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1 Zusammenfassung 
Regulatorische T-Zellen (Treg-Zellen) sind unverzichtbar, um die periphere Immuntoleranz 

aufrecht zu erhalten. Sowohl die Entwicklung als auch die Funktion von Treg-Zellen ist 

abhängig von der Anwesenheit von MicroRNAs. Um MicroRNAs mit Bedeutung für die 

Treg-Zelldifferenzierung zu identifizieren, haben wir 147 T-Zell-exprimierte MicroRNAs 

kloniert und funktionell getestet. Unter diesen MicroRNAs konnte eine größere Anzahl 

identifiziert werden, die die Differenzierung naiver CD4+ T-Zellen in Treg-Zellen fördern 

oder beeinträchtigen. Aus diesen Befunden lässt sich ein hypothetisches Netzwerk von 

MicroRNA-Interaktionen ableiten, das der Treg-Zelldifferenzierung zugrunde liegt. Wir 

haben uns für die weitere exemplarische Untersuchung der MikroRNAs miR-99a, miR-100 

und miR-10b entschieden, weil diese den stärksten Effekt auf die Treg-Zelldifferenzierung, 

jedoch keinen Effekt auf die Th17-Zelldifferenzierung hatten.   

Durch die Analyse von potentiellen Ziel-mRNAs der Kandidaten-MicroRNAs konnten wir 

eine direkte Regulation der 3' untranslatierten Region (3'UTR) der Mechanistic target of 

rapamycin (Mtor) Kinase durch die miR-99a zeigen während der 3'UTR von RAR-related 

orphan receptor alpha (Rora) durch miR-10b reprimiert wurde. Interessanterweise enthält 

sowohl der Mtor 3'UTR als auch der Rora 3'UTR zusätzlich eine Zielsequenz für miR-150. 

Entsprechend konnte miR-150 Überexpression diese 3'UTRs reprimieren und führte ebenfalls 

zu einer verstärkten Treg-Zelldifferenzierung. Während miR-150 über die ganze Treg-

Zelldifferenzierung hinweg stark exprimiert war, konnte die eigentlich geringe Expression 

von miR-10b sowie von miR-99a und miR-100 durch die Behandlung von T-Zellen mit 

Retinsäure stark induziert werden. Retinsäure ist bekannt dafür, direkt und indirekt die Treg-

Zelldifferenzierung stark zu stimulieren. 

Wir schlagen daher ein Modell vor, in dem die Kooperation von hochexprimierten sowie 

induzierbaren MicroRNAs die notwendige Herunterregulation von kritischen Inhibitoren der 

Treg-Zelldifferenzierung erreichen kann. 
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2 Abstract 
Regulatory T cells (Treg) are essential in the maintenance of peripheral immune tolerance. 

Their development and function requires the presence of mature microRNAs. To identify 

microRNAs important in Treg cell differentiation, we functionally screened a set of 147 T 

cell-expressed microRNAs. We determined a larger number of microRNAs to promote or 

interfere with naive CD4+ T cell to Treg cell conversion, suggesting a network of microRNA 

interaction, which underlies Treg cell differentiation. We chose to further investigate miR-

99a, miR-100 and miR-10b, which had the strongest effect on Treg and no effect on Th17 

differentiation. 

Testing potential targets of these candidates we determined a direct negative regulation of the 

Mechanistic target of rapamycin (mTOR) 3’ untranslated region (3’UTR) by miR-99a as well 

as the repression of the RAR-related orphan receptor alpha (Rora) 3’UTR by miR-10b. 

Interestingly, both Mtor and Rora 3’UTRs additionally possess target sites for miR-150. 

Consistently, these 3’UTRs were repressed by miR-150 overexpression, which also 

effectively promoted Treg differentiation. While miR-150 was highly expressed throughout 

Treg cell differentiation, the low expression of miR-10b, miR-99a and -100 was strongly 

induced upon retinoic acid treatment, a known direct and indirect inducer of Treg cell 

differentiation. 

We therefore propose a model in which the cooperation of highly expressed as well as 

inducible microRNAs can achieve sufficient downregulation of critical inhibitors of Treg cell 

differentiation.
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4 Introduction 

4.1 T helper cells in protective immunity and tolerance  

The mammalian immune system confers protection against harmful pathogens through the 

interplay of innate and adaptive immune cells and molecules. The innate immune system is 

activated by general molecular patterns of pathogens and provides a first line of defense 

mechanisms (Hoffmann et al., 1999). These involve activation of the complement system, 

opsonization and phagocytosis of pathogens as well as activation of antigen presenting cells. 

The latter link the innate immune response with adaptive immunity that provides huge antigen 

receptor diversity in order to target unique antigens of a particular pathogen with high 

affinity.  

The adaptive immune system is mainly constituted of B cells, which produce antibodies, and 

of T cells, that differentiate into CD8+ (Cluster of differentiation 8 positve) cytotoxic T cells 

and CD4+ helper T cells (Murphy et al., 2008). T cells leave the thymus as naive cells and 

migrate with the blood stream or lymph vessel and enter lymph nodes. Naive CD4+ T cell are 

activated when they encounter an activated dendritic cell that presents a peptide:MHCII 

(Major Histocompatibility Complex II) complex recognized by the T cell receptor (TCR). 

Different types of pathogens evoke specific cytokine milieus that direct the course of T helper 

cell differentiation following activation into the various effector T cell lineages or transitional 

states, such as Th1, Th2, Th17, Th9 and follicular T helper cells (Tfh) (O’Shea and Paul, 

2010; Lu et al., 2011). Each lineage secretes specific effector cytokines that act on cytotoxic T 

cells or B cells and that feed back to the innate immune system to enforce immune responses 

in the control of a pathogen.  

  

All T cells undergo combinatorial rearrangements of gene segments of the TCR in the 

thymus. This process results in an enormous diversity of receptor variants including self-

reactive receptors that may elicit autoimmunity (Pancer and Cooper, 2006). TCRs with a high 

affinity for self-peptide:MHC complexes undergo negative selection in the thymus resulting 

in apoptosis of cells bearing those TCRs (Kyewski et al., 1986). The control of the emerging 

T cell repertoire by this process in the thymus is called central tolerance and was believed for 

a long time to be sufficient to suppress autoimmunity (Mathis and Benoist, 2007). However, 

this concept was challenged by experiments with mice that were thymectomized at day 3 after 

birth. These mice develop fatal autoimmunity with uncontrolled CD4+ T cell activation, 
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which can be rescued by transfer of spleen cells, particularly of CD4+ CD25+ T cells 

(Sakaguchi et al., 1982; Asano et al., 1996). These experiments not only show a thymic output 

of potentially self-reactive T cells, but also prove the existence of a T cell subpopulation with 

the propensity to suppress these autoreactive T cells in the periphery. These so-called 

regulatory T cells or Treg cells are now well-accepted to constitute one essential column of 

the immune system that exerts suppression of constantly activated self-reactive T cells. This 

process is referred to as dominant tolerance or peripheral tolerance (Piccirillo and Shevach, 

2004). The peripheral tolerance also achieves the adaptation of suppressive functions to newly 

emerging non-harmful antigens such as food and environmental antigens, commensal bacteria 

or paternal antigens during pregnancy and thus extends the definition of self-antigens (Chen, 

2003; Zenclussen et al., 2006; Round and Mazmanian, 2010).  

Taken together, the discovery of regulatory T cells has extended our understanding and led to 

a much more diversified view on the immune system. It has an enormous potential to 

recognize and neutralize a huge variety of foreign antigens, but this is kept in check by 

powerful tolerance mechanisms resulting in a delicate equilibrium of the protective and the 

destructive forces of adaptive immunity in healthy individuals.  

 

4.2 Regulatory T cells 

4.2.1 The significance of Foxp3 in Treg cells 

The experiments by Sakaguchi and Asano proved the existence of a suppressive type of T cell 

that is characterized by expression of CD4+ CD25+ (Sakaguchi et al., 1982; Asano et al., 

1996). Yet, these markers are not uniquely expressed by Treg cells, since they show similar 

expression on activated effector T cells. The first evidence for a lineage specific marker of 

Treg cells was found in mice with the scurfy phenotype that is characterized by uncontrolled 

CD4+ T cell activation resulting in systemic autoimmunity. This phenotype could be 

attributed to a frame-shift mutation in the gene encoding for the transcription factor forkhead 

box P3 (Foxp3). The mutation resulted in a truncated Foxp3 protein lacking the forkhead 

DNA-binding domain (Brunkow et al., 2001). The similarities of the scurfy phenotype with 

the phenotype resulting from CD4+ CD25+ T cell ablation led to studies that identified Foxp3 

as the lineage-specifying transcription factor of Treg cells. Foxp3 was essential for thymic 

Treg cell generation and could confer suppressive functions on CD4+ CD25- cells upon 

ectopic expression mice (Hori et al., 2003; Fontenot et al., 2003). In addition, these studies 

established Foxp3 as a highly specific marker for Treg cells. Induced ablation of Foxp3 in 
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mature regulatory T cells resulted in loss of their suppressive capacity and gain of effector 

functions. It highlighted a role of Foxp3 expression not only for the induction but also for the 

maintenance of Treg cell identity (Williams and Rudensky, 2007). Characterization of the 

transcriptional signature of Treg cells revealed hundreds of differentially expressed genes in 

Treg compared to conventional T cells. Among these were relatively few direct targets of 

Foxp3, including upregulated genes such as CTLA-4 or CD25 and downregulated genes such 

as IL-7R (Gavin et al., 2007; Hill et al., 2008). Thus, Foxp3 is now seen as a merely late-

acting transcription factor that stabilizes a transcriptional program pre-established during T 

cell activation (Samstein et al., 2012a). 

Stable expression of Foxp3 is dependent on epigenetic modifications in conserved enhancer 

regions of the Foxp3 gene, namely the conserved non-coding sequences CNS1, CNS2 and 

CNS3 (Floess et al., 2007; Zheng et al., 2010). Particularly, DNA demethylation of CNS2, 

which is also called Treg-specific demethylated region (TSDR), is essential for Treg cell 

stability as its deletion results in a progressive loss of Foxp3 expression with cell division.  

 

4.2.2 The origin of Treg cells 

4.2.2.1 Thymic Treg cell differentiation 

A major source for regulatory T cells is the thymus where CD4+ CD8- thymocytes can 

differentiate into Treg cells. Recruitment into the Treg cell lineage is dependent on TCR 

signals (Jordan et al., 2001). CD4+ CD8- thymocytes that have productively rearranged their 

TCR gene segments are selected based on the affinity of their TCR to self-peptide:MHCII 

complexes (Roberts et al., 1990). Different from negatively selected cells with a high affinity 

TCR, T cells with weak self-peptide:MHCII affinity become conventional CD4+ T cells. In 

the current model, T cells that bear a TCR with moderate self-affinity are recruited into the 

Treg cell lineage (Jordan et al., 2001). Expression of Foxp3 in this process is not sufficient, 

but epigenetic chromatin modifications in the Foxp3 locus are required to establish a stable 

Treg identity (Floess et al., 2007; Zheng et al., 2010). Along that line recent results show that 

Treg-specific DNA methylation patterns are imposed on developing thymocytes as a function 

of the time of TCR triggering, independent from Foxp3 expression (Ohkura et al., 2012).  

In our current understanding, the role of thymic Treg cells in the immune system is to 

establish dominant immune tolerance via suppression of immune responses by self reactive T 

cells that would, if unrestrained, lead to fatal autoimmunity (Haribhai et al., 2011). 
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4.2.2.2 Peripheral Treg cell induction 

While a major source for Treg cells is thymic differentiation, Treg cells can also differentiate 

from naive CD4+ T cells in the periphery. This was already implicated by the initial transfer 

experiments in thymectomized mice (Asano et al., 1996). In an Ovalbumin (OVA)-TCR 

transgenic mouse model Zhang et al. showed in vivo generation of CD4+ CD25+ T cells upon 

oral administration of Ova-peptide (Zhang et al., 2001). These cells conferred suppressive 

functions in vivo and in vitro partly in an antigen-specific way. The antigen-specific response 

could only be elicited from newly differentiated Treg cells because these mice lacked Ova-

specific thymic Treg cells. Other experiments confirmed the de novo generation of CD4+ 

CD25+ T cells from naive CD4+ T cells in a transfer model of T cells with an antigen-specific-

TCR (Rag-2-/-/TCR-HA) into mice with systemic expression of the respective antigen (Rag-2-/-

/HA-transgenic) or Rag-2-/- control hosts (Apostolou et al., 2002). These experiments 

established the antigen-specific induction of Treg cells from naive T cells in the periphery. 

These studies also showed that the transforming growth factor β (TGFβ) promotes 

differentiation into Treg cells (Cobbold et al., 2004; Kretschmer et al., 2005).  

Peripheral induction of Treg cells can be observed under multiple other conditions in vivo 

such as tolerance induction by commensal bacteria, establishment of feto-maternal tolerance 

during pregnancy, in autoimmune conditions like experimental autoimmune 

encephalomyelitis or during graft-versus-host disease in adoptive T cell transfer (Atarashi et 

al., 2011; Round and Mazmanian, 2010; Samstein et al., 2012b; Korn et al., 2007; Haribhai et 

al., 2011). Peripheral Treg cells are also generated in immune responses against pathogens or 

parasites and limit excessive immune-mediated tissue damage (Grainger et al., 2010; Brincks 

et al., 2013). In addition to that, peripherally induced Treg cells receive a lot of attention as 

they suppress beneficial immune responses against cancer cells (Nishikawa and Sakaguchi, 

2010). 

The generation of peripheral Treg cells can be recapitulated in vitro by stimulation using anti-

CD3 and anti-CD28 antibodies in the presence of TGFβ and IL-2 (Chen, 2003; Zheng et al., 

2002, 2004). Importantly, TGFβ-induced Treg cells generated in vitro suppress conventional 

CD4+ T cell proliferation in vivo in an antigen-specific manner after transfer and also suppress 

pathology in a dust-mite asthma model over four weeks in a non-antigen-specific manner 

(Chen, 2003).  

Regardless of equal functionality of Treg cells induced in vitro and in vivo, the overlap in 

their transcriptional signature is low compared to the extensive overlap between thymic Treg 

cells and in vivo-induced Treg cells (Haribhai et al., 2011). A likely explanation may be 
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differences of the characteristic epigenetic modifications found in Treg cells generated in 

vivo, which are essential to establish the full transcriptional program in thymic Treg cells. 

Particularly, demethylation of CNS2 is missing in Treg cells generated in vitro (Floess et al., 

2007). Since CNS2 is crucial for a stable expression of Foxp3, these Treg cells progressively 

lose their identity and potentially become effector cells, which is a major drawback for 

therapeutic approaches using Treg cells. However, there are hints that prolonged in vitro 

culture in Treg-polarizing conditions can partially establish CNS2 demethylation (Ohkura et 

al., 2012).  

Recent findings may adjust our view on the origin of peripheral T cells. One study shows that 

the ability of thymocytes to differentiate into Treg cells decreases with maturation 

(Wirnsberger et al., 2009). Interestingly this is also true for naive CD4+ T cells that have 

recently emigrated from the thymus and can be discriminated by expression of CD24 and Qa-

2 (Paiva et al., 2013). Notably, this may also have implications in regard to the stability of the 

Treg cell program induced in vitro with respect to the importance of epigenetic programming 

imparted in the thymus. 

The TCR repertoire of Treg cells generated in the periphery has only a small overlap with the 

TCR repertoire of thymic Treg cells. This indicates that peripheral Treg cells cover unique 

aspects of dominant tolerance (Haribhai et al., 2011). These may on the one hand cover auto-

antigens that were not presented in the thymus to provide central tolerance. On the other hand 

induction of dominant tolerance to foreign antigens provides an ability of the immune system 

to adapt to newly arising conditions throughout lifetime.   

	  

4.2.3 Molecular mechanisms involved in TGFβ-induced Treg cell differentiation 

Induction of Foxp3 expression is dependent on the binding of several transcription factors to 

cis-regulatory elements (Merkenschlager and von Boehmer, 2010; Rudensky, 2011). Different 

signaling cascades are triggered by T cell activation under Treg-polarizing conditions. 

Activation with anti-CD3 and anti-CD28 antibodies mimicking TCR ligation and co-

stimulation, respectively, results in the activation of the phosphoinositide 3-kinase (PI(3)K) 

pathway triggering activation of mechanistic target of rapamycin (mTOR), the activation of 

the NFκB pathway with activation of c-Rel, signaling via the MAP kinase pathway resulting 

in AP-1 activation and the Ca2+ influx-dependent activation of NFAT (Sauer et al., 2008; 

Long et al., 2009; Mantel et al., 2006; Wu et al., 2006). IL-2 receptor ligation induces mainly 

Stat5 activation and TGFβ receptor signals induce activation of SMAD2 and SMAD3 as well 

as the TGFβ-activated kinase (Burchill et al., 2007; Gu et al., 2012). These and other factors 
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like Runx1, CREB, ATF, Foxo1 and Foxo3 and also Foxp3 itself bind to the Foxp3 promoter 

as well as to the CNS elements to establish the Foxp3 expression and Foxp3-dependent 

transcription (Josefowicz et al., 2012).  

4.2.3.1 NFAT binding to Foxp3 or AP1 direct divergent differentiation programs 

During productive effector T cell activation, the MAP kinase pathway is activated or 

enhanced through co-stimulatory molecules ultimately leading to the expression of c-Jun and 

c-Fos (Jain et al., 1992). They dimerize to form the transcription factor AP1, which can then 

form heterodimers with NFAT to bind to composite binding sites (Jain et al., 1992; Rooney et 

al., 1995). NFAT can also form heterodimers with Foxp3 and in this way bind to composite 

binding sites in promoters of Treg cell signature genes such as CTLA-4 (Wu et al., 2006). In 

this model, Foxp3 and AP-1 compete for NFAT to direct either an effector cell or a Treg cell 

transcriptional program. The model is in agreement with data on the chromatin accessibility in 

activated conventional T cells compared to mature Treg cells suggesting that the Treg cell 

transcriptional signature reflects a stabilized enhancer landscape of the activated state 

(Samstein et al., 2012a). NFAT:Foxp3 complexes would then occupy loci to stabilize the 

activation-induced gene expression in a Treg cell-specific manner while AP-1 would guide 

NFAT to effector cell-associated genes such as IL-2 (Wu et al., 2006).  

 

4.3 Reciprocal programs control the differentiation into Treg and Th17 cells 

4.3.1 RORγt and RORα synergize in Th17 and antagonize Treg cell differentiation  

The discovery of Th17 cells and the unraveling of signaling events that promote 

differentiation of naive CD4+ T cells into Th17 cells uncovered a common feature with 

induced Treg differentiation. The induction of Th17 cells depends on the presence of TGFβ, 

as does the induction of Treg cells. The current model suggests that TGFβ promotes Treg cell 

differentiation in a dose dependent manner, which is counteracted by the pro-inflammatory 

cytokine IL-6 that directs Th17 differentiation (Veldhoen et al., 2006; Bettelli et al., 2006). In 

Th17 cells, IL-6 induces expression of IL-21 receptor via Stat3, which further amplifies Stat3 

signaling and induces the lineage-specifying transcription factor RORγt as well as RORα.  

These synergize with Stat3 to activate expression of IL-17A and IL-17F, the hallmark 

cytokines of Th17 cells (Yang et al., 2008). On the transcription factor level, RORγt and 

RORα in the case of Th17 cells and Foxp3 in the case of Treg cells, seem to mutually repress 

each other’s capacity to trans-activate gene expression (Ivanov et al., 2006; Zhou et al., 

2008a; Ichiyama et al., 2008).  
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4.3.2 Mtor in Treg and Th17 cell differentiation 

Another pathway involved in reciprocal lineage differentiation is the PI(3)K/ Akt/ mTOR 

pathway. In a simplistic view, activation of this pathway during T cell activation promotes 

Th17 differentiation while its inhibition promotes Treg cell differentiation. As a multitude of 

factors are involved and integrate signals from activation signals, cytokine cues and metabolic 

conditions, a much more complex situation arises (Powell et al., 2011). Signaling through 

receptors like CD28 or common gamma chain receptors such as IL-2R or IL-7R induces 

activation of PI(3)K which phosphorylates phosphatidylinositol (4,5)-bisphosphate to form 

phosphatidylinositol (3,4,5)-triphosphate. This serves as a docking site for PDK-1 via its SH2 

domain that allows its association with receptor-associated tyrosine kinases. Activated PDK-1 

finally phosphorylates Akt on Thr308 and thereby partially activates Akt allowing 

phosphorylation of target genes among them the tuberous sclerosis complex (TSC) (Laplante 

and Sabatini, 2012). Such phosphorylation inactivates the small GTPase activity of the TSC 

complex that catalyzes hydrolysis of Rheb-GTP to Rheb-GDP. In its GTP-bound form Rheb 

ultimately activates the mTORC1. It is composed of mTOR, Raptor, mLST8, PRAS40 and 

DEPTOR. mTORC2 is constituted of mTOR, mSIN1, PROTOR, DEPTOR and the 

scaffolding protein RICTOR. The activation of mTORC2 is less well understood (Gamper 

and Powell, 2012).  

The catalytic function of both complexes is conferred by the serine/threonine protein kinase 

mTOR. mTORC1 phosphorylates the p70 ribosomal S6 kinase and inactivates the EiF4E-

binding protein by phosphorylation, which facilitates and enhances protein translation and 

promotes cell growth and division (Laplante and Sabatini, 2012). Phosphorylation of EiF4E-

binding protein also releases HIF1α, which promotes a glycolytic metabolic state, cooperates 

with RORγt to drive the Th17 differentiation program and represses Treg cell differentiation 

(Shi et al., 2011; Dang et al., 2011).  

mTORC2 activity is required for phosphorylation of Akt on Ser473, which enables the 

inactivation of Foxo transcription factors by phosphorylation through Akt (Jacinto et al., 

2006). Since Foxo proteins are required for Treg cell differentiation, their inactivation by 

mTORC2 supposedly promotes Th17 and inhibits Treg cell differentiation (Kerdiles et al., 

2010).  

In agreement with the described functions of the mTOR complexes in reciprocal lineage 

differentiation, deletion of mTOR in CD4+ T cells leads to a profound increase of Treg cell 

differentiation upon T cell activation and completely abrogated Th17 cell differentiation 

(Delgoffe 2009).  
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4.3.3 Retinoic acid in Treg and Th17 cell differentiation 

Retinoic acid is a metabolite of vitamin A and is active in its 9-cis or all-trans retinoic acid 

(ATRA) isoforms (Chambon, 1996). It is bound in the cell by heterodimers of the nuclear 

retinoid X receptor (RXR) and retinoic acid receptor (RAR). Dendritic cells at mucosal sites 

in the gut can induce expression of gut-homing receptors on activated CD4+ T cells by 

secretion of the vitamin A metabolite retinoic acid (Iwata et al., 2004). These dendritic cells 

were also found to be immunosuppressive and this prompted studies on the effect of retinoic 

acid on differentiation of Treg and Th17 cells (Mucida et al., 2007). Retinoic acid strongly 

induced differentiation of CD4+ CD25- T cells into Treg cells while it strongly interfered with 

differentiation into the Th17 lineage even in Th17-polarizing conditions. This effect was 

mediated in part through inhibition of effector cytokine secretion in bystander memory T cells 

(Hill et al., 2008). Yet, retinoic acid was also active in the absence of effector cytokines and 

was dependent on expression of retinoic acid receptor α (RARα), whose expression in naive 

CD4+ T cells was strongly reduced by IL-6 (Mucida et al., 2009; Nolting et al., 2009). The 

inhibitory effect on Th17 differentiation, however, was rather dependent on expression of the 

retinoic acid receptor α1. Recently, retinoic acid was shown to induce expression of 

microRNA-10a in TGFβ-induced regulatory T cells (Jeker et al., 2012; Takahashi et al., 

2012). 

4.4 Post-transcriptional gene regulation by microRNAs 

4.4.1 MicroRNAs 

MicroRNAs (microRNAs) are small non-coding RNAs of 21-23 nucleotides (nt) of length 

that recognize target messenger RNAs  (mRNAs) by complementary base pairing. This 

results in translational repression or degradation of the target mRNA. Mello and Fire founded 

the microRNA field with studies on RNA-interference (RNAi) in C. elegans (Fire et al., 

1998). MicroRNAs were found throughout the multicellular organisms and until today, 

genome sequencing data and prediction algorithms led to the annotation of 1186 precursors / 

1908 mature microRNAs in mouse and 1872 precursors / 2578 mature microRNAs in man 

(miRBase release 20). Estimations based on microRNA target sequence conservation across 

species predicted that more than one third of human genes are direct microRNA targets 

(Lewis et al., 2003, 2005). In the following I will mainly focus on microRNA biology in 

animals and particularly in mammals.  
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4.4.2 MicroRNA biogenesis 

MicroRNAs are transcribed from polymerase II promoters as primary precursor microRNAs 

(pri-miR) with several kilobases (kB) of length (Lee et al., 2004). They are either encoded 

monocistronically in intergenic loci under the control of their own promoters or as 

polycistronic transcriptional units in an intragenic manner lying in introns, in the coding 

sequence or in the untranslated region of mRNAs (Cai et al., 2004).  

