proceedings of the 7th International Conference on Inte-
grated Formal Methods, pages 200–214. Springer-Verlag, 2009.

	Contents
	Introduction
	Avionics Systems
	Motivation
	Objectives and Contributions of this Thesis
	Structure of this Thesis

	Concepts and Terms
	Time-Triggered Architecture
	Basic Notations for Scheduling in Distributed Systems
	Problem Formulation
	Model Checking

	Scheduling Algorithms for (Hard) Real-Time Systems
	Classification of Scheduling Algorithm
	Static vs. Dynamic Scheduling
	Online vs. Offline Scheduling
	Preemptive vs. Non-Preemptive Scheduling

	Scheduling for Uni- and Multiprocessor Systems
	Scheduling for Uni-Processor Systems
	Scheduling for Multi-Processor Systems

	Scheduling for Distributed Systems
	Related Research
	Holistic Schedulability Analysis
	Combined Task and Message Scheduling using Branch-and-Bound
	Combined Task Message Scheduling using Satisfiability Checking
	Scheduling Multi-Mode Real-Time Distributed Components
	An Improved Scheduling Technique for Time-Triggered Embedded Systems
	Optimal Task Graph Scheduling with Binary Decision Diagrams

	Algorithm for Integrated Task and Message Scheduling
	Functional description of new scheduling algorithm
	Calculation of longest path
	Initial starting point
	Precedence Graph Traversal
	Backtracking and path extension

	Discussion
	Cases of guaranteed optimality
	Deviation from expected optimum in worst case scenario

	Symbolic Task and Message Scheduling
	Basic idea of using model checking for solving scheduling problems
	Requirements to Symbolic Task and Message Scheduling
	The Task and Message Scheduling Model
	State Representation
	Initial State
	Goal State
	Transitions
	Start Task Transition
	Run Task Transition
	Change Task Transition
	End Task Transition
	Start Message Transition
	End Message Transition
	Wait Message Transition

	SAL Representation
	Representation of a state
	The basic module
	Initialization
	Transitions

	Transition Ordering
	The 'Time' variable
	Solving (Hard) Real-Time Scheduling Problems using SAL
	Task and Message Scheduling using SAL-SMC
	Task and Message Scheduling using SAL-INF-BMC
	Counterexample and Schedule

	Binary Search Algorithm for finding the optimal solution

	Weighted Symbolic Scheduling
	Goal
	An approach for state space reductions
	Results and Discussion

	Framework for Scheduling Synthesis
	Graph Generation
	Single Graph Generation
	Multiple Graph Generation
	General Parameter for Graph Generation
	Precedence Graph Editor

	Code Generation
	Result Generation

	Analysis and Results
	Complexity evaluation for scheduling configurations
	Design of experiments
	Results
	General Results of Task and Message Scheduling
	Relation of Task and Nodes
	Variation in Precedence Graph Layouts
	Effects of dynamic reordering
	Effects of an additional transition
	Weighted Symbolic Task and Message Scheduling

	Discussion of Results

	Conclusion and Future Work
	Accomplishments
	Perspectives

	List of Figures
	List of Tables
	SAL Code Example
	Abbreviations
	Bibliography

