
Exact Algorithms
for Network Design Problems

using Graph Orientations

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Maria Kandyba-Chimani

Dortmund
2011

Tag der mündlichen Prüfung:
30.03.2011

Dekan:
Prof. Dr. Peter Buchholz

Gutachter:
Prof. Dr. Petra Mutzel, Fakultät für Informatik, TU Dortmund
Prof. Dr. Christoph Buchheim, Fakultät für Mathematik, TU Dortmund

i

Abstract

The subject of this thesis are exact solution strategies for topological network design
problems. These combinatorial optimization problems arise in various real-world
scenarios, as, e.g., in the telecommunication and energy industries. The prime task
thereby is to plan or extend networks, physically connecting customers. In general
we can describe such problems graph-theoretically as follows: Given a set of nodes
(customers, street crossings, routers, etc.), a set of edges (potential connections, e.g.,
cables), and a cost function on the edges and/or nodes. We ask for a subset of nodes
and edges, such that the sum of the costs of the selected elements is minimized while
satisfying side-conditions as, e.g., connectivity, reliability, or cardinality. In this
thesis we concentrate on two special classes of topological network design problems:
the k-cardinality tree problem (KCT) and the {0,1,2}-survivable network design
problem ({0,1,2}-SND) with node-connectivity constraints. These problems are in
general NP-hard, i.e., according to the current knowledge, it is very unlikely that
optimal solutions can be found efficiently (i.e., in polynomial time) for all possible
problem instances.

The above problems can be formulated as integer linear programs (ILPs), i.e.,
as systems of linear inequalities, integral variables, and a linear objective function.
Such models can be solved using methods of mathematical programming. Gener-
ally, the corresponding solutions methods can be very time-consuming. This was
often used as an argument for developing (meta-)heuristics to obtain solutions fast,
although at the cost of their optimality. However, in this thesis we show that, ex-
ploiting certain graph-theoretic properties of the feasible solutions, we are able to
solve large real-world problem instances to provable optimality efficiently in prac-
tice. Based on orientation properties of optimal solutions we formulate new, prov-
ably stronger ILPs and solve them via specially tailored branch-and-cut algorithms.
Our extensive polyhedral analyses show that these models give tighter descriptions
of the solution spaces and also offer certain algorithmic advantages in practice. In
the context of {0,1,2}-SND we are able to present the first orientation property
of 2-node-connected graphs which leads to a provably stronger ILP formulation,
thereby answering a long standing open research question. Until recently, both our
problem classes allowed optimal solutions only for instances with roughly up to 200
nodes. Our experimental results show that our new approaches allow instances with
thousands of nodes. Especially for the KCT problem, our exact method is often
even faster than state-of-the-art metaheuristics, which usually do not find optimal
solutions.

ii

Zusammenfassung

Gegenstand dieser Dissertation sind exakte Lösungsverfahren für topologische Netz-
werkdesignprobleme. Diese kombinatorischen Optimierungsprobleme tauchen in un-
terschiedlichen realen Anwendungen auf, wie z.B. in der Telekommunikation und
der Energiewirtschaft. Die grundlegende Problemstellung dabei ist die Planung bzw.
der Ausbau von Netzwerken, die Kunden durch physikalische Leitungen miteinander
verbinden. Im Allgemeinen lassen sich solche Probleme graphentheoretisch wie folgt
beschreiben: Gegeben eine Menge von Knoten (Kunden, Straßenkreuzungen, Rou-
ter u.s.w.), eine Menge von Kanten (potenzielle Verbindungsmöglichkeiten) und eine
Kostenfunktion auf den Kanten und/oder Knoten. Zu bestimmen ist eine Teilmenge
von Knoten und Kanten, so dass die Kostensumme der gewählten Elemente mini-
miert wird und dabei Nebenbedingungen wie Zusammenhang, Ausfallsicherheit,
Kardinalität o.ä. erfüllt werden. In dieser Dissertation behandeln wir zwei speziel-
le Klassen von topologischen Netzwerkdesignproblemen, nämlich das k-Cardinality
Tree Problem (KCT) und das {0,1,2}-Survivable Netzwerkdesignproblem ({0,1,2}-
SND) mit Knotenzusammenhang. Diese Probleme sind im Allgemeinen NP-schwer,
d.h. nach derzeitigem Stand der Forschung kann es für solche Probleme keine Al-
gorithmen geben die eine optimale Lösung berechnen und dabei für jede mögliche
Instanz eine effiziente (d.h. polynomielle) Laufzeit garantieren.

Die oben genannten Probleme lassen sich als ganzzahlige lineare Programme
(ILPs) formulieren, d.h. als Systeme aus linearen Ungleichungen, ganzzahligen Va-
riablen und einer linearen Zielfunktion. Solche Modelle lassen sich mit Methoden
der sogenannten mathematischen Programmierung lösen. Das die entsprechenden
Lösungsverfahren im Allgemeinen sehr zeitaufwendig sein können, war ein oft genut-
zes Argument für die Entwicklung von (Meta-)Heuristiken um schnell eine Lösung
zu erhalten, wenn auch auf Kosten der Optimalität. In dieser Dissertation zeigen
wir, dass es, unter Ausnutzung gewisser graphentheoretischer Eigenschaften der
zulässigen Lösungen, durchaus möglich ist große anwendungsnahe Probleminstan-
zen der von uns betrachteten Probleme beweisbar optimal und praktisch-effizient
zu lösen. Basierend auf Orientierungseigenschaften der optimalen Lösungen, for-
mulieren wir neue, beweisbar stärkere ILPs und lösen diese anschließend mit Hilfe
maßgeschneiderter Branch-and-Cut Algorithmen. Durch umfangreiche polyedrische
Analysen können wir beweisen, dass diese Modelle einerseits formal stärkere Be-
schreibungen der Lösungsräume liefern als bisher bekannte Modelle und andererseits
für Branch-and-Cut Verfahren viele praktische Vorteile besitzen. Im Kontext des
{0,1,2}-SND geben wir zum ersten Mal eine Orientierungseigenschaft zweiknotenzu-
sammenhängender Graphen an, die zu einer beweisbar stärkeren ILP-Formulierung
führt und lösen damit ein in der Literatur seit langem offenes Problem. Unsere
experimentellen Ergebnisse für beide Problemklassen zeigen, dass—während noch
vor kurzem nur Instanzen mit weniger als 200 Knoten in annehmbarer Zeit berech-
net werden konnten—unsere Algorithmen das optimale Lösen von Instanzen mit
mehreren tausend Knoten erlauben. Insbesondere für das KCT Problem ist unser
exaktes Verfahren oft sogar schneller als moderne Metaheuristiken, die i.d.R. keine
optimale Lösungen finden.

iii

Acknowledgements

First of all, I want to express my deep gratitude to my advisor Prof. Dr. Petra
Mutzel for opening me the way into the scientific world, for leading me into the
field of network design, guiding me through my PhD years, and introducing me
to Ivana Ljubic and Mechthild Stoer, whose PhD work was the gateway into my
research topics. Also due to Petra, I had the freedom to find my favorite research
direction and to change the originally proposed thesis topic. From the very be-
ginning, Petra not only shared her insight in the fields of graph theory, algorithm
engineering and mathematical programming, but encouraged and supported me to
visit helpful international workshops and conferences. The latter taught me various
subject-specific skills and allowed me to meet researchers from all over the world
and establish fruitful cooperations. Also, thank you, Petra, for supervising me over
long distances, thus allowing me to be flexible enough to combine research and
family and to live and work in Brno, Vienna, and Jena.

My special thanks are directed to my frequent co-authors and friends Ivana
Ljubic and Markus Chimani for being personally involved in my PhD work and for
innumerable useful advices and discussions. Thank you for the fruitful cooperations,
for being a pleasant company at conferences and workshops, and also for proof-
reading my thesis. You both taught me that research may cause a lot of joy. Thank
you, Ivana, for providing me with the initial implementation of your branch-and-
cut algorithm for the prize-collecting Steiner tree problem. Moreover, I want to
thank S. Raghavan and Mechthild Stoer for very useful discussions on the topic of
survivable network design.

I want to thank the German Research Foundation and the Deutsche Telekom
Stiftung for the financial support of my PhD studies. In particular, many thanks
to the Deutsche Telekom Stiftung for prolonging my grant and for giving me more
freedom due to the birth of my son Jonathan.

I want to thank my colleagues from LS XI for having a good and productive
time at TU Dortmund, for the relaxing coffee breaks, and for an overall pleasant
working environment. Many thanks to all my friends for providing me comfortable
leisure time, especially Assja, Xenia, Elena and Galina for supporting me in all life
situations.

Many special thanks go to my family: I would like to thank my parents, whom
I owe all my ambitions and thirst for knowledge, for their absolute support, and
for offering me innumerable life possibilities. I furthermore want to express my
gratitude to my parents in law for their unconditional involvement and help with
Jonathan which allowed me to overcome my permanent lack of sleep and allowing me
to have many precious working hours. Last but not least, I want to thank Markus,
my beloved husband and co-author, for not ceasing to motivate me, cheering me
up, for his support, inspiration, and endless fruitful discussions. You know, my
gratitude cannot be expressed in simple words!

iv

Contents

Abstract . i

Zusammenfassung . ii

Acknowledgements . iii

I Prelude 1

1 Introduction 3

1.1 Topological Network Design . 3

1.2 Exact Algorithms . 5

1.3 The Role of Graph Orientations . 6

1.4 Thesis Overview . 6

2 Preliminaries 11

2.1 Graphs . 11

2.2 Orientation Theorems . 15

2.3 Mathematical Programming for Network Design 17

2.3.1 Network Design Problems . 17

2.3.2 Linear Programing . 18

2.3.3 Measuring Formulation Strength 19

2.3.4 Solving Binary ILPs . 20

II k-Cardinality Tree Problems 23

3 Considered Problems 25

4 Literature Overview 27

4.1 Related Problems . 27

4.2 Complexity . 27

4.2.1 Relation Between KCT Problems 27

4.2.2 NP-Hardness . 28

4.2.3 Polynomially Solvable Cases 28

4.3 Preprocessing . 29

4.4 Heuristic Algorithms . 30

4.4.1 Heuristics . 30

4.4.2 Metaheuristics . 31

v

vi CONTENTS

4.4.3 Approximation Algorithms. 31

4.4.4 Experimental Studies . 32

4.5 ILP-based Exact Algorithms . 32

4.5.1 General Subtour Elimination Constraints 32

4.5.2 Undirected Cuts . 33

4.5.3 Miller-Tucker-Zemlin SECs and Multicommodity Flows . . . 34

4.5.4 Experimental Studies . 34

4.6 Our Contribution . 35

5 Orientation-based Modeling 37

5.1 Feasible Orientations of Trees . 37

5.2 Transformation into the KCA Problem 37

5.3 ILP Modeling . 39

5.4 Polyhedral Comparisons . 41

5.4.1 Generalized Subtour Elimination 41

5.4.2 Undirected Cuts . 43

5.4.3 Multi-Commodity Flow . 48

5.4.4 Alternative Orientation-based Models 50

6 Branch-and-Cut 55

6.1 Additional Constraints . 55

6.2 Initialization . 56

6.3 Separation . 57

6.4 Upper Bounds . 57

7 Experiments 59

7.1 EKCT Instances . 59

7.2 Algorithmic Behavior . 60

7.2.1 Parameter Influence . 60

7.2.2 Algorithm’s Running Times 63

7.3 Comparison to Other Methods . 63

7.3.1 Runtime Quality . 63

7.3.2 Solution Quality . 73

7.4 Branch-and-Cut Specific Statistics 75

7.5 Further EKCT Instances . 75

7.6 Node-weighted KCT . 76

7.6.1 NKCT Instances . 76

7.6.2 Parameter Influence . 77

7.6.3 Evaluation . 77

III {0,1,2}-Survivable Network Design 83

8 Considered Problems 85

CONTENTS vii

9 Literature Overview 89

9.1 The CON problem . 89

9.2 kCON . 91

9.2.1 k-Connected Steiner Networks 92

9.2.2 k-Connected Spanning Subgraph 92

9.3 kRSN . 94

9.4 ILP-based Exact Algorithms for {0,1,2}-SND 94

9.4.1 ILP Based on Undirected Graphs 95

9.4.2 Orientation-based ILPs . 97

9.5 Experimental Studies for {0, 1, 2}-SND Problems 100

9.6 Our Contribution . 102

10 Orientation-based Modeling 105

10.1 Solution Structure . 105

10.2 Orientation Theorems . 106

10.2.1 2ECON – Excursion . 106

10.2.2 2RSN . 106

10.2.3 2NCON . 108

10.3 Orientations of 2-Node-Connected Graphs 108

10.3.1 Our Characterization . 108

10.3.2 s, t-Orientation: A Different Approach? 109

10.4 ILP Modeling . 109

10.4.1 DFlow . 110

10.4.2 DCut . 112

10.4.3 Extension to the Prize-Collecting Model 112

10.5 Polyhedral Comparison . 113

10.5.1 Strength of DCut and DFlow 113

10.5.2 Comparison to the Undirected Cut Formulation 115

10.5.3 Comparison to the Mixed Flow Formulation 117

10.5.4 Additional Cut-Constraints 119

11 Branch-and-Cut 123

11.1 Initialization . 123

11.2 Separation . 123

11.3 Upper Bounds . 124

11.3.1 Initial Heuristic . 124

11.3.2 LP-based Heuristic . 128

12 Experiments 129

12.1 Benchmark Instances: TSNDLib . 129

12.2 Tuning of DC . 131

12.3 Comparison of DFlow and DCut 133

12.4 Analysis of DCut Performance . 139

12.5 Directed vs. Undirected Models for 2RPCSN 139

12.6 Analysis of DC on TSPLIB+ . 141

viii CONTENTS

IV Epilogue 145

13 Conclusions and Outlook 147

Bibliography 149

Index 163

Part I

Prelude

1

Chapter 1

Introduction

In this thesis we discuss topological network design problems and present provably
optimal algorithms for them that are based on certain orientation properties of the
corresponding feasible solutions. In the next sections we will introduce these three
main ingredients and close with a brief overview on this thesis.

1.1 Topological Network Design

Providing communication services like telephone and internet connections requires a
huge planning effort where minimizing the arising costs is one of the biggest issues.
The main cable material used for internet and telephone connections in the last
century was copper. However, using modern fiber-optic technology allows much
higher and faster data throughput. Indeed, it is essential for delivering high-speed
internet to customers. Therefore, large European telecom companies decided to use
fiber-optic cables not only for their backbone networks, but also for new customer
connections and in fact to completely replace the old copper networks over time.
Since the process of cable laying is very costly, deciding where to lay them justifies
a thorough optimization.