A pri-miR contains a bulged hairpin structure that is the substrate of the so-called 

microprocessor complex (Figure 1). It is a multiprotein complex with a heterodimeric core 

composed of the DiGeorge syndrome critical region gene 8 (DGCR8) and the RNaseIII 

enzyme Drosha, which precisely cleaves the pri-miR resulting in a 65-70nt long hairpin 

structure called precursor microRNA (pre-miR) (Lee et al., 2003; Gregory et al., 2004; Han et 

al., 2006). This cleavage by Drosha leaves the pre-miR with a 2nt 3’ overhang that is 

recognized by exportin 5, which mediates nuclear export in a Ran-GTP-dependent manner 

(Yi et al., 2003). The maturation of the pre-miR is completed in the cytoplasm by cleavage of 

the hairpin adjacent to the loop by the RNaseIII enzyme Dicer (Bernstein et al., 2001; Knight 

and Bass, 2001; Hutvagner et al., 2001). This cleavage by Dicer results in a ~22nt mature 

microRNA (miR) duplex having 2nt 3’ overhangs on either strand which is bound by a Dicer-

associated Argonaute (Ago) protein (Elbashir et al., 2001). One strand of the mature 

 

 
 
 
Figure 1: Schematic of microRNA biogenesis.  
MicroRNAs are transcribed from polymerase II promotors as primary microRNAs (pri-miRs). Cleavage by 
the microprocessor complex generates precursor microRNAs (pre-miRs), which are exported to the 
cytoplasm, where they are further cut by Dicer to form mature microRNAs (miRs). One strand is loaded on 
an Argonaute (Ago) protein to form the microRNA-induced silencing complex (miRISC).  
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microRNA is transferred onto Ago in a defined orientation to ensure correct base pairing 

when a target is recognized (Hammond et al., 2001). The thermodynamic stability of the 

microRNA duplex usually leads to preferential binding of one strand to Ago, which is called 

the microRNA strand, while the other strand called microRNA* strand undergoes rapid 

degradation (Khvorova et al., 2003). The suffix -5p or -3p indicates that the used microRNA 

single strand was closer to the 5’ or to the 3’end of the pre-miR hairpin. The microRNA:Ago 

complex is called microRNA-induced silencing complex (miRISC) and is the functional unit 

of microRNA-mediated post-transcriptional gene regulation. Some microRNAs, such as miR-

451, have a particular pre-miR-structure that are nor Dicer substrates but are directly bound 

by Ago2.  

4.4.3 MicroRNA function 

The miRISC binds a target mRNA through complementary base pairing between the loaded 

microRNA and the target mRNA (Figure 2) (Liu et al., 2005). This mediates translational 

silencing alone or, in addition, the degradation of the target transcript. Prediction algorithms 

based on species conservation of microRNA sequences together with experimental evidence 

established that nucleotides 2-7 in the microRNA are crucial for target regulation in most 

cases and are called microRNA ‘seed’ (Lai, 2002; Lewis et al., 2003; Lim et al., 2003; Hafner 

et al., 2010). Most seed-matches in the target mRNA, which are complementary to the 

microRNA seed sequence, are found in the 3’ untranslated region (3’UTR) of target mRNAs 

(Grimson et al., 2007).  

Different mechanisms are discussed for how target mRNA expression is suppressed by the 

miRISC. The differences are based on findings that a microRNA affects target mRNA 

expression only on the protein level or in addition to that also on the mRNA level (Pillai et al., 

2004). The first mechanism called translational silencing can act on translational initiation or 

on translation elongation. The initiation of translation is the rate-limiting step of translation 

and begins with binding of the eIF4E subunit of the eIF4F complex to the m7-guanosyl in the 

5’ terminus of the mRNA (5’CAP) (Gingras et al., 1999). The eIF4F complex also mediates 

the adoption of a circular structure of mRNA by binding to poly(A) binding proteins (PABP) 

that decorate the 3’ poly(A) tail of the mRNA which greatly enhances translation efficiency 

(Kahvejian et al., 2005). 

MiRISCs were proposed to bind the eIF4F as well as the 5’CAP of the mRNA and could 

thereby interfere with translation initiation (Mathonnet et al., 2007). However, contradictory 

results show that abrogation of the CAP-binding residues in Ago also abrogates its interaction 

with GW182 thus leaving the mechanism partly elusive (Eulalio et al., 2008). 
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MiRISC can also promote deadenylation of the 3’end of the target mRNA by binding to 

GW182 proteins, which recruit the CCR4-NOT-deadenylation complex (Chekulaeva et al., 

2011). This would interfere with PABP binding and mRNA circle formation and thereby 

interfere with efficient translation. Deadenylation and subsequent mRNA decapping provide 

mechanisms for destabilization and enhanced degradation of the target mRNA, which is also 

mediated in a miRISC- and CCR4-NOT-dependent manner (Behm-Ansmant et al., 2006; 

Braun et al., 2011). Translational repression can also take place in the absence of a poly(A) 

tail suggesting that both processes act in parallel and may be regulated independently, which 

is in agreement with the observation that some microRNAs regulate a target only on the 

protein level while others additionally reduce target mRNA levels.   

It is a subject of debate whether one of these mechanisms is the primary mode of microRNA-

mediated repression and the other mechanisms being secondary effects or whether all of these 

exist in parallel and depend on the particular microRNA and mRNA in the cellular context 

(Bartel, 2009).  

4.4.4 Concepts of microRNA-mediated gene regulation 

The significance of posttranscriptional gene regulations by microRNAs was best 

demonstrated by knock-out studies that targeted components of the microRNA biogenesis 

pathway. Deletion of Dgcr8 or Dicer largely reduced the abundance of all mature microRNAs 

	  
 
Figure 2: Schematic depiction of miRISC-mediated mechanisms of post-transcriptional regulation.  
Binding of the miRISC to a target mRNA via the microRNA ‘seed’ sequence interferes with translation 
initiation and circularization through eIF4-mediated interaction of the 5’CAP with PABP. MiRISC binding 
recruits deadenylation factors via GW182 and mediates mRNA decapping. This results in translational 
repression and potentially in mRNA degradation. miRISC: microRNA-induced silencing complex, CDS: 
coding sequence, 3’UTR: 3’untranslated region, PABP poly(A)-binding protein. 
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and impaired embryonic development (Bernstein et al., 2003; Yang et al., 2005; 

Kanellopoulou et al., 2005; Wang et al., 2007). Other studies have addressed the impact of 

single microRNAs on post-transcriptional gene regulation. An evolutionary analysis 

uncovered that many microRNAs are highly conserved throughout species. The biological 

function of a microRNA depends on the co-expression of a seed-matched target. The 6-8bp 

(basepair) seed-matched target sequence should be stochastically distributed as long as it is 

not under selective pressure. Conservation of such a motif across species is a strong indication 

for microRNA-mediated regulation with biological relevance. However, microRNA and 

target conservation alone are not informative regarding the spatial and/or temporal disribution 

within an organism that determine its biological function. Consequently, only tissue-specific 

case studies of microRNA-target relations can unambiguously prove biological relevance.  

 

MicroRNAs can influence target gene expression in three general modes, the classical switch 

mode, the tuning mode and the mode of neutral interaction (Bartel, 2009). The defining 

parameter is the effective target mRNA expression level that results in a substantial change of 

the cellular response.  

In the classical switch mode, the target mRNA level is at a critical height. A moderate 

decrease by microRNA-mediated repression will switch the cellular response in this situation.  

An example for this situation is the fate decision of colon cancer stem cells between self-

renewal and differentiation. Self-renewal is maintained by high Notch expression and 

characterized by low miR-34a expression. Differentiating daughter cells downregulate Notch1 

through Numb, but high expression of microRNA-34a, which targets Notch1, enforces a clear 

decision towards differentiation (Bu et al., 2013).  

In tuning interactions, an ideal target mRNA level will result in a physiologic response while 

higher or lower expression levels result in adverse effects. Here, microRNA-mediated 

repression helps to stabilize an appropriate expression level. An example for such a tuning 

interaction is the expression of the transcription factor c-Myb in B cell development (Thomas 

et al., 2005). Development of B1 cells in the peritoneal cavity is very sensitive to an 

appropriate expression level of c-Myb, which is a target of miR-150 (Xiao et al., 2007). 

Deletion of miR-150 results in elevated c-Myb expression, which strongly increases B1 cell 

numbers at the expense of B2 cells. Conversely, ectopic expression of miR-150, which 

represses c-Myb expression by no more than 30%, results in a strong decrease of B1 cells.  

In neutral interactions, the microRNA reduces the target level to some extent but the effective 

target mRNA expression level has a broad range that is not affected by regulation of the 
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single microRNA. This can account for accidental seed matches that were not counter-

selected by evolution due to a lack of selective pressure. However neutral interactions may be 

a more apt description of the moderate character of single microRNA:mRNA interactions. 

This is supported by a proteomic study analyzing microRNA-223 overexpression or deletion 

in neutrophil granulocytes. The great majority of miR-223 targets were repressed by less than 

30% (Baek et al., 2008). However, hundreds of targets were repressed by miR-223 in that 

manner and given that one target can be regulated by multiple microRNAs, the idea of a 

network of microRNA-mRNA target interaction suggests itself (Lewis et al., 2005). Each 

node in this network, which is one microRNA-mRNA target interaction, may be classified as 

a neutral interaction but the outcome of a network decision would in the end be as clear as a 

switch interaction (Bartel, 2009). The redundancy in this system provides robustness of 

biological responses against failure of single nodes and leaves room for evolutionary 

adaption.   

 

4.5 MicroRNA function in T cells 

4.5.1 Phenotypes of mature microRNA ablation in the T cell compartment 

The general impact of microRNAs in T cells was analyzed in genetic models with deletions of 

components of the microRNA biogenesis pathway, which prevents generation of almost all 

mature microRNAs. As germ-line knock-outs (ko) were lethal, conditional deletion 

approaches were pursued (Bernstein et al., 2003). Deletion of Dicer during early thymic T 

cell development widely decreased expression of mature microRNAs in αβ thymocytes. This 

resulted in apoptosis of T cell progenitors but had no significant effect on the thymic 

development of conventional CD4+ and CD8+ T cells (Cobb, 2005). Deletion of Dicer in 

CD4+ expressing thymocytes resulted in a strong reduction of microRNA expression initiating 

with the CD4/CD8 double positive stage in thymocyte development (Muljo et al., 2005). In 

these mice thymic T cell output was normal for CD4+ T cells but reduced for CD8+ T cells. In 

the periphery, Dicer-deficient CD4+ and CD8+ T cells numbers were both reduced. Upon in 

vitro stimulation Dicer-/- CD4+ T cells expanded slower than wildtype cells, which could be 

attributed to both, enhanced apoptosis and delayed proliferation (Muljo et al., 2005). 

Experiments performed to elucidate the differentiation capacity of Dicer-/- CD4+ cells 

revealed a bias towards Th1 differentiation in non-polarizing conditions and an inability of 

Th2 cells to repress inappropriate IFNγ production. This was accompanied by enhanced 

expression of the Th1 lineage-specifying transcription factor Tbet. Conditional knock-out of 
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Drosha or Dgcr8 in T cells exhibited a very similar phenotype indicating that the observed 

alterations indeed were dependent on the absence of mature microRNAs rather than on other 

individual functions of Dicer or DGCR8 (Chong et al., 2008; Steiner et al., 2011). In a 

reconstitution screen of single mature microRNAs in microRNA-deficient Dgcr8-/- T cells, 

the Th1 bias was rescued by expression of mature miR-29a or miR-29b alone. Both 

microRNAs directly target Tbet and Eomes, which are key transcription factors for IFNγ 

production (Steiner et al., 2011). In addition to the Th1 bias, ablation of Dicer in T cells also 

impairs differentiation of CD4+ T cells into the Th17 lineage suggesting, that the presence of 

mature microRNAs is essential for proper T helper lineage differentiation (Cobb et al., 2006).  

4.5.2 Deficiency of mature microRNA in Treg cell development and function 

Mice with T cells that are devoid of mature microRNAs develop severe autoimmunity 

characterized by lymphoproliferation, systemic inflammation and lymphocytic infiltrations 

into colon, liver and lung (Chong et al., 2008; Cobb et al., 2006). This could be attributed to 

markedly reduced numbers of Treg cells in spleen and lymph nodes. The generation of thymic 

Treg cells was strongly impaired as well as the TGFβ-induced differentiation of naive CD4+ T 

cells into Treg cells analyzed in vitro. Importantly, this highlighted the Treg cell-intrinsic 

importance of microRNAs (Cobb et al., 2006; Chong et al., 2008). Chong et al. further 

established that Drosha-/- and Dicer-/- Treg cells have a reduced capacity to suppress effector 

T cell proliferation. Together with the reduced Treg cell compartment, this could explain the 

autoimmune phenotype observed in these mice. Interestingly, specific conditional deletion of 

Dicer or DGCR8 in Treg cells resulted in accelerated autoimmunity resembling the scurfy-

phenotype that results from a loss-of-function mutation of Foxp3 (Chong et al., 2008; Liston 

et al., 2008; Zhou et al., 2008b). Furthermore, Zhou et al. found that microRNA-deficient 

Treg cells loose expression of the Treg cell-specific transcriptional signature including Foxp3 

and instead in part produce IFNγ, which would contribute to enhanced autoimmunity. Other 

studies observed a loss of Treg cell suppressive capacity, but no loss of Treg cell identity 

(Chong et al., 2008; Liston et al., 2008).  

 

Taken together these results show that mature microRNAs are required for various processes 

in CD4+ T cells such as proliferation, prevention of apoptosis and differentiation of T helper 

cell lineages. They are essential for Treg cell generation, function and lineage stability. Block 

of microRNA biogenesis is a rather crude measure to assess their biological functions. It 

alters the expression of thousands of genes at the same time and likely includes effects 

secondary to these perturbations. In order to understand the underlying molecular mechanisms 
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more precisely, the analysis of individual microRNAs will be the method of choice. Profiling 

experiments showed differential expression of a limited number of specific microRNAs in the 

hematopoietic system and also among T cell subsets and developmental stages. These data 

provide a basis for the analysis of attractive microRNA candidates in the differentiation of 

Treg cells (Monticelli et al., 2005; Cobb et al., 2006; Landgraf et al., 2007; Kuchen et al., 

2010). To date a few of the differentially-regulated microRNAs were analyzed in more detail 

and are discussed in the following.  

 

4.5.3 The impact of individual microRNAs on T cells and Treg cells 

MiR-155 

MiR-155 is widely expressed in cells of the immune system. Germ line deletion of miR-155 

perturbs germinal center formation, results in Th2-biased T cell differentiation and diminishes 

IL-2 production by CD4+ T cells (Rodriguez et al., 2007; Thai et al., 2007). Furthermore, 

miR-155 deficiency impaired Th17 cell differentiation and protected mice from disease in an 

autoimmune encephalomyelitis model (O’Connell et al., 2010). MiR-155 expression was 

increased in CD8 T cells upon viral infections and provided accumulation of CD8 cells by an 

anti-apoptotic and pro-proliferative function (Dudda et al., 2013).  

In Treg cells, miR-155 was found upregulated and its induction was Foxp3-dependent, 

supposedly under the control of a Foxp3 binding element in the miR-155 locus (Cobb et al., 

2006; Lu et al., 2009). Deletion of miR-155 reduced thymic and peripheral Treg cell numbers 

(Lu et al., 2009; Kohlhaas et al., 2009). This could be attributed to a lack of competitive 

fitness of miR-155-deficient T cells due to attenuated IL-2 signaling through derepression of 

the negative regulator SOCS1 (Lu et al., 2009). However, the functional capacity of Treg cells 

is not affected by miR-155 deficiency (Kohlhaas et al., 2009).  

 

MiR-17∼92 

The microRNA 17~92 cluster on chromosome 13 is a polycistronic unit that encodes hairpins 

for miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1. It is an oncomir that 

has transforming potential and is overexpressed in B cell lymphoma and other cancers (He et 

al., 2005). Deletion of miR-17~92 leads to reduced B cell numbers due to a survival defect at 

the pro-B/ pre-B cell stage, which was attributed to a loss of microRNA repression of the pro-

apoptotic factor Bim (Ventura et al., 2008). MiR-17~92 expression reconstituted proliferation 

and survival of Dgcr8-deficient CD4+ T cells and in another study ectopic expression 

promoted increased survival of CD4+ and CD8+ T cells via targeting of Bim and PTEN 
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(Steiner et al., 2011; Xiao et al., 2008; Khan et al., 2013). Overexpression in CD4+ T cells 

further resulted in overall activation of T cells accompanied by lymphoproliferation and 

autoimmunity. Dissection of the contribution of individual microRNAs from the cluster 

revealed that miR-17 and miR-19b directly targeted PTEN, facilitated T cell proliferation and 

were essential for IFNγ production in Th1-polarizing conditions. Moreover, they suppressed 

induction of Treg cells (Jiang et al., 2011). Recently, two studies showed that the microRNAs 

of the 17~92 cluster promoted development Tfh cells, which were essential to establish proper 

B cell responses in germinal centers (Baumjohann et al., 2013; Kang et al., 2013). 

Overexpression resulted in higher numbers of follicular Tfh cells, while the knock-out 

prevented migration of Tfh cells into B cell follicles and compromised antibody responses in 

viral infection models.  

 

MiR-146a 

TCR stimulation induced miR-146a expression via induction of the NFκB transcription 

factors p50 and c-Rel in naive and memory T cells (Rusca et al., 2012; Yang et al., 2012). 

MiR-146a itself negatively fed back on NFκB activity, possibly by targeting Traf6 and 

IRAK1. MiR-146 knock-out established a central memory T cell phenotype in human and 

mouse T cells and resulted in spontaneous T cell activation and autoimmunity in mice. 

However, autoimmunity could also be mediated by miR-146a deficiency in Treg cells only. 

While their suppressive capacity in vitro was unaffected, miR-146-deficient Treg cells 

seemed to have a selective loss in the ability to regulate IFNγ production in Th1 responses, 

since blockade of IFNγ rescued the phenotype (Lu et al., 2010). Since miR-146a targeted 

Stat1 mRNA downstream in IFNγ-receptor signaling, it was proposed that Treg cell-mediated 

suppression of Th1 responses required a miR-146a-modulated IFNγ signaling and expression 

of the Th1 lineage-specifying transcription factor Tbet within the suppressing Treg cell (Lu et 

al., 2010). This would represent a transcriptional symmetry between the suppressor cell and 

the suppressed effector cell (Koch et al., 2009).  

 

MiR-10a 

Two studies reported a selective expression of miR-10a in Treg cells, but not in conventional 

T cells (Jeker et al., 2012; Takahashi et al., 2012). In vitro, miR-10a contributed to Foxp3 

protein expression levels, but deletion of miR-10a did not interfere with Treg cell induction 

and was therefore considered to be no more than a marker of Treg cells (Jeker et al., 2012). 

The identification of Bcl-6 as a direct target of miR-10a provided a link to Tfh cell 
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differentiation. In an adoptive T cell transfer model induced Treg cells differentiated into Tfh 

cells, which was promoted by miR-10a overexpression and reduced by miR-10a knockdown. 

In addition, miR-10a also interfered with Th17 induction (Takahashi et al., 2012).  

 

MiR-181a 

MicroRNA-181a is highly expressed during thymic T cell development. Its expression 

enhances TCR signaling by targeting several inhibitory phosphastases like SHP2 and DUSP6 

and knockdown of miR-181a impairs positive and negative selection (Li et al., 2007).  

 

MiR-182 

MicroRNA-182 targets Foxo1, whose inactivation in T cells is required to allow T cell 

proliferation (Stittrich et al., 2010). In early T cell differentiation, Foxo1 is inactivated by 

TCR-dependent phosphorylation. IL-2 secreted in the course of T cell activation induces miR-

182 that in turn suppresses Foxo1 expression in the late stages of differentiation and thereby 

promotes T cell expansion. Inhibition of miR-182 ameliorated the disease score in a 

rheumatoid arthritis model. 

 

MiR-326 

MiR-326 was overexpressed in tissue samples derived from multiple sclerosis patients (Du et 

al., 2009). In line with these results, transgenic miR-326 expression in a mouse model of 

multiple sclerosis promoted disease and increased the frequency of disease-promoting Th17 

cells, while knockdown of miR-326 had an opposing effect. These results could also be 

recapitulated in vitro and were attributed to targeting of Ets-1, a negative regulator of Th17 

cell differentiation. Remarkably, the expression of miR-326-insensitive Ets-1 rescued the 

enhanced disease in miR-326 overexpressing mice.  

 

MiR-301 

MiR-301 was selectively upregulated in T cells in responses against the myelin antigen in a 

mouse model of multiple sclerosis (Mycko et al., 2012). In vitro studies revealed that miR-

301 promoted Th17 differentiation via direct regulation of the inhibitor of IL-6/STAT3 

signaling PIAS3 and thereby increased pro-inflammatory IL-6 signaling. A knockdown of 

PIAS3 as well as the overexpression of miR-301 in vivo resulted in more severe disease 

symptoms. Notably, miR-301 knockdown had no effect on Treg cell differentiation.  
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Altogether, the analyses of individual microRNAs that were analyzed in various T cell 

conditions and disease models exhibited some aspects observed in animals with deficiency of 

mature microRNAs in T cells or Treg cells. The collective data so far suggest that there is no 

single master regulator microRNA for Treg cell differentiation. More likely, multiple 

microRNAs may act in concert and exert different effects in different T cell subsets or 

conditions.  

 

4.6 Control mechanisms for microRNA regulation 
The effectiveness of microRNA-mediated repression can be regulated on several layers. In the 

following, regulations on the level of microRNA expression as well as on the level of target 

site abundance in 3’UTRs will be introduced. 

4.6.1 Regulation of microRNA turnover 

As for all other RNA species, the balance between transcription, processing and degradation 

determines the expression level of each microRNA within the cell. A study of microRNA 

expression of dark/light adaption of retinal neurons showed changes in the expression levels 

of particular microRNAs within 90minutes upon adaption to either situation (Krol et al., 

2010). This highlighted that microRNA expression levels can be efficiently controlled by 

regulated transcription and degradation. A global analysis of microRNA expression in murine 

embryonal fibroblasts in an inducible Dicer deletion system inferred microRNA half-lives 

between 28 h and >200 h (Gantier et al., 2011). These differences in the turnover of different 

microRNAs in the same cellular system imply further control mechanisms that act on 

particular microRNAs. Cell type-specific differences in degradation may be responsible for 

greatly varying turnover rates observed between fibroblasts and retinal neurons. 

Another possibility to influence the expression levels of mature and functionally active 

microRNAs is to regulate one or more of the steps that are involved in their biogenesis 

(Hoefig and Heissmeyer, 2008; Bronevetsky and Ansel 2013). One prominent example is the 

maturation of let-7 microRNAs in embryonic stem cells. Here the processing of the primary 

let-7 transcript by Drosha/Dgcr8 was blocked by the binding of the RNA-binding protein Lin-

28 (Viswanathan et al., 2008).  
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MicroRNA activity can also be regulated on the miRISC level. Human AGO2 can be 

phosphorylated on Y393 under hypoxic stress-inducing condition. This reduced the binding 

of AGO2 to Dicer and led to decreased processing of a large set of pre-miR that contained a 

particularly small loop (Shen et al., 2013). Other phosphorylations of Ago were described and 

could provide additional regulatory mechanisms for Ago activity (Rüdel et al., 2011; Zeng et 

al., 2008).  

More generally, the expression level of Ago correlated with expression of mature microRNAs 

(Diederichs and Haber, 2007). This implicated that microRNAs are stable as long as they are 

loaded onto Ago proteins. In support of this, downregulation of Ago in activated T cells 

heavily reduced the half-life of microRNAs to less than two hours and could be considered a 

reset mechanism for the expressed microRNAs (Bronevetsky et al., 2013).  

To date, mechanisms for the degradation of mature microRNA are largely unknown. A 

potential effector could be the Exoribonuclease 1 (Eri1) protein, since conditional deletion of 

this 3’ exonuclease in T cells or NK cells resulted in a moderate but global increase of 

microRNA expression independent of the microRNA sequence (Thomas et al., 2012).  

 

4.6.2 Variation of 3’UTR lengths by alternative polyadenylation 

Polymerase II-transcribed mRNA transcripts in the cytoplasm are composed of a 5’UTR, an 

intron-free coding region between the start and the stop codons and the 3’UTR. The 5’ and 

3’ends are post-transcriptionally stabilized by a 5’ cap structure and a 3’ poly(A) tail.  The 

3’UTR of an mRNA is the main substrate for post-transcriptional regulation via cis-acting 

elements, such as microRNA target sites and binding sites for RNA-binding proteins, which 

determine the stability and translation efficiency of mRNAs (Glasmacher et al., 2010; 

Grimson et al., 2007; Myer et al., 1997). The generation of alternative mRNA 3’UTRs can 

lead to 3’UTR shortening and in consequence to the evasion from post-transcriptional gene 

regulation by microRNAs and RNA-binding proteins. This constitutes another layer for 

control of post-transcriptional gene regulation. 3’UTRs are encoded on the most 3’ located 

exon or alternative 3’ exons of a gene. Tian et al. demonstrated in a database analysis of 

expressed sequence tags that more than 30% of mouse genes show alternative 

polyadenylation resulting in transcripts with alternative 3’ends (Tian et al., 2005). At first this 

was assumed to be a consequence of imprecise 3’end processing but tissue-specific 

expression patterns of transcript variants with specific 3’UTRs rather suggested regulation 

(Zhang et al., 2005). A more general shortening of 3’UTRs is observed in rapidly cycling 

cells, for example activated T cells or cancer cells (Kumar et al., 2007; Lu et al., 2005; 
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Sandberg et al., 2008). Other reports related regulated 3’UTR shortening of individual 

transcripts to T and B cell differentiation (Chuvpilo et al., 1999; Takagaki et al., 1996). The 

3’end of a nascent mRNA during transcription is not defined by the stop of mRNA synthesis 

by polymerase II. Instead it depends on cleavage and polyadenylation of the nascent 

transcript, which is determined by a polyadenylation signal (PAS) 10-30 nucleotides upstream 

in the sequence, downstream GU-rich elements as well as by UGUA motifs (Figure 3; 

Mandel et al., 2008; Nevins and Darnell, 1978). The distribution of 3’end variants of 

expressed sequence tags in various tissues suggests that particular PAS are more abundantly 

selected across tissues and are called strong PAS. Comparison of 3’UTRs from annotated 

human expressed sequence tags show that among the observed alternative PAS the strongest 

PAS tend to have the canonical sequence AAUAAA and to be situated most 3’ in the UTR 

	  

	  
Figure 3: Schematic interactions of the cleavage and polyadenylation machinery with the pre-mRNA. 
A) Proteins of the cleavage and polyadenylation machinery are co-transcriptionally assembled by the 
polymerase II (Pol II) C-terminal domain (CTD) and bind to sequence elements in the pre-mRNA. This 
promotes cleavage and polyadenylation of the nascent transcript. Anti-parallel binding of the UGUA motif 
by the CfIm complex was suggested to be involved in the regulation of alternative polyadenylation, since it 
could loop out alternative PAS (B) and thereby may determine the PAS used for cleavage and 
polyadenylation. PAS: polyadenylation signal, CPSF: cleavage and polyadenylation stimulating factor, 
CSTF: cleavage stimulating factor, CfIm: cleavage factor Im, PAP: poly(A) polymerase. 
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(Beaudoing et al., 2000). However, strong sites may have biased annotation of expressed 

sequence tags and longer 3’UTRs may therefore be underrepresented in databases.  

Efforts to identify the mechanisms that could control 3’UTR shortening by regulation of 

alternative polyadenylation focus on the mRNA 3’end processing machinery, which 

comprises cleavage and polyadenylation stimulating factor (CPSF), cleavage stimulating 

factor CstF, cleavage factors Im and IIm (CfIm, CFIIm), poly(A) polymerase (PAP) and 

poly(A) binding protein II, which act together to cleave the mRNA and provide 3’end 

polyadenylation  (Mandel et al., 2008; Martin et al., 2012).  

In addition, alternative 3’UTRs can also result from alternative splicing events that provide a 

different 3’ exon to encode an alternative 3’UTR (Sandberg et al., 2008; Takagaki et al., 

1996). 

4.7 Aim of this study 
Deletion of components of the microRNA biogenesis pathway largely prevents the formation 

of mature microRNAs. Mice with a conditional deletion of these components in CD4+ T cells 

exhibit a marked reduction of Treg cell generation in the thymus and the differentiation of 

naive CD4+ T cells into Treg cells in vitro is severely impaired (Chong et al., 2008; Cobb et 

al., 2006). These mice develop severe T cell-mediated autoimmunity. Moreover, a conditional 

deletion in mature Treg cells leads to the loss of regulatory function and also results in 

autoimmunity (Chong et al., 2008; Liston et al., 2008; Zhou et al., 2008b). These findings 

lead to the conclusion that microRNAs are essential for Treg cell differentiation and function. 

The contribution of individual microRNAs to the differentiation into Treg cells is completely 

unknown.  

The first objective of this study was to identify microRNAs that effectively modulate Treg 

cell differentiation. To that end, a functional screening approach was pursued to test 

overexpression of individual T cell-expressed microRNAs in an in vitro Treg cell 

differentiation model. As a prerequisite for a successful screen, the timing of effective post-

transcriptional gene regulation during Treg cell differentiation needed to be determined. 

Importantly, the experimental setup that allowed testing of microRNA function in the 

determined time frame had to be established.  

The second objective was to validate these microRNA candidates and to determine the critical 

targets that can mediate the observed microRNA effects on Treg cell differentiation. 

Ultimately, the cooperation of identified microRNAs in repression of identified target genes 

during Treg cell differentiation should be addressed.  
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5 Materials  

5.1 Mice 
DO11.10tg; CARΔ1tg mice were purchased from Taconic Farms, Inc. These mice express a 

truncated version of the coxsackie adenovirus receptor (CARΔ1tg) with deletion of the 

cytoplasmic domain (Wan et al., 2000a). It is expressed under the lymphocyte-specific 

proximal Lck promoter/CD2 enhancer and renders mouse T cells infectable with type 5 

adenovirus. DO11.10 is a transgenic TCR specific for MHC II-loaded ovalbumin OVA323-

339 peptide. It can be used for antigen specific T cell activation, but that feature was not 

utilized in this study.  

 

Eri1-deficient mice (Eri1fl/fl) were created and provided by M. Ansel (Ansel et al., 2008). 

CD4-Cre mice were used for loxP site recombination (Lee et al., 2001).  

All animals were housed in a specific pathogen-free barrier facility in accordance with the 

Helmholtz Zentrum München institutional, state and federal guidelines. 

 

5.2 Cell culture 
Cell lines 

The human A549 cell line was purchased from ATCC and is a lung adenocarcinoma epithelial 

line. The human embryonal kindney carcinoma cell line HEK293A was purchased from 

Invitrogen. Mouse embryonal fibroblasts (MEF) were generated by K.	  Hoefig as described 

(Hoefig et al., 2013).  

 

Table 1: Cell culture ingredients 
Dulbecco's Modified Eagle Medium (DMEM) Gibco, Invitrogen 
RPMI 1640, without L-glutamine BioWhittaker, Lonza 
Fetal bovine serum (FBS) PAN BIOTECH GmbH 
HEPES (1M) Gibco, Invitrogen 
PenStrep (10,000U/ml) Gibco, Invitrogen 
β-Mercaptoethanol Sigma-Aldrich 
GIBCO™ L-Glutamine-200 mM (100x), liquid Gibco, Invitrogen 
100x NEAA BioWhittaker, Cambrex 
GIBCO™ MEM Vitamin Solution (100x), liquid Gibco, Invitrogen 
Sodium pyruvate (100mM) BioWhittaker 
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5.3 Antibodies and cytokines 
The antibodies in the following tables were against mouse antigens and of rat origin. 

Table 2: Anti-mouse antibodies and cytokines for T cell polarization 
Anti-CD3 (145-2C11) In-house production 
Anti-CD28 (37N) In-house production 
Anti-IFN-γ (XMG1.2) In-house production 
Anti-IL-2 (JES6-5H4) Miltenyi Biotec 
Anti-IL-4 (11B11) In-house production 
Anti-IL-12 (C17.8) In-house production 
Recombinant human IL-2 (ProleukinS) Novartis 
Recombinant human TGF-β1 R&D Systems 
Recombinant mouse IL-6 R&D Systems 

 

Table 3: Antibodies for western blot 
Anti-actin (I-19), polyclonal goat anti-mouse Santa Cruz 
Anti-tubulin (B-5-1-2) Santa Cruz 
Anti-panAgo (11G1) In-house production, (Bronevetsky et al., 2013) 
Anti-Eri1 (5G8) In-house production, (Ansel et al., 2008) 
Anti-mTOR (7C10) Cell signaling 
Anti-Foxp3, polyclonal rabbit anti-mouse Gift from Steve Ziegler 
 

Table 4: Antibodies and cell labeling reagents 
Anti-CD44 (IM7) eBioscience 
Anti-CD62L (MEL-14) eBioscience 
Anti-CD90.1 (Thy1.1, clone OX-7) eBioscience 
Anti-Foxp3 (FJK-16s) eBioscience 
Anti-IFN-γ (XMG1.2) eBioscience 
Anti-CD69 (H1.2F3) eBioscience 
Anti-CD127 (A7R34) eBioscience 
Anti-CD5 (53-7.3) eBioscience 
Anti-IL-17A (eBio17B7) eBioscience 
Anti-CD25 (PC61.5) eBioscience 
Anti-CD90.1 (HIS51) eBioscience 
LIVE/DEAD® Fixable Dead Cell Stain Kit Invitrogen 
Cell Proliferation Dye eFluor® eBioscience 
 

5.4 Primer 
Table 5: Primer, entry and destination vectors of the microRNA library 

Cloning primers were purchased from Metabion.  
miR-146a Fwd CACCCATGCCCAGCATGTTTAATG 
 Rev TGATCAGCTGTGACCTGGAA 
miR-142 Fwd CACCGGAGTGGAGGGAAGAAGGTT 
 Rev CCAAGTATCAGGGGTCAGGA 
miR-let7b Fwd CACCTGAGTACAGCCTGCAGATGG 
 Rev GCCAGTCTCCGTATTTCCAA 
miR-106b Fwd CACCTGACTACATCACCGCAGCAT 
 Rev TACCTGCACGAACAGCACTT 
miR-16-2  Fwd CACCTGGTTTTTGATTTTTGGCTTG 
 Rev CCCAGAGTAAACCTTTATGCAA 
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let-7a-2 Fwd CACCTCAAAGGTACCAGACACCCATA 
 Rev TGACCCAAAGAGACCAAACA 
miR-17 Fwd CACCTTTTTAAGGCTTACATGTGTCCAA 
 Rev TGCCAGAAGGAGCACTTAGG 
miR-21 Fwd CACCTTGTACTCCGGCTTTAACAGGT 
 Rev TGACGACTACCCCAATTTCC 
let-7f-1 Fwd CACCTGCATTCATGGGGTCTCATA 
 Rev GGCCTGGTCCTAGATACTTACTTTT 
miR-15b Fwd CACCATCCAGAACCGCCTACAGAG 
 Rev CCTGTCACACTAAAGCAGCA 
miR-24-1 Fwd CCACCCAGGTGCATCAAGGAAACT 
 Rev CCTGCTTCTAGGGAATGCAA 
miR-let-7d Fwd CACCCAGTGGGCTGAGTGTTAGAGA 
 Rev TCCAAAACTTCCCAGTTACCC 
miR-23a, miR-24-2, miR-27a Fwd CACCTCCAGAGGTAGAGGCAGGAA 
 Rev CTATCTGCTTTGGGGAACCA 
miR-222 Fwd CACCGCTTTGGGGATAGCATTTGA 
 Rev GGGGGAAAGAGGAAGACAAG 
miR-181a, miR-181-b Fwd CACCTACATGCGTCCTTGCAGTTC 
 Rev CCGAGAAACGGCGTTAATAC 
miR-155 Fwd CACCTGAACCGTGGCTGTGTTAAA 
 Rev CGAGAATGGCCGTCCTGAAT 
miR-101a Fwd CACCGGTGCATAGGTGTGAGATTGGG 
 Rev ACCACCCAACAGTGAAGGAC 
miR-150 Fwd CACCAGGGGAAGTGCTAGGCTCTC 
 Rev GTTGGAGTGATGGGAACACCC 
miR-19b-1, miR-20a, miR-92a-1 Fwd CACCCTGATGGTGGCCTGCTATTT 
 Rev CCGTTTTACACACCAACGAA 
miR-26a-1 Fwd CACCGCGCTGGTTGTTGTGTCTAA 
 Rev AACACTCGTTGTTGCTGGTG 
miR-29a Fwd CACCCCACCCTGCTTACCTCTGTG 
 Rev ATTGGTTTGGCCCTTTATCC 
miR-146b Fwd CACCCCATAGGCTGTGATCTCTCTCTCT 
 Rev ATGTTTGGAGCCTGAAGGTG 
miR-29b-1 Fwd CACCTGTAAGCCTCGTGCTCACTG 
 Rev GGAGTCCACTTCCAGAGAAGG 
miR-93 Fwd CACCTGCTGGGACTAAAGTGCTGA 
 Rev TGTCAGACCGAGACAAGTGC 
miR-223 Fwd CACCCCGTTTTTGTTTGGAGCATT 
 Rev CAGTCCATGGCATTTTCACA 
miR-25 Fwd CACCCCTCCCCTCTTGGACCTTAG 
 Rev AGCCTAAGGGGAAGGCATAG 
miR-17, miR-18a, miR-19a Fwd CACCCTTCTGGCTATTGGCTCCTC 
 Rev CGAGCAAACACGAAAATGAA 
miR-125b-1 Fwd CACCCAGGGCTGTATGGAGACAGAA 
 Rev GGGTCACCTGATCCCATCTA 
miR-221 Fwd CACCAGCATGATGAATGACCACCA 
 Rev ACAAATGCTGAGGTCGGAAG 
miR-15, miR-16a Fwd CACCTGGCTTTGAAAGATGTGCTG 
 Rev TGCTAGCAAGAAGCACTTGG 
miR-30e Fwd CACCCATTCTCCCCATGTTGACCT 
 Rev AATGCCTGACTGCATCACAG 
miR-140 Fwd CACCGTGGGGCTGTCATCTGACTT 
 Rev CCTCCCTTCACCCTAGAACC 
miR-30d Fwd CACCCTGCCAGCAAAACTTGTGTC 
 Rev GGGTGGGTGGTAGACATGAA 
miR-26b Fwd CACCGCACTACACCCAGGTTCCTC 
 Rev GCTTAGGGGTGATCCACAAA 
Let-7g Fwd CACCCCACCGATGCTTTTGGATAA 
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 Rev AAGCCTCTCAAATGACAACCA 
miR-652 Fwd CACCCAGGTGCTCCTGAACCTCTT 
 Rev CCCCCTGCTCTCTCTCTCTT 
miR-191 Fwd CACCGGACTCACAGGGCTAATCCA 
 Rev TTCAGAGAGAGGACCCAGGA 
miR-374, miR-421 Fwd CACCGATGTTTGGGGAATGGTCAC 
 Rev CCTTCCACACCCTCAGGATA 
miR-425 Fwd CACCTCCTGGGTCCTCTCTCTGAA 
 Rev CGGCACCTTTGGTTCTTTAG 
miR-342 Fwd CACCCTTCCCAGGACTCTTGGTTG 
 Rev TCTCACTCTGCTGGTCATGG 
miR-126 Fwd CACCAGCACTGTTGTGTGGCTGAG 
 Rev CTAGTCAGGGAGGGGAGCTT 
miR-214 Fwd CACCTCCTTGTTAGCAACATTTGGA 
 Rev AGGCTTCATAGGCACCACTC 
miR-23b, miR-27b, miR-24-1 Fwd CACCGCAATTGGAGAACAGGGTGT 
 Rev CAGGCATTCTCACTGCTCAA 
miR-22 Fwd CACCTCTGTAAAGGGGCACAAAGC 
 Rev ATTTCTTCCCACTGCCACAC 
miR-125a Fwd GAGCTGGGGTGTCTTCTCTG 
 Rev CCCTGAAGATCAGCAGGAAC 
miR-290, miR-291a, miR-292, miR-291b Fwd CACCGTGAAGTTTGGGGACCAGAA 
 Rev TAGACTCACCACCCCTGGAC 
miR-207 Fwd CACCGGCTCGGCTACAAAAGAGGT 
 Rev CGCTGCCTTTGTACATCTGA 
miR-154 Fwd CACCCTCCATCACCAGACCCTTGT 
 Rev TATGTCCCTCCCTGAGTCCA 
 miR-188 Fwd CACCCAAGTGACTTTCCTGCCTGT 
 Rev TCCTTAGCTATGCAGGGAGTTC 
miR-293, miR-294, miR-295 Fwd CACCCTCATGAGGGCTGGGATTAC 
 Rev TTCATGTTTGGAGGCTGAGG 
miR-103-1 Fwd CACCCAGGGCTATACAGCCTTTGC 
 Rev ACTGAGAGCAAACCCCAGAA 
miR-32 Fwd CACCTTGCATGGCATACAGAAGTG 
 Rev TGGGTGAAGAAGTAGAACATGG 
miR-30b Fwd CACCGAGGGAAAGGGTGGAGAAAG 
 Rev CAATGCAATTCAGCTGACAAA 
miR-31 Fwd CACCCCTGTGCATAACTGCCTTCA 
 Rev GCTGGGCACATGTAAGGTTT 
miR-30a Fwd CACCTTTCTTATGGCCAACAGTAATGG 
 Rev TTTTGGTGTGTGTGAATTGACC 
miR-30c-1 Fwd CACCGAGCATTGAGCAGGTGAGAA 
 Rev GTCTACCCCAGCAGAGCATC 
miR-29c Fwd CACCAGCAAGGAAGGGGTAAGAGC 
 Rev CATTGCCATAGAATTATGAATGAAA 
cluster-18b-106a Fwd CACCAACACAACCCCATTTGCACT 
 Rev CTTGCGCTGTAGTTGCTTCA 
miR-27b Fwd CACCGCAGCACGTAAGTCTTGGTTC 
 Rev TTGGTGTGTGTGAATTGACCTAA 
let-7c-1 Fwd CACCTCGCTGCTAATGGAAGTGTG 
 Rev AACAGCCCGTGAGAAATAGC 
miR-186 Fwd CACCGAGGGGTAATGGAGCACTGA 
 Rev GACATGGCCCAGAAAAAGAA 
miR-195, miR-492 Fwd CACCATCCCCAGAGCTGAATTCCT 
 Rev CTGAGCCTTCCACCTCTGAC 
miR-19b-2, miR-20b, miR-92a-2, miR-363 Fwd CACCTCCCCTGGTTTCTGCATAGT 
 Rev GAGGCAGGCAGATTTCTGAG 
miR-378 Fwd CACCAGCAGAAGCAGTGCAGTGAA 
 Rev AGCTCACATGCAAACACAGG 
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miR-139 Fwd CACCGCTTCTCCTCCTTCCCACTC 
 Rev AAAGATCCCCAAGGAGAGGA 
miR-99b, let-7e, miR-125a Fwd CACCCTCAGGCCTGGGATATGAAA 
 Rev CCCTTCAAGCTCATTTCTGC 
miR-339 Fwd CACCGCCCAGTCTCCTGTTTCTCA 
 Rev AGAGGGAGAGACCTGGAAGG 
miR-193 Fwd CACCGCGTCGTGTAAACCTTCGAG 
 Rev CAGGCCGGTACAGAAGAAAA 
miR-297a-1 Fwd CACCGATGAACCCCAAACTCCTGA 
 Rev TAGCTGGGCACTGGAGAGAT 
miR-144, miR-451 Fwd CACCCCTGCCTCACAACTTCGTTT 
 Rev CCAGCCTCGGATGCTAATAA 
miR-9 Fwd CACCTCTTTTCCTCGCCTTTCTGA 
 Rev TCTTGCTTTCTTCCCAGGTG 
miR-148a Fwd CACCTGTGACATTGCCACCAGAGT 
 Rev TGTGGTCCTTCTCTCCTTGC 
miR-10a Fwd CACCGAGTCCCTTTGCACAACAGC 
 Rev GAGTGAACAAGGACCCAAGC 
let-7i Fwd CACCGCCAGCCTCTTTAAGGGATCT 
 Rev CGAAACCCAACAACAGACAA 
miR-196a-1 Fwd CACCTGCTGAGAGGCCAAGTAGGT 
 Rev CCTACAACCCAAAGGCTTGA 
miR-322, miR-502 Fwd CACCAGACTTTGGAGCTGGCAAGA 
 Rev CAAGTGAGGCGCTAACAACA 
miR-130a Fwd CACCGAAAGGTTGCAGGCAGAGAG 
 Rev TGGGCTCAGGATAGAGCAGT 
miR-299 Fwd CACCCTCTGCCTTGGGAACTCTTG 
 Rev AGCATCCCTTGATGATGAGC 
miR-215, miR-194-1 Fwd CACCAGACTCTCGTCCAGGAAGCA 
 Rev GCAGTCGGTGAGTGAGATGA 
miR-181c, miR-181d Fwd CACCTTGTGAATGCATCCCTTGAA 
 Rev AGCCCCCTTATCTGACACCT 
miR-181a, miR-181b Fwd CACCAGCACAAAGTGGAGGTTTGC 
 Rev CCCAGGGCTACACAGTTGAT 
miR-669a-2 Fwd CACCACACCAATGCCACTCATCAA 
 Rev TGCATGTACACTTAAGGCATCAC 
miR-376a Fwd CACCTGTTTCAGATGAGCCAAGCA 
 Rev GAAGCCGACTCCAGAAAACA 
miR-296 Fwd CACCCATCAAGGTAGCTGGT 
 Rev TTTCCCAGCCAAGGATACAG 
miR-680-1 Fwd CACCGGGGACCACAAACCTGTAAG 
 Rev GAGTCGATCACCACCCCTAA 
miR-703 Fwd CACCGAGGATCCATTGATGCGTCT 
 Rev AATGGAATGAGCCCAATCAG 
miR-320 Fwd CACCTAGCTTTGGACTCCGTCACC 
 Rev AGCTATTGGCTGCTCTGTCC 
miR-431 Fwd CACCATGAAGTTGTGGCCCTTCAC 
 Rev ACCCTCATTGCGAGTAGTGG 
miR-669c, miR-297c Fwd CACCCGCACACACACAGAGGAATG 
 Rev TGGGCGATATCACATGAATAC 
miR-100 Fwd CACCTGAAGCTCACTTCATCAAGCA 
 Rev ACCAGTCAGAGGCAATACGG 
miR-340 Fwd CACCGTGAGATCTATTCACTCTTGTCCTCC 
 Rev CATCTGCCTCTGGTGAGTGAG 
miR-491 Fwd CACCAAGCAGTGGTGGTTTCTATCTGC 
 Rev CCTTGCTACTTCATTCCATAGCCAG 
miR-10b Fwd CACCCGATGAGGGAACTCATTGCT 
 Rev AAACCTGGCTCTCTGGCTTT 
miR-34a Fwd CACCCTCCAGCTGAATCCCGACTA 
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 Rev GTACCCCGACATGCAAACTT 
miR-99a Fwd CACCAATCCTCATGCTTGTAACCCTA 
 Rev GGCTCTGCTACAAATCCTTCC 
miR-132, miR-212 Fwd CACCCCTGCATGCTCCACACAC 
 Rev GCTCTGTATCTGCCCAAACC 
miR-151 Fwd CACCGCCAGACTCTACGCACATGA 
 Rev TGTGACATGTTGCTCATGGA 
miR-152 Fwd CACCCTGAAGTTCTGGGGAACTCG 
 Rev AAAGTGGACACCGAGTCAGG 
miR-197 Fwd CACCTGGGGACTTTTGAAGTTGGA 
 Rev TGCTTCTGGATTCTGACATGA 
miR-210 Fwd CACCGGGTCGCAGGTGAAATAGAA 
 Rev CAGGTGCAGGACAGAGAAGC 
miR-324-3p Fwd CACCTGCTGATCTACTCCTCCAACC 
 Rev ACCACAGTGGGGTAACATGC 
miR-326 Fwd CACCCCGCTGGAAGGATCTTCTCT 
 Rev CTAGCCCAGGGCCATATACA 
miR-328 Fwd CACCAGAGAACCTGCGTTCAGGAC 
 Rev CTGCCCTCTCGTCTGTAGAA 
miR-346 Fwd CACCCCCAGGCTTCTGTGAAGGAT 
 Rev GCCCATCTTCAGTCATGTCC 
miR-365-1 Fwd CACCCTTCCGCCTAGGGACACAT 
 Rev TTACCTCTGGAGGGCAAAAA 
miR-370 Fwd CACCGGTGGAGCTGTGTGGGTATG 
 Rev GCCTCTCTGTGCTCTGTTCC 
miR-423 Fwd CACCAAGAAGCCAGGGAGACTGAG 
 Rev CGCCCAAGAATAAATTTCCA 
miR-505 Fwd CACCACTTTTCCGAGGTCAATAAGC 
 Rev AGTGTGCTTGCTATGTGGAAT 
miR-325 Fwd CACCTTGGGTTCTGCTGGGTTTTA 
 Rev GCTCACTGCCTTAACCCTTG 
miR-184 Fwd CACCGGAGAGAATGGGAGTGGTCA 
 Rev AGGATGCAACTTTCGGCTTA 
 miR-744 Fwd CACCGTGGGCAGATAATGGCAGTT 
 Rev TACAGAGGCTCGCTGGGTAT 
miR-182 Fwd CACCGGGAATGTCAGGAAGGGATT 
 Rev CTGTCTCTCCCTCACCAAGC 
 miR-484 Fwd CACCCCCAGGCCCTTTATTTTGAT 
 Rev TATCACGTGACGAGGCAGAG 
 miR-183, miR-96 Fwd CACCTGGGAGTAGGTGAGGTCCAG 
 Rev AGGATGCAGGAAACCAACAC 
 miR-130b, miR-301 Fwd CACCTCAGCTCCCTCCTTGGAGTA 
 Rev TGCAGCAGACTCCCCTATCT 
 miR-185 Fwd CACCATGGCTAGGGTTTGCTCTCA 
 Rev TATCAGCTGCTGGTGTCAGG 
 miR-720 Fwd CACCCTAGCGACCCCTCTTCAGTG 
 Rev TCAGAAATCCACCTGCCTCT 
 miR-98 Fwd CACCTTCTTCTGCCCTTGAATTGG 
 Rev AGGCTGTCCTCGAATGTTTG 
 miR-141, 200 Fwd CACCCGCAGTAAATGGGTGTGTTG 
 Rev GTTCCCAGGGTGAAAAGACA 
miR-500 Fwd CACCGGAGTGGCATCTCCATGTTT 
 Rev TCTGGCCCTTATTGTCCATC 
 miR-700 Fwd CACCCTCACTGAGCCATCGCATTA 
 Rev CTGGCCGAATCTGCTACTTC 
 miR-674 Fwd CACCGAGGCATCATTGGGTTCACT 
 Rev GCAGGAGCTGGAGAACAAAC 
 miR-361 Fwd CACCGGGCAAGAATGAGGCTAACA 
 Rev GGAGTGGGGATCTGTGAAGA 