The above setting is a prominent motivation for topological network design which
constitutes the main subject of this thesis: Consider a set of potential customers,
facilities and further connection points, and a set of possible route segments (e.g.,
streets) together with the, e.g., cable laying costs for each of them. In order to design
a network, a subset of the route segments has to be chosen connecting the given
customers with each other or to some service facilities. Thereby we want to minimize
the overall cost. As we will discuss in the following, various problem scenarios may
occur depending on certain economical or even political side-conditions. Apart
from natural connectivity constraints, further restrictions may be imposed on the
required network. In this thesis, we in particular deal with survivability, cardinality
and prize-collecting constraints. Figures 1.1 and 1.2 illustrate examples of different
topological network design settings and their possible feasible solutions, see also
Section 1.4 for details.

One possible aspect of topological network design is survivability : Some cus-
tomers may be more profitable or important than others, and require certain ser-

3

4 CHAPTER 1. INTRODUCTION

vice guarantees. In the case of cable damages or failures of some service facilities,
a number of alternative connections has to be provided. Indeed, guaranteeing such
redundancy becomes particularly crucial when designing fiber-optic networks: Not
incorporating survivability in the corresponding design model results in networks
that contain a substantially smaller number of connection links than current copper
networks. This is due to the higher capacity of fiber optic cables. Together with
the fact that each fiber link carries a larger amount of the traffic than its copper
counterpart, the mentioned sparsity of a fiber-optic network may cause more severe
service interruptions (and losses of revenue) even when only a single connection
point or link is damaged. One of the most prominent examples is a severe undersea
cable damage through a ship anchor that happened 2008 near the Egyptian coast.
Thereby more than 75% of traffic between the Middle East, Europe, and America
has been disrupted1. The following revealing comment on this incident underlin-
ing the importance of a thorough cost optimization was given by Todd Underwood,
vice-president of the information analysis company Renesys, to the online magazine
Wired2:

“Given the desire by telecoms and broadband customers to keep costs
low, situations like the current cuts will continue to happen. [. . .] This
is all about money – how much money do we want to pay to make sure
the network doesn’t go down?”

Our second important set of requirements for topological network design are car-
dinality constraints, i.e., constraints on the number of the route segments or con-
nection points that are contained in the solution network. The following real-world
problem occurred in the 1990s in the Norwegian oil-industry: The government
leased oil-fields to companies allowing them to explore these fields. After six years,
each company had to return a connected part of its territory which had to contain
at least half of the original oil-field. Naturally, the essential task for a company
was to find the most unprofitable such part. As we discuss later in this thesis,
this problem can be seen as a topological network design problem with cardinality
constraints. Such constraints, e.g., also arise when a telecommunication company is
permitted to service only a certain number of possible customers due to monopoly
regulations.

Furthermore, a telecommunication company is often allowed to decide whether
to include a customer into a network or not. This decision has to be made by
comparing the estimated profit of a customer to the cost of connecting him/her to
the network. On the other hand, there may also be customers (e.g., some govern-
mental institutions), which have to be provided with service at any cost. When the
customer’s profit is taken into account (at least for some customers), we are dealing
with prize-collecting topological network design problems.

All above mentioned problems can be mathematically formulated by modeling
them on graphs: customers, facilities and further connection points are represented

1http://www.computerweekly.com/Articles/2009/01/06/234016/Cable-damage-disrupts-
internet-services.htm

2http://www.wired.com/threatlevel/2008/01/fiber-optic-cab/

1.2. EXACT ALGORITHMS 5

as nodes and the route segments are represented as edges. The resulting graph prob-
lems belong to the class of combinatorial optimization problems, as the necessary
decisions are of discrete nature. Prominent representatives of topological network
design problems in the literature are, e.g., the well-known minimum spanning tree
(MST), the Steiner tree and Steiner network problems as well as their extensions.
Whereas MST is polynomially solvable, already the Steiner tree problem is NP-
hard, i.e., it is assumed that there is no algorithm that can solve such a problem in
polynomial worst-case time.

In this thesis, we focus on two different classes of NP-hard topological network
design problems: k-cardinality tree and {0,1,2}-survivable network design (also in-
corporating the prize-collecting aspect), see also Section 1.4 for a more detailed
description.

1.2 Exact Algorithms

The main goal of this thesis is to develop practically relevant exact algorithms, i.e.,
algorithms computing provably optimal solutions for large real-world instances of
the above mentioned problems. Therefore, we model the given problems as (mixed)
integer linear programs (ILPs) and solve these using methods of mathematical pro-
gramming.

Usually, algorithms for solving ILPs have a worst-case running time that is
exponential in the size of the input. Hence, naive ILP algorithms often fail in
practice when applied to real-world scenarios. For a long time, this has been a
main argument by different research communities to waive provable optimality and
use promising heuristic or meta-heuristic algorithms instead.

However, exploiting the structure of the given problem in order to get provably
strong ILP models and using sophisticated algorithms tailored to these and to the
typical special properties of real-world instances, can be surprisingly successful and
lead to quick optimal solutions. Several recent results [PD01c,LWP+06] confirm this
and show that strong ILP models, when used in conjunction with recent advances
in CPU power and ILP solvers, can allow to solve large real-world instances for
prominent network design problems, such as the Steiner tree and prize-collecting
Steiner tree, to provable optimality within reasonable time bounds. Hence, our
first step is to design such strong ILP models for the above mentioned problem
classes. Fortunately, it turns out that these problems have an important common
property: the corresponding optimal solutions can be characterized by the means
of graph orientations. We therefore use such characterizations to derive ILPs that
are stronger then the previously known models.

When designing our ILP models and solution methods, we furthermore follow
the principles of Algorithm Engineering, e.g., by exploiting the knowledge about the
given underlying graphs. They may have special properties like low or high density,
specially structured cost functions (e.g., satisfying the triangle inequalities) or may
be similar to grids. We can design special purpose improvements tuned for such
instances to further enhance the performance of our exact algorithms, making them
highly competitive in practice.

6 CHAPTER 1. INTRODUCTION

1.3 The Role of Graph Orientations

All our problems and most of the corresponding known ILP models are based on
undirected graphs. Usually, similar problems that are defined on arbitrary directed
graphs tend to be harder than their undirected counterparts. Yet, for network
design problems such as, e.g., the Steiner tree problem, it can be advantageous to
transform the undirected problem into a directed one on a related bidirected graph,
as the LP relaxation of the resulting ILP may deliver stronger bounds than their
undirected counterpart.

Unfortunately, not all undirected topological network design problems have an
equivalent directed counterpart. This is only possible for problems where all optimal
solutions have certain common orientation properties that can be exploited. For
our problems, we can show that this is indeed the case. Thus the orientability issue
becomes a central focus of this thesis.

Whereas the orientation property of trees that we use to solve the k-cardinality
tree problem is well-known and has already been used in order to solve similar
problems (where feasible solutions represent trees), the necessary orientation prop-
erties of solutions to the considered survivable network design problems were a
long-time open question in the literature. We answer this question by describing
such orientation properties and proving their feasibility.

1.4 Thesis Overview

This thesis consists of four parts. Part I is a basic introduction to our topics, graph
theory, and mathematical programming. Since this thesis deals with two different
types of topological network design problems, their discussion is divided into two
separate parts: Part II considers the k-cardinality tree problems whereas Part III
covers our results for {0,1,2}-survivable network design. We then conclude with
Part IV summarizing our results and giving an outlook on possible future research
on topological network design.

As the name already suggests, the k-cardinality tree problems consider the car-
dinality aspect of topological network optimization. The task is to find a cost-
minimum connected, cycle-free subgraph of a given graph that contains exactly k
edges. Figure 1.1 shows a small example of this problem in the context of oil-
platforms.

The {0,1,2}-survivable network design problems focus on incorporating surviv-
ability and prize-collecting constraints into the network optimization. The task is
to find a minimum cost connected subgraph of a given graph such that for each
node the subgraph satisfies a given connectivity requirement modeled by integer
numbers 0, 1, 2: We call nodes with requirement 2 the important customers, the
ones with requirement 1 the regular customers. All customers of these two types
have to lie in a connected solution network. For additional solution properties,
we distinguish between different interpretations of connectivity requirement “2”:
A survivable network w.r.t. edge-connectivity requires each pair of important cus-
tomers to be connected to each other via two edge-disjoint paths, i.e., paths that
do not have any connection link in common. A survivable network w.r.t. root-node-

1.4. THESIS OVERVIEW 7

Figure 1.1: Example of a k-cardinality tree problem. Bold edges denote a solution
for k = 5.

connectivity connects each important customer to a predefined hub (called root) via
two node-disjoint paths, i.e., paths that do not share any connection point. This
root usually represents a preexisting infrastructure, a company headquarter, etc.
Finally, a survivable network w.r.t. node-connectivity contains two node-disjoint
paths for each pair of important customers. Figure 1.2 shows examples of surviv-
able networks that are feasible w.r.t. the above interpretations. In this thesis we
will in particular deal with the latter two node-disjoint variants. Furthermore, we
will also consider the above problem types in their prize-collecting variant.

As both the k-cardinality tree and the survivable network design problems are
well-known in the literature, we provide an extensive overview on the previously
published results. We thereby consider complexity results as well as known heuris-
tics, approximations, and exact algorithms. For each problem, we in particular
list all previously known ILP models. As the practical relevance of our algorithms
is a central aspect of this thesis, we give an overview on all previously published
computational studies and the thereby used benchmark instances. In particular on
the vast field of survivable network design, multiple surveys have been published
before. However, since various new results appeared only recently, most of these
surveys are not complete. To our knowledge, the survey given in this thesis, is the
currently most complete one including results of the most current research regarding
heuristic, approximation, and exact algorithms.

For both problem classes, we develop fast, practically relevant exact algorithms
based on a branch-and-cut scheme. Thereby we use the following strategy:

(a) We analyze the structure of the optimal solutions and provide graph-theoreti-
cal foundations in order to construct an equivalent problem based on directed
graphs.

(b) We formulate different ILPs for the directed problem and choose the ade-
quate model for our algorithm. This choice is based on extensive polyhedral

8 CHAPTER 1. INTRODUCTION

(a) Survivable network with respect to edge-connectivity

(b) Survivable network with respect to root-node-connectivity

(c) Survivable network with respect to node-connectivity

Figure 1.2: Examples of our {0,1,2}-survivable network design problems. Small
houses and high-rise buildings denote regular and important customers, respec-
tively. The architecturally sophisticated round building represents a central hub
that, depending on the problem type, serves either as the root or plays the role of a
high-rise building. Black dots denote nodes with connectivity requirement 0 (e.g.,
street crossings). Bold edges denote a possible solution.

1.4. THESIS OVERVIEW 9

comparisons of our ILPs with the ones previously used in the literature.

(e) We design a special purpose exact algorithm using a branch-and-cut frame-
work and provide a corresponding computational analysis on both the known
and on new benchmark instances.

Although the theory and methods we apply in order to solve the k-cardinality
problem have already been successfully applied to other problems like the Steiner
tree and prize-collecting Steiner tree problems, this is the first exact algorithm
for the k-cardinality tree problem that is able to deal with large-scale real-world
instances (with up to roughly 2500 nodes) and random instances with up to 5000
nodes. We extensively tested it on the known benchmark library KCTLIB that was
used to test the previous, mainly metaheuristic, approaches for this problem. Our
approach solves these instances to provable optimality not only in reasonable time
bounds, but (for groups with up to 1000 nodes) is also faster than the best previously
known metaheuristics. Our experiments therefore serve as a counterexample to the
previously mentioned argument for the necessity of metaheuristics purely based on
the fact that a problem is NP-hard. We show that this argument is deceptive on this
and related problems at least for the problems of the known benchmark instances.

For our {0,1,2}-survivable network design problems with the node-disjoint char-
acter, we derive novel orientation properties and use them to derive strong ILP
models and design competitive branch-and-cut algorithms based on them. Although
most of our survivability problems have been already treated in the literature by
other communities, until now there was no common challenging benchmark set that
could have been used for comparative computational studies. We therefore propose
such a benchmark set and use it for our experiments. We give an extensive experi-
mental study on the performance of our algorithms thus showing their effectiveness
in practice.

This thesis is largely based on the following original papers:

• Obtaining Optimal k-Cardinality Trees Fast; at ALENEX’08 [CKLM08a]

• Obtaining Optimal k-Cardinality Trees Fast; in Journal on Experimental Al-
gorithms [CKLM09]

• A New ILP Formulation for 2-Root-Connected Prize-Collecting Steiner Net-
works; at ESA’07 [CKM07]

• Strong Formulations for 2-Node-Connected Steiner Network Problems; at CO-
COA’08 [CKLM08b]

• Orientation-based Models for {0,1,2}-Survivable Network Design: Theory and
Practice; in Mathematical Programming B [CKLM10]

Note that the experimental studies for both problem classes were largely ex-
tended (and recomputed) compared to the previously published results.

Although not included in this thesis, ideas presented herein formed the basis of
further research by the author:

10 CHAPTER 1. INTRODUCTION

• Hybrid Numerical Optimization for Combinatorial Network Problems;
at HM’07 [CKP07]

• 2-InterConnected Facility Location: Specifications, Complexity Results, and
Exact Solutions; technical report, submitted to a journal [CKM09]

The first publication describes a hybrid version of the heuristic algorithm for {0,1,2}-
survivable network design presented in this thesis. The second paper demonstrates
how the results of this thesis can be successfully applied to facility location prob-
lems.

Chapter 2

Preliminaries

2.1 Graphs

The problems considered in this thesis are defined on graphs. In this chapter we will
provide basic definitions for graph structures and emphasize their main properties
that will be used later. This section is based on [Har69]. Omitted proofs can be
found therein.

Graphs. An undirected graph G is a tuple (V,E), where V is a set of nodes and
E ⊆

(
V
2

)
:= {{u, v} | u 6= v ∈ V } is a set of edges, i.e., unordered pairs of nodes.

Given an arbitrary graph G′, we may use the functions V (G′) and E(G′) to obtain
its nodes and edges, respectively. For an edge e = {u, v}, u and v are called end
nodes of e. Furthermore, e is said to be incident with u and v, nodes u and v are
said to be adjacent to each other. The number of edges incident to v is the degree
of v. Edges sharing a common end node are adjacent edges.

Sometimes it can be useful to consider graphs with multiple edges between two
nodes and to allow loops, i.e., edges with non-distinct end nodes. In this context
our definition describes simple graphs. Unless mentioned otherwise our graphs will
always be simple.

A directed graph D = (V,A) features arcs, i.e., ordered node pairs A ⊆ V × V ,
instead of edges. For an arc (u, v), u is called its start node and v its end node. The
number of arcs with u as their start node (end node) is the out-degree (in-degree)
of u.

A graph in which all nodes are adjacent is complete. A complete graph on
three nodes is called a triangle (graph). An n × m-grid (also known as lattice)
is a graph whose nodes correspond to the points (x, y) in the plane with integer
coordinates x = 1, . . . , n and y = 1, . . . ,m and two nodes are connected whenever
the corresponding points have distance 1. An undirected graph is k-regular if every
node has degree k.