Materials 

	  

33	  

 miR-33 Fwd CACCCACCTGTGGAGCAGTCTCAA 
 Rev CAAGGGAGACCAACAGGAAG 
miR-99b, let-7e, miR-125a Fwd CACCCTCAGGCCTGGGATATGAAA 
 Rev CCCTTCAAGCTCATTTCTGC 
miR-339 Fwd CACCGCCCAGTCTCCTGTTTCTCA 
 Rev AGAGGGAGAGACCTGGAAGG 
miR-193 Fwd CACCGCGTCGTGTAAACCTTCGAG 
 Rev CAGGCCGGTACAGAAGAAAA 
miR-297a-1 Fwd CACCGATGAACCCCAAACTCCTGA 
 Rev TAGCTGGGCACTGGAGAGAT 
miR-144, miR-451 Fwd CACCCCTGCCTCACAACTTCGTTT 
 Rev CCAGCCTCGGATGCTAATAA 
miR-9 Fwd CACCTCTTTTCCTCGCCTTTCTGA 
 Rev TCTTGCTTTCTTCCCAGGTG 
miR-148a Fwd CACCTGTGACATTGCCACCAGAGT 
 Rev TGTGGTCCTTCTCTCCTTGC 
miR-10a Fwd CACCGAGTCCCTTTGCACAACAGC 
 Rev GAGTGAACAAGGACCCAAGC 
let-7i Fwd CACCGCCAGCCTCTTTAAGGGATCT 
 Rev CGAAACCCAACAACAGACAA 
miR-196a-1 Fwd CACCTGCTGAGAGGCCAAGTAGGT 
 Rev CCTACAACCCAAAGGCTTGA 
miR-322, miR-502 Fwd CACCAGACTTTGGAGCTGGCAAGA 
 Rev CAAGTGAGGCGCTAACAACA 
miR-130a Fwd CACCGAAAGGTTGCAGGCAGAGAG 
 Rev TGGGCTCAGGATAGAGCAGT 
miR-299 Fwd CACCCTCTGCCTTGGGAACTCTTG 
 Rev AGCATCCCTTGATGATGAGC 
miR-215, miR-194-1 Fwd CACCAGACTCTCGTCCAGGAAGCA 
 Rev GCAGTCGGTGAGTGAGATGA 
miR-181c, miR-181d Fwd CACCTTGTGAATGCATCCCTTGAA 
 Rev AGCCCCCTTATCTGACACCT 
miR-181a, miR-181b Fwd CACCAGCACAAAGTGGAGGTTTGC 
 Rev CCCAGGGCTACACAGTTGAT 
miR-669a-2 Fwd CACCACACCAATGCCACTCATCAA 
 Rev TGCATGTACACTTAAGGCATCAC 
miR-376a Fwd CACCTGTTTCAGATGAGCCAAGCA 
 Rev GAAGCCGACTCCAGAAAACA 
miR-296 Fwd CACCCATCAAGGTAGCTGGT 
 Rev TTTCCCAGCCAAGGATACAG 
miR-680-1 Fwd CACCGGGGACCACAAACCTGTAAG 
 Rev GAGTCGATCACCACCCCTAA 
miR-703 Fwd CACCGAGGATCCATTGATGCGTCT 
 Rev AATGGAATGAGCCCAATCAG 
miR-320 Fwd CACCTAGCTTTGGACTCCGTCACC 
 Rev AGCTATTGGCTGCTCTGTCC 
miR-431 Fwd CACCATGAAGTTGTGGCCCTTCAC 
 Rev ACCCTCATTGCGAGTAGTGG 
miR-669c, miR-297c Fwd CACCCGCACACACACAGAGGAATG 
 Rev TGGGCGATATCACATGAATAC 
miR-100 Fwd CACCTGAAGCTCACTTCATCAAGCA 
 Rev ACCAGTCAGAGGCAATACGG 
miR-340 Fwd CACCGTGAGATCTATTCACTCTTGTCCTCC 
 Rev CATCTGCCTCTGGTGAGTGAG 
miR-491 Fwd CACCAAGCAGTGGTGGTTTCTATCTGC 
 Rev CCTTGCTACTTCATTCCATAGCCAG 
miR-10b Fwd CACCCGATGAGGGAACTCATTGCT 
 Rev AAACCTGGCTCTCTGGCTTT 
miR-34a Fwd CACCCTCCAGCTGAATCCCGACTA 
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 Rev GTACCCCGACATGCAAACTT 
miR-99a Fwd CACCAATCCTCATGCTTGTAACCCTA 
 Rev GGCTCTGCTACAAATCCTTCC 
miR-132, miR-212 Fwd CACCCCTGCATGCTCCACACAC 
 Rev GCTCTGTATCTGCCCAAACC 
miR-151 Fwd CACCGCCAGACTCTACGCACATGA 
 Rev TGTGACATGTTGCTCATGGA 
miR-152 Fwd CACCCTGAAGTTCTGGGGAACTCG 
 Rev AAAGTGGACACCGAGTCAGG 
miR-197 Fwd CACCTGGGGACTTTTGAAGTTGGA 
 Rev TGCTTCTGGATTCTGACATGA 
miR-210 Fwd CACCGGGTCGCAGGTGAAATAGAA 
 Rev CAGGTGCAGGACAGAGAAGC 
miR-324-3p Fwd CACCTGCTGATCTACTCCTCCAACC 
 Rev ACCACAGTGGGGTAACATGC 
miR-326 Fwd CACCCCGCTGGAAGGATCTTCTCT 
 Rev CTAGCCCAGGGCCATATACA 
miR-328 Fwd CACCAGAGAACCTGCGTTCAGGAC 
 Rev CTGCCCTCTCGTCTGTAGAA 
miR-346 Fwd CACCCCCAGGCTTCTGTGAAGGAT 
 Rev GCCCATCTTCAGTCATGTCC 
miR-365-1 Fwd CACCCTTCCGCCTAGGGACACAT 
 Rev TTACCTCTGGAGGGCAAAAA 
miR-370 Fwd CACCGGTGGAGCTGTGTGGGTATG 
 Rev GCCTCTCTGTGCTCTGTTCC 
miR-423 Fwd CACCAAGAAGCCAGGGAGACTGAG 
 Rev CGCCCAAGAATAAATTTCCA 
miR-505 Fwd CACCACTTTTCCGAGGTCAATAAGC 
 Rev AGTGTGCTTGCTATGTGGAAT 
miR-325 Fwd CACCTTGGGTTCTGCTGGGTTTTA 
 Rev GCTCACTGCCTTAACCCTTG 
miR-184 Fwd CACCGGAGAGAATGGGAGTGGTCA 
 Rev AGGATGCAACTTTCGGCTTA 
 miR-744 Fwd CACCGTGGGCAGATAATGGCAGTT 
 Rev TACAGAGGCTCGCTGGGTAT 
miR-182 Fwd CACCGGGAATGTCAGGAAGGGATT 
 Rev CTGTCTCTCCCTCACCAAGC 
 miR-484 Fwd CACCCCCAGGCCCTTTATTTTGAT 
 Rev TATCACGTGACGAGGCAGAG 
 miR-183, miR-96 Fwd CACCTGGGAGTAGGTGAGGTCCAG 
 Rev AGGATGCAGGAAACCAACAC 
 miR-130b, miR-301 Fwd CACCTCAGCTCCCTCCTTGGAGTA 
 Rev TGCAGCAGACTCCCCTATCT 
 miR-185 Fwd CACCATGGCTAGGGTTTGCTCTCA 
 Rev TATCAGCTGCTGGTGTCAGG 
 miR-720 Fwd CACCCTAGCGACCCCTCTTCAGTG 
 Rev TCAGAAATCCACCTGCCTCT 
 miR-98 Fwd CACCTTCTTCTGCCCTTGAATTGG 
 Rev AGGCTGTCCTCGAATGTTTG 
 miR-141, 200 Fwd CACCCGCAGTAAATGGGTGTGTTG 
 Rev GTTCCCAGGGTGAAAAGACA 
miR-500 Fwd CACCGGAGTGGCATCTCCATGTTT 
 Rev TCTGGCCCTTATTGTCCATC 
 miR-700 Fwd CACCCTCACTGAGCCATCGCATTA 
 Rev CTGGCCGAATCTGCTACTTC 
 miR-674 Fwd CACCGAGGCATCATTGGGTTCACT 
 Rev GCAGGAGCTGGAGAACAAAC 
 miR-361 Fwd CACCGGGCAAGAATGAGGCTAACA 
 Rev GGAGTGGGGATCTGTGAAGA 
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 miR-33 Fwd CACCCACCTGTGGAGCAGTCTCAA 
 Rev CAAGGGAGACCAACAGGAAG 
 

Table 6: Cloning primers for other adenoviral constructs 

Cloning primers were purchased from Metabion.  
Mtor-
3’UTR_fwd 

CACCTGAGGCCTGGAAAACCACGTC 

Mtor-
3'UTR_rev 

TGATGAACAGAAAGCCAGTCATACACAT 

Rora 
3’UTR-F 

CACCTAAATGTCGCGCCCGAGCAC 

Rora 
3’UTR-R 

ACAGCAGCATAAATACCTCCCAACG 

hFoxp3 F CACCCCTATGCCCAACCCTAGGCC 
hFoxp3 R TCAGGGGCCAGGTGTAGGG 
 

Table 7: Genotyping primer 

Genotyping primers were purchased from Metabion.  
Car for CAGGAGCGAGAGCCGCCTAC 
Car rev CAGCCACTCGATGTCCAGCGGTC 
DO11.10 F GAGCAGCTTCCTTCCATCCTGAGAG 
DO11.10 R TGGCTCTACAGTGAGTTTGGTGCCA 
CD4Cre for ACGACCAAGTGACAGCAATG 
CD4Cre rev CTCGACCAGTTTAGTTACCC 
Mexo A (Eri1 F) GGGTGGTATATCCTCAGTTACTTTTG 
Mexo B (Eri1 R floxed) GCCATAACCTTGAACCTGCA 
Mexo C (Eri1 R wt) GCAACCCGAGGTAAAAGGAG 

 

Table 8: Quick change primer 

Quick change primers were purchased from Metabion and were HPLC purified 
QC MTOR 
99A MUT F 

ACAGAAGATGGGTAACTGAGAAATACGACCTTTGACTTAACTTACAAGAAAACTCAT 

QC MTOR 
99A MUT R 

ATGAGTTTTCTTGTAAGTTAAGTCAAAGGTCGTATTTCTCAGTTACCCATCTTCTGT 

QC MTOR 150 
MUT F 

TAATCCTTCAGAAGCCAAGCCTTGGATTTCTCTGGAACAGAAGATGGGTAACTGAGAAATAC 

QC MTOR 150 
MUT R 

GTATTTCTCAGTTACCCATCTTCTGTTCCAGAGAAATCCAAGGCTTGGCTTCTGAAGGATTA 

 

Table 9: qPCR primer for detection of mature microRNA 

For quantitative PCR of mature microRNAs the following kits (based on hairpin primers) 

from Applied biosystems were used.  
TaqMan MicroRNA Assay hsa-miR-99a Applied Biosystems 
TaqMan MicroRNA Assay hsa-miR-10b Applied Biosystems 
TaqMan MicroRNA Assay hsa-miR-150 Applied Biosystems 
TaqMan MicroRNA Assay hsa-miR-155 Applied Biosystems 
TaqMan MicroRNA Assay snoRNA202 Applied Biosystems 
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Table 10: qPCR primer for detection of mRNAs 

All qPCR analyses for mRNAs were performed using the following primers (HPLC-purified) 
Name Sequence Probe 
Eri1_CDS F92 TGAAGTCAAAGGAGTTGGGAAC #92 
Eri1_CDS R92 GCACTGGATGCTCAGGAAC #92 
Eri1UTR_short F64 TGGTGAGACTAATGGAAAGTTAGAAAA #64 
Eri1UTR_short R64 TGGCTTCAGATTCACCTATGC #64 
Eri1UTR_int F3 GCCTACGTTGTGTGTAAAGATACTG #3 
Eri1UTR_int R3 CAAACACTAGCACCAGTGTAAGC #3 
Eri1UTR_long F4 CGTCCTTAGTGTTGACCCTCAT #4 
Eri1UTR_long R4 TGTGTGCATTGATGCTGTGT #4 
mTOR F70 AGAAGACAGCGGGGAAGG #70 
qmTOR R70 GCATCTTGCCCTGAGGTTC #70 
qRora CDS F63 CAGATAACGTGGCAGACCTTC #63 
qRora CDS R63 AGCTGCCACATCACCTCTCT #63 

5.5 Instruments 

Table 11: Instruments 
BD FACS Calibur Flow Cytometer BD Biosciences 
BD LSRFortessa Cell Analyzer BD Biosciences 
BD LSRII Flow Cytometer BD Biosciences 
Blotting chamber BioRad 
Fluorescence microscope Axiovert 200M (Zeiss) Olympus DP72  
Light cycler LC480 Roche 
Orion Microplate luminometer Berthold 
 

5.6 Chemicals, enzymes and kits 
Table 12: Chemicals 
Ampicillin  Roche 
Biozym DNA Agarose Biozym Scientific GmbH 
Brefeldin A Sigma-Aldrich 
BSA (Albumin Fraktion V) Roth 
Deoxynucleotide (dNTP) set Fermentas 
DEPC Roth 
Dimethyl sulphoxide (DMSO)  Sigma-Aldrich 
DNA Ladder 2-Log (0.1–10.0 kb) New England BioLabs 
Dynabeads M450 Tosylactivated  Invitrogen 
ECL plus western blotting reagent GE healthcare 
Ethidium bromide 1% (w/v) Serva 
Ionomycin, Free Acid, Streptomyces conglobactus Calbiochem 
JetPEI Polyplus transfection 
Kanamycin sulfate Roth 
Milk powder Roth 
Paraformaldehyde Sigma-Aldrich 
Phorbol-12-myristate-13-acetate (PMA) Calbiochem 
All-trans retinoic acid Sigma 
Saponin VWR International GmbH 
Tri®Reagent (Trizol) Invitrogen 
Trypsin 0.05% / EDTA 0.02% in PBS  Pan biotech GmbH 
Tween 20 Applichem 
β-Mercaptoethanol 99% Sigma-Aldrich 
 



Materials 

	  

37	  

Table 13: Enzymes 
Gateway LR Clonase II Enzyme Mix Invitrogen 
proteinase K Invitrogen 
Restriction enzymes New England BioLabs 
T4 DNA Ligase (10,000 U/ml) New England BioLabs 
Taq Polymerase (5,000 U/ml) New England BioLabs 
 

Table 14: Kits 
DETACHaBEAD® Mouse CD4 Invitrogen 
Dynabeads® M-450 Tosylactivated Invitrogen 
Dynabeads®Mouse CD4 (L3T34) Kit  Invitrogen 
iProof™ High-Fidelity PCR Kit Bio-rad 
Light cycler480 Probes master Roche 
miRNeasy Mini Kit Qiagen 
Naive CD4+ CD62L+ T cell Isolation Kit II, mouse  Miltenyi Biotec 
Nucleobond®Xtra Maxi Kit Macherey-Nagel GmbH & Co.  KG 
pENTR™ 11 Dual Selection Invitrogen 
pENTR™/D-TOPO Cloning Kit Invitrogen 
PureYield™ Plasmid Miniprep System Promega 
QIA®quick gel extraction Kit Qiagen 
Quantitect reverse transcription kit II Qiagen 
TaqMan microRNA reverse transcription kit Applied Biosystems 
TaqManMicroRNA Assay Applied Biosystems 
Universal Probe Library  Roche 
XL QuickChange Stratagene 
 

Table 15: Solution and Buffers 
APS  10% APS w/v in H2O 
Lysis buffer 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.25% (v/v) 

Nonidet-P40, 1.5 mM MgCl2, 1 mM DTT, protease 
inhibitor mix without EDTA (Roche) in H2O 

PBS 137 mM NaCl, 10 mM phosphate, 2.7 mM KCl 
SDS (10%) 10% SDS (w/v) dissolved in H2O 
SDS sample buffer (4x) 200 mM Tris/HCl (pH 6.8), 8% w/v SDS, 4% glycerol, 

0.1% w/v bromophenol blue, 10% v/v β-
mercaptoethanol in ddH2O 

SDS-PAGE running buffer (5x) 25 mM Tris-Base, 200 mM glycine, 10% (w/v) SDS in 
H2O 

TAC lysis buffer 13 mM Tris, 140 mM NH4Cl (pH 7.2) in H2O 
TBE (5x) 45 mM Tris-HCl, 1 mM EDTA (pH 8.0) in H2O 
TBS (1x) 20 mM Tris-Base, 137 mM NaCl, 3.8 ml 1M HCl, 

dissolved in ddH2O 
TBS-T (1x) 20 mM Tris-Base, 137 mM NaCl, 3.8 ml 1M HCl, 

0.1% (v/v) Tween 20, dissolved in H2O 
TE (10x) 100 mM Tris/HCl (pH 8.0), 10 mM EDTA (pH 8.0) in 

H2O 
Western blot buffer 25 mM Tris-Base, 192 mM glycin, 20% v/v methanol 

(pH 8.4) in H2O 
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5.7 Vectors 

5.7.1 Entry vectors 

pENTR/D-TOPO 

This vector was purchased from Invitrogen and was provided in a linearized form with 

topoisomerase coupled to the strand ends (Figure 4). Thus it was suitable for blunt end 

directional cloning of PCR products generated with a forward primer that begins with a 

CACC motif. The cloning cassette was flanked by AttL recombination sites that allow λ-

recombination into destination vectors. 

 

 

 

pENTR11-AscI  

pENTR11 was purchased from Invitrogen and the multiple cloning site was modified to 

contain restriction sites for the Asc1, Not1 and EcoRV restriction endonucleases, which allows 

reversion of the pENTR/D-TOPO cloning cassette (Figure 4). The restriction sites for Asc1 

and Not1 restriction endonucleases were flanked by AttL recombination sites that allow λ-

recombination into destination vectors.  

 

 

	  

	  
	  

Figure 4: Vector maps of pENTR/D-TOPO and pENTR11-Asc1. 
pENTR/D-TOPO was supplied as a linearized vector with Topoisomerase II (TOPO) coupled to both ends 
to facilitate blunt end cloning of PCR products. The GTGG motif should provide directionality when 
combined with a CACC motif in the forward primer. pENTR11-Asc1 was equipped with Asc1 and Not1 
restriction sites and used for reversion of Not1/Asc1 restriction fragments from pENTR/D-TOPO. The AttL 
recombination sites flanking the respective inserts in entry vectors can be used for λ-recombination into 
destination vectors. (Modified from Invitrogen vector maps). 
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5.7.2 Adenoviral vectors 

pCAGAdDu 

The pCAGAdDu plasmid contains the human type 5 adenovirus genome with E1 and E3 

genes deleted to render recombinant adenoviruses replication-incompetent (Figure 5, Russell, 

2000). The adenoviral producer cell line HEK293A complements replication deficiency as it 

has been immortalized through stable integration of sheared adenovirus genome (Graham et 

al., 1977). Since adenoviral vectors are large (~40 kb) and consequently not well suited for 

traditional restriction enzyme-mediated cloning, we employed the Gateway® system. The 

gene of interest is initially cloned into a smaller entry vector, from which it can be easily 

transferred into the adenoviral destination vector via lambda recombination reaction (LR) 

(Landy, 1989). The pCAGAdDu vector combines the CAG promoter (chicken actin promoter 

and CMV enhancer) with an expression cassette containing LR sites (AttL1, AttL2) flanking 

the procaryotic ccdB selection marker (Figure 5, Bernard and Couturier, 1992). This 

expression cassette is fused to an internal ribosome entry site (IRES) element that allows co-

expression of the eukaryotic infection marker enhanced green fluorescent protein (eGFP), 

which is fused to a sequence containing the bovine growth hormone poly(A)-signal. The 

pCAGAdDu-Thy1.1 variant encodes the surface marker molecule Thy1.1 instead of eGFP. 

We chose the CAG cis-regulatory sequences, since the prototypic CMV promoter was found 

to be highly activation-dependent and therefore unfavorable for gene expression in naive T 

cells. pCAGAdDu lacking the recombination cassette was used as a control virus.  
	  

 
	  
	  

Figure 5: pCAGAdDu+ccdB (left side) and pCAGAdDu containing a gene of interest after λ-
recombination (right side). The AttR sites in destination vectors are the target sites for the AttL flanked 
inserts from entry vectors. The bacterial toxin ccdB gene (ccdB) is removed by λ-recombination and selects 
against non-recombined clones. IRES: internal ribosomal entry site; eGFP: enhanced green fluorescent 
protein; Poly(A): bovine growth hormone poly(A)-signal; ΔhuAd5: human adenovirus type5 genes with 
deleted E1 replication genes; ITR: inverted repeats. 
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5.8 pAdsiCheck 
This vector was based on pCAGAdDu. The CAG-expression cassette was replaced by the 

luciferase reporter cassette of the psiCHEK2 (Promega). Briefly, this is composed of a firefly 

luciferase gene under the HSV-TK promotor and a renilla luciferase gene under control of the 

SV40 promotor, which is followed by LR sites (AttL1, AttL2) flanking the procaryotic ccdB 

selection marker. This allowed insertion of 3’UTRs by Gateway recombination to assess their 

effect on renilla luciferase activity relative to firefly luciferase activity.  
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6 Methods 

6.1 Modulation of Treg cell differentiation using adenoviral transduction  

We published parts of the following protocol under the title “Adenoviral Transduction of 

Naive CD4+ T Cells to Study Treg Differentiation” in the Journal of Visualized Experiments 

(JoVE), Warth and Heissmeyer 2013 (http://www.jove.com/video/50455). It provides a 

workflow for the generation of infectious adenoviral particles to transduce a gene or 

microRNA of interest into naive T cells to study Treg cell differentiation.  

 

6.1.1 Cloning of a gene or microRNA of interest into an entry vector 

1.1.) Clone your gene or microRNA of interest into an entry vector. You may use PCR 

amplification followed by blunt-end ligation into a topoisomerase-coupled vector (e.g. with 

the pENTR™/D-TOPO® Cloning Kit) or restriction enzyme-mediated cloning. In this work, 

the iProof™ High-Fidelity PCR Kit™ was used according to the manufacturers instructions. 

The primers used in this study are listed in the Material section. Generally, for cloning of 

microRNAs, primers should be designed to generate constructs of at least 270nt that contain 

the mature microRNA and 125nt of genomic sequence on either side of the microRNA (Chen 

et al., 2004). C57/BL6J genomic DNA was used as a template. Plasmids with inverted inserts 

were reverted by restriction digest using Not1/Asc1 and ligation of the insert into pENTR11 

equipped with Not1/Asc1 restriction sites in an inverted order.  

 

6.1.2 Transfer of the gene or microRNA of interest into the destination vector 

2.1) Transfer your gene of interest from the entry vector into the destination vector 

pCAGAdDU by LR recombination (e.g. Gateway® LR Clonase™ II Enzyme Mix). This will 

create the adenoviral expression vector. 

 2.2) Linearize 10 µg of the adenoviral expression vector in a PacI restriction digest, 

precipitate the DNA and resuspend it in water at a concentration of 3 µg per 100 µl. 

Linearization liberates the viral inverted repeats (ITR), which are required for replication and 

encapsidation of the viral DNA into virus particles. 
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6.1.3  Transfection of HEK293A cells to generate the primary virus lysate 

3.1) Seed 1x105 HEK293A cells in 2 ml DMEM media (supplemented with 10% FBS, 5% 

PenStrep, 10 mM HEPES) in one well of a 6-well plate suitable for adherent cells and 

incubate the cells for 6-14 h at 37  °C in a 10% CO2 incubator to allow them to adhere. 

3.2) Lipofection: Transfer 6 µl of jetPEI reagent into 94 µl of 50 µM NaCl, vortex briefly. 

Add the mixed solution to 100 µl linearized adenovirus vector while vortexing and incubate 

this transfection mix for 15-30 min at room temperature (RT). 

Perform all following steps under the appropriate biosafety conditions for adenovirus 

infection (which was S2 in this work)! 

3.3) Dispense the solution dropwise on the HEK293A cell-containing well and incubate the 

cells at 37  °C and 10% CO2. With GFP as a fluorescence marker, you can evaluate the 

transfection efficiency visually after 12-36 h using an inverted fluorescence microscope. Add 

0.5ml of fresh medium every 3 days. 

3.4) Check every 2-3 days with a light or fluorescence microscope for cytopathic effects 

(CPE), which are areas with enlarged and rounded cells that start to detach. This is indicative 

of efficient virus generation. Upon occurrence of broader zones of CPE (Figure 6), it will take 

24-72 h before all cells are infected.  

3.5) When all cells show signs of CPE, but before an overall detachment of cells occurrs, 

detach the cells by gentle pipetting and transfer cells with supernatant (SN, 3-5 ml) to a 15 ml 

polystyrene tube.  

3.6) Freeze the cells in the SN on dry ice for 15-20min and thaw them quickly at 37  °C 

afterwards to rupture the cells. Repeat this freeze-and-thaw-cycle (F/TC) two more times. 

Keep the primary virus lysate on ice for usage within a day or freeze it at -80  °C for long-

	  

	  
	  
Figure 6: Cytopathic effects (CPE) in adenovirus-producing HEK293A cells.  

Occurrence of CPE at day ten after transfection of 105 HEK293A cells with linearized pCAGAdDu vector. 

The left panel shows the phase contrast image, the right panel shows the green fluorescence indicative of 

infection.  
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term storage. Any additional F/TC will reduce the virus titer by 30-50%.  

6.1.4 Amplification of the primary virus lysate 

4.1) Seed and grow HEK293A cells to 90% confluence on a 14 cm tissue culture dish. 

4.2) Infect the cells with half of the primary virus lysate (1.5-2.5 ml) and incubate the cells for 

at least 36 h. Nearly all cells should be infected then, which can be determined by 

fluorescence microscopy. For the re-amplification of an already amplified (i.e. more 

concentrated) virus stock, infect HEK293A at a multiplicity of infection (MOI, see 6.3) of 50.  

4.3) Cells should be harvested when all of them show CPE but before detachment. With 

efficient virus production this state is reached within 48 h after infection. (If it takes up to one 

week, consider another round of amplification by increasing the amount of adenovirus stock 

used for the infection described in 4.2). 

4.4) Detach the cells by gentle pipetting and transfer cells and SN to a 50 ml polystyrene tube. 

Spin cells down at 300 g for 10 min at 4  °C. 

4.5) Remove the SN and resuspend the pellet in a suitable volume of medium or SN (ca. 1ml). 

4.6) Perform 3 F/TC to disrupt the cells and centrifuge at 800g for 15 min at 4 °C. Take off 

the SN that contains the virus particles (i.e. the concentrated virus lysate), and aliquot the 

virus lysate to store it at -80 °C. 

6.1.5 Determination of the adenovirus titer in concentrated virus lysate 

5.1) Seed 105 A549 cells per well into 5 wells of a 12-well plate in 1ml medium and let cells 

adhere for 6 h.  

5.2) Use 1 µl of concentrated adenovirus (thawed on ice) to perform a serial dilution in 

medium (1:5,000/ 1:10,000/ 1:50,000/ 1:100,000) and add 10 µl per well. Leave one well 

uninfected to adjust the gating in flow cytometry.  

5.3) After 36 h, take off the SN, wash with PBS and detach cells (e.g. by trypsinization). For 

biohazard precautions, it is recommended to fix cells in 100 µl 4% paraformaldehyde in PBS 

for 10 min at room temperature and wash with PBS one time.  

5.4) Perform a FACS analysis of infection marker expression. Plot ‘µl viral lysate applied’ 

against the absolute number of infected cells (Figure 7). Determine the linear range of 

infection and calculate the titer per ml of undiluted virus from the standard curve over the 

linear range using x=1000 µl. In the example, the titer for x=1 µl is 30016535/µl ≈ 3x1010/ml. 
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6.1.6 T cell infection 

6.1) Isolate naive/resting CD4+ T cells from DO11.10 tg; CARΔ1 tg mice using MACS 

(Naive CD4+ T Cell Isolation Kit II) or FACS sorting (CD4+ CD25- CD62L+ CD44-).  

6.2) For small-scale experiments, pipet an appropriate volume of viral lysate to achieve an 

MOI of 50 into one well of a 96-well round bottom plate. 

 6.3) Add up to 4x105 T cells in a final infection volume of 50 µl in T cell medium 

(RPMI1640, 10% FBS, 5% PenStrep, 5% Sodiumpyruvate, 1x non-essential amino acids, 

100x MEM vitamin solution, 1x L-Glutamine, 1:250000 β−Mercaptoethanol, 10mM 

HEPES). 

Example:  

An MOI of 50 shall be used to infect 3x105 T cells; the viral titer is 3 x 109 /ml   

Virus volume = MOI x T cell number / viral titer; 50 x 3x105 / 3 x 109/ml=0.005 ml 

Note: for infection of larger cell numbers, scale up using an MOI of 50 in an infection volume 

of 165 µl per 106 naive T cells in a polystyrene tube with loose cap (up tp 3ml per tube). 

6.4) Incubate cells for 90min at 37 °C in a 5% CO2 incubator. 

6.5) Spin down cells at 300g for 5 min at room temperature, take off SN, resuspend in 200 µl 

PBS. Centrifuge again and take off SN.  

Optional: you may wash cells again if you want to remove the virus more efficiently. 

	  

	  
	  
Figure 7: Determining the titer of adenovirus lysates by infection of A549 cells.  

105 A549 cells were infected with the indicated virus dilution, incubated for 48h and analyzed for 

expression of the infection marker GFP by flow cytometry. The number of GFP+ cells is plotted against the 

amount of virus used. The titer of undiluted virus is calculated from the standard curve over the linear range 

using x=1000 µl. The graph shows a representative example. 
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6.6) Resuspend cells in 200 µl T cell medium without stimulating antibodies and without IL-2 

or other cytokines and rest them for 40 h at 37 °C in a 5% CO2 incubator to allow expression 

of the gene of interest before activation. 

6.1.7 Activation of T cells and Treg- or Th17-polarization 

7.1) Pipet a volume of anti-CD3- and anti-CD28-coupled beads that equals your cell number 

(e.g. 4x105) into a small reagent cup, add the 10-fold volume of PBS and put them on a 

magnet for 2 min. Take off the supernatant and resuspend the beads in 200 µl polarizing 

medium.  

Treg-polarizing medium: T cell medium +1 ng/ml recombinant human TGFβ, 100 U/ml IL-

2 (that is 1000 IE/ml of ProleukinS) 

Th17-polarizing medium: 1ng/ml recombinant human TGFβ, 5 ng/ml ecombinant mouse 

IL-6, 10 µg/ml anti-IL-12 (clone C17.8, E. Kremmer), 5 µg/ml anti-IFNγ (clone XMG1.2,E. 

Kremmer), 10 µg/ml anti-IL-4 (clone 11B11, E. Kremmer) and 2.5 µg/ml anti-IL-2 (clone 

JES6-5H4). 

 

7.2) Centrifuge the rested cells as before, take off the SN and resuspend cells in 200 µl 

polarizing medium containing anti-CD3- and anti-CD28-antibody-coupled beads, incubate for 

72 h at 37 °C in a 5% CO2 incubator without changing medium. 

 

For Th17 cell differentiation: 

Prepare restimulation medium (T cell medium containing 20 nM PMA and 1 µM ionomycin) 

After 72 h, spin down cells at 300 g for 5 min at room temperature, take off SN, and 

resuspend them in 150 µl restimulation medium and incubate the cells for 2.5 h at 37 °C in a 

5% CO2 incubator. After 2.5 h, add 50 µl restimulation medium supplemented with 40 µg/ml 

BrefeldinA (final concentration 10 µg/ml) and incubate another 2.5 h at 37 °C in a 5% CO2 

incubator.  

 

6.1.8 Treg cell fixation protocol 

8.1) Wash cells: Spin down cells at 300g for 5 min at room temperature, take off SN, 

resuspend in 200 µl PBS, centrifuge again and take off SN, perform all following washing 

steps accordingly.  

8.2) Resuspend the cells in 100 µl fixable dead cell staining solution and incubate for 30 min 

at 4 °C. 
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8.3) Wash cells, resuspend in 2% paraformaldehyde in PBS, incubate 15 min at RT.  

8.4) Wash cells, resuspend them in 200 µl ice-cold 70% methanol in PBS and incubate for 30 

min on ice.  

Note: If cells had been infected with adenovirus, they can be treated without biohazard 

precaution from now on! 

8.5) Prepare 60 µl master-mix of 60 µl PBS+ 10 µg/ml Fc-block (anti-FC receptor 3 to block 

unspecific binding). Wash cells, resuspend them in 40 µl of PBS+anti-FCR3 and incubate 15 

min at RT in the dark. 

8.6) Add 20 µl of PBS+anti-FCR3 containing 1 µg PE-coupled anti-Foxp3 antibody, mix well 

and incubate at 4 °C over night in the dark.  

8.7) Wash cells twice in PBS and analyze cells on a flow cytometer.  

 

6.1.9 Th17 cell fixation protocol 

9.1) Wash cells: Spin down cells at 300 g for 5 min at room temperature, take off SN, 

resuspend in 200 µl PBS. Centrifuge again and take off SN, perform all following washing 

steps accordingly.  

9.2) Resuspend the cells in 100 µl fixable dead cell staining solution and incubate for 30 min 

at 4 °C. 

Wash cells, resuspend in 4% paraformaldehyde in PBS, incubate 10 min at RT.  

9.3) Wash cells in PBS. 

Note: Cells can be treated from now on without biohazard precaution! They may be stored 

over night at 4 °C in the dark. 

9.4) Resuspend the cells in PBS/ 0,5% Saponin/ 1% BSA and spin cells down. 

Prepare 60 µl master-mix of 60 µl in PBS/ 0,5% Saponin/ 1% BSA + 10 µg/ml Fc-block.  

9.5) Resuspend the cells in 40 µl of PBS/ 0,5% Saponin/ 1% BSA + Fc-block and incubate 

for 10 min at RT in the dark. 

9.6) Add 20 µl of PBS/ 0,5% Saponin/ 1% BSA + Fc-block containing 1 µg PE-coupled anti-

IL-17 antibody and 1 µg APC-coupled anti-IFNγ, mix well and incubate for 30 min at room 

temperature in the dark.  

9.7) Wash cells twice in PBS/ 0,5% Saponin/ 1% BSA  

9.8) Wash cells 1-2 times until cells are no longer soapy and analyze cells on a flow 

cytometer.  
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6.1.10 Surface staining 

Single cell suspensions at <106 cells/ml were washed and then incubated with staining 

antibody at a suitable dilution in PBS for 20 min on ice in the dark. Cells were washed again 

and then analyzed on a flow cytometer. 

 

6.1.11 Proliferation dye analyses 

Naive CD4+ T cells were washed 2-3x in PBS to remove remaining FBS. Cells were then 

labeled with 10 µM of cell proliferation dye in PBS and incubated for 15 min at room 

temperature in the dark. After that, 10x the volume of cold T cell medium containing 10% 

FBS was added and cells were incubated on ice for 5 min. Cells were washed two more times 

with T cell medium containing 10% FBS and then further treated as non-labeled cells.  

 

6.2 Luciferase reporter assays 
Luciferase reporter assays were performed using murine embryonal fibroblast (MEF) cells. 

5x104 cells were plated and incubated over night at 37 °C in a 10% CO2 incubator. Cells were 

infected with an adenovirus generated from pAdsiCheck with insertion of the respective 

3’UTR behind the renilla luciferase gene. Cells were co-infected with a microRNA or control 

virus andwere incubated for 48 h at 37 °C in a 10% CO2 incubator. Cells were washed once in 

500 µl PBS and then 250 µl of ‘passive lysis buffer’ were added followed by 30 min 

incubation under gentle rocking and shaking. Cell lysates were homogenized by pipeting up 

and down and 300 µl lysate were transferred to a 96-well plate and frozen at -80 °C. Lysates 

were thawed and spun down at 5000 g. 20 µl lysate were transferred to a light-protected 96-

well plate avoiding the pellet of aggregates that emerged during lysis. All further steps were 

performed according to the manufacturers instructions.  

Mutations of the microRNA binding sites in the 3’UTR of mTOR were inserted using the 

QuickChange® II XL Gold Kit (Stratagene) according to the manufacturer’s instructions with 

the primers indicated in Table 8. 

 

6.3 Quantitave PCR (qPCR) 
RNA was obtained using the Trizol method or the miRNeasy Mini Kit for T cells that had 

been cultured with stimulation beads, which interfered with the Trizol method. Reverse 

transcription was performed with the Quantitect reverse transcription kit II for mRNAs based 

on oligo(dT) primers or, for microRNAs, using the TaqMan microRNA reverse transcription 
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kit with a specific first strand synthesis (TaqManMicroRNA or snoRNA202 Assay). The 

qPCR was performed with Probes Master LC480 using the primers indicated in Table 10 and 

the universal probe library probes (mRNAs) or with microRNA-specific primers 

(TaqManMicroRNA Assay, Table 9). 

 

6.4 Statistical analysis 
Statistical analyses were performed using Microsoft Excel 2008 for Mac Version 12.3.6 or 

GraphPad Prism 4.0c. P-values were calculated by Student’s t-test or one-way analysis of 

variance (ANOVA).  

 

6.5 Molecular biology standard procedures 

6.5.1 PCR for cloning and genotyping 

Cloning PCR was performed using the iProof™ High-Fidelity PCR Kit as indicated above 

using the primers described in Table 5 and 6. Genotyping PCR was performed using mouse 

tail tips that were lysed overnight at 55 °C in 200 µl genotyping buffer (100 mM Tris-HCl, 

pH 8.5, 5 mM EDTA, 0.2% SDS, 200 mM NaCl, 0.2 mg/ml proteinase K). After inactivation 

of the proteinase K at 95 °C for 15 min, 300 µl of water were added and 0.5 µl were used as 

template for PCR using NEB-TAQ PCR kit with the primers listed in Table 7.  

 

6.5.2 Preparation and purification of DNA 

Plasmid DNA was purified with the PureYield™ Plasmid Miniprep System (Promega). For 

higher amounts of DNA, the Nucleobond®Xtra Maxi Kit (Macherey-Nagel GmbH & Co.  

KG) was used. Both kits were applied according to the manufacturer’s protocol. 

 

6.5.3 Restriction digest 

Restriction digest of plasmid DNA or PCR products were performed using NEB reagents and 

the indicated restriction enzymes. Typically, 1-10 µg DNA were digested for 1 h at 37 °C 

using 10 U of restriction enzymes in a 25 µl digest.   

6.5.4 Gel electrophoresis and DNA extraction from agarose gels 

DNA was loaded on 1-2% agarose gels containing 20 µg/ml of ethidium bromide and 

subjected to electrophoresis in the electric field. If required, the desired PCR product was cut 
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out under 254 nm UV light and purified using the QIAquick PCR Purification Kit according 

to the manufacturer’s protocol (Qiagen). 

6.5.5 Immunoblot 

For immunoblot lysates, cells were washed three times in PBS at 4 °C and the dry pellett was 

shock frozen in liquid nitrogen. Pellets were thawed on ice and immediatedly lysed at 5-

10x106 cell/10 µl of lysis buffer. Lysates were incubated for 15 min on ice, vortexed every 2 

min and then centrifuged at 10,000 g, 4 °C for 10 min. The amount of protein in the cleared 

supernatant was determined by the Bradford protein assay. Protein samples were boiled in 

SDS sample buffer for 5 min at 95 °C and loaded into the slots of the gel. In addition, a 

protein size maker (Precision Plus Protein All Blue Standards, Biorad) was loaded. The gels 

consisted of a lower separating and an upper stacking part. The separating part consisted of  

8–12% acrylamide, 0.1% SDS, 0.1% APS and 0.06% TEMED in 375 mM Tris-HCl (pH 8.8). 

The stacking part contained 5% acrylamide, 0.1% SDS, 0.1% APS and 0.1% TEMED in 126 

mM Tris-HCl (pH 6.8). After loading the samples, the electrophoresis was first run for 15 min 

at 80 V and then for 1.5 h at 120 V. The proteins were blotted on nitrocellulose membranes at 

40 V at 4 °C over night in Western blot buffer using a wet gel blotting chamber (Biorad). For 

protein detection, membranes were first blocked in 5% milk dissolved in TBS for 2 h at room 

temperature.  The blocked membranes were washed with TBS-T (3 x 10 min) and the diluted 

primary antibody was applied for 2 h at RT or over night at 4 °C. The membranes were 

washed again and incubated with an anti-mouse-Ig antibody, conjugated with horseradish 

peroxidase, for 1 h at RT. After three more washing steps (TBST-T, TBS, H2O for 10 min 

each) the blots were developed with ECL plus Western blotting reagent (GE healthcare). 
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7 Results 

7.1 The kinetics of Treg cell differentiation  
The conditions commonly used to in vitro differentiate naive CD4+ T into Treg cells require 

activation via cross-linking of the T cell receptor complex combined with co-stimulation via 

CD28 in the presence of the cytokines TGFβ and Interleukin-2 (IL-2) (Chen et al., 2003; 

Zheng et al., 2004). Treg cell differentiation is typically determined by the expression of the 

Treg cell-specific transcription factor Foxp3 around 72 h after induction. A few kinetic 

studies addressed the question, at which time during induction the Treg cell fate is actually 

established. The concept of a window of opportunity was developed, in which the cell fate 

decision is most sensitive to variations in the differentiation conditions (Sauer et al., 2008).   

The first goal of this thesis’ work was to define such a window of opportunity for post-

transcriptional gene regulation of Treg cell differentiation under the conditions applied in this 

study. To that end, we analyzed the kinetics of several parameters of Treg cell differentiation 

and post-transcriptional gene regulation during Treg cell induction. 

7.1.1 Expression of Foxp3 mRNA and protein during Treg cell induction 

Expression of the transcription factor Foxp3 determines commitment to the Treg cell lineage 

(Fontenot et al., 2003; Hori et al., 2003). In order to characterize the kinetics of Treg cell 

differentiation, Foxp3 expression was analyzed by intracellular anti-Foxp3 staining and flow 

cytometry every 12 h during 72 h of Treg cell induction (Figure 8A). Foxp3-positive cells 

emerged in small quantities at 24 h of Treg cell induction with a steady increase of the 

percentage of Foxp3-positive cells until 48 h. From then on, the fraction of Foxp3-positive 

cells remained constant over the observed time frame. The analysis of Foxp3 protein 

expression levels by immunoblots closely reflected these kinetics. It revealed hardly 

detectable Foxp3 protein levels at 24 h that increased strongly towards 36 h and reached a 

maximum between 48-72 h (Figure 8B). Transcription of Foxp3 mRNA intimately reflected 

the described protein expression kinetics, as determined by real-time PCR quantification. The 

Foxp3 mRNA expression initiated between 24 h and 36 h after activation and steadily 

increased towards 48-72 h (Figure 8C). Altogether these kinetic studies suggested a scenario, 

in which the levels of Foxp3-encoding mRNA transcripts determine Foxp3 protein expression 

without obvious signs of post-transcriptional gene regulation of Foxp3 itself.  
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7.1.2 Kinetics of proliferation during Treg cell differentiation 

It was unclear to what extent and at what time point the T cells would proliferate under the 

Treg cell differentiation conditions applied in this study. Moreover, uncoupling of post-

transcriptional gene regulation has been suggested to depend on T cell proliferation (Sandberg 

et al., 2008). Therefore, the proliferation kinetics during Treg cell induction was recorded by 

analyzing the dilution of a cell proliferation dye due to cell division in flow cytometry (Figure 

8D). The first few cells that underwent cell division could be observed 36 h after Treg cell 

induction. In the following, cells expanded rapidly with over 80% of cells having gone 

	  
	  
Figure 8: Kinetic studies of Treg cell induction. 
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were stimulated in Treg-polarizing 
conditions or left unstimulated and were analyzed at the indicated time points. Treg cell 
differentiation was assessed by Foxp3 protein expression analyzed by flow cytometry (A) or by 
immunoblot (B). Foxp3 mRNA expression was determined by qPCR relative to HPRT and 
normalized to the 0 h time point (C). Proliferation was analyzed by labeling cells with a cell 
proliferation dye before activation as in A). Dilution of proliferation dye was analyzed using flow 
cytometry. Unlabeled cells (grey area) or unactivated cells (black area) served as controls. (D). Data 
are representative of two or more independent experiments (A, B, D) or represent means ± SD of 
three independent experiments (C).	  
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through one to four cell divisions within 72 h after induction. Thus, in the chosen 

differentiation conditions, cell proliferation initiates already after 36 h and occurred at the 

same time and with similar kinetics as Foxp3 expression. This may suggest a regulatory link 

between cell fate commitment and cell proliferation.  

7.2 A window of post-transcriptional gene regulation during Treg cell induction 
Post-transcriptional gene regulation by microRNAs is regulated on several layers that together 

determine microRNA specificity and efficiency (Hoefig and Heissmeyer, 2008). Kinetic 

studies were performed to define the time frame during which microRNAs may effectively 

influence Treg cell differentiation.  

7.2.1 Ago proteins are downregulated at 48 h of Treg cell induction 

Ago proteins are an essential and limiting component of the miRISC that confers microRNA-

mediated repression of gene expression (Diederichs and Haber, 2007; O’Carroll et al., 2007). 

Ago proteins were shown to be heavily downregulated in Th1 cell differentiation after 48h of 

activation resulting in a global decrease of microRNA expression (Bronevetsky et al., 2013). 

To find out, whether Ago protein regulation also occurs during Treg cell differentiation, we 

analyzed expression of Ago proteins during Treg cell induction over 72 h by immunoblot. To 

that end, we used a monoclonal antibody that our lab has established against a shared peptide 

in all four mouse Ago proteins and that recognizes Ago1-4 equally well (pan-Ago, Figure 9A) 

(Bronevetsky et al., 2013). While Ago proteins were strongly expressed during the first 36 h 

of Treg cell induction, they were almost completely downregulated at 48 h. This implicates 

the potential shutdown of microRNA activity at a time, when Treg cell identity has been 

established, as evident from the robust expression of the lineage-specifying transcription 

factor Foxp3 (Figure 8A-C).  