In the following we will always assume G = (V,E) and D = (V,A) to be an
undirected and a directed graph, respectively.

11

12 CHAPTER 2. PRELIMINARIES

(a) G (b) Ĝ (c) Ḡ

Figure 2.1: Example for an undirected graph G, one of its possible orientations Ĝ
and its bidirection Ḡ. G is also a shadow of Ĝ

.

Cuts and Flows. Let S ⊆ V be a subset of nodes. We denote by δG(S) :=
{{u, v} ∈ E | u ∈ S, v /∈ S} the (undirected) cut or cut edges of S, i.e., the
set of edges that separate S from the rest of the graph. We call S the cut set
of δG(S). Furthermore, δ(S) is an s, t-cut if it separates nodes s ∈ S and t ∈ V \S.
Observe that the degree of a node v can be written as the cardinality of the cut
δG(v) := δG({v}).

When we are dealing with a directed graph D = (V,A) and S ⊆ V , the directed
cuts δ+

D(S) = {(u, v) ∈ A | u ∈ S, v /∈ S} and δ−D(S) = {(u, v) ∈ A | u /∈ S, v ∈ V }
denote the set of out-going and in-coming arcs in S, respectively. Again, |δ+

D(v)|
and |δ−D(v)| denotes the out- and the in-degree of v. In the following, we may omit
the subscripts specifying the graph, if it is clear from the context.

A function f : A→ R+ is an s, t-flow for some nodes s 6= t ∈ V if the capacity
constraints f(a) ≤ c(a) are satisfied for all arcs a ∈ A, and for all nodes v ∈ V the
flow-conservation constraints

∑
a∈δ−(v)

f(a)−
∑

a∈δ+(v)

f(a) =

−b < 0 if v = s,

b > 0 if v = t,

0 else

hold. The nodes s and t are the source and sink of this flow, respectively. We
denote the amount of flow by |f | = b. The maximum amount over all s, t-flows is
the maximum flow in D. Flows in undirected graphs are defined analogously.

Orientations. A directed graph is called oriented if there are no symmetric pairs
of arcs, i.e., it does not contain pairs of arcs (u, v) and (v, u). An orientation of an
undirected graph G = (V,E) is a directed graph Ĝ = (V,A) obtained by assigning
a unique direction to each edge of G, so that Ĝ is oriented. Formally, we have
|A ∩ {(u, v), (v, u)}| = 1 for all {u, v} ∈ E. Inversely, a shadow (or underlying
undirected graph) of a directed graph D = (V,A) is the undirected graph GD =
(V,E) where {u, v} ∈ E if and only if (u, v) or (v, u) is in A. During the thesis we
will often use a related concept: A bidirection of an undirected graph G = (V,E)
is the graph Ḡ = (V,A) where each edge is replaced by its two possible arcs, i.e.,
A = {(u, v), (v, u) | {u, v} ∈ E}. See Figures 2.1(a) and 2.1(b), 2.1(c) for examples
of these concepts.

2.1. GRAPHS 13

The following definitions are given for undirected graphs. If not specified oth-
erwise they can be extended to directed graphs straightforwardly.

Graph structures. A graph G′ = (V ′, E′) is a subgraph of G = (V,E), if V ′ ⊆ V
and E′ ⊆ E. A subgraph G′ is induced by V ′ if E′ = E ∩

(
V ′

2

)
. In the latter case

we may use the notations G[V ′] and E(V ′) for G′ and E′, respectively.
A walk P = [v0 → v`] of length ` ≥ 0 in an undirected graph G is a subgraph

P = (VP , EP) of G with VP = {vi ∈ V | i ∈ {0, ..., `}} and EP = {{vi, vi+1} ∈ E |
i ∈ {0, . . . , ` − 1}}. We call v0 and v` the end nodes and vi (i ∈ 1, . . . , `− 1) the
inner nodes of the walk. In the context of directed graphs we analogously talk about
directed walks P = (v0 → v`) with arcs AP = {(vi, vi + 1) ∈ A | i ∈ {0, . . . , `− 1}}.

A walk is a path if vi 6= vj for i 6= j. If all inner nodes of a path have degree 2,
we call it line. A walk is closed if v0 = v`. A cycle is a closed walk where all nodes
are pairwise disjoint except for the end nodes.

Let u 6= v be two distinct nodes in a graph G. A collection of ` paths Pi =
[u → v] with ` ≥ 2 in G are edge-disjoint if they do not share any edge. They are
node-disjoint if all their inner nodes are pairwise disjoint. Clearly, if all paths are
node-disjoint, they are also edge-disjoint but not vice versa.

Connectivity and trees. A graph G = (V,E) is connected if there exists a
path [u → v] for every pair of nodes u, v ∈ V . A connected component of a given
graph is a maximal connected subgraph. In general, a graph may consist of several
(disjoint) connected components. For directed graphsD = (V,A) we can distinguish
two kinds of connectivity: D is weakly connected if its shadow is connected. It
is strongly connected if there exists a directed path from u to v for all pairs of
nodes u, v ∈ V . A strongly connected component is a maximal strongly connected
subgraph of D.

A tree T = (V,E) is a connected graph that does not contain any cycle. A
subtree of a graph G is a subgraph of G that forms a tree. A leaf is a node of a tree
with degree 1. If all connected components of a graph G form trees, G is a forest .
A directed graph D = (V,A) is called arborescence, if its shadow is a tree and there
exists a special root node r ∈ V such that there exists a directed path (r → u) for
every node u ∈ V .

2-Connectedness. A bridge in G is an edge e ∈ E such that the removal of e
disconnects G. More precisely, the graph G\{e} := (V,E \{e}) has more connected
components than G. A connected graph on at least 2 nodes is 2-edge-connected if
it does not contain any bridge.

Analogously, a cut node (or articulation node) in G is a node v ∈ V such that
the removal of v and all its incident edges disconnects G. A connected graph on
at least 3 nodes is 2-node-connected if it does not contain any cut node, i.e., the
removal of any node would still leave a connected graph. Note that if a given graph
is 2-node-connected, it is also 2-edge-connected but not vice versa.

Analogously to connected components we can define 2-edge-connected and 2-
node-connected components of a given graph, i.e., its maximal 2-edge-connected or
2-node-connected subgraphs, respectively. In slight contrast to a 2-node-connected

14 CHAPTER 2. PRELIMINARIES

component, a block of G is any maximal subgraph without any cut node, i.e., a
block is either a 2-node-connected component or a bridge including its endpoints
(i.e., an edge connecting two cut nodes).

The following theorems characterize bridges, cut nodes and 2-node-connected
graphs, respectively, and give a deeper intuition of these graph structures.

Theorem 2.1. Let e ∈ E be an edge of a graph G = (V,E). The following state-
ments are equivalent:

1. e is a bridge in G.

2. e is not on any cycle of G.

3. There exist nodes u, v ∈ V such that e is on every [u→ v]-path in G.

4. There exists a bipartition of V into subsets U and W such that for any nodes
u ∈ U and w ∈W , e is on every [u→ w]-path in G.

Theorem 2.2. Let v be a node of a connected graph G. The following statements
are equivalent:

1. v is a cut node of G.

2. There exist nodes u 6= w ∈ V , u,w 6= v, such that v is on every [u→ w] path.

3. There exists a bipartition of V \ {v} into subsets U and W such that for any
nodes u ∈ U and w ∈W , the node v is on every [u→ w] path.

Theorem 2.3. Let G = (V,E) be a connected graph with |V | ≥ 3. The following
statements are equivalent:

1. G is 2-node-connected.

2. Every pair of nodes u, v ∈ V lie on a common cycle.

3. Let u ∈ V and e ∈ E be any node and edge in G. Then u and e lie on a
common cycle.

Let a graph H and a walk P = [u → v] be subgraphs of G such that V (H) ∩
V (P) = {u, v}, whereby u and v are the end nodes of P . If P is a path or a cycle,
it is called an ear . If P is a path it is called an open ear . We say a graph G has
an (open) ear decomposition with a start edge {s, t} if it can be constructed from
{s, t} by successively adding (open) ears. Thereby, the first added ear has to be an
open ear [s → t]. The start edge together with an open ear [s → t] is the smallest
(open) ear decomposable graph. The following theorem characterizes 2-edge- and
2-node-connected graphs by the means of ear decompositions:

Theorem 2.4. A graph G is 2-edge-connected if and only if it has an ear decom-
position. G is 2-node-connected if and only if it has an open ear decomposition.

2.2. ORIENTATION THEOREMS 15

k-Connectedness. The notion of 2-connectedness can be naturally extended to
more general k-connectedness.

The node-connectivity number (also known as connectivity number) κ(G) of a
graph G is the minimum number of nodes whose removal results in a disconnected
graph G or a trivial graph consisting of one node. Analogously, the edge-connectivity
number α(G) is the minimum number of edges whose removal results in a discon-
nected graph. Clearly we have κ(G) ≤ α(G). A graph G is k-node-connected if
k ≤ κ(G) and it is k-edge-connected if k ≤ α(G).

The node aspect of the following theorem was originally proposed by Menger in
1927 [Men27] and was later extended by its edge variant, e.g., in [FF56,EFS56].

Theorem 2.5 (Menger’s Theorem). The minimum number of edges (nodes) sepa-
rating two nonadjacent nodes s and t in G is the maximum number of edge-disjoint
(node-disjoint, respectively) [s→ t]-paths in G.

The generalization of the above theorem is the well-known max-flow min-cut
theorem:

Theorem 2.6 (max-flow min-cut). Given a graph G = (V,E), two nonadjacent

nodes s and t and a capacity vector c ∈ R|E|+ . The maximum amount over all
s, t-flows equals the minimum over all cut capacities c(δ(S)) :=

∑
e∈δ(S) c(e) with

S ⊂ V , s ∈ S, and t ∈ V \ S.

2.2 Orientation Theorems

A large part of this thesis relies on characterizations of 2-edge- and 2-node-connected
graphs by means of feasible orientations. In 1939, Robbins showed the following
theorem:

Theorem 2.7 ([Rob39]). A graph G = (V,E) is 2-edge-connected if and only if
there exists an orientation Ĝ of G such that Ĝ is strongly connected, i.e., for every
pair of nodes u, v ∈ V there exist a directed (u→ v)-path in Ĝ.

Proof. ⇒: Let Ĝ be a strongly connected orientation of G. For any subset S ⊂ V
and nodes u ∈ S, v ∈ V \ S, Ĝ contains at least one (u → v)- and at least
one (v → u)-path. This implies |δ+

Ĝ
(S)| ≥ 1 and |δ−

Ĝ
(S)| ≥ 1, leading to

δG(S) ≥ 2.

⇐: Let G be 2-edge-connected. Hence it has an ear decomposition (cf. Theo-
rem 2.4). We use induction on the number of ears. As a base case, assume G
is a cycle. Orienting this cycle such that we obtain a directed cycle gives us a
strong connected orientation of G. As the induction step consider the decom-
position of G into a subgraph G′ with a strongly connected orientation Ĝ′ and
an ear P = [a→ b]. We obtain an orientation P̂ by orienting P as a directed
(a→ b)-walk. We now show that both orientations Ĝ′ and P̂ build a strongly
connected orientation Ĝ of G.

Let u 6= v ∈ V be some nodes in G. If u, v ∈ V (G′), there is a (u→ v)-path in
the strongly connected Ĝ′ by induction, and therefore also in Ĝ. If u ∈ V (P)

16 CHAPTER 2. PRELIMINARIES

and v ∈ V (G′), concatenating the (u → b)-path in P̂ and a (b → v)-path in
Ĝ′ gives us a (u → v)-path in Ĝ. Analogously, we can concatenate a path
(u→ a) in Ĝ′ with (a→ v) in P̂ if u ∈ V (G′) and v ∈ V (P). If u, v ∈ V (P),
there is either a (u → v)-path in P̂ or we can concatenate (u → b) in P̂ , a
(b→ a)-path in Ĝ′, and (a→ v) in P̂ to a (u→ v)-path in Ĝ.

In general, it is not possible to straightforwardly generalize this proof to 2-node-
connectivity. When simply replacing 2-edge-connectivity with 2-node-connectivity
in the above theorem, the first part of the proof fails as the edges δG(S) may all be
incident to a common node. Extending the orientability to additionally requiring
node-disjointness for all pairs of paths (u → v) and (v → u) fails in the proof’s
second part: the concatenation with paths in Ĝ′ does not allow to deduce node-
disjointness, cf. Section 9.4.2 for a counterexample.

A feasible characterization of 2-node-connected graphs can be done by using
the concepts of s, t-ordering and bipolar orientations. These concepts were first
introduced by [LEC67]. Let G = (V,E) be a 2-node-connected graph and s 6=
t ∈ V . An ordering s = v1, v2, . . . , vn = t on the nodes of G is called an s, t-
ordering , if for all nodes vj , 1 ≤ j ≤ n, there exist 1 ≤ i ≤ j ≤ k ≤ n such that
{vi, vj}, {vj , vk} ∈ E. An s, t-orientation (or bipolar orientation) of a graph G is
an orientation such that the resulting directed graph is acyclic, and s and t are the
only source and sink nodes, respectively.

Lemma 2.8. A graph G = (V,E) has an s, t-orientation if and only if it has an
s, t-ordering. These can be transformed into each other in linear time.

Proof. An s, t-ordering can be obtained from an s, t-orientation by topological or-
dering. An s, t-orientation can be obtained from an s, t-ordering by orienting the
edges from smaller to higher ordering index.

Theorem 2.9. A graph G = (V,E) is 2-node-connected if and only if it has an
s, t-orientation w.r.t. any edge {s, t} ∈ E.

Proof. Let {s, t} be any edge in G. Since G is 2-node-connected, G has an open
ear decomposition P0, P1, . . . , Pr starting with {s, t}. We use a labeling function
L : V → [0, 1] ∪ {∞} and call a node v ∈ V labeled if L(v) < ∞. Initially we set
L(s) := 0 and L(t) := 1 and L(v) := ∞ for all v ∈ V \ {s, t}. We first orient the
edge {s, t} from s to t. We than successively orient Pi from the lower-numbered
to the higher-numbered end nodes and thereby label the inner nodes with unique
fractional number in an increasing manner. Since the resulting orientation Ĝ of G
contains only arcs (v, w) with L(v) < L(w), Ĝ is acyclic and s and t are the only
source and sink nodes, respectively. Hence, Ĝ is an s, t-orientation of G.

On the other hand, let Ĝ be an s, t-orientation of G w.r.t. an edge {s, t} ∈ E
and let the function L represent the corresponding s, t-ordering. We prove that
G \ {v} := (V \ {v}, E \ δ(v)) is connected for any v ∈ V . We show that any node
w ∈ V \ {s, t, v} is connected to s or to t in G \ {v}: Assume L(v) < L(w). Due to
the s, t-ordering there is the unique sink t in Ĝ and hence at least one oriented path
from w to t using only nodes labeled at least with L(w). By deleting v from Ĝ,
there may arise additional sinks; these will have labels strictly smaller than L(v).