7.2.2 3’UTR shortening of Eri1 mRNA occurred early during Treg cell induction 

The 3’UTR of an mRNAs contains the information for post-transcriptional regulation via cis-

regulatory elements such as microRNA target sites, which determine the stability and 

translation efficiency of mRNAs (Grimson et al., 2007; Myer et al., 1997). The use of 

alternative 3’UTRs provides a mechanism for evasion from post-transcriptional gene 

regulation and may result in enhanced translation efficiency. So like the control of Ago 

expression, the 3’UTR length may limit microRNA-mediated gene silencing. Sandberg et al. 

investigated global 3’UTR length distribution in 48 h-activated compared to resting primary 

murine CD4+ T cells and reported a shift towards transcripts with shortened 3’UTRs in 

activated T cells (Sandberg et al., 2008). Whether this process also takes place during Treg 
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cell differentiation remained to be elucidated. As a first step in finding an answer to this 

question, we analyzed expression of variants of the Eri1 3’UTR during Treg cell induction.  

Eri1 is an ubiquitously expressed 3'-to-5' processive exoribonuclease (Ansel et al., 2008). Its 

deletion resulted in impaired differentiation of naive T cells into Treg cells (Figure 9B). Eri1 

protein was induced upon and expressed throughout Treg cell induction (Figure 9C). 

Interestingly, the protein expression did not at all reflect mRNA expression as determined by 

qPCR analyses with primers that generate an amplicon in the coding region of Eri1 (CDS, 

	  
	  
Figure 9: Kinetics of post-transcriptional gene regulation during Treg cell induction. 
A) Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were stimulated in Treg-polarizing 
conditions for the indicated times. Expression of Ago1-4 (panAgo) protein expression was analyzed by 
immunoblot. B) Naive T cells purified from CD4-Cre Eri1+/+ or CD4-Cre Eri1fl/fl mice were 
stimulated in Treg-polarizing conditions for 72 h and differentiation was analyzed by Foxp3 expression 
by flow cytometry; data are representative of three independent experiments. C) Cells were treated as in 
(A) and expression of Eri1 protein was analyzed by immunoblotting. D, F) Cells were treated as in (A) 
and Eri1 mRNA variants were determined by qPCR using the primers depicted in (E) relative to HPRT 
and normalized to the 0 h time point. E) Schematic representation of Eri1 mRNA with alternative 
polyadenylation signals (PAS, top) and primer pairs (below) that were designed to detect mRNAs with 
different 3’UTRs resulting from alternative PAS usage (bottom). Data are representative of two (A, C), 
or three (B) independent experiments or represent means ± SD of two independent experiments (D, F). 
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Figure 9D-E). The sequence of this amplicon is contained in all known isoforms of the Eri1 

mRNA and the expression of mRNAs containing this sequence was reduced by 25% upon 

Treg cell induction (Figure 9D). This could be explained by increased Eri1 protein stability 

after activation. However, another possible explanation would be the higher translation 

efficiency after Treg cell induction, which could result from the usage of an alternative 

3’UTR.  

Based on a global mapping of conserved polyadenylation signals (PAS) in various tissues and 

several species by Poly(A)-sequencing, the Eri1 mRNA can exist in at least five isoforms 

with different 3’UTR lengths (Figure 9E, Derti et al., 2012). QPCR primers were designed to 

detect three of the 3’UTR variants (Figure 9E). Already 12 h after Treg cell induction, the 

detection of amplicons in the in the long 3’UTR showed a reduction of more than 75%, while 

short and intermediate 3’UTR isoforms showed a reduction by approximately 50% as 

compared to the detection of an amplicon in the CDS, which was reduced by only 25% 

(Figure 9F). This suggests the preferential expression of Eri1 mRNA isoforms at 12 h and 24 

h with very short 3’UTRs and a smaller proportion of Eri1 mRNA with intermediate or long 

3’UTRs. Although other possible explanations have not been experimentally addressed, these 

findings are consistent with the use of a more proximal PAS after Treg cell induction. 

Following that concept, the predominant PAS 1 resulting in expression of the long 3’UTR 

would be used in cells before activation, which would then switch towards the PAS 2 

(intermediate 3’UTR) or to the PAS 4 or 5 (very short 3’UTRs) already 12 h after activation.  

Although post-translational regulation of Eri1 protein during T cell activation and 

differentiation has not been tested in this study, the increased Eri1 protein that was observed 

12 h after T cell stimulation is likely to be explained by increased translational output from 

Eri1 mRNA isoforms with short 3’ UTRs. At 36 h, expression of all 3’UTR-containing Eri1 

mRNAs was upregulated and was potentially correlated with commitment to the T cell 

lineage and beginning of Foxp3 expression as well as with initiation of cell proliferation.  

Taken together the results suggest a window opportunity for post-transcriptional gene 

regulation by microRNAs. It initiates with T cell activation and is counter-regulated by 

shortening of 3’UTRs already 12 h after activation and finally by downregulation of Ago 

between 36 h and 48 h of activation.  
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7.3 Manipulation of Treg cell differentiation by adenoviral gene transfer 
The window of opportunity during which microRNAs could affect the outcome of T cell 

differentiation decisions implied that the first hours after activation are critical. Therefore, 

experimental approaches to study the effect of gene products that influence this process 

should ideally by present from the moment of T cell activation on. We employed an 

adenoviral gene transduction system that allowed expression of a gene of interest in naive T 

cells. The tropism of type 5 adenoviruses for human cells is determined by expression of the 

coxsackie adenovirus receptor on the host cell (Zhang and Bergelson, 2005). Wan and 

colleagues generated mice with transgenic expression of the coxsackie adenovirus receptor 

delta 1 gene (CARΔ1) under control of a T cell-specific promoter (Wan et al., 2000a). CARΔ1 

has no signaling capacity due to a deletion of intracellular domains but retains transmembrane 

and extracellular domains. This enabled efficient infection of mouse T cells with type 5 

adenoviruses at the naive state without conferring or requiring activation. This key property of 

adenoviral gene transduction in regard to the window of opportunity prompted us to further 

evaluate the adenoviral system in T cell infection and Treg cell differentiation.  

7.3.1 Adenoviral gene transfer did neither influence T cell viability nor Treg cell 

differentiation and allowed microRNA overexpression in naive T cells 

To assess a potential dose-effect, adenoviral gene transduction was performed at different 

multiplicities of infection (MOIs). In this experiment a control adenovirus that encoded GFP 

was used as a marker of infection and analyzed by flow cytometry (Figure 10A, upper panel). 

Virus titers were established as described in the Methods section and used to calculate the 

amount of viral supernatant that, when combined with the appropriate T cell numbers, 

resulted in different MOIs ranging from 1 to 50. Naive CD4+ T cells were isolated from 

DO11.10tg; CARΔ1tg mice, infected with control adenovirus or left uninfected and were 

rested 40 h followed by 40 h of activation. Under these conditions, an MOI of 1 that 

represents the incubation of one infectious viral particle with one T cell for 90 min resulted in 

36% of infected cells and increasing the MOI to 50 augmented the infection efficiency to 83% 

(Figure 10A, upper panel). For subsequent experimental readouts on the single cell level, an 

infection of 50% of the cells was considered ideal, while for biochemical analyses infection 

rates of 80% or more were attempted. At an MOI of 1-50, the cell viability appeared 

unaffected by adenoviral infection (Figure 10A, middle panel) and, most importantly, there 

was no significant effect of adenoviral infection itself on Treg cell differentiation, as 

determined by flow cytometry (Figure 10A, lower panel).  
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Figure 10: Evaluation of adenoviral gene transfer. 
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To demonstrate infection of T cells at a naive state, naive CD4+ T cells were purified from 

DO11.10tg; CARΔ1tg mice and were infected with a control adenovirus at MOI 50 or left 

uninfected. The expression of the naive T cell marker CD62L and of the activated T cell 

markers CD44, CD25 and CD69 was analyzed by flow cytometry. The marker expression 

was indistinguishable between infected (Figure 10B, line) and non-infected (Figure 10B, area) 

cells and clearly indicated the naive state of the T cells with high expression of CD62L and 

low expression of CD44, CD25 and CD69. Upon T cell activation, a similar downreguation of 

CD62L and an upregulation of CD44, CD25 and CD69 occurred in infected (Figure 10C, 

line) and non-infected (Figure 10C, area) cells, which excluded an influence of adenoviral 

infection itself on T cell activation at the applied MOIs.  

To analyze the achieved level of overexpression, naive CD4+ T cells were infected with an 

adenovirus that expresses miR-155. Cells were either rested for 40 h or activated for 40 h or 

rested for 40 h followed by activation for 40 h (Figure 10D). Analysis of mature miR-155 

showed a 17-fold overexpression in naive T cells infected with miR-155 adenovirus compared 

to control virus or non-infected cells. This matched the level of miR-155 upregulation induced 

by T cell activation in control virus or non-infected cells. The result illustrated that 

overexpression of miR-155 could provide microRNA levels of the activated state in naive 

cells. It also showed that this microRNA level was present at the moment of T cell activation.  

Taken together, these data demonstrated that adenoviral gene transfer is a very suitable 

system to overexpress a gene or microRNA of interest in naive T cells.  

 

    7.3.2  Overexpression of human FOXP3 in naive T cells promoted Treg cell induction 

The evaluation experiments established the feasibility of adenoviral gene transfer in Treg cell 

induction without facing any significant adverse effects of the infection with control virus. 

We next wanted to test functionally, whether adenoviral overexpression of a transcription 

Figure 10: Evaluation of adenoviral gene transfer. 
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were infected with control adenovirus at the 
indicated MOI or at an MOI of 50 or were left uninfected. A) Cells were rested for 40 h and then activated 
in Treg-polarizing conditions. After 72 h expression of the infection marker GFP, exclusion of the dead cell 
stain and the expression of the differentiation marker Foxp3 was analyzed by flow cytometry. B) Cells were 
rested in T cell medium and after 40 h naive cell and activation markers were analyzed by flow cytometry. 
C) Cells were treated as in B and were then activated in Treg-polarizing conditions for 40 h before analysis 
of naive cell and activation markers. D) Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were 
infected with a miR-155 expressing or control adenovirus at an MOI of 50 or were left uninfected. After 
infection cell were rested for 40 h, activated for 40 h or rested for 40 h followed by activation for 40 h. Then 
relative expression of miR-155 was determined by qPCR and normalized to naive control cells. All data are 
representative of three or more independent experiments; error bars were calculated form technical 
replicates. 
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factor with a Treg cell-promoting function could influence Treg cell induction. Foxp3 is 

necessary and sufficient to establish Treg cell identity. We reasoned that overexpression of 

Foxp3 may promote Treg cell differentiation and took advantage of a construct expressing 

human FOXP3 (hFOXP3) protein, which does not express the epitope that is recognized by 

the anti-mouse Foxp3 monoclonal antibody FJK-16 in intracellular flow cytometry analysis. 

So human FOXP3 or empty vector was adenovirally transduced and mouse Foxp3 was 

analyzed after resting and Treg-polarization of the T cells. The two parameters GFP as 

infection marker and mouse Foxp3 as the differentiation marker were plotted against each 

other (Figure 11A). To display the result of Foxp3 overexpression in a more simple way, the 

parameters of the quadrant plot were separated into histograms showing GFP expression 

	  
 
 
Figure 11: Manipulation of Treg cell differentiation by adenoviral overexpression of 
transcription factors during Treg cell induction. 
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were infected with human FOXP3 
(A-C) or AP-1 (D-E) expressing adenovirus or empty virus control and rested for 40 h. Cells were 
then stimulated in Treg-polarizing conditions. After 72 h Treg cell differentiation (mouse Foxp3) in 
correlation with infection (GFP) was analyzed by flow cytometry. The Quadrant plots (A, D) from 
one experiment were divided into a histogram that defines GFP gating for the contour plots 
containing the Foxp3 gate (B, E). The bar diagrams (C, F) were calculated by division of the 
percentage of Foxp3 positive cells in the GFP+ gate by the percentage of Foxp3 positive cells in the 
GFP- gate (17.9 / 21.2 for ‘control’ in B). This value was termed ‘relative differentiation’. The 
shown results are representative of four or more independent experiments.   
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(Figure 11B, left panels) and Foxp3 expression in the GFP- (Figure 11B, middle panels) and 

GFP+ gate (Figure 11B, right panels). It became obvious that overexpression of hFOXP3 was 

associated with reduced levels of GFP expression, but strongly promoted Treg cell induction 

compared to non-infected cells (GFP-) from the same sample. In addition, there were also 

more Foxp3-positive cells in the non-infected cells from the hFOXP3 sample in comparison 

with the control virus sample. These results suggested that hFOXP3 promoted Treg cell 

differentiation in a cell-intrinsic, but also in a cell-extrinsic manner. In order to have a 

measure for the cell intrinsic effect of an adenovirally transduced gene on Treg cell 

differentiation, relative differentiation (RD) was calculated by dividing the percentage of 

Foxp3+ cells of the GFP+ gate by the percentage of Foxp3+ cells of the GFP- gate, which 

generated the values in the bar diagrams of Figure 11C. 

RD is calculated as follows when applied to the quadrant plot that comprises the populations 

[GFP+ and Foxp3+]; [GFP+ and Foxp3-]; [GFP- and Foxp3+]; [GFP- and Foxp3-]: 

 

 [GFP+ and Foxp3+ / (GFP+ and Foxp3+ + GFP+ and Foxp3-)]     
 

  [GFP- and Foxp3+ / (GFP- and Foxp3+ + GFP- and Foxp3-)] 

 

Altogether, these results demonstrated the capacity of adenoviral gene transduction to 

increase the Treg cell differentiation by the promoting effect of hFOXP3. 

 

    7.3.3  Adenoviral overexpression of AP-1 in naive CD4 T cells suppressed Treg cell 

induction 

T cell activation triggers expression of c-Fos that then forms the heterodimeric transcription 

factor AP-1 by binding to c-Jun. AP-1 binds in conjuction with NFAT to composite 

transcription factor binding sites, which has been shown to induce activation-associated genes 

during productive T cell activation (Wu et al., 2006). We reasoned that enforced expression of 

AP-1 during Treg induction may interfere with Treg-specific transcription mediated by 

heterodimeric Foxp3:NFAT binding to composite promoter binding sites. To provide 

stoichiometric amounts in an overexpression construct, c-Jun coding sequence was separated 

from c-Fos by the 2A-like peptide sequence (P2A, coding forAsp-Val/Ile-Glu-X-Asn-Pro-

Gly-Pro). This sequence results in cleavage of the nascent peptide by ribosomal skipping of 

hydrobond formation between last two amino acids (Gly-Pro). The ribosome therefore 

releases the upstream peptide while continuing synthesis of the downstream peptide (Osborn 

et al., 2005). Indeed, AP-1 overexpression largely reduced Treg cell differentiation as 
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expected (Figure 11D-F). Thus the results demonstrated the capacity of adenoviral gene 

transduction to downmodulate a T cell differentiation program. The strong increase or strong 

impairment of Treg cell differentiation by overexpression of hFOXP3 or AP-1, respectively, 

may mark the lower and upper end of the dynamic range that can be achieved in this system. 

Altogether, adenoviral gene transduction enabled ectopic expression of microRNAs or 

transcription factors preceding CD4 T cell differentiation at the naive state. It allowed the 

testing of ectopic gene expression effects during initial signaling from the TCR to the Treg 

cell lineage commitment with a broad dynamic range.  

 

7.4 A functional microRNA overexpression screen in Treg cell induction 
MicroRNAs were shown to be essential for Treg cell differentiation (Chong et al., 2008; Cobb 

et al., 2006). We set out to identify individual microRNAs that play a role in Treg cell 

differentiation. To that end we chose the in vitro model of TGFβ-induced Treg cell 

differentiation to perform a functional screen. We used an arrayed overexpression approach in 

which single microRNAs were overexpressed in parallel in wildtype cells. The adenoviral 

overexpression system was used to infect naive T cells of DO11.10tg; CARΔ1tg mice to 

ensure a high level of micro-RNA overexpression at the time when the T cells are activated in 

Treg-polarizing conditions.  

7.4.1 Generation of an adenoviral pri-microRNA library 

We reviewed microRNA expression data from available expression analyses of various T cell 

lineages as well as developmental stages to come up with a list of T cell-expressed 

microRNAs (Landgraf et al., 2007; Monticelli et al., 2005, K. Kretschmer, unpublished data, 

M. Ansel, unpublished data). Chen et al. established a protocol for ectopic microRNA 

expression in which constructs of at least 270nt that contain the mature microRNA and 125nt 

of genomic sequence on either side of the microRNA were used. These constructs were 

effective for pri-microRNA processing by Drosha/DGCR8 and yielded efficient ectopic 

expression of mature microRNAs (Chen et al., 2004). Accordingly, we cloned a set of 147 T 

cell-expressed microRNAs as pri-microRNAs from C57BL/6 genomic DNA into the 

pENTR/D-TOPO vector. The microRNA clusters were cloned by including the whole 

endogenous cluster sequence or, if feasible, also as single microRNAs. For example, the 

17~92 cluster on chromosome 13, which encodes hairpins for the microRNAs 17, 18a, 19a, 

20a, 19b-1, 92a-1 was cloned as a construct containing miR-17 to miR-19a, as a second 

construct containing miR-20a to miR- 92a-1 and as a third construct containing only miR-17, 
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whereas for the other individual microRNAs no straightforward cloning strategy was 

available (Olive et al., 2010). A few microRNAs were cloned, but had to be transferred into 

the pENTR11 vector in order to correct the construct orientation. The whole entry vector 

library was tested for the correct sequence as well as orientation of the insert by restriction 

	  

	  
	  
Figure 12: Restriction digest of the entry vector library containing 147 T-cell-expressed microRNAs. 
1 µg of each microRNA-Entry vector was digested with EcoRV and NotI in case of pENTR/D-TOPO (A) 
or with AscI and EcoRV in case of pENTR11 (B, bottom right) for 90 min and run in a 2% agarose gel. 
Digestion of pENTR/D-TOPO or pENTR11-AscI (bottom panel) resulted in a vector band of 2436 bp or 
2289 bp, respectively. The band sizes indicated below each lane comprised the microRNA insert. In 
addition, all clones were sequence-verified. A complete list of all constructs is included in the Material 
section under „Table 5: Primer, Entry vector and Destination vectors of the microRNA library“. 
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digest and sequencing (Figure 12). The correct pri-microRNA-inserts were then transferred 

into the adenoviral expression vector pCAGAdDu by λ recombination, which was used to 

generate adenovirus as previously described (Warth and Heissmeyer, 2013). Each virus was 

amplified one or more times in order to obtain viral cell lysates with comparable virus titers. 

A complete list of all microRNA construct used for the library is included in the Material 

section of this thesis.  

7.4.2 A functional microRNA overexpression screen in Treg cell induction 

The design of the screen is depicted in Figure 13A. In a 96-well format, naive T cells were 

infected in parallel with the adenovirus library using the same volume of viral cell lysates. 

This procedure was chosen to account for possible influences of components that are present 

in the HEK293A cell lysates, which contained the infectious particles in a raw lysate 

preparation. In addition, the cells were washed after infection and then rested for 40 h in T 

cell medium without supplemented cytokines to enable the overexpression of the transduced 

microRNA. Only then, cells were activated under sub-optimal Treg-polarizing conditions. 

These were chosen to allow for a good dynamic range in the read-out to similarly detect 

positive and negative effects of the overexpressed constructs. After 72 h, cells were 

intracellularly stained and protein expression of the differentiation marker Foxp3 and the 

infection marker GFP were analyzed by flow cytometry. This allowed the discrimination of 

differentiation in infected and differentiation in non-infected cells within the same well. To 

ensure a reliable analysis, samples with too small cell numbers or insufficient infection were 

excluded. Figure 13B shows representative FACS plots of a microRNA that strongly 

interfered with Treg cell differentiation (Figure 13B, left plot), of a microRNA that strongly 

promoted Treg cell differentiation (Figure 13B, central plot) and of a control virus (Figure 

13B, right plot). For this control virus, infected cells showed Treg cell differentiation of about 

50% in GFP+ cells [41.5 / (41.5+42.7)] as well as in GFP- cells [7.2/ (7.2+8.6)]. This results 

in a ‘relative differentiation’ (RD) of 1.08, which means that there was no difference in Treg 

cell differentiation between infected and non-infected cells. 15 control virus replicates at 

random positions throughout the screening plates served to calculate the mean RD = 1.006 ± 

0.060 (Figure 13C). The 95% confidence interval ranged from 0.973 to 1.04. RD values 

above 1.04 were considered as a non-random positive effect, meaning that overexpression of 

the respective microRNA intrinsically promoted Treg cell differentiation. Accordingly, RD 

values below 0.973 were considered as a non-random negative effect, meaning that 

overexpression of the respective microRNA intrinsically interfered with Treg cell 

differentiation. In total, the microRNA overexpression screen identified 62 microRNAs with a 
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negative effect and 35 microRNAs with a positive effect on Treg cell induction. While most 

candidates had a moderate effect, the top positive candidate promoted by nearly 50% (RD = 

1.5) the expression of the Foxp3 differentiation marker in infected cells while the top negative 

candidate reduced Treg cell differentiation by almost 50% (RD = 0.5) (Figure 13D). 

	  

	  
 
 
Figure 13: A functional adenoviral overexpression screen in Treg cell induction.   
A) Scheme of the screen workflow. B-D) Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice 
were infected in parallel with the adenovirus library of T cell-expressed microRNAs or control viruses. Cells 
were rested for 40 h and stimulated subsequently for 72 h with anti-CD3/ anti-CD28-coupled beads in Treg-
polarizing conditions. B) FACS plots display expression of the infection marker GFP versus the 
differentiation marker Foxp3 of the most positive (left plot) or most negative (central plot) candidates or 
control virus (right plot). C) 15 control virus replicates were used to calculate mean ± SD of relative 
differentiation of well-to well variance. Relative differentiation is a straight measure for cell intrinsic effects 
of microRNAs (see Section A functional microRNA overexpression screen in Treg cell induction). D) 
Relative differentiation results of all candidates in the screen. Candidates with a difference in relative 
differentiation greater or smaller than the 95% confidence interval (CI, horizontal lines in the bar graph) 
were considered as significantly different from control virus. A complete list of all constructs is included in 
the Material section under „Table 5: Primer, Entry vector and Destination vectors of the microRNA library“. 
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7.5 Identification and validation of microRNAs with selective effects in Treg cells 

The microRNA candidates identified in the screen must not necessarily be causally involved 

in Treg cell differentiation, but may affect general cellular processes like metabolism, 

proliferation or cell death. To identify candidates with a selective effect on Treg cell 

differentiation, several selection and validation experiments were subsequently conducted.  

7.5.1 Overexpression of selected microRNA candidates in Th17 differentiation  

The identified microRNA candidates were retested in the reciprocal differentiation programs 

of naive T cells into the Treg or Th17 lineage to uncover Treg-selective effects (Figure 14). 

Most microRNA candidates with strong effects in the Treg cell differentiation screen could be 

reproduced and showed significant effects in repeat experiments (Figure 14, red bars). Th17 

differentiation conditions were somewhat less stable than those for Treg cells (Figure 14, blue 

bars). Nevertheless, a clear picture emerged for microRNAs such as miR-181c, d with a 

similar effect in Treg and Th17 cells, or microRNAs with a selective positive effect on Treg 

cell differentiation such as miR-10b and no significant effect on Th17, or microRNAs with a 

selective negative effect on Treg cell differentation, such as miR-140, which may also have a 

reciprocal influence on Th17 differentiation. Following the initial assumption that the 

presence of post-transcriptional gene regulation by microRNAs is essential for Treg cell 

generation, we then focused on microRNAs that selectively promoted Treg cell 

differentiation, namely miR-99a, miR-100 and miR-10b. None of these affected Th17 

differentiation in a similar extent or direction. 

7.5.2 T cell proliferation is not affected by miR-99a, miR-100 and miR-10b 

overexpression 

An obvious explanation for the positive effect of miR-99a, miR-100 and miR-10b could be 

that they promote proliferation particularly in Treg cells. To exclude that, a Treg cell 

differentiation experiment was designed using naive T cells that were labeled with a 

proliferation dye, which is diluted with every cell division. Cells were infected with control 

virus expressing only the Thy1.1 marker and were co-cultured with cells that were infected 

either with GFP-miR-99a, or GFP-miR-100, GFP-miR-10b virus or GFP-control virus. After 

40 h of resting and additional 72 h Treg cell induction the samples were analyzed by flow 

cytometry for the infection markers GFP and Thy1.1, the differentiation marker Foxp3 as well 

as for the proliferation dye. Despite independent infection, double positive cells emerged, 

which must have resulted from secondary infection with residual adenovirus during the 

resting phase (Figure 15A). To analyze the effect of the individual constructs, differentiation 
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and proliferation in single positive cells were further analyzed by gating on Thy1.1+/ GFP- 

(control) or Thy1.1-/GFP+ (microRNA or control) cells (Figure 15B).  

The percentage of Foxp3+ cells was very similar in cells infected with Thy1.1 or with GFP 

control virus (Figure 15B, control virus, upper versus lower panel). Compared to that, the 

percentage of Foxp3+ cells was markedly increased by overexpression of miR-99a, miR-100 

and miR-10b both in a cell intrinsic manner (Figure 15B, miR-99a, miR-100, miR-10b, lower 

panels compared to control lower panel) as well as in bystander cells from the same well 

infected with control virus (Figure 15B, miR-99a, miR-100, miR-10b, upper panels compared 

	  
Figure 14: Overexpression of selected microRNA candidates in Th17 differentiation. 
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were infected with the indicated adenovirus, 
rested for 40 h and were subsequently stimulated in polarizing conditions for Treg or Th17 cells for 72 h. 
Th17 cells were then restimulated with PMA/ionomycin for 5 hours with BrefeldinA present for the last 2.5 
h. Cells were fixed and stained before expression of differentiation marker Foxp3 (Treg) or IL-17A (Th17) 
was analyzed by flow cytometry. Representative FACS plots of a common effect (A) or Treg cell-selective 
negative (B) or positive (C) microRNA overexpression effect on differentiation. The relative differentiaton 
bar diagram (D) shows means ± SD of three independent experiments; p-values were calculated using 
Student’s t-test. 
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Figure 15: T cell proliferation is not affected by miR-99a, miR-100 and miR-10b overexpression. 
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were labeled with proliferation dye. Then, 
cells were infected with one control adenovirus expressing the Thy1.1 marker or a second adenovirus 
expressing the marker GFP together with the indicated microRNA or control. Cells were mixed and rested 
for 40 h and stimulated subsequently with anti-CD3/ anti-CD28-coupled beads in Treg-polarizing 
conditions. After 72 h, expression of Foxp3 or infection marker expression as well as dilution of the 
proliferation dye was analyzed by flow cytometry. A) Contour plots showing the gating on Thy1.1+/ GFP- 
(control, upper left gate) or Thy1.1-/GFP+ (microRNA or control, lower right gate) populations. B) Dot 
blots show differentiation against proliferation markers of the Thy1.1-control virus infected cells and the 
GFP-microRNA virus or GFP-control virus-infected cells. C) Each histogram plot shows the overlay of 
Foxp3- (red areas) and Foxp3+ (blue lines) gates in the indicated populations. Data are representative of 
three independent experiments.  
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to control upper panel). These data confirm once again the cell-intrinsic promoting effects of 

miR-99a, miR-100 and miR-10b observed in the screen and reveal an additional cell-extrinsic 

effect on cells within the same well.  

Importantly, the dilution of the proliferation dye was very similar between Foxp3+ and Foxp3- 

cells within each plot (Figure 15B and C). Moreover, the dilution was also similar when 

comparing Thy1.1-/ GFP+, microRNA-expressing cells to control cells (Figure 15C, lower 

panels) as well as when comparing Thy1.1-/ GFP+ to Thy1.1+/ GFP- cells (Figure 15C, lower 

versus upper panels). In conclusion, this suggest that miR-99a, miR-100 and miR-10b had no 

effect on T cell proliferation in Treg-polarizing conditions and, in particular,  they did not 

have any effect on Treg cell proliferation. Hence, the promoting effects of these microRNAs 

could not be attributed to an altered cell proliferation. 

7.5.3 T cell viability under miR-99a, miR-100 and miR-10b overexpression 

MiR-99a and miR-100 have been associated with the induction of apoptosis in human 

esophageal squamous cell carcinoma (Sun et al., 2013). Therefore, viability was studied by 

analysis of dead cell stains in flow cytometry on miR-99a, miR-100 and miR-10b or control 

virus infected cells (Figure 16). There were no significant differences between microRNA or  

control virus-treated cells in the percentages of viable cells after 72 h in the standard Treg-

polarizing conditions. Of note, the analysis at one time point could not provide a history of 

events as, for example, a previous effect on viability that was later on compensated by 

proliferation. However, the observed result of very similar proportions of viable cells at 72 h 

together with the observation of a very homogenous proliferation of microRNA-expressing 

	  
 
Figure 16: miR-99a, miR-100 and miR-10b do not affect viability during Treg cell induction.  
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were infected with the indicated adenovirus. 
Cells were rested for 40 h and stimulated subsequently with anti-CD3/ anti-CD28-coupled beads in Treg 
polarizing conditions. After 72 h cell viability was analyzed using a dead cell staining dye. Representative 
FACS plots (A) and bar graph showing means ± SD (B) of four independent experiments and the p-value 
was calculated using one-way ANOVA. 
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and non-expressing cells strongly suggests, that there was no previous effect on viability that 

was compensated during differentiation. 

7.5.4 T cell quiescence and activation in the presence of miR-99a, miR-100 or miR-

10b overexpression 

The Treg cell differentiation protocol used in this study involved resting of naive CD4+ T 

cells after adenoviral gene transduction to allow overexpression of the transduced microRNA 

before activating the cells in Treg-polarizing conditions. The questions arose whether 

overexpression of the microRNA in naive T cells would have an influence on the naive state 

itself and whether activation of these cells was affected by the microRNA. To answer those 

questions, naive CD4+ T cells were infected with miR-99a, miR-100, miR-10b or control 

adenovirus. The naive state was analyzed by flow cytometry after 40 h resting while the 

activated state was analyzed after cells had been rested for 40 h and subsequently been 

subjected to activation conditions for 18 h. All three microRNAs did not affect the naive state 

as defined by CD62Lhigh/CD44low expression compared to control (Figure 17A). Upon 

activation, downregulation of CD62L and upregulation of CD44 occurred similarly in 

microRNA or control virus-infected cells (Figure 17A). Judged by the expression of the 

activation marker CD25 as well as the early activation marker CD69, which were both not 

expressed in naive T cells but were highly upregulated in activated cells, there was also no 

difference between microRNA-overexpressing and control cells (Figure 17B). Expression of 

IL-7R, which was high in naive T cells and downregulated upon activation, and expression of 

the T cell receptor-induced protein CD5, which was low in naive T cells and increased upon 

stimulation showed again very similar patterns in microRNA-overexpressing and control 

samples (Figure 17C). Altogether, these data strongly suggested that miR-99a, miR-100 or 

miR-10b overexpression in naive T cells did neither alter the naive state nor the capacity or 

sensitivity of the T cells to become activated under our Treg differentiation-inducing 

conditions. 

 

7.6 Target identification of miR-99a, -100 and -10b in Treg cell differentiation 
MicroRNAs mediate their biological effects through repression of their target mRNA 

translation or by decreasing their stability. To further elucidate the microRNA function it was 

necessary to identify the respective mRNA targets. 
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Figure 17: T cell quiescence and activation under miR-99a, miR-100 and miR-10b overexpression.  
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were infected with the indicated adenoviruses. 
Cells were rested for 40 h (upper panels) or rested for 40 h and stimulated subsequently for 18 h with anti-
CD3/ anti-CD28-coupled beads in Treg-polarizing conditions (lower panels). A-C) Expression of surface 
markers was analyzed by flow cytometry. The data are representative of two or more independent 
experiments. 
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7.6.1 MicroRNA target prediction 

The binding characteristics of microRNAs to their target sites within the 3’UTR of the target 

mRNA have been intensively studied and these published findings constitute the basis for  

 

various microRNA target prediction algorithms that search for matches with annotated mouse 

3’UTRs. To predict mRNA targets of miR-99a, miR-100 and miR-10b, the most common 

online tool TargetScan Release 6.2 and MicroCosm Targets Version 5 were used that base 

their search on the UCSC whole-genome alignment or the Ensemble annotation, respectively. 

Together, these tools cover a maximum of annotated transcripts. The prediction resulted in a 

long list of potential targets irrespective of their plausibility such as expression or function in 

T cell development. The search for an mRNA target of the identified microRNA candidates 

was narrowed down following the consideration, that a microRNA that promoted Treg cell 

differentiation should target an mRNA of a gene that itself is known to interfere with Treg 

cell differentiation.  

7.6.2 MiR-99a directly targets Mtor mRNA 

MiR-99a and -100 belong to the same microRNA family and share most of their sequence. 

Since they both promoted Treg cell differentiation in the screen, had significant effects in 

repeat experiments and had no significant effect but shared an adverse tendency on Th17 

differentiation we focused on these microRNAs. Sun et al. already proposed mTOR as a 

target for miR-99a and miR-100 in human esophageal squamous cell carcinoma (Sun et al., 

2013). Furthermore, mTOR was described as a promoter of Th17 differentiation as part of 

mTORC1 while deletion of mTOR in T cells abrogates effector T cell differentiation into 

several lineages and promotes Treg cell differentiation (Delgoffe et al., 2009; Shi et al., 

2011). Indeed, TargetScan as well as Microcosm predicted conserved seed matches for miR-

99a and miR-100 in the Mtor mRNA 3’UTR (Figure 18A). To confirm direct microRNA-

target regulation, the Mtor 3’UTR was tested in a dual luciferase assay. To that end, the 

3’UTR of Mtor was cloned just 3’ to the renilla luciferase coding sequence into an adenoviral 

dual luciferase reporter construct that coexpressed the firefly luciferase reporter from an 

independent promoter. A wildtype mouse embryonal fibroblast (MEF) cell line was 

adenovirally infected with the dual luciferase reporter and co-infected with miR-99a, miR-10b 

or control virus. Preparing cell lysates and measuring dual luciferase activities, the miR-99a 

co-expression strongly reduced the ratio of renilla to firefly luciferase activities indicating 

repression of Mtor 3’UTR by miR-99a compared to control co-infections (Figure 18B). MiR-

10b, which was not predicted to bind to Mtor 3’UTR, accordingly did not reduce the relative  
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renilla luciferase activity. In order to prove direct regulation, the miR-99a binding site was 

mutated such that the seed sequence of miR-99a between position 2-4 was no longer 

complementary to the mutated Mtor 3’UTR (Figure 18A). As expected, miR-99a no longer 

repressed the luciferase activity placed under the control of the mutated 3’UTR, which proved 

that Mtor was in fact a direct target of miR-99a (Figure 18C).  

7.6.3 Expression of Mtor mRNA and mTOR protein during Treg cell induction 

A microRNA regulation can only exert biological effects if the mRNA target containing the 

microRNA target site is actually expressed in the respective cell. Therefore, we analyzed 

expression of Mtor mRNA and mTOR protein during Treg cell induction (Figure 19A–B). 

Mtor mRNA was downregulated several folds within 12-24 h of Treg cell induction and re-

induced from 36 h to 72 h. Astonishingly, mTOR protein expression displayed a partly 

opposite kinetics with a constant increase after 24 h. This uncoupling of protein expression 

from mRNA abundance is reminiscent of the dynamic regulation of post-transcriptional 

regulation mechanisms described in the first part of this study. These observations suggested 

that post-transcriptional gene regulation of Mtor by miR-99a/100 was gradually relieved after 

24 h of Treg cell induction and would rather influence differentiation early after induction. 

This is consistent with the proposed window of opportunity for post-transcriptional gene 

regulation in Treg cell differentiation.  

	  
Figure 18: Mtor is a direct target of miR-99a/100. 
A) Base pairing of the microRNA with its target sequence based on the TargetScan mouse 6.2 prediction. 
The seed sequence is displayed bold, seed mutations used in luciferase assays are displayed in red, the 
numbers indicate the position within the Mtor-3’UTR. B, C) MEF cells were infected with adenovirus 
encoding a wildtype (B) Mtor 3’UTR dual luciferase reporter construct or one with mutated miR-99a/100  
target site (C). Cells were co-infected with adenovirus encoding the indicated microRNA or control 
adenovirus. After 48 h the cells were lysed and relative luciferase activities was determined. The values 
are means ± SD from four independent experiments, the p-values were calculated using the Student’s t-
test.  
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7.6.4 MiR-99a overexpression reduced mTOR protein but not mRNA expression 

Next we sought to evaluate, whether overexpression of miR-99a/100 during standard Treg 

cell induction conditions could influence expression of its target mRNA or protein levels in T  

cells as well. Although high levels of overexpression for miR-99a, miR-100 and miR-10b 

were determined by qPCR analysis (Figure 20A), the detection of Mtor mRNA expression in 

these samples did not show significant changes (Figure 20B). So we asked if the direct 

regulation by miR-99a/100 that was observed in the luciferase assays might rather be 

detectable on the protein level. Indeed, we found a strong reduction of mTOR protein 

expression 18h after activation when miR-99a was overexpressed compared to control virus 

or miR-10b infected cells (Figure 20C). Thus we obtained proof that mTOR is regulated by 

miR-99a in T cells and thereby uncovered one possible mechanism for the promoting effect of 

miR-99a overexpression on Treg cell induction.  

 

7.6.5 Rora as a target mRNA for miR-10b  

	  
MiR-10b had no effect on the Mtor mRNA 3’UTR as concluded from the dual luciferase 

assay, so it must exert its effect on Treg cell differentiation via different targets. The 

Microcosm target search tool was used to predict mRNAs with 3’UTRs containing seed 

matches for miR-10b. After filtering the target list for plausibility requirements that 

demanded for a target that interfered with Treg cell differentiation, we proposed Rora mRNA 

	  

	  
	  
Figure 19: Expression of Mtor mRNA and mTOR protein during Treg cell induction. 
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were stimulated in Treg-polarizing conditions 
for the indicated time. A) Expression of Mtor mRNA was determined by qPCR relative to HPRT. Data were 
normalized on the 0 h time point and represent means ± SD of three independent experiments. B) mTOR 
protein expression was analyzed by immunoblot at the indicated time points. Data are representative of two 
independent experiments. 
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as a potential miR-10b target (Figure 21A). Moreover, the Mirocosm algorithm predicted 

Rora 3’UTR to be targeted also by miR-99a/100, which involved a possible cooperativity in 

the Treg-promoting effects of miR-99a/100 and miR-10b. The Rora gene encodes for RORα, 

which is highly expressed in Th17 cells and its expression can be induced by TGFβ and IL-6, 

the cytokines that promote Th17 differentiation (Yang et al., 2008). Overexpression of Rorα 

promoted Th17 differentiation in Th17-polarizing conditions and conversely interfered with 

Treg cell differentiation in Treg-polarizing conditions. Interestingly, RORγt overexpression 

did not interfere with Treg cell differentiation under these circumstances (Yang et al., 2008). 

In order to see whether the predicted microRNAs would target Rora, the 3’UTR of the gene 

was cloned and tested in dual luciferase assays in MEF cells together with miR-10b, mir-99a 

or control (Figure 21B). MiR-10b co-expression markedly reduced the relative renilla 

luciferase activity indicating that the Rora 3’UTR is repressed by miR-10b. MiR-99a co-

expression also resulted in a significant, yet moderate reduction in luciferase activity. The 

formal proof for direct regulation through the predicted target site by testing the 3’UTR with a 

binding site mutation still has to be obtained. Nevertheless, these results show the 

downregulation of the Rora 3’UTR by miR-10b and to a lesser extent by miR-99a and thereby 

suggest Rora as a new microRNA target in the context of Treg cell differentiation.   

	  
	  
Figure 20: MiR-99a overexpression inversely correlated wih mTOR protein expression. 
Naive CD4+ T cells were purified from DO11.10tg; CARΔ1tg mice and transduced with the indicated 
adenovirus, then rested for 40 h and activated in Treg-polarizing conditions for 18 h (A and B). A) 
microRNA overexpression of the indicated microRNA was determined by qPCR relative to SnoRNA202. 
Data were normalized to control virus-infected samples and are representative of two or more independent 
experiments. B) qPCR analysis of Mtor mRNA expression, data were normalized on a control virus 
infected sample and represent means ± SD of three independent experiments and the p-value was 
calculated using one-way ANOVA.C) CD4 T cells were purified from DO11.10tg; CARΔ1tg mice and 
transduced with the indicated adenovirus, then rested  for 24 h and activated in Treg-polarizing conditions 
for 18 h. Western blot analysis of mTOR and tubulin protein expression, the shown data are representative 
of two independent experiments. Immunoblot analyses were performed in collaboration with Christine 
Wolf. 	  
	  



Results 

	  

74	  

7.7 Mtor and Rora are both targets of miR-150 
Surprisingly, the examination of the 3’UTR of Mtor and Rora identified a predicted binding 

site for miR-150 in both of them (Figure 22A). Intriguingly, miR-150 had also been identified 

as a Treg-promoting microRNA in my screen (see Figure 13D). To analyze, whether the 

predicted targets were actually regulated by miR-150, the 3’UTRs of Mtor and Rora were 

tested in luciferase assays. Co-transduction of renilla luciferase fused to the Mtor-3’UTR 

construct with miR-150 reduced the relative luciferase activity by 50% compared to co-

transduction with control virus (Figure 22B). The repression was in a similar range as with 

miR-99a co-transduction. Mutation of the miR-150 binding site reverted the regulation by 

mir-150 but not by miR-99a indicating direct regulation of Mtor mRNA by miR-150 (Figure 

22C). For Rora, we observed a reduction of the relative luciferase activity by almost 50% 

when co-expressing miR-150, which was very similar to the effects observed with miR-10b 

expression (Figure 22D). Altogether, these results show that miR-99a and miR-10b share 

mRNA targets with each other and with miR-150 and raised the question, how these 

microRNAs cooperate during Treg cell induction.  

7.8 MiR-99a/100 and miR-10b can be induced by all-trans retinoic acid 
To elucidate, how miR-99a/100, miR-10b and miR-150 may cooperate in Treg cell-induction, 

we studied the relative expression of miR-99a/100, miR-10b and miR-150 over the period of 

	  
	  
Figure 21: Rora is a target of miR-10b. 
A) Base pairing of miR-99a, miR-100 and miR-10b with its target sequence in Rora-3’UTR based on 
microcosm target search output. The seed sequence is displayed bold, and the numbers indicate the 
position within the respective 3’UTR. B) MEF cells were infected with adenovirus encoding a wildtype  
Rora 3’UTR dual luciferase reporter construct together with adenovirus encoding the indicated 
microRNA or control adenovirus. Cells were lysed after 48 h and relative luciferase activity was 
determined. The values are representative of three independent experiments. P values were calculated 
using Students t-test on replicates.  
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72 h of Treg cell differentiation (Figure 23A-D). MiR-99a/100, which were both recognized 

by the same qPCR assay, were detected in naive T cells, but downregulated to about 50% 

within the first 24 h of activation. MiR-10b was merely unchanged after Treg cell induction. 

MiR-150 was expressed at higher levels in naive T cells and during the first 24 h of Treg cell 

induction and became strongly reduced afterwards. This implied, that microRNA-99a/100,  

miR-10b and miR-150 could post-transcriptionally affect the window of opportunity of Treg 

cell induction. Comparing the expression levels of miR-99/-100, miR-10b and miR-150 

relative to snoRNA202 without additional normalization, revealed extreme differences in the 

abundance of the different microRNAs (Figure 23D). MiR-150 was much more abundant 

compared to miR-99a/100, whose expression was three orders of magnitude lower. MiR-10b 

expression in turn was even 100-fold lower than miR-99a/100 expression levels. Given the 

high expression of miR-150 compared to miR-99a/100 and miR-10b we asked, whether  

	  
	  
Figure 22: Mtor and Rora are targets of miR-150. 
A) Base pairing of miR-150 with its target sequence in Mtor or Rora 3’UTR based on TargetScan mouse 6.2 
or Microcosm prediction. The seed mutation used in luciferase assays is displayed in red, and the numbers 
indicate the position within the respective 3’UTR. 
B, C) MEF cells were infected with adenovirus encoding a wildtype mTOR 3’UTR dual luciferase reporter 
construct or a similar construct with a mutated miR-99a/-100 target site. Cells were co-infected with 
adenovirus encoding the indicated microRNA or control adenovirus. After 48 h cells were lysed and relative 
renilla luciferase activity was determined. The values are means ± SD from four independent experiments; 
P-values were calculated using Student’s t-test. D) MEF cells were infected with adenoviruses encoding a 
wildtype Rora 3’UTR dual luciferase reporter construct together with adenovirus encoding the indicated 
microRNA or control adenovirus. Cells were lysed after 48 h and relative luciferase activity was 
determined. The values are representative of three independent experiments. P-values were calculated using 
Student’s t-test on replicates.  
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expression of the latter could be induced under condition that are known to induce Treg cell 

differentiation. To explore potential inducing conditions, we first tested different TGFβ 

concentrations, which promoted Treg cell differentiation in a dose-dependent manner, but this 

	  

	  
	  
Figure 23: Mir-99a/100 and miR-10b expression are induced by all-trans retinoic acid during Treg cell 
induction. 
Naive CD4+ T cells purified from DO11.10tg; CARΔ1tg mice were stimulated in Treg-polarizing conditions 
for 72 h. Expression of the indicated microRNA was determined by qPCR relative to SnoRNA202.  A–C) 
Relative levels of microRNA expression normalized to the 0 h value. Data are representative of two or more 
independent experiments. D) Relative expression levels of microRNAs without normalization. Data are 
representative of two or more independent experiments. E-G) Naive CD4+  T cells purified from DO11.10tg; 
CARΔ1tg mice were stimulated for 18 h in Treg-polarizing conditions as indicated and microRNA 
expression was analyzed by qPCR. Data were normalized on standard conditions and represent means ± SD 
of two (0 and 10 ng/ml TGFβ), three (no IL-2), to five (2 ng/ml TGFβ, 0.1 and 1 µM ATRA) independent 
experiments. ATRA, all-trans retinoic acid. 
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did not alter the expression levels of miR99a/miR100, miR-10b and miR-150 (Figure 23E-G). 

Unexpectedly, withdrawal of IL-2 from the Treg cell-induction cocktail led to a 3.5-fold  

induction of miR-99a/100 and a 2.5-fold induction of miR-10b. All-trans retinoic acid 

(ATRA) had already been implicated in regulation of miR-10b (Foley et al., 2011; Meseguer 

et al., 2011). Furthermore, ATRA promoted Treg cell differentiation in a both intrinsic and 

extrinsic manner (Hill et al., 2008; Mucida et al., 2007). When testing supplementation of the 

Treg cell differentiation conditions with 1 µM ATRA, a 6-fold induction of miR-99a/100 as 

well as a 2.5-fold induction of miR-10b became evident.  

Collectively, these data suggest that the highly expressed miR-150 alone may suppress critical 

Treg-inappropriate target genes to promote Treg cell differentiation, which may be markedly 

augmented by a collaboration with miR-150 with miR99a/100 and miR-10b upon their 

induction with retinoic acid.  
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8 Discussion 

8.1 The kinetics of Treg cell differentiation 

We set out to identify microRNAs that could promote Treg cell differentiation in a functional 

screen. To be able to conduct such a microRNA overexpression screen in an in vitro model of 

Treg cell differentiation, the kinetics of several parameters had to be evaluated. 

 

First, we established the expression of Foxp3, which is the hallmark feature of the Treg cell 

transcriptional program and the marker of the Treg cell lineage. The expression of Foxp3 in 

the in vitro Treg cell differentiation model initiated already at 36 h after activation and 

reached its full extent at 48 h. Notably, Foxp3 showed no obvious signs of post-

transcriptional gene regulation as the protein expression levels closely matched the mRNA 

expression levels. The percentage of Foxp3+ cells remained constant after 48 h and was the 

result of equal proliferation in Foxp3+ and Foxp3- cells (Figure8 A-C, Figure 8C). Together, 

these kinetics justified the intracellular staining of Foxp3 at 72 h and the analysis of 

differentiation after the cells had vigorously proliferated. 

 

Second, it was important to determine the time frame during which microRNA regulation can 

be effective during Treg cell differentiation. The Ago proteins are essential and limiting, since 

overexpression of Ago proteins increased the abundance of microRNAs and enhanced 

microRNA-mediated regulation (Winter and Diederichs, 2011). Ago proteins were shown to 

be strongly downregulated 48 h after T cell activation in Th1 conditions (Bronevetsky et al., 

2013). MicroRNA expression in cells with Ago1 or Ago2 deletion is markedly decreased, 

thereby suggesting that the microRNA half-life is reduced, when Ago proteins are 

downregulated (Bronevetsky et al., 2013; Wang et al., 2012).  

My results show that downregulation of all Ago proteins also occurs during Treg cell 

differentiation 48 h after T cell activation similar to Th1 cells. This led us to assume that a 

global microRNA expression control on the level of Ago regulation may be also active during 

Treg cell induction. Accordingly, microRNA overexpression would best affect Treg cell 

differentiation within 48 h after activation.  