2.3. MATHEMATICAL PROGRAMMING FOR NETWORK DESIGN 17

Hence, the oriented path(s) starting from w with L(w) > L(v) to t remain after
this deletion. Analogously, if L(v) > L(w), there remains an oriented path from s
to w in Ĝ \ {v}.

As s and t are adjacent, every node w is connected to s in the undirected graph
G \ {v}. Hence, G \ {v} is connected. Similarly, if we delete the node s (or t), each
node w is connected to t (or s, respectively).

Using the above theorem and Lemma 2.8, we have an equivalent characterization
of 2-node-connected graphs:

Corollary 2.10. A graph G = (V,E) is 2-node-connected if and only if it has an
s, t-numbering w.r.t. any edge {s, t} ∈ E.

Computing s, t-numbering and bipolar orientations has been subject of intensive
research, for linear time algorithms see [ET76b, ET77, Ebe83, Bra02]. A survey on
bipolar orientations can be also found in [dFdMR95].

2.3 Mathematical Programming for Network Design

2.3.1 Network Design Problems

A combinatorial optimization problem is to find the best (optimal) element from a
given discrete set. Formally we can consider:

Problem 2.11 (Subset selection problem). Given a finite set F , a set I ⊆ 2F of
subsets of F (the feasible solutions) and a function c : F → R. For each set I ⊆ F ,
let c(I) =

∑
f∈F c(f). The subset selection problem (F, I, c) is to find a subset

I∗ ⊆ F with

c(I∗) = min{c(I) | I ∈ I}.

In this thesis we deal with (topological) network design problems. In various
industry applications, a network has to be designed that connects different objects
(say customers) and satisfies a set of constraints. We will model such problems as
a subgraph selection problems, which clearly belong to the class of subset selection
problems. As input of these problems we have an undirected graph G = (V,E),
an edge weight function wE : E → R and/or a node weight function wV : V → R.
A subgraph selection problems is to find a subgraph C of G that satisfies a set of
constraints and has minimum total weight.

The following problems are prominent examples of the network design problems
modeled on graphs.

Problem 2.12 (MST). The minimum spanning tree problem on an instance (G,wE)
is to find a subgraph T = (V,E′ ⊆ E) of G such that T is a tree with the minimum
sum of the edge weights.

Problem 2.13 (STP). The Steiner tree problem on an instance (G,wE , N ⊆ V)
is to find a subgraph T = (V ′, E′) of G such that T is a tree with N ⊆ V ′ and the
minimum sum of edge weights. We call N the terminal (or customer) nodes.

18 CHAPTER 2. PRELIMINARIES

Problem 2.14 (PCST). The prize-collecting Steiner tree problem on an instance
(G,wE , N ⊆ V,wN : N → R) is to find a subgraph T = (V ′, E′) of G such that
T is a tree and the sum

∑
e∈E′ wE(e)−

∑
v∈N∩V ′ wN (v) is minimized. I.e., not all

terminal nodes have to be contained in the solution tree, but each terminal node
has a prize (or profit) which is subtracted from the tree’s cost if the node is selected.

Problem 2.15 (TSP). The (symmetric) traveling salesman problem on an instance
(G,wE) is to find a subgraph S = (V,E′) such that S is a cycle spanning all nodes
with the minimum sum of edge weights.

Whereas MST is polynomially solvable, the STP, PCST, TSP, and many other
subgraph selection problems are NP-hard, i.e., computing an optimal solution will
in general lead to a running time that is exponential in the size of the given instance
(unless P = NP). This is the reason why heuristics, i.e., (fast) algorithms that
compute a feasible solution but do not guarantee optimality, are often used to solve
such problems.

Let I∗ be an optimal solution of a combinatorial optimization problem. A
heuristic that guarantees a solution I with c(I)

c(I∗) ≤ α is called an approximation
algorithm with approximation factor α.

This thesis, however, deals with exact algorithms, i.e., algorithms that output
optimal solutions. A useful tool to solve various optimization problems exactly
is mathematical programming. Generally, all subset selection problems can be
formulated problems as integer linear programs, although with varying degree of
practical efficiency. Modeling and solving network design problems as integer linear
programs is the central topic of this thesis. A detailed overview over integer linear
programming can be found, e.g., in [NW99, Sch98, Wol98]. In the next section, we
give a brief introduction into this field based upon [Chi08,Lju04].

2.3.2 Linear Programing

A linear program (LP) min{cTx | Ax ≥ b, x ∈ (R+
0)n} is a system of linear inequal-

ities and a linear objective function with a constraint matrix A ∈ R(m,n), a cost
vector c ∈ Rn, and a right-hand side vector b ∈ Rm. A variable vector x̄ ∈ (R+

0)n

satisfying all the constraints aT
i x̄ ≥ bi, i = 1, . . . ,m, is called a feasible solution.

We say a feasible solution x∗ is optimal if it minimizes cTx.1

An LP can be solved using, e.g., the ellipsoid method, interior point methods or
the Simplex algorithm. We can solve a (polynomially-sized) LP in polynomial time
using the first two methods. The Simplex algorithm has an exponential worst-case
running time. In practice, however, this algorithm is the simplest and most of the
times fastest algorithm to solve linear programs.

Considering the above LP and restricting the vector x to be integer, we obtain
an integer linear program (ILP). Furthermore, we deal with a binary ILP if we
require x to be binary, i.e., x ∈ {0, 1}n. All network design problems considered
in this thesis can be formulated as a binary ILP. Yet, different formulations can
be used for one and the same problem. Solving general ILPs and binary ILPs is

1Alternatively, LPs can also be defined to maximize the objective function. As this can be
modeled by minimizing −cTx, we will only consider minimizations in the following.

2.3. MATHEMATICAL PROGRAMMING FOR NETWORK DESIGN 19

NP-hard. However, various problem instances arising in industry applications can
be solved efficiently by choosing an appropriate strong model and a sophisticated
algorithm to solve it.

All ILPs described in this thesis are binary ILPs. Nevertheless, we will always
use the term ILP for better readability.

2.3.3 Measuring Formulation Strength

In order to be able to compare different ILP models we need some insight in poly-
hedral theory. Let the matrix A and the vector b be defined as above. A polyhedron
is a set that can be described in the form P = {x ∈ Rn | Ax ≥ b}. A polyhe-
dron is bounded—and therefore called polytope—if there exists a w ∈ R such that
P ⊂ {x ∈ Rn | −w ≤ xi ≤ w,∀i = 1, . . . , n}. In the following, we always deal with
polytopes.

Consider a subset selection problem (F, I, c) with associated linear objective
function c. We represent every feasible subset I ⊆ F of a subset selection problem
by the means of the incidence vector hI ∈ {0, 1}F that is given by hI(f) = 1 if
f ∈ I and hI(f) = 0, otherwise. It is known that minimizing an objective function
over I is equivalent to minimize the same objective function over the convex hull
of I. Therefore, we can consider the polytope

PI = conv{hI | I ∈ I},

i.e., the convex hull of the incidence vectors of all feasible sets I ∈ I. Any such
polytope can be represented by using its linear description, i.e., a finite set of
inequalities

PI = {x ∈ R|F | | Ax ≥ b}.

Generally, it is not possible to give a polynomially-sized description of this
convex hull. Hence, it is common to use polyhedra that are larger than PI . One
possibility is to use the polyhedron corresponding to the LP relaxation of the given
ILP, i.e., the LP resulting from replacing the integrality constraints x ∈ {0, 1}n by
x ∈ [0, 1]n. Clearly, each feasible solution of the original ILP is also feasible for its
LP relaxation. On the other hand, there are no additional integer solutions. Thus,
a (fractional) solution of such an LP relaxation is a lower bound to the optimal ILP
solution. Note that if this solution is integer, we found an optimal solution to our
initial ILP. Both the branch-and-bound and branch-and-cut algorithms described
in the next section use such LP-based lower bounds. Hence, given two different
ILP models for one and the same problem, we can compare them by comparing the
corresponding LP relaxations.

Definition 2.16 (Strength of LP relaxations, cf. [PD01c]). We say a relaxation R1

is weakly stronger than a relaxation R2 if the optimal value of R1 is no less than
that of R2 for all instances of the problem. If R2 is also weakly stronger than R1,
we call them equivalent , otherwise we say that R1 is strictly stronger than R2. If
neither is stronger than the other, they are incomparable.

20 CHAPTER 2. PRELIMINARIES

Let P1 and P2 be the polytopes associated with the feasible solutions of the
LP relaxations R1 and R2 for a given instance of a subset selection problem. Note
that these polytopes do not depend on the given cost function. Optimizing a cost
function over these polytopes gives us a lower bound on the optimal solution. In
order to compare these polytopes, we have to project them into a suitable common
variable space, say x′. As both contain the set of integer feasible solutions, we
have projx′(P1) ∩ projx′(P2) 6= ∅. Throughout this thesis we use the following
observation:

Observation 2.17. Let R1, R2, P1 and P2 be defined as above.

• The relaxation R1 is weakly stronger than R2 for all cost functions, if for all
problem instances we have

projx′(P1) ⊆ projx′(P2).

• The relaxations R1 and R2 are equivalent for all cost functions, i.e., the
lower bounds of both relaxations are equally strong, if and only if projx′(P1) =
projx′(P2) for all instances of the problem.

• For a given cost function c̄ the relaxation R1 is strictly stronger than R2, if
R1 is weakly stronger than R2 and there exists a problem instance for which
optimizing over P1 leads to stronger lower bounds as over P2, i.e.,

min{c̄(x′) | x′ ∈ projx′(P2)} � min{c̄(x′) | x′ ∈ projx′(P1)}.

Definition 2.18 (Strength of ILPs). For a given subset selection problem, let F1

and F2 be different ILPs with their corresponding LP relaxations R1 and R2. We
say F1 is weakly stronger (strictly stronger, equivalent) than F2 if and only if R1

is weakly stronger (strictly stronger, equivalent, resp.) than R2.

2.3.4 Solving Binary ILPs

Consider an ILP and the polytope associated with its feasible solutions. As de-
scribed above, it is in general not possible to find a polynomially-sized linear de-
scription of this polytope. Therefore, we first optimize over a larger polytope, e.g.,
corresponding to its LP relaxation, obtaining a fractional solution that gives us a
lower bound on the optimal solution of the original ILP.

Cutting planes. If the solution to the LP relaxation is not integer, we may try
to identify cutting planes, also known as integer-valid cuts, i.e., constraints that
that are satisfied by all feasible integer points but that are violated by the current
fractional solution. The integer-valid cuts are then added to the current model and
the problem is resolved iteratively. When no integer-valid cuts can be found, we
obtain a (hopefully strong) lower bound for the original ILP.

Recall that polynomially-sized LPs are solvable in polynomial time. However, in
the context of combinatorial optimization problems we often deal with an ILP that
requires an exponential number of constraints. In order to solve its LP relaxation

2.3. MATHEMATICAL PROGRAMMING FOR NETWORK DESIGN 21

(efficiently), we choose a subset of all ILP constraints and solve the corresponding
LP relaxation. We then solve the separation problem, i.e., we check if the current
solution violates any original ILP constraint and identify such constraints. We
iterate this process, adding such constraints and resolving the resulting LP, until
no more violated constraints can be found.

A particularly interesting theorem central to LP theory by Grötschel, Lovász,
and Schrijver (cf., e.g, [Wol98]) shows the equivalence of optimization and separa-
tion, i.e., if we can solve the separation problem in polynomial time, we can also
solve the underlying full LP in polynomial time. Hence, given an ILP with ex-
ponentially many constraints we can obtain the optimal fractional solution of the
corresponding LP relaxation in polynomial time if the corresponding separation
problem is polynomially solvable.

Branch-and-bound. In general, the cutting plane algorithm will not yield an
integer solution. The most widely used approach to solve ILPs to provable opti-
mality is to use a branch-and-bound strategy, i.e., the original problem is solved
by recursively subdividing it into several (usually two) subproblems. A common
branch-and-bound strategy for solving a given binary ILP is the following:

First, a lower bound is computed by solving the LP relaxation of the original
problem. If this solution is integer, it is already optimal and the algorithm stops.
Otherwise, we have to resort to branching , i.e., we generate two disjoint subprob-
lems, e.g., by fixing a variable to 0 or 1. We then solve the corresponding LPs and
use their solutions as local lower bounds. If such a solution is integer we can also use
it as a global upper bound. Further upper bounds can be obtained by using primal
heuristics that compute heuristic solutions to the original problem. Thereby, such
a solution can be either computed in advance (initial heuristic) or by incorporating
the current fractional solutions (LP-based heuristic). These bounds are then used to
prune irrelevant subproblems or to prove the optimality of the current upper bound.
The branching process can be represented by a branch-and-bound tree, where each
node corresponds to a subproblem and its children to its further variable fixings.

Branch-and-cut. A branch-and-cut algorithm [PR91] is a combination of the
cutting plane approach and the branch-and-bound strategy. Thereby, cutting planes
are generated in every node of the branch-and-bound tree. Branch-and-cut turned
to be very effective in practice, and lead to the most effective optimal algorithms
in many applications.

22 CHAPTER 2. PRELIMINARIES

Part II

k-Cardinality Tree Problems

23

Chapter 3

Considered Problems

Consider a real-world scenario as it arises in a telecommunication industry: We
have n cities and a set of connections between them (e.g., streets). Furthermore,
there are costs for using a connection, e.g., rental costs or working costs for cable
laying. We assume that a telecommunication company is permitted to service only
k + 1 of the customers and thus wants to find the k + 1 cities such that the cost
of connecting them is minimal. This problem can be easily modeled on a graph,
considering the cities as nodes and the connections between them as edges with
corresponding edge-weights. The solution of our problem is a minimum-weight
subtree of this graph containing exactly k edges.

Another example of our problem originates from the oil-industry [FHJM94]: In
the 1990s, Norwegian government leased oil-fields to companies allowing them to
explore these fields. After six years a company had to return a connected part of
the territory which had to contain at least a half of the original oil-field. Naturally,
the essential task for a company was to find the most unprofitable such part of
the field. By dividing the original field into subsquares and using the six years of
rent to explore the corresponding profits of these, this task can be modeled as a
k-cardinality tree problem as follows: Each subsquare is represented by a node.
We have an edge between two nodes if the corresponding subsquares are neighbors.
To each node of a graph we assign a weight which is the estimated value of the
corresponding subsquare. A connected subgraph of this graph containing exactly
half of the graph nodes with the minimum sum of node-weights constitutes an
optimal solution to the original problem.

Both problems above, as well as other applications, e.g., in quorumcast rout-
ing [CK94], telecommunications [GH97], open pit mining [PW97] and facility lay-
out [FH92] can be modeled as a k-cardinality tree problem:

Input. An undirected graph G = (V,E), a positive integer number k, and—as
suitable—an edge weight function wE : E → R and/or a node weight function
wN : V → R.

Problem 3.1 (EKCT). The edge-weighted k-cardinality tree problem on an instance
(G,wE , k) is to find a subgraph T of G which is a tree with exactly k edges and the
minimum sum of the edge weights.

25

26 CHAPTER 3. CONSIDERED PROBLEMS

The EKCT problem is also known as the k-minimum spanning tree problem
(k-MST), whereby the parameter k usually specifies the number of selected nodes,
which in a tree is exactly one more than the number of its edges. However, in our
notations k only specifies the number of edges in a solution. In the literature, the
edge weights are often restricted to be non-negative; our approach, presented in
this thesis, does not require this assumption.

Problem 3.2 (NKCT). The node-weighted k-cardinality tree problem on an in-
stance (G,wN , k) is to find a subgraph T which is a tree with exactly k edges and
the minimum sum of the node weights.

Although not prominent in the literature, we can straightforwardly generalize
both above problems to:

Problem 3.3 (AKCT). The general all-weighted k-cardinality tree problem on an
instance (G,wE , wN , k) is to find a subgraph T which is a tree with exactly k edges
and the minimum sum of edge- and node-weights.

In some applications it may be useful to require a solution to include some given
root node. Hence, we classify all above problems as unrooted KCT and define their
rooted counterparts:

Problem 3.4 (Rooted KCT). Given an input of an unrooted KCT problem and a
specified root node r′ ∈ V , find an optimal solution to this problem containing r′.
We may specify a corresponding instance by (G, r′, [wE], [wN], k), giving the weight
functions as necessary.

We summarize all above problem variants under the general abbreviation KCT .
The following two problems are closely related to KCT:

Problem 3.5 (KST). Given a subset C ⊆ V of terminals, the k-Steiner tree prob-
lem asks for the edge-weight-minimum tree spanning k terminal nodes. Thereby
the solution may contain some arbitrarily many non-terminal, a.k.a. Steiner, nodes.

Problem 3.6 (KPCST). Analogously to the KST, we can consider the k-cardinality
prize-collecting Steiner tree problem, which is to find a prize-collecting Steiner tree
with the side-condition that k terminal nodes have to be selected. The KST problem
is then the special case of the KPCST where all prizes of the terminal nodes are 0.
Note that the general KPCST does not require the edge weights nor the node prizes
to be non-negative.

In this part of the thesis we develop a new exact algorithm for KCT problems
that will also be able to solve K(PC)ST problems: In Chapter 4, we give a litera-
ture overview on these and related problems, paying special attention to ILP-based
algorithms. Most of these were based on undirected graphs. In Chapter 5, we
discuss an orientation property of trees that gives us a valid transformation of our
KCT problems into a k-cardinality arborescence problem (KCA). We then give a
novel ILP formulation for KCA and use it to solve all k-cardinality problems defined
above. In order to show the advantages of this formulation, we compare it to the
previously known formulations from a polyhedral point of view. Our branch-and-
cut algorithm is given in Chapter 6. Its performance is experimentally analyzed and
compared with the state-of-the-art algorithms for these problems in Chapter 7.

Chapter 4

Literature Overview

KCT problems were originally considered in [HJM91]. Its complexity and polyhe-
dral structure are analyzed in [FHJM94]. Since then, algorithmic solutions for these
problems have been subject of intensive research for various scientific communities.
In the following we discuss the complexity issues and give an overview over existing
algorithmic solutions for KCT, K(PC)STP, and other closely related problems.

4.1 Related Problems

The following problem is a special case of the EKCT problem, as it is defined on
the complete graph Kn with corresponding Euclidean distances as edge weights:

Problem 4.1 (PEKCT). Given n points in the Euclidean plane, the Euclidean
k-cardinality tree problem is to find the minimum-weight tree containing exactly
k + 1 < n points. Thereby we consider the Euclidean distance between two points
as the weight of a connection between them.

A prominent relaxation of the EKCT problem is:

Problem 4.2 (KCS). Consider the input of EKCT. The k-cardinality subgraph
problem is to find a minimum edge-weight connected subgraph with k edges.

4.2 Complexity

4.2.1 Relation Between KCT Problems

EKCT and NKCT. Given an NKCT instance (G,wN , k), we can obtain an
EKCT instance (G′, wE , 2k+ 1) in polynomial time as follows [EFHM97]: We con-
struct G′ from G by adding a dummy node v′ for each node v ∈ V and connecting
them via edges e′ = {v, v′} with wE(e′) := wN (v). For each original edge e ∈ E
we set wE(e) := (|E| + 1) maxv∈V |wN (v)|. This high weight ensures that in the
corresponding optimal EKCT solution as few of these edges are selected as possible.
An optimal NKCT solution of (G,wN , k) can be easily deduced from an optimal
EKCT solution of (G′, wE , 2k + 1) by deleting the dummy edges.

27

28 CHAPTER 4. LITERATURE OVERVIEW

Hence, the NP-hardness of general NKCT implies the NP-hardness of general
EKCT. However, historically the complexity of both problems was proven indepen-
dently, see below. In [BE03] it is mentioned that both problems are equivalent if
the input graph itself is a tree, see also Section 4.2.3.

Rooted and unrooted KCT. In [ABV95] it is shown that the EKCT problem
and its rooted version are essentially equivalent. Most of the known approximation
algorithms originally solve the rooted EKCT. The corresponding unrooted problem
is then solved by considering the rooted version |V | times, once for each possible
choice of the root node.

4.2.2 NP-Hardness

EKCT, NKCT and KCS problems (and therefore also the AKCT problem) are
in general strongly NP-hard as it has been shown in [FHJM94]. For the EKCT
problem, the NP-hardness was also indepedently proved in [RSM+96, ZL93]. The
proof is based on a reduction from the prominent Steiner tree problem to the EKCT
problem.

The following NP-hardness results are known for some restricted cases:

• The EKCT problem is NP-hard even if the input graph is planar or the edge-
weights are restricted to wE(e) ∈ {1, 2, 3} for all edges e ∈ E [RSM+96].

• The PEKCT problem is also NP-hard [RSM+96].

• The NKCT problem remains NP-hard on grid graphs, arbitrary planar graphs,
split graphs, bipartite graphs, chordal graphs, and perfect graphs [Woe92].

Furthermore, in [Woe92] it is observed that the NKCT and the Steiner tree
problems are closely related in the sence that their complexity classes for the inves-
tigated graph types are identical.

4.2.3 Polynomially Solvable Cases

The following restricted cases of the KCT problems are polynomially solvable:

• If k = |V | − 1, the EKCT problem becomes the classical minimum span-
ning tree problem, which is polynomially solvable, e.g., by the algorithms of
Kruskal or Prim (cf., e.g., [CLRS01]). Furthermore, the optimal value of the
corresponding NKCT problem is simply the sum of all given node-weights.

• If k is fixed, the EKCT problem is polynomially solvable by enumeration: for
each possible set of k + 1 nodes compute the minimum spanning tree and
afterwards choose the one of those with miminum weight. Analogously, the
same holds if k′ = |V | − k is fixed by choosing complementary sets.

• If G is complete, the NKCT problem is trivially solved by selecting k+1 nodes
with smallest weights.

4.3. PREPROCESSING 29

• If G is complete and wE has only two different values, EKCT is also polynomi-
ally solvable [RSM+96]: first, a not necessarily connected subgraph containing
all edges of the lower weight is constructed. We then choose the minimum
number of its connected components (say `) containing k + 1 nodes in total
(dropping nodes if necessary) and construct a minimum spanning tree for each
such component. These trees are then connected by `− 1 edges of the larger
weight.

• In [Maf91] it was shown that if G is a tree, there is a dynamic programming
algorithm that runs in O(k2|V |) time and solves EKCT exactly. This algo-
rithm is also sketched in [FHJM94]. Blum [Blu07] extended this algorithm
such that it solves both EKCT and NKCT problems and outputs not only the
value of the optimal solution, but also the corresponding tree. For the NKCT
problem on trees, a polynomial-time algorithm was also given in [Woe92].

• Ravi et al. [RSM+96] presented a dynamic programming algorithm with the
same running time as for trees for the more general class of graphs with
bounded tree-width [BLW87, ACPS93]. This class of graphs contains, e.g.,
trees, series-parallel, and bounded-bandwidth graphs.

• The NKCT problem is polynomially solvable for interval graphs and co-
graphs [Woe92]. The corresponding dynamic programming algorithms have
worst-case running times of O(k2|V |2) and O(k2|V |), respectively, and require
O(k|V |) space.

• The NKCT problem is polynomially solvable by a greedy algorithm on the
class of graphs containing exactly one trough [BE03]: For S ⊂ V let G[S] be
the thereby induced subgraph. G[S] is a trough if all nodes S have equal weight
and for all (u, v) ∈ E with u ∈ S and v ∈ V \ S we have wN (u) ≤ wN (v).

• The PEKCT problem is solvable in O(k2n7) for n points in the Euclidean
plane that lie on the boundary of a convex region. If the given n points lie on
a circle, there is an O(k2n) algorithm [RSM+96].

4.3 Preprocessing

In [RSM+96, BRV96] it is mentioned that if the input edge-weights of the EKCT
problem are positive, we can assume that they satisfy the triangle-inequality. Al-
though never explicitly mentioned in the literature, this gives the following prepro-
cessing routine:

Lemma 4.3. Let (G,wE : E → R+, k) be the input of the EKCT problem. If for
an edge e = {v, w} we have wE(P) ≤ wE(e), where P = [v → w] is the shortest
path from v to w in G− e, then e will not be contained in any optimal solution of
the EKCT problem.

Proof. Let T be an optimal k-cardinality tree with e ∈ E(T).

30 CHAPTER 4. LITERATURE OVERVIEW

|P | ≥ k: Let P ′ ⊆ P with |P ′| = k be a subpath of P of minimum length, then
wE(P ′) < wE(T) (even if wE(P ′) = wE(e)) which is a contradiction to the
optimality of T .

|P | < k: We construct a tree T ′ with wE(T ′) ≤ wE(T) from T by deleting e and
inserting all edges from P that are not already part of T . We thereby have
wE(T ′) ≤ wE(T).

• If we insert only one edge e′ ∈ P , i.e., we have T ′ is a k-cardinality tree
with wE(T ′) < wE(T) as wE(e′) < wE(e). This is a contradiction to the
optimality of T .

• If we have to insert more than one edge, we can reduce T ′ to a k-
cardinality tree T ′′ by pruning T ′. Thereby we have wE(T ′′) < wE(T ′) ≤
wE(T) which is a contradiction to optimality of T .

The above lemma can be used in order to preprocess and reduce our instances:
using a (polynomial) all-pair shortest path algorithm we identify edges with the
above property and delete them from the input graph.

4.4 Heuristic Algorithms

4.4.1 Heuristics

A collection of heuristics for EKCT and NKCT including an experimental compar-
ison, is presented in [EFHM97].

EKCT. In [EFHM97], three classes of heuristics were presented for the EKCT
problem:

• Algorithms based on the spanning tree algorithms (k-CardPrim).

• Algorithms based on shortest paths methods.

• Algorithms based on the dynamic programming algorithm of [Maf91].

Later, improved heuristics based on the dynamic programming algorithm for trees
were presented in [Blu07].

NKCT. All known EKCT heuristics can be applied to the NKCT problem using
the polynomial-time transformation of [EFHM97], also described in Section 4.2. Al-
though not considered in [EFHM97], note that for transforming an EKCT solution
T ′ back to its NKCT counterpart an additional pruning step may be necessary, as
T ′ (being only a heuristic solution) may contain more than k edges of the original
NKCT instance.

4.4. HEURISTIC ALGORITHMS 31

4.4.2 Metaheuristics

EKCT. A large amount of research was devoted to the development of meta-
heuristic methods for EKCT such as tabu search [JL97,BB05b], ant colonies [BS04,
BB05a], evolutionary algorithms [Blu06, BB05b], as well as variable neighborhood
search and variable neighborhood decomposition search [UBM04].

NKCT. A local search routine as well as genetic and tabu search algorithms for
the NKCT problem were presented in [BE03]. Further known NKCT metaheuristics
are different variable neighborhood search heuristics [BUM06] and a combination
of ant colony optimization with dynamic programming [BB05a].

4.4.3 Approximation Algorithms.

The EKCT problem has received a lot of attention in the approximation algorithm
community. The first approximation algorithm was given in [RSM+96] offering
an approximation factor of 2

√
k. This factor was then improved in [ABV95] to

log2 k. Both algorithms are constructive and use the ideas of Kruskal’s algorithm
for minimum spanning trees and Dijkstra’s shortest path algorithm.

The first approximation algorithm for EKCT with a constant factor was pro-
posed in [BRV96] and featured factor 17. This factor has been reduced to 3
in [Gar96], then to 2+ε in [AK00]. Finally, the approximation factor 2 was achieved
in [Gar05]. All above algorithms with a constant approximation factor are based on
the primal-dual scheme, originally proposed by Goemans and Williamson [GW95]
for the prize-collecting Steiner tree problem which can also be interpreted as a
constructive algorithm using components of Kruskal’s and Dijkstra’s algorithms.

Note that most of the above algorithms solve the rooted EKCT problem and
should be run for every node of the input graph in order to solve the unrooted
EKCT problem.

For the NKCT problem on a grid and with k = `2 for some positiv integer `
an O(

√
k) approximation algorithm was suggested in [Woe92]. The idea of this

algorithm is quite simple: Find a
√
k×
√
k-subgrid of minimum value and compute

its spanning tree.

In [CRW01], the authors present an ILP for KSTP based on undirected graphs
and use it to derive a 5-approximation. It was shown in [BRV96] that an α-
approximation algorithm for the EKCT yields a 2α approximation for the KSTP.
As the best known approximation factor for the EKCT is 2, this yields an approx-
imation factor of 4 for the KSTP. In [BRV96], the authors sketch ideas for 3- and
even (2 + ε)-approximations.

For the PEKCT problem, after multiple approximation algorithms with approx-
imation factors depending on k [RSM+96,GH97,Epp97] or being constant [BCV95,
MBCV99], two independent polynomial approximation schemes where proposed
in [AK00,Mit99].

32 CHAPTER 4. LITERATURE OVERVIEW

4.4.4 Experimental Studies

To our knowledge, no experimental studies exist with regard to approximation
algorithms for KCT problems.

In [EFHM97], the behaviour of different heurisic algorithms for the EKCT and
NKCT problems were experimentally compared on randomly generated connected
graphs and grid graphs. Both graph classes contained up to 30 nodes. Approaches
based on dynamic programming (DynamicTree) were the best in terms of solu-
tion quality. The same instances were also used to compare metaheuristic algo-
rithms [BE03].