The expression of transcripts with shortened 3’UTRs that no longer contain distal microRNA 

target sites is another limiting factor for microRNA-mediated silencing. Consequently, 

microRNAs will be most effective to regulate Treg cell differentiation before the onset of this 
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process. To take that into account for our microRNA screen, we exemplarily analyzed the 

expression kinetics of Eri1 mRNA isoforms. We observed a shortening already at 12 h and re-

expression of the long isoform at 36 h after Treg cell induction. A study that globally 

compared 3’UTR lengths in 6 h or 48 h-activated T cells to that in naive T cells describes 

significant shortening of 3’UTRs for 99 different transcripts, which resulted from alternative 

PAS, at 48 h but not at 6 h after T cell activation (Sandberg et al., 2008). Considering the 

different time points of analyses, this 3’UTR shortening overall follows a similar kinetics as 

Eri1 3’UTR shortening. Yet the re-expression of longer Eri1 isoforms suggests a somewhat 

earlier initiation of the kinetics in our experiments. This could be a consequence of different 

activation and polarization conditions. Alternatively, 3’UTR length variation could also be 

regulated in a transcript-specific manner with particular kinetics for different transcripts.  

Sandberg et al. also found transcripts with a switch of the terminal exon after activation, 

which implicates alternative splicing as another, potentially independent mechanism for 

alternative 3’end formation. However, for Eri1 only one splice variant is annotated and thus 

alternative PAS usage likely accounts for the observed 3’end shortening. Future northern blot 

experiments will finally provide a comprehensive picture of length and quantity of all Eri1 

transcript variants generated during Treg cell differentiation.  

The shortening of the Eri1 3’UTR again suggests that the effect of microRNA on Treg cell 

differentiation may be most pronounced early after T cell activation or even concomitantly 

with initiation of TCR signaling. Regardless of the kinetics of individual transcripts, these 

findings strongly argued for an experimental set-up that allowed the modulation of microRNA 

expression in naive T cells at the very moment of T cell activation and throughout 

differentiation.  

 

Notably, the Eri1 3’UTR shortening after 12 h correlated with the observed induction of 

cleavage stimulating factor 64 (CstF64) 12 h after T cell activation (Chuvpilo et al., 1999). 

CstF64 is part of the 3’end processing machinery that forms the mRNA 3’end during 

transcription. It has a high affinity for an alternative PAS, which was suggested to promote 

the use of a different terminal exon by alternative splicing. The knock-down of another 3’end 

processing factor, CfIm68, was shown to induce 3’UTR shortening resulting from preferential 

use of proximal PAS (Martin et al., 2012). Taken together this may suggest common 

mechanisms for PAS selection that can result in alternative splicing or 3’UTR shortening. 
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 Several studies suggested a connection between 3’UTR shortening and cell proliferation 

implying that microRNAs repress proliferation in certain conditions (Bava et al., 2013; 

Kumar et al., 2007; Sandberg et al., 2008). Our analyses of cell proliferation kinetics during 

Treg cell differentiation detected the first divided cells 36 h after activation. This is clearly 

delayed compared to the 3’UTR shortening of Eri1, which initiated already after 12 h of T 

cell activation. The shortening may be a mechanism to shift cellular programs from 

differentiation, which required microRNA regulation, to cell proliferation that occurred in 

conditions with reduced microRNA regulation. In line with this concept, the marked 

downregulation of Ago proteins in the course of T cell activation may further diminish 

microRNA regulation. These mechanisms may exist in parallel or even in a successive order 

and could be regulated in an interdependent manner, for example by mTOR. As discussed 

below, Mtor may escape post transcriptional regulation by 3’UTR shortening similar to Eri1 

and was shown to contribute to the downregulation of Ago after T cell activation 

(Bronevetsky et al., 2013).  

 

 

8.2 The feasibility of adenoviral gene transfer to modulate Treg cell 

differentiation 

The window of opportunity for microRNA regulation of the Treg cell differentiation program 

opens with the activation of cells by TCR triggering. Therefore, for perfoming an 

overexpression screen we sought an experimental system that provides overexpression at the 

time or even before activation of naive T cells. Current methods for ectopic gene expression 

in naive T cells have different disadvantages. For example, electroporation causes membrane 

depolarization and Ca2+-influxes that are reminiscent of T cell activation and lentiviral 

approaches require cytokine stimulation (Circosta et al., 2009; Patel and Muthuswamy, 2012). 

The adenoviral transduction system can circumvent these disadvantages, if the experimental 

setup allows using naive CD4+ T cells from CARΔ1 tg mice (Wan et al., 2000b). We 

described the setup, application and validation of adenoviral transduction of naive CD4+ T 

cells in our recent manuscript (Warth and Heissmeyer, 2013). The validation experiments 

demonstrate the efficient infection of naive CD4+  T cells isolated from commercially 

available DO11.10tg CARΔ1tg mice, the maintenance of the naive state after infection at an 

MOI of 50 and unaltered differentiation into Treg cells (Figure 10). Exemplary infection with 

a pri-miR-155 expressing adenovirus resulted in highly elevated levels of mature miR-155 

overexpression on top of the activation-induced expression of miR-155. Taken together, the 
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adenoviral overexpression system was an indispensible prerequisite for a microRNA 

overexpression screen that can impact Treg cell differentiation from the very beginning and 

throughout the “window of opportunity”.  

The potency of adenoviral manipulation of Treg cell differentiation was demonstrated by 

overexpression of the transcription factors human FOXP3 and AP1. HumanFOXP3 

overexpression strongly promoted Treg cell differentiation. This was in agreement with 

reports showing that Foxp3 overexpression promoted Treg cell features in CD4 T cells and 

that Foxp3 could promote its own expression by binding to the CNS2 enhancer element in the 

Foxp3 locus (Fontenot et al., 2003; Hori et al., 2003; Zheng et al., 2010).  

Conversely, an overexpression of AP1 had a strong inhibitory effect on Treg cell 

differentiation consistent with the described role of AP1 in the induction of prototypic 

effector T cell genes such as IL-2 (Jain et al., 1992). This is in contrast to a report that claimed 

a positive effect of AP1 on Foxp3 induction, because pharmacologic inhibition of c-JUN by 

an N-terminal Jun kinase inhibitor strongly reduced Treg cell differentiation as well as the 

activity of a Foxp3 reporter construct (Nguyen et al., 2010). These differences could result 

from different binding characteristics of the canonical AP1 dimer composed of c-JUN and c-

FOS and of a c-JUN homodimer. The abundance of c-Fos was found to be the limiting factor 

for IL-2 production in activated human memory T cells (Bendfeldt et al., 2012). Therefore the 

expression level and the stoichiometry of c-JUN homo- or heterodimers may direct different 

outcomes that will either induce an effector or a regulatory T cell differentiation program.   

  

The strong modulation of Treg cell differentiation by overexpression of transcription factors 

that are either promoting or inhibiting illustrates the power of adenoviral gene transduction 

into naive T cells. It is also a very evident example of the concept of ‘relative differentiation’ 

that was applied to analyze screen data. The dynamic range of 0.25-1.8 achieved with 

overexpression of these transcription factors was stronger than that obtained with microRNAs 

overexpression in my screen, which ranged from 0.5 and 1.5. In my experimental setup, an 

overexpressed microRNA acts in conjunction with endogenously expressed microRNAs. It is 

therefore surprising that this network of indirect modulation by post-transcriptional gene 

regulation almost reached the effect of very potent transcription factors, which directly trans-

activate gene expression programs.  
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8.3 A functional screen identified microRNAs effective in Treg cell 

differentiation 
We set out to identify the individual microRNAs that direct the process of Treg cell 

differentiation. To that end a functional screening approach was projected in order to test 

overexpression of T cell-expressed microRNAs in a model of Treg cell differentiation.  

 

Our screen identified a multitude of microRNAs that affected Treg cell differentiation. To 

further strengthen the confidence in the screening results we compared our results with 

published data.  

In our screen, the overexpression of each miR-17∼92 cluster construct containing either miR-

17 alone or miR-17, 18a and 19a or miR-20a, 19b-1 and 92a-1 interfered with Treg 

differentiation (Figure 13D). This was consistent with a reconstitution study in miR-17∼92 

cluster knock-out T cells, where reconstitution of miR-17 or miR-19b alone blocked Treg cell 

differentiation and promoted Th1 cell differentiation (Jiang et al., 2011). Noteworthy, that 

study applied retroviral transduction to overexpress the microRNA in late Treg 

differentiation. This suggests that the miR-17∼92 cluster can influence Treg cell 

differentiation at early and late stages. MiR-10a was recently shown to be highly expressed in 

mature Treg cells and suggested to contribute to Treg cell lineage stability, whereas its 

deletion had no influence on differentiation of Treg (Jeker et al., 2012; Takagaki et al., 1996). 

In our screen, miR-10a overexpression interfered with Treg cell differentiation showing that 

microRNAs with a role in mature Treg cells can, upon overexpression, have an opposing role 

in the differentiation of Treg cells. Like miR-10a, miR-146a, which is important for Treg cell 

function, showed an inhibitory effect on differentiation in my screen (Lu et al., 2010). 

O’Connell et al. have shown that miR-155 contributes to Th17 cell differentiation (O’Connell 

et al., 2010). Consistently, miR-155 overexpression exhibited an opposing effect on Treg cell 

differentiation in our screen suggesting a potential role of miR-155 in the reciprocal 

Th17/Treg cell lineage decisions. For miR-326, Du et al. found a promoting effect selectively 

on Th17 differentiation and no effect on Treg cell differentiation (Du et al., 2009). This was 

similarly observed in our screen. Altogether, the comparison of microRNA effects in our 

screen largely overlapped with published effects of those microRNAs in T cell differentiation. 

This consolidated the screening data and provided a basis to further analyze the newly 

identified microRNAs. 
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We then focused mainly on the candidates with the strongest effects on Treg cell 

differentiation. A secondary screen with selected candidates in Th17 differentiation was 

pursued to exclude those microRNAs with a general effect. Indeed, microRNAs like miR-

181, which interfered with Treg cell differentiation, also interfered with Th17 cell induction. 

MiR-181 was actually shown to target the mRNAs of phosphatases involved in regulation of 

TCR signaling like PTEN and Shp-1, which negatively regulate TCR signaling and thus may 

affect common pathways in Treg and Th17 cell differentiation (Li et al., 2007).  

Several microRNAs like miR-140 or miR-99a that were effective in Treg cell differentiation 

showed either no effect or even a reciprocal tendency in Th17 cell differentiation. We 

concluded that these microRNAs conferred selective effects that were either promoting or 

interfering with Treg cell induction. To address the initial question, which microRNAs are 

required for proper Treg cell differentiation, we followed up on the microRNAs miR-10b, 

miR-99a and miR-100 that selectively promoted Treg cell differentiation. MiR-10b 

expression was found associated with tumor cell migration and metastasis (Ma et al., 2007; 

Tian et al., 2010). Notably, miR-10b expression could be induced by the transcription factor 

Twist1, which is a negative regulator of Th1 cell induction and IFNγ production (Ma et al., 

2007; Pham et al., 2012). It is therefore tempting to speculate that Twist1 and miR-10b may 

synergize in Treg cell induction. In contrast to miR-10b, miR-10a had a strong negative effect 

on Treg cell differentiation. This is astonishing as these microRNAs only differ by one base 

pair outside of the seed region. Apart from many shared targets, the Microcosm algorithm 

predicted several targets for miR-10b, like Rora, which were not predicted for miR-10a. We 

demonstrated Rora targeting by miR-10b and further 3’UTR reporter experiments with miR-

10a will be performed to confirm the predicted selective targeting. 

 

MiR-99a and miR-100 belong to the same microRNA family and differ by only two bases 

outside of the seed sequence (Figure 18). MiR-99a and miR-100 were downregulated in 

various cancer cells and there is good evidence for mTOR, which promotes cell growth and is 

required for proliferation, to be a target of both microRNAs (Nagaraja et al., 2010; Sun et al., 

2013). MiR-99a was upregulated in a radiosensitive cancer cell line upon irradiation and 

targets the chromatin remodeling factor SNF2H, which interfered with DNA damage repair as 

part of the SWI/SNF complex (Mueller et al., 2012).  This complex can differentially regulate 

chromatin accessibility in T cells and directly induced the expression of AP1 (Mueller et al., 

2012). Consequently, since AP1 activity strongly impaired Treg cell induction, its putative 

downregulation by miR-99a or miR-100 may be another attractive mechanism to explain the 
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promoting effects of miR-99a and miR-100 on Treg cell differentiation (Figure 11D-F). The 

selective effect of miR-10b, miR-99a and miR-100 on Treg cell but not on Th17 cell 

differentiation already implied that these microRNAs had no general effect on cellular 

processes. Further validation experiments specifically excluded an influence on proliferation 

or cell viability. Importantly, also the quiescent state of naive T cells prior to activation was 

not altered by miR-10b, miR-99a or miR-100 overexpression.   

 

 

8.4 MTOR and RORα  are central players in reciprocal lineage differentiation 

MiR-99a and miR-100 had promoting effects on Treg cell differentiation and showed a 

tendency to inhibit Th17 cell differentiation in our experiments. We and others showed that 

Mtor mRNA is a direct target of miR-99a and miR-100 and, in addition, we established Mtor 

as a target for miR-150 (Nagaraja et al., 2010; Sun et al., 2013). MTOR is a central protein in 

reciprocal lineage differentiation (Delgoffe et al., 2009). It inhibits Treg and promotes Th17 

cell differentiation and is thus an attractive target. Deletion of mTOR results in strongly 

increased Treg cell differentiation upon activation (Delgoffe et al., 2009). The existence of 

mTOR in the two different complexes mTORC1 and mTORC2 complicates the dissection of 

individual contributions. Deletion of Rheb resulting in mTORC1 inactivation does not 

influence Treg cell induction while mTORC1 activity is essential for Th17 differentiation 

(Delgoffe et al., 2009, 2011; Kim et al., 2013). Thus it is conceivable, that either mTORC2 

activity alone is sufficient to interfere with Treg cell differentiation or that mTORC1 and 

mTORC2 act redundantly. MTORC2 but not mTORC1 activity is required for 

phosphorylation of Akt on Ser473, which enables the inactivation of Foxo transcription 

factors by phosphorylation through Akt (Jacinto et al., 2006). Since Foxo proteins are 

instrumental for Treg cell differentiation, it is suggestive that mTORC2 alone can repress 

Treg differentiation (Kerdiles et al., 2010). Yet this is in contrast with data on a central role of 

the mTORC1 target HIF1α in promoting Th17 and inhibiting Treg differentiation (Dang et al., 

2011; Shi et al., 2011). Altogether, mTOR function in reciprocal lineage differentiation is 

beyond a simple switch as the different functional complexes regulate independent aspects of 

Treg inhibition or Th17 promotion. This is consistent with a strong promoting effect of miR-

99a and miR-100 in Treg cell differentiation but a rather mild inhibitory effect on Th17 cell 

differentiation.  

During Treg cell differentiation, the expression of Mtor mRNA continuously decreased 

during the first 24 h of Treg cell differentiation whereas the mTOR protein levels increased 
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(Figure 19). This could be explained with a higher translational efficiency of the Mtor mRNA 

after activation, potentially by escaping microRNA-regulation through shortening of the 

3’UTR, as observed for Eri1 mRNA during Treg cell induction. 3’end sequencing data in 

various mouse tissues did not find alternative lengths of the 3’UTR encoded in the most 3’ 

exon (Derti et al., 2012). Yet it identified two mTOR isoforms that may result from 

alternative splicing, since at least one of them ends in intronic canonical PAS. Further qPCR 

analyses or northern blot experiments will show, whether alternative splicing modulates the 

sensitivity of Mtor for post-transcriptional gene regulation during Treg cell differentiation. 

The assumed increase in translational efficiency of Mtor suggests that miR-99a, miR-100 and 

miR-150 repression of Mtor could be most effective in early Treg cell differentiation. This is 

in line with data showing that pharmacologic inhibition of mTOR with rapamycin promoted 

Treg cell differentiation and had the strongest effect 18h after Treg cell induction (Sauer et 

al., 2008). Consistently, miR-99a overexpression resulted in a strong reduction of mTOR 

protein levels 18h after Treg cell induction in my experiments (Figure 20).  

Taken together, mTOR regulation by miR-99a, miR-100 and miR-150 levers at a critical and 

central player to promote the Treg cell lineage decision.  

 

We established Rora as a target of the Treg cell promoting microRNAs miR-10b, miR-150 

and miR-99a. Whereas RORα and RORγt synergized in the induction of Th17 differentiation, 

only RORα was required to suppress the Treg cell differentiation program (Yang et al., 2008). 

A knock-out of RORα in T cells led to differentiation of naive T cells into Treg cells upon 

activation, even in Th17-polarizing conditions. Conversely, in Treg-polarizing conditions, 

overexpression of RORα alone repressed Treg cell differentiation by 50% whereas RORγt 

alone had no effect on differentiation (Yang et al., 2008). In the human Jurkat cell line, Foxp3 

directly interacted with RORα in overexpression experiments and thereby inhibited 

transcription of RORα target genes (Du et al., 2008). This could provide a molecular basis for 

the reciprocal function of RORα in Treg versus Th17 cell differentiation. 

A recent study showed a negative role of RORα in the development of Tfh cells, where 

RORα promoted transcriptional upregulation of Ccr6, Il1r2, Il1r1 and Il22 in a dose-

dependent manner (Baumjohann et al., 2013). All these genes were associated with Th17 

differentiation and function and were therefore termed ‘Tfh-inappropriate’ genes (Hirota et 

al., 2007; Liang et al., 2006; Shaw et al., 2012). Interestingly, in Tfh cells Rora is repressed 

by miR-17 and miR-92 from the miR-17~92 cluster. In analogy to that, miR-10b and miR-

150 likely suppress the expression of RORα and its downstream-induced ‘Treg-inappropriate’ 
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genes during Treg cell differentiation. Interestingly, RORα has been demonstrated to interact 

with HIF1α, which is induced by mTORC1 activity (Kim et al., 2008; Shi et al., 2011). In cell 

line experiments, RORα induced HIF1α expression and synergized with HIF1α in the trans-

activation of a reporter linked to target gene promoter sequences (Kim et al., 2008). 

Conversely, HIF1α was a direct transcriptional activator of RORα in HepG2 cell lines 

(Chauvet et al., 2004). This cross talk between the Th17-promoting functions of RORα and 

HIF1α downstream of mTOR suggests a feed forward loop of these pathways in Th17 

differentiation. The microRNAs identified in our screen may therefore provide a suppressive 

network repressing one or both players in this signal amplification loop in the Th17 

differentiation program. 

 

8.5 A cooperative microRNA network to repress inappropriate gene expression 

during Treg cell induction. 

Most of the non-random candidates we identified in our screen affected Treg cell 

differentiation moderately in a graded manner and can be classified as tuning interactions. 

This suggests that these microRNAs work together and are embedded in a network of 

microRNA:target interactions. It is woven by convergence of several microRNAs on one 

target, like miR-10b, miR-99a and miR-150 on Rora, as well as by pleiotropic effects where 

one microRNA targets several mRNA targets, like miR-150 targeting of Mtor, Rora and 

potentially others. In T cell differentiation, such a network may buffer differentiation 

decisions under weak polarizing signals. Sufficient stimuli or induction of key factors may 

then condition the network, for example by cooperation, to act in a switch like manner and 

promote lineage commitment by the suppression of inappropriate gene expression.  

In that manner, ectopic miR-150 expression on top of the endogenously expressed 

microRNAs moderately promoted Treg cell differentiation. The network hypothesis 

implicates, that the loss of a single node can be buffered and does not abolish the network 

function. In agreement with that, deletion of the highly expressed miR-150 did not exhibit 

obvious changes in the mature T cell compartment, although Treg cell induction from naive T 

cells has not been analyzed in particular (C. Xiao and M. Ansel, personal communication).  

The screen also identified a few microRNAs that markedly induced Treg cell differentiation 

resulting in about 50% increased Treg cell differentiation, which were miR-99a and miR-10b. 

These microRNAs may be the key factors that help to switch the microRNA network towards 

lineage commitment. Consistently, we showed that miR-10b and miR-99a/100 expression 

was induced by retinoic acid, which has been shown to markedly enhance Treg cell induction 
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(Mucida et al., 2007; Schlenner et al., 2012). Retinoic acid facilitated binding of pSMAD3 

downstream of TGFβ signaling to the Foxp3 enhancer, which is indispensable for Foxp3 

expression (Xu et al., 2010). In addition to that, already a moderate induction of miR-10b and 

miR-99a/100 by retinoic acid may be sufficient to strongly promote Treg cell differentiation, 

if target regulation occurs in a cooperative manner. Cooperative binding of two microRNAs 

to neighboring target sites within one target 3’UTR was shown to promote a much more 

efficient mRNA silencing than a single target site (Grimson et al., 2007; Sætrom et al., 2007). 

To prove the cooperation of miR-99a/miR-100 with miR-150 in target regulation, it will be 

interesting to study whether the overexpression of miR-99a in miR-150-deficient cells is still 

similarly effective. In addition, we prepare a reconstitution experiment that will be able to 

express individual Dicer-independent synthetic microRNAs in Dicer-deficient cells that lack 

almost all other microRNAs (Cifuentes et al., 2010).  

Taken together our screen has identified microRNAs that may act together in a repressive 

post-transcriptional network. They include key microRNAs that are inducibly regulated and 

that can cooperate with constitutively expressed microRNAs. These microRNA networks 

target central signaling pathways and transcription factors. They are therefore interconnected 

in networks of transcriptional activation and epigenetic modification. Together they suppress 

inappropriate and promote appropriate gene expression to finally determine lineage 

commitment.  
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8.6 Conclusion 

In this study we defined a window of opportunity for effective microRNA regulation during 

Treg cell differentiation. We developed an experimental system to test the effect of 

microRNA overexpression on Treg cell differentiation within this window of opportunity.  A 

functional microRNA overexpression screen identified a number of microRNAs that 

interfered with or promoted Treg cell differentiation. This suggested the concept that not a 

single microRNA, but a network of microRNA:target interactions underlies Treg cell 

differentiation. Further studies on four candidate microRNAs with Treg cell-promoting 

effects and their targets established a core network, in which the cooperation of highly 

expressed as well as inducible microRNAs can achieve sufficient downregulation of critical 

inhibitors of Treg cell differentiation. Future experiments will assess the effectiveness of this 

core network in the absence of specific microRNAs and link it with the regulation of Treg cell 

differentiation by transcription factor and epigenetic modifications.  

	  

	  
	  
	  
Figure 24: A model for microRNA cooperation in Treg cell differentiation. 
The highly expressed miR-150 represses Mtor und Rora, which are critical inhibitors of Treg cell 
differentiation. Retinoic acid can induce miR-10b and miR-99a/100 that cooperate with miR-150 in target 
repression and thereby promote Treg cell differentiation 
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10 Abbreviations 
	  
-/-  knock-out 

A Adenine 

AP1 activator protein 1 

ATRA All-trans retinoic acid 

bp base pairs 

C Cytosine 

CAR Coxsackie adenovirus receptor 

CD Cluster of differentiation 

CDS coding sequence 

CMV Cytomegalovirus 

CNS Conserved non-coding sequence 

CPE Cytopathic effects 

CPSF Cleavage and polyadenylation specific factor 

CstF Cleavage  stimulating factor 

eGFP Enhanced green fluorescent protein 

Eri1 Exoribonuclease 1 

F/TC freeze-and-thaw-cycle 

Foxp3 forkhead box P3 

G Guanine 

GFP Green fluorescent protein 

HEK293 Human Embryonic Kidney 293 cells 

hFOXP3 human FOXP3 

h hour, hours 

IFNγ Interferon γ 

IL-2 Interleukin-2 

IRES Internal ribosomal entry site 

ITR Inverted repeat 

kB kilo bases 

kDa kilo Dalton 

ko knock-out 

MEF Murine embryonal fibroblasts 
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MHCII Major Histocompatibility Complex II 

min Minutes 

miR MicroRNA 

miRISC MicroRNA-induced silencing complex 

MOI Multiplicity of infection 

mRNA Messenger RNA 

mTOR Mechanistic target of rapamycin, protein 

Mtor Mechanistic target of rapamycin, mRNA 

NFAT Nuclear factor of activated T cells 

nt Nucleotides 

Ova Ovalbumin  

PAS Polyadenylation signal 

PCR Polymerase chain reaction 

qPCR Quantitative PCR 

RD Relative differentiation 

Rora RAR-related orphan receptor alpha, mRNA 

RORα RAR-related orphan receptor alpha, protein 

RT Room temperature 

SN Supernatant 

T Thymine 

TCR T cell receptor 

Tfh Follicular T helper cell 

TGFβ Transforming growth factor β 

Treg cell Regulatory T cell 

TSDR Treg-specific demethylated region 

U Uracil 

UTR Untranslated region 
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