A study on the DynamicTree heuristic for both EKCT and NKCT on the more
up-to-date benchmark set KCTLIB [BB03] is presented in [Blu07].

An extensvise study [Blu06] on the KCTLIB benchmark set shows that the
best metaheuristics both in terms of solution quality and running time are: an
evolutionary algorithm that uses exact dynamic programming algorithm for trees
as a subroutine [Blu06], an ant-colony optimization algorithm [BS04] and, for some
instances also the variable neighborhood search algorithm of [UBM04].

For the NKCT problem, it is shown in [BUM06] that their variable neighborhood
decomposition search algorithm outperforms metaheuristic algorithms of [BE03] on
the large node-weighted instances of the KCTLIB. Later, the authors of [BB05a]
claim that their ACO algorithm outperforms [BUM06] in terms of solution quality
on NKCT problems. However, results are only given for the node-weighted grid
graphs on 900, 1600 and 2500 nodes and not for the random node-weighted graphs
of the same instance library. Indeed, when grid instances grow, the ACO algorithm
tends to obtain better solutions for small k.

The KSTP is only considered from a theoretical point of view. To our knowledge,
there are no established benchmark instances nor any experimental studies.

4.5 ILP-based Exact Algorithms

4.5.1 General Subtour Elimination Constraints

The first exact approach for the (unrooted) KCT problems has been presented
in [FHJM94], by formulating an integer linear program based on generalized subtour
elimination constraints (GSECs). This formulation is based on the given undirected
graph. We rephrase it here using our notations.

We have a binary variable ze ∈ {0, 1} for each edge e ∈ E, which is set to 1 if e
is in the solution (i.e., e ∈ E(T)), and 0 otherwise. Furthermore there is a binary
variable yv for each node v ∈ V which indicates whether v is in the solution (yv = 1)
or not (yv = 0). The following constraint system describes all k-cardinality trees
in G. Generally, given a variable vector ξ and a set of indices J , we will use the
shorthand ξ(J) :=

∑
j∈J ξj in the remainder of this thesis.

Kct-Gsec := {(4.1)–(4.4)}

4.5. ILP-BASED EXACT ALGORITHMS 33

with

z(E) = k (4.1)

y(V) = k + 1 (4.2)

z(E(S)) ≤ y(S \ {t}) ∀S ⊆ V, |S| ≥ 2,∀t ∈ S (4.3)

ze, yv ∈ {0, 1} ∀e ∈ E, v ∈ V. (4.4)

The inequality (4.1) ensures that there are exactly k edges in the solution. The
inequalities (4.3) are the generalized subtour elimination constraints. As their name
already suggests, this constraint class is a strengthened generalization of the subtour
elimination constraints (SECs) which only use edge variables:

z(E(S)) ≤ |S| − 1.

Both constraint classes ensure that the solution does not contain cycles. With (4.2)
we furthermore guarantee that the solution contains k+ 1 nodes, i.e., the resulting
solution is a tree.

Hence, minimizing weights of the selected edges over Kct-Gsec gives us an
optimal solution of the EKCT problem, i.e., we can consider the ILP

min

{∑
e∈E

wE(e) · ze : (z, y) satisfies Kct-Gsec

}
. (4.5)

Analogously, we obtain an ILP for the NKCT problem:

min

{∑
e∈E

wN (e) · ze : (z, y) satisfies Kct-Gsec

}
. (4.6)

We may summarize both ILPs simply as Kct-Gsec ILPs. The above formulations
contain an exponential number of constraints. The authors suggest a branch-and-
cut algorithm, using an O(|V |4) separation routine for the inequalities of type (4.3).
Furthermore, the paper contains an extensive polyhedral analysis of the above
EKCT model.

4.5.2 Undirected Cuts

In [Gar96], Garg considers approximation algorithms for the EKCT problem. To
this ends, he presents an ILP based on undirected cuts for the rooted EKCT prob-
lem, whose LP relaxation is subsequently used for lower bounds. The formulation
uses a root node r′ that is selected among the original nodes. To solve the general
EKCT problem, he considers |V | many ILPs, one for each possible choice of node
r′, since it cannot be guaranteed that r′ is contained in the optimal solution. We
rephrase the original formulation, adapted to our notation. The y and z variables
are used analogously to the GSEC-based formulation.

min
∑
e∈E

wE(e) · ze

34 CHAPTER 4. LITERATURE OVERVIEW

y(V) = k + 1 (4.7)

z(δ(S)) ≥ yv ∀S ⊆ V \ {r′},∀v ∈ S (4.8)

ze, yv ∈ {0, 1} ∀e ∈ E,∀v ∈ V (4.9)

We call the inequalities (4.7) and (4.8) node cardinality and undirected cut con-
straints. As Garg assumes the edge weights to be positive, he does not have to
restrict the number of selected edges. To allow general edge weights we can add the
constraint:

z(E) = k (4.10)

In fact, adding this constraint strengthens the corresponding LP relaxation even
for positive edge weights, cf. Section 5.4.2.

Although not mentioned in [Gar96], we obtain an ILP for the rooted NKCT
problem by suitably replacing the above objective function and using (4.10). Hence,
the feasible solutions to the rooted KCT problems can be described by the constraint
system

rKct-UCut := {(4.7)–(4.10)}.

We will show in Section 5.4.2 that rKct-UCut can be modified to directly describe
the solutions to the unrooted KCT problems.

4.5.3 Miller-Tucker-Zemlin SECs and Multicommodity Flows

At the same time as the conference version of our results [CKLM08a] was pub-
lished, Quintão et al. [QCM08] presented two alternative orientation-based ILPs
for KCT. They transform a given KCT instance in an instance of a constrained
minimum spanning arborescence problem (MSA′) (cf. Section 5.4.4). Although
somewhat more complicated, this transformation is similar to our transformation
strategy described in Section 5.2. The feasible solutions of the MSA′ problem are
then described by two different sets of inequalities. The first such set is based
on multi-commodity flows, whereas the second uses Miller-Tucker-Zemlin subtour
elimination constraints (MTZ SECs). We call these formulations Msa′-DFlow
and Msa′-MTZ, respectively, and describe them in Section 5.4.4 in more detail.

4.5.4 Experimental Studies

For a long time, the only known practical implementation of the above ILP-based
exact algorithms was a branch-and-cut algorithm presented in [EF96]. It was based
on the GSEC model as suggested in [FHJM94]. This algorithm was only able to
solve unrooted EKCT and NKCT problems on graphs with up to 30 nodes, which
may be mainly due to the comparably weak computers in 1996.

Very recently, Quintão et al. [QCML10] presented computational results based
on their orientation-based ILPs. Thereby they used some of the (edge-weighted)
KCTLIB instances [BB03] and node-weighted grid instances, generated as suggested
in [BUM06]. This experimental study shows that the multi-commodity flow based
formulation delivers stronger lower bounds for all considered instances as the MTZ
SECs based formulation. Indeed, although not shown in [QCML10], the Msa′-
DFlow ILP is strictly stronger than the Msa′-MTZ ILP, as it was already the

4.6. OUR CONTRIBUTION 35

case for the related Steiner tree problem. Since solving the LP relaxation of Msa′-
DFlow is very time consuming, a branch-and-bound algorithm based on MTZ
SECs and a Lagrangian heuristic based on Msa′-DFlow ILP were developed and
experimentally evaluated.

4.6 Our Contribution

In this thesis, we show how to model all the KCT problems defined above using
a simple orientation property of trees. Based on this modeling we formulate an
orientation-based ILP that can be used to solve all the KCT problems defined in
Section 3, both in their rooted and unrooted variants. Furthermore, it can be
easily adapted to K(PC)ST problems. Within our ILP we express the connectivity
requirements by the means of directed cuts. Our model can be alternatively realized
by the means of a multi-commodity flow based ILP, which we show to be equivalent
with our directed cut based formulation. We furthermore conduct a polyhedral
comparison of our formulations to all other ILPs mentioned in this chapter.

Based on our directed cut based formulation, we develop a branch-and-cut algo-
rithm which is the first algorithm that solves all known KCT benchmark instances
to provable optimality. Being able to optimally solve both edge- and node-weighted
instances with up to 2500 nodes, it also clearly outperforms all other (meanwhile)
published exact algorithms. Using comparable computers, our algorithm com-
putes optimal solutions even faster (by orders of magnitude) than the LP-based
Lagrangian heuristic of [QCML10] that does not guarantee optimality of its solu-
tion. Interestingly, although we informed one of the authors on our results long
time before their final revision of [QCML10] was submitted, Quintão et al. do not
even mention our results in their publication.

Moreover, for the EKCT problem our approach even outperforms the state-
of-the-art metaheuristics in terms of both running time and, evidently, solution
quality for graphs with roughly up to 1000 nodes. An often used argument in
particular for the metaheuristic approaches is that exact methods for this NP-hard
problem would require too much computation time and could only be applied to
very small graphs [BE03, BUM06]. Hence, with our algorithm we show that this
traditional argument for metaheuristics over exact algorithms is deceptive on KCT-
type problems.

36 CHAPTER 4. LITERATURE OVERVIEW

Chapter 5

Orientation-based Modeling

5.1 Feasible Orientations of Trees

All previously known ILP models for KCT were based on undirected graphs. How-
ever, for related network design problems, e.g., the Steiner tree problem or its prize-
collecting variant, using the following simple orientation property of a tree leads to
stronger ILP formulations that are also beneficial in practice [PD01c,LWP+06].

Lemma 5.1 (Orientation of trees). Let T = (V,E) be a tree. For any choice of
a root node r ∈ V , we can find a unique orientation T̂ such that for every node
v ∈ V \{r} there exists a directed (r → v)-path. Note that T̂ is then an arborescence.

Observation 5.2. The in-degree of the root node of an arborescence is always 0.

The following theorem is quite intuitive:

Theorem 5.3. An undirected graph T is a k-cardinality tree if (and only if) for
any choice of a root node r ∈ V (T) there exists a unique orientation T̂ which is a
k-cardinality arborescence rooted at r, i.e., T̂ satisfies the following properties:

(P1) T̂ contains exactly k arcs,

(P2) T̂ contains exactly k + 1 nodes, and

(P3) for all v ∈ V (T̂) \ {r}, there exists a directed path (r → v) in T̂ .

5.2 Transformation into the KCA Problem

Using Theorem 5.3, we give a transformation of a KCT instance to an equivalent
instance of the following problem:

Problem 5.4 (KCA). Let D = (VD, AD) be a directed graph with a specified root
node rD ∈ VD and arc costs c(a) for all arcs a ∈ AD. The k-cardinality arborescence
problem on the instance (D, rD, c, k) is to find a minimum weight rooted subtree
TD ⊆ D with k arcs which is directed from the root outwards. More formally, TD
has to be a k-cardinality arborescence.

37

38 CHAPTER 5. ORIENTATION-BASED MODELING

EKCT. Given an instance (G, r′, wE , k) of a rooted EKCT problem (i.e., r′ ∈ V),
we solve it by solving the KCA problem on (Ḡ, r′, c, k), where Ḡ is the bidirection of
G and the arc weights are c((i, j)) = c((j, i)) := wE({i, j}) for every edge {i, j} ∈ E.

For the unrooted EKCT, we do not know which node will certainly be contained
in an optimal solution and therefore we would have to solve |V | many KCA prob-
lems, one for each possible choice of the root node. We can avoid this by extending
Ḡ via an artificial root node r /∈ V and connecting r to every node in v ∈ V with
arcs (r, v), cf. Figure 5.1. Hence we obtain a digraph Ḡr = (V ∪ {r}, A ∪ Ar) with
A = {(i, j), (j, i) | {i, j} ∈ E} and Ar = {(r, j) | j ∈ V }. The weight for an arc
(i, j) in Ḡr is c((i, j)) := 0 if i = r, and c((i, j)) = c((j, i)) := wE({i, j}) otherwise.
To be able to interpret any feasible solution TḠr

of the resulting KCA instance
(Ḡr, r, c, k + 1) as a solution to the original KCT instance, we have to impose the
additional constraint

(P4) TḠr
contains only a single arc of Ar.

If this property is satisfied, it is easy to see that a feasible KCT solution with the
same objective value can be obtained by removing r from TḠr

and interpreting the
directed arcs as undirected edges. On the other hand, for each feasible solution
to the KCT problem there exists a feasible solution to the KCA problem in the
correspondingly transformed instance.

NKCT and AKCT. As [Seg87] did for Steiner trees, we can use the following
observation in order to transform the NKCT and AKCT problems into a KCA
problem.

Observation 5.5 ([Seg87]). Any subgraph TD of a directed graph D satisfying
(P1)–(P3) also satisfies: For all v ∈ V (TD) \ {r}, v has in-degree 1 in TD.

This allows us to establish a one-to-one correspondence between each selected
arc and its target node (disregarding the root node). Whenever we select an arc,
we know that we have to consider the cost of its target node v, and we will never
consider this node weight multiple times since we will only select a single arc having
v as its target node. This allows us to shift the node weights of the NKCT and
AKCT problems into the arc weights of the KCA problem.

If we deal with a rooted NKCT (AKCT) problem instance, we can hence solve
it by solving the KCA problem on (Ḡ, r′, c, k) with arc weights c((i, j)) := wN (j)
(c((i, j)) := wE({i, j}) + wN (j), respectively). Note that the value of the optimal
solution for the rooted NKCT or AKCT problem is the value of the corresponding
optimal KCA solution plus wN (r).

By generalizing the transformation for the unrooted EKCT problem we can
furthermore transform any given unrooted NKCT instance (G,wN , k) or AKCT
instance (G,wE , wN , k) into a corresponding KCA instance (Ḡr, r, c, k+1) as follows:

As before let Ḡr = (V ∪ {r}, A∪Ar). For all (i, j) ∈ A∪Ar we have c((i, j)) :=
wN (j) for the NKCT problem, and c((i, j)) := wE({i, j}) + wN (j) (or c((i, j)) :=
wN (j) if i = r), for the AKCT problem. By this transformation, we implicitly
choose wN (r) := 0 which is correct since the root node is artificial and should not be
part of the objective function. Again, we have to guarantee that the corresponding

5.3. ILP MODELING 39

Figure 5.1: An undirected unrooted KCT instance (left), and its directed KCA
counterpart (right). A possible solution for k = 3 is denoted by bold edges/arcs.

KCA solution has only one outgoing arc from the artificial root node. This is done
analogously to the EKCT problem by imposing (P4).

K(PC)ST. The above ideas can be directly used to search feasible orientations
of the K(PC)ST solutions in Ḡr. We can integrate the node prizes into the arc
costs as discussed for the AKCT problem above, drop the cardinality requirement
on the arcs, and apply a node cardinality requirement analogous to (P2) only to
the terminal nodes. In order to guarantee that the solution forms a tree, we have
to require that every node in the solution, except for the root, has exactly one
incoming arc (cf. Observation 5.5 and constraint (5.6) below).

5.3 ILP Modeling

We now model the KCA problem as an ILP based on directed cuts. Given an
instance (D = (VD, AD), rD, c, k

′) of the KCA problem, we define V ∗D = VD \ {rD}
and A∗D = A \ {(i, rD) | i ∈ V ∗D}. We introduce two sets of binary variables
x ∈ {0, 1}|A∗D| and y ∈ {0, 1}|V ∗D|. As usual, the variables are 1, if the corresponding
arc or node is in the solution and 0 otherwise. The feasible k′-arborescences can
then be described by the following constraint system. Recall that, given a variable
vector ξ and a set of indices J , we use the shorthand ξ(J) :=

∑
j∈J ξj .

Kca-DCut := {(5.1)–(5.4)}

with

x(A∗D) = k′ (5.1)

y(V ∗D) = k′ (5.2)

x(δ−(S)) ≥ yv ∀S ⊆ V ∗D, ∀v ∈ S (5.3)

xa, yv ∈ {0, 1} ∀a ∈ A∗D, v ∈ V ∗D (5.4)

The dcut-constraints (5.3) guarantee property (P3) via directed cuts. Further-
more, they ensure that the root node rD is always part of the solution, as for at
least one node v ∈ V ∗D, the arc (rD, v) ∈ A∗D must be chosen. This property and the
inequalities (5.1) and (5.2) ensure the requirements (P1) and (P2), respectively.

Hence, the following ILP solves the KCA problem:

min

∑
a∈A∗D

c(a) · xa : (x, y) satisfies Kca-DCut

 . (5.5)

40 CHAPTER 5. ORIENTATION-BASED MODELING

Although this formulation is sound and practically applicable, we will reformu-
late the ILP based on Observation 5.5: Considering the system Kca-DCut, we can
replace the node cardinality constraint (5.2) by in-degree constraints

x(δ−(v)) = yv ∀v ∈ V ∗D. (5.6)

While the original formulation is more compact, we will see in Chapter 6 that the
in-degree constraints have certain advantages in practice. The most important prop-
erty of this reformulation is that it retains the strength of the original formulation.
From the polyhedral point of view, we can measure this strength by considering
the LP relaxations of both ILPs, i.e., we replace the integer requirements for the
vector (x, y) by

0 ≤ xa, yv ≤ 1 ∀a ∈ A∗D, ∀v ∈ V ∗D, (5.7)

and thereby allow fractional solutions, cf. Definition 2.18 in Section 2.3.3. We can
show that in this context it is irrelevant whether we model (P2) directly via a
cardinality constraint or indirectly via multiple in-degree constraints.

Lemma 5.6. By replacing the node cardinality constraint (5.2) with the in-degree
constraints (5.6) we obtain an equivalent ILP with an equivalent LP relaxation.

Proof. We show this equivalence by generating the constraints from each other. We
have (5.6)⇒(5.2) as:

y(V ∗D) =
∑
v∈V ∗D

yv
(5.6)
=

∑
v∈V ∗D

x(δ−(v)) = x(A∗D)
(5.1)
= k′.

And we show (5.2)⇒(5.6) by:

k′
(5.2)
= y(V ∗D) =

∑
v∈V ∗D

yv
(5.3)

≤
∑
v∈V ∗D

x(δ−(v)) = x(A∗D)
(5.1)
= k′

=⇒ yv = x(δ−(v)) ∀v ∈ V ∗D.

The above ILP models the general KCA problem. Using the transformations
described in Section 5.2, we can hence solve the rooted KCT problems by applying
this ILP. To be able to also consider the unrooted problem variants, it remains to
model the requirement (P4). This can be straightforwardly achieved by demanding

x(δ+(rD)) = 1. (5.8)

As most KCT benchmark instances in the literature are unrooted, we will in
the following concentrate on these types of problems. We therefore explicitly define
the KCA constraint system with respect to a transformed instance (Ḡr, r, c, k + 1)
where (P4) is required:

Kca′-DCut := {(5.9)–(5.12)},

5.4. POLYHEDRAL COMPARISONS 41

with

x(A) = k (5.9)

y(V) = k + 1 (5.10)

x(Ar) = 1 (5.11)

x(δ−(S)) ≥ yv ∀S ⊆ V,∀v ∈ S (5.12)

xa, yv ∈ {0, 1} ∀a ∈ A ∪Ar, v ∈ V (5.13)

where we can substitute (5.10) by

x(δ−(v)) = yv ∀v ∈ V (5.14)

according to Lemma 5.6.

5.4 Polyhedral Comparisons

We investigate the polyhedral properties of our new formulation by comparing it to
the other known ILP formulations for the KCT problems. In particular, we compare
the relative strengths of their LP relaxations, cf. Section 2.3.3. In the following, let
PD be the polyhedron corresponding to the LP relaxation of Kca′-DCut:

PD := {(x, y) ∈ [0, 1]|A∪Ar|+|V |, subject to (5.9)–(5.12)}

Hence, the feasible integer points described by Kca′-DCut are a proper subset of
PD and optimizing any objective function over PD leads to a lower bound for the
respective optimal solution of Kca′-DCut.

5.4.1 Generalized Subtour Elimination

We first compare the ILPs that use Kca′-DCut to those that use Kct-Gsec (cf.
Section 4.5.1). We show that for all KCT problems both approaches are equivalent
from the polyhedral point of view. Therefore, due to Definition 2.18 we compare
the strength of the corresponding LP relaxations.

Recall that we use the node selection variables y equivalently in both formula-
tions. Let PG be the polyhedron corresponding to the LP relaxation of Kct-Gsec,
i.e.,

PG := {(z, y) ∈ [0, 1]|E|+|V |, subject to (4.1)–(4.3)}.

To be able to compare both polyhedra we consider the following projection of
PD into the space of (z, y) variables:

projz,y(PD) := {(z, y) | (x, y) ∈ PD, ∀{i, j} ∈ E : z{i,j} = xij + xji}.

Theorem 5.7. For the unrooted KCT problems, the ILPs based on Kct-Gsec and
Kca′-DCut are equivalent for all cost functions.

42 CHAPTER 5. ORIENTATION-BASED MODELING

Proof. According to Observation 2.17 we have to show that PG = projz,y(PD). We
prove this equality by showing mutual inclusion:

projz,y(PD) ⊆ PG: Any (z̄, ȳ) ∈ projz,y(PD) satisfies (4.1) by definition, and (4.2)
by (5.14) and Lemma 5.6. Let x̄ be the vector from which we projected the
vector z̄, and consider some S ⊆ V with |S| ≥ 2 and some node t ∈ S. We
show that (z̄, ȳ) also satisfies the corresponding GSEC (4.3):

z̄(E(S)) = x̄(A(S)) =
∑

v∈S x̄(δ−(v))− x̄(δ−(S))

(5.14)
= ȳ(S)− x̄(δ−(S))

(5.12)

≤ ȳ(S)− ȳt.

PG ⊆ projz,y(PD): Consider any (z̄, ȳ) ∈ PG and a set

X := { x ∈ R|A∪Ar|
≥0 | x satisfies (5.11)

and xij + xji = z̄{ij} ∀(i, j) ∈ A }.

Every such projective vector x̄ ∈ X clearly satisfies (5.9). In order to generate
the dcut-inequalities (5.12) for the corresponding (x̄, ȳ), it is sufficient to show
that we can always find an x̂ ∈ X, which together with ȳ satisfies the in-degree
constraints (5.14). Since then, for any S ⊆ V and t ∈ S:

x̂(δ−(S)) =
∑

v∈S x̂(δ−(v))− x̂(A(S))

(5.14)
= ȳ(S)− z̄(E(S))

(4.3)

≥ ȳt.

We show the existence of such an x̂ using a proof technique related to [GM93,
proof of Claim 2], where it was used for the Steiner tree problem.

An x̂ ∈ X satisfying (5.14) can be interpreted as the set of feasible flows in
a bipartite transportation network (N,L), with N := (E ∪ {r}) ∪ V . For
each undirected edge e = (u,w) ∈ E in G, our network contains exactly two
outgoing arcs (e, u), (e, w) ∈ L. Furthermore, L contains all arcs of Ar. For
all nodes e ∈ E in N we define a supply s(e) := z̄e; for the root r we set
s(r) := 1. For all nodes v ∈ V in N we define a demand d(v) := ȳv.

Finding a feasible flow for this network can be viewed as a capacitated trans-
portation problem on a complete bipartite network with capacities either zero
(if the corresponding edge does not exist in L) or infinity. Note that in our
network the sum of all supplies is equal to the sum of all demands, due to
(4.1) and (4.2). Hence, each feasible flow in such a network will lead to a
feasible x̂ ∈ X. Such a flow exists if and only if for every set M ⊆ N without
arcs leaving M (i.e., δ+

(N,L)(M) = ∅) the condition

s(M) ≤ d(M) (5.15)

is satisfied, where s(M) and d(M) are the total supply and the total demand
in M , respectively, cf. [Gal57, GM93]. In order to show that this condition
holds for (N,L), we distinguish between two cases; let U := E ∩M :

5.4. POLYHEDRAL COMPARISONS 43

r ∈M : Since r has an outgoing arc for every v ∈ V and δ+
(N,L)(M) = ∅, we

have V ⊂M . Condition (5.15) is satisfied, since s(r) = 1 and therefore:

s(M) = s(r) + z̄(U) ≤ s(r) + z̄(E)

= z̄(E) + 1
(4.1),(4.2)

= ȳ(V) = d(M).

r /∈M : Let S := V ∩M . We then have U ⊆ E(S). If |S| ≤ 1 we have U = ∅
and therefore (5.15) is automatically satisfied. For |S| ≥ 2, the condition
is also satisfied, since for every t ∈ S we have:

s(M) = z̄(U) ≤ z̄(E(S))
(4.3)

≤ ȳ(S)− ȳt ≤ ȳ(S) = d(M).

Hence, we know that, independent of the specific objective function, the value
of the optimal solution in PD will be identical to the one in PG. In particular, this
therefore holds for any unrooted KCT problem variant. For a rooted KCT problem,
the corresponding Kct-Gsec ILP can be extended by yr′ = 1 for some root node
r′ ∈ V . Applying the above proof techniques we can deduce that:

Theorem 5.8. For the rooted KCT problems, the Kct-Gsec ILPs, extended for
rooted KCT problems as described above, are equivalent to the corresponding Kca-
DCut ILPs.

Even though Kca(′)-DCut- and Kct-Gsec-based formulations are polytope-
wise equivalent, Kca(′)-DCut offers advantages in practice, as we will discuss in
Chapter 6.

5.4.2 Undirected Cuts

In this section, we compare the Kca′-DCut ILP to those based on undirected cuts.
Recall that the rKct-UCut ILP given in Section 4.5.2 has to be applied |V | times
in order to solve unrooted KCT problems. We suggest two further approaches based
on undirected cuts for such unrooted variants.

Kct′-UCut: In contrast to the formulation by Garg, we can augment G with an
artificial root node r /∈ V of weight 0 that is connected to all other nodes with
edges of weight 0, thus obtaining the graph Gr. We can consider the system
rKct-UCut for the instance (Gr, r, [wE], [wN], k+1) and additionally ensure
that only one of the new edges is selected, analogously to (5.11). Thereby,
we obtain a constraint system Kct′-UCut that directly describes all KCT
solutions via undirected cuts, instead of requiring linearly many ILPs.

Kct-UCut: Alternatively, we can obtain a system Kct-UCut by substituting the
cut-inequalities (4.8) in rKct-UCut with

z(δ(S)) ≥ yu + yv − 1 ∀S ⊂ V,∀u ∈ S,∀v ∈ V \ S. (5.16)

and applying it to the original instance (G, [wE], [wN], k).

44 CHAPTER 5. ORIENTATION-BASED MODELING

r a

b

c

Figure 5.2: Graph Ḡr for the proof of Lemma 5.10.

Observation 5.9. For the EKCT problem, if the input edge-weights are strictly
positive, we can omit the edge-cardinality constraint z(E) = k in all above undirected
cut formulations without losing feasibility of their solutions. However, the ILPs
containing z(E) = k are strictly stronger than those without this constraint.

Proof. The first part of the observation is trivial as the number of selected edges
is minimized. It remains to show the advantage of the edge-cardinality constraint.
Consider a triangle graph with unit edge weights as an input graph and k = 2, cf.
Figure 5.3(a). An optimal fractional solution is to set all edge variables to 0.5. If the
formulation requires an artificial node, we choose any of its adjacent edges to have
an associated variable value of 1. Due to the node cardinality constraint all node
variables have to be 1. The shown solution is feasible for all above undirected cut
formulations if we omit the edge-cardinality constraint. The value of this (optimal)
solution is thereby 1,5. However, requiring z(E) = k leads to an optimal solution
of value 2, thus strengthening the above formulations.

For the comparison of our Kca′-DCut ILP to above undirected cut formulations
we will need the following technical lemma:

Lemma 5.10. Let ∆ be a triangle graph on the nodes {a, b, c} and Ḡr its corre-
sponding bidirection extended with an artificial root node r. For each variable setting
(x̄, ȳ) ∈ [0, 1]|A∪Ar|× [0, 1]|V | in Ḡr with ȳ = (1, 1, 1) that satisfies constraints (5.11)
and (5.12), we have x̄(A) ≥ 2.

Proof. Figure 5.2 illustrates the graph Ḡr. Since x̄(δ−(a)) ≥ 1, we have

x̄(b,a) + x̄(c,a) ≥ 1− x̄(ra).

Analogously we have
x̄(a,b) + x̄(c,b) ≥ 1− x̄(rb),

x̄(a,c) + x̄(b,c) ≥ 1− x̄(rc).

Since x̄(δ+(r)) = 1, summing up over these three inequalities we obtain

x̄(A) ≥ 2.

Let PU ′ and PU be the polyhedra of the LP relaxations of Kct′-UCut and
Kct-UCut, respectively, and let P∪r′ be the union of all LP relaxation polyhedra
considered by rKct-UCut for all choices of the root r′. Reusing the projection
projz,y(PD) defined above (cf. page 41) we can show the following theorem.

5.4. POLYHEDRAL COMPARISONS 45

(a) EKCT, k = 2 (b) EKCT, k = 6

S1

S2

S3

a

b

c

d

f

e

g

i

h

(c) NKCT, k = 7

(d) NKCT, k = 42

Figure 5.3: Solution examples for the undirected cut formulation used for the proofs
of Observation 5.9 and Theorem 5.11. Circles with bold border represent expen-
sive nodes. Solid edges have variable values set to 1, dashed edges to 0.5, bold
dashed edges to 9/10. White, grey, black nodes have variable values of 1, 4/5, 3/5,
respectively.

46 CHAPTER 5. ORIENTATION-BASED MODELING

Theorem 5.11. The Kca′-DCut ILPs are strictly stronger than Kct-UCut,
Kct′-UCut, and the union over all suitable rKct-UCut ILPs for all considered
KCT problems, i.e., EKCT, NKCT and AKCT. This holds even when adding the
(strengthening) consistency constraints

yv ≥ zuv ∀{u, v} ∈ E (5.17)

to the undirected formulations.

Proof. Due to Definition 2.18 and Observation 2.17, we formally have to show that
for any P ∈ {PU ′ ,PU ,P∪r′} we have:

(a) projz,y(PD) ⊆ P, and

(b) let obj(z, y) be the objective function according to EKCT, NKCT, or AKCT;
there are instances where Kca′-DCut leads to strictly stronger lower bounds,
i.e., min{obj(z, y) | (z, y) ∈ P} � min{obj(z, y) | (z, y) ∈ projz,y(PD)}.

Clearly, each feasible point (z̄, ȳ) ∈ projz,y(PD) is feasible for P∪r′ and PU ′ .
Furthermore, we show that any (z̄, ȳ) also satisfies (5.16) and is therefore also
feasible for PU . Let x̄ be the vector from which we projected z̄, and consider any
S ⊂ V and some nodes u ∈ S and v ∈ V \ S. We then can deduce:

ȳu + ȳv − 1
(5.12)

≤ x̄(δ−
Ḡr

(S)) + x̄(δ−
Ḡr

(V \ S))− 1

= x̄(δ−
Ḡ

(S)) + x̄(δ−
Ḡ

(V \ S)) + x̄(Ar)− 1

(5.11)
= x̄(δ−

Ḡ
(S)) + x̄(δ−

Ḡ
(V \ S))

projz,y
= z̄(δ(S))

Hence it remains to show part (b), which also induces that the polyhedra are
not equal. Generally, a common argument (in the context of STP and PCST) to
pinpoint fractional solutions feasible for the LP relaxations of undirected but infea-
sible for directed formulations is based on a triangle graph with unit edge weights,
cf. Figure 5.3(a) and Observation 5.9. When each edge variable is set to 0.5, the
undirected cut between any two nodes is equal to 1. While this undirected solu-
tion satisfies all undirected cuts, there is no feasible directed solution that projects
to some undirected solution of equally low objective value, cf. Lemma 5.10. Even
more, the optimal directed fractional solution has the value of twice the (uniform)
edge costs.

Yet, this simple example cannot be used in our context: As already discussed
in the proof for Observation 5.9, the solution of value 1.5 is infeasible even for
the undirected formulation, as we require the sum over all edge variables to be k.
Nonetheless we will use such triangles as gadgets in our constructions.

EKCT. Consider three triangles with one common node, cf. Figure 5.3(b). The
edges of one of the triangles are cheap (of weight α, say 0.1), all other edges
are expensive (of weight β, say 1). Assume k = 6, which induces that all nodes
variables are set to 1. A possible feasible solution to any above undirected

5.4. POLYHEDRAL COMPARISONS 47

cut formulation is to set the variables of the expensive edges to 0.5 and those
of the cheap edges to 1. If the formulation requires an artificial node, we
choose any of its adjacent edges to have an associated variable value of 1. It
is easy to see that all undirected cut constraints, as well as the consistency
constraints (5.17), are satisfied. Such a solution has the objective value of
3α+ 3β.

However, we know from Lemma 5.10 that a triangle does not allow a directed
solution of cost less than its two cheapest edges. Hence, since our triangles
are attached to each other via a single cut node, we can deduce that each
of our triangles requires us to pay for at least two of its edges (again also
summing up to k = 6). The optimal fractional directed solution will therefore
cost 2α+ 4β 3α+ 3β.

NKCT. Consider the graph in Figure 5.3(c). We have cheap nodes a–d (of weight
α′, say 0.1) and expensive nodes e–i (of weight β′, say 1). We call the edges
that are adjacent with nodes a–d cheap edges. Assume k = 7. An optimal
solution (z̄, ȳ) of an undirected cut formulation is to set ȳv = 1 if v is cheap
and ȳv = 4

5 otherwise. Furthermore, we set z̄e = 1 if e is adjacent to a
cheap node, and z̄e = 0.5 otherwise. It is easy to see that (z̄, ȳ) satisfies all
constraints of any above undirected formulation (disregarding the consistency
constraints). The cost of this solution is then 4α′ + 4β′.

We show that all possible directed solutions for the above example have a
strictly larger cost. Assume there would be a directed solution of cost 4α′+4β′,
then the node variables of the four cheap nodes a–d have to be set to 1. This
would lead to the following contradictory consequences:

Consequence 1: For the cheap node a, the sum of the variables of its in-
coming arcs (r, a), (e, a) has to be at least 1, i.e., x(e,a) ≥ 1− x(r,a).

Consider the cut constraint for the set S consisting of all nodes except
a and r. As S contains cheap nodes, the sum of the variables of its
incoming arcs δ−(S) = δ+(r) ∪ {(a, e)} \ {(r, a)} has to be at least 1.
Since x(δ+(r)) = 1, we have x(a,e) ≥ x(r,a).

Hence we can deduce that the arc variables of the cheap edge {a, e}
always sum up to x(a,e) + x(e,a) ≥ x(r,a) + (1− x(r,a)) = 1. Therefore, the
sum σ of the arc variables of all four cheap edges has to be at least 4.

Consequence 2: Consider the node sets S1 = {a, e}, S2 = {b, f}, S3 =
{c, d, e, h, i}. Due to the variable values of nodes a-d, the dcut-constraints
ensure that the sum of the arc variables entering Si (1 ≤ i ≤ 3) is at
least 1. By contracting the three node sets into three (super)nodes, we
obtain a triangle situation over the edges {e, g}, {f, g}, {e, f} as discussed
above: the sum of the arc variables on these three edges therefore has to
be at least 2.

Analogously, we can show that the sum of the arc variables on the edges
{g, h}, {h, i}, {i, g, } is also at least 2. Hence, due to the edge-cardinality
constraints, the sum σ of the arc variables of all four cheap edges can be
at most 3.

48 CHAPTER 5. ORIENTATION-BASED MODELING

Consistency constraints. Furthermore, we can strengthen any undirected cut
formulation by adding constraints (5.17). Indeed, the above solution is not
feasible for such an extended ILP. We therefore construct a slightly more
involved example. Let us call the expensive degree 4 node in the above graph
its center node. Consider five copies of this graph and connect their center
nodes analogous to the connection scheme of the five expensive nodes in the
original graph, i.e., the center nodes form two triangles with one common
node (cf. Figure 5.3(d)). Let k = 42.

Using the directed formulation, we cannot obtain a solution including all cheap
nodes: to include all of them, we would also have to select arcs for all cheap
edges and (cf. above) select two arcs for each triangle. This would require 44
edges.

In contrast to this, we can give a solution to the undirected formulation which
does include all cheap nodes and therefore gives a weaker bound than Kca′-
DCut: Set all non-center node variables to 1 and all center node variables
to 3/5. Furthermore, set all cheap edges to 1, the edges incident to a cen-
ter node to 1/2, and the other 10 edges (connecting expensive non-center
nodes) to 9/10. We observe that all constraints, including the consistency
constraints (5.17) are satisfied.

AKCT. This follows from the fact that EKCT and NKCT are special cases of
AKCT.

Overall, we can deduce that the models based on Kca′-DCut are a better
choice for an exact approach than those based on Kct-UCut, since their improved
strength will in general lead to tighter bounds and fewer branches in branch-and-cut
algorithms.

5.4.3 Multi-Commodity Flow

Another traditional approach for similar network design problems are multi-com-
modity flow formulations. See, e.g., [PD01a] for the Steiner tree and [LWP+06]
for the prize-collecting Steiner tree problems. We use this concept to derive a
multi-commodity-based ILP for our KCA problem. We thereby have the same set
of binary variables x, y as for Kca-DCut. Additionally, we define a commodity
from r to v for every node v ∈ V . For each node v we have to send yv units of
the corresponding commodity from the artificial root to v. Therefore we define
continuous variables fvij to model the flow of each such commodity on the arc
(i, j) ∈ A ∪Ar.

The set of feasible k-arborescences for the KCA problem on (Ḡr, r, c, k+1) with
additional condition (P4) is then given by:

Kca′-Mcf := {(5.18)—(5.23)}

5.4. POLYHEDRAL COMPARISONS 49

with

x(A) = k (5.18)

y(V) = k + 1 (5.19)

x(Ar) = 1 (5.20)∑
j:(j,i)∈A∪Ar

fvji −
∑

j:(i,j)∈A∪Ar

fvij =

{
yv, if i = v

0, else
∀i, v ∈ V (5.21)

0 ≤ fvij ≤ xij ∀(i, j) ∈ A ∪Ar,∀v ∈ V (5.22)

xij , yv ∈ {0, 1} ∀(i, j) ∈ A ∪Ar,∀v ∈ V (5.23)

Minimizing the objective function
∑

a∈A∪Ar
c(a) · xa over the set Kca′-Mcf

gives us the optimal solution of our KCA problem.
Let PF be the polyhedron of the LP relaxation of the above ILP. To be able to

compare the LP relaxations of Kca′-Mcf and Kca-DCut we consider the projec-
tion of PF into the (x, y) variables space:

proj(x,y)(PF) := {(x, y) | (x, y, f) ∈ PF }.

Theorem 5.12. The ILPs based on Kca′-Mcf and Kca′-DCut are equivalent for
all cost functions.

Proof. Due to Definition 2.18 and Observation 2.17, we have to show

proj(x,y)(PF) = PD.

The proof follows [Lju04], where it was given in the context of PCST:
Given (x̄, ȳ, f̄) ∈ PF , we show that (x̄, ȳ) is also in PD. Therefore, we only have

to show that (x̄, ȳ) satisfies (5.12), since all other constraints in Kca-DCut are
trivially satisfied. Assume that there is a subset S ⊆ V and a node v ∈ V for which
the corresponding (5.12) is violated, i.e., x̄(δ−(S)) < ȳv. We know from (5.21) that
there is a flow of exactly ȳv from r to v feasible w.r.t. the capacity vector x̄. From
the max-flow min-cut theorem (cf. Theorem 2.6) we know that the minimum cut
separating r and v in the corresponding network is at least yv. This contradicts our
assumption.

On the other hand, let (x̄, ȳ) ∈ PD. We show that there exists a flow f̄ such
that (x̄, ȳ, f̄) ∈ PF . We set f̄vij := 0 for all (i, j) ∈ A ∪ Ar if yv = 0. Otherwise, we

construct a directed graph G′r from Ḡr by inserting an additional node v′ for each
v ∈ V with yv ≥ 0 and connecting it to v by an arc (v, v′). The capacity of (v, v′) is
set to yv. The capacity of all other arcs a ∈ A ∪Ar is set to x̄a. We then set f̄vij to
the values of the corresponding maximum r, v′-flow in the above network. The flow
value of fv is then exactly yv: Assume that |fv| ≤ yv, then we would know from
the max-flow min-cut theorem that there is a subset S ⊂ V with x̄(δ−(S)) < yv
thus violating (5.12). On the other hand, |fv| is restricted by the capacity (v, v′)
and therefore cannot exceed yv.

The Kca′-Mcf formulation requires only a polynomial number of variables and
constraints and can be solved directly via branch-and-bound. However, the sheer

50 CHAPTER 5. ORIENTATION-BASED MODELING

number of variables becomes a practical drawback of this approach. In addition
to the x and y variables, we require |V | · (|A| + |Ar|) variables to model the flow.
As we know from similar problems [LWP+06] and from our results for survivable
network design (see next part of this thesis), this leads to poor performance of multi-
commodity flows in practice, compared to directed-cut based approaches which
allow efficient separation of their exponentially many constraints, cf. Section 6.3.

5.4.4 Alternative Orientation-based Models

Alternative orientation-based models for the unrooted KCT problems are given
in [QCML10]: The authors transform a given instance (G = (V,E), wE , wN , k)
into a problem instance (Ḡ∗, r′, c∗) where the task is to find a minimum spanning
arborescence (MSA) rooted at r′ and satisfying some additional constraints, see
below.

Their transformation is slightly different from our method. Recall that for
unrooted KCT problems, we use the bidirection Ḡ = (V,A) of G extended with
one additional node. In [QCML10], Ḡ is extended with two nodes resulting in the
graph Ḡ∗ = (V ∗, A∗), V ∗ = V ∪ {r′} ∪ {r} with r′, r /∈ V , and A∗ = A ∪ Ar′ ∪ Ar
with Ar′ = {(r′, j) | j ∈ V } ∪ {(r′, r)} and Ar = {(r, j) | j ∈ V }. The cost function
c∗ is defined as

c∗((i, j)) :=

0 if (i, j) ∈ Ar′ ,
wN (j) if (i, j) ∈ Ar,
wE({i, j}) + wN (j) if (i, j) ∈ A.

(5.24)

Note that if we are dealing with an EKCT problem, we can naturally assume
wN (j) := 0 for all j ∈ V .

Each spanning arborescence T ′ in Ḡ∗ that is rooted at r′ and satisfies the fol-
lowing constraints can be transformed into a k-cardinality tree T in G of the same
cost, and vice versa:

1. T ′ contains a directed path from r′ to each node v ∈ V ∪ {r}.

2. T ′ contains only one arc leaving r.

3. The arc (r′, r) is the only arc in T ′ entering r.

4. For each node v ∈ V , the path (r′ → v) either contains the arc (r′, r) or
consists of the single arc (r′, v).

5. Deleting the nodes r′, r and their incident arcs from T ′ leaves an arborescence
containing exactly k arcs.

Such constrained spanning arborescences can be described by a set of inequalities
in multiple ways. Quintão et al. consider the sets Msa′-DFlow and Msa′-MTZ
that use multi-commodity flows and Miller-Tucker-Zemlin subtour elimination con-
straints, respectively. Both sets use the network defining binary arc variables x′

5.4. POLYHEDRAL COMPARISONS 51

which are set to 1 if the corresponding arc is in the solution, and 0 otherwise. Min-
imizing the objective function

∑
a∈A∗ c

∗(a)x′a over Msa′-DFlow or Msa′-MTZ
gives two further ILPs that can be used to solve KCT.

Similar to our directed flow formulation, the first formulation sends 1 unit of
flow from r′ to each other node in Ḡ∗. Therefore, for each v ∈ V ∪ {r} and
(i, j) ∈ A∗ \ {(r′, w) | w /∈ v} it uses continuous flow variables hvij that give the
amount of commodity v that is sent over (i, j) to get from r′ to v.

Msa′-DFlow:= {(5.25)–(5.31)}

with

x′(A) = k (5.25)

x′(δ+(r)) = 1 (5.26)

x′(δ+(r′)) = n− k (5.27)∑
v∈V ∪{r}

hvr′r = k + 2 (5.28)

∑
j:(j,i)∈A∗

hvji −
∑

j:(i,j)∈A∗
hvij =

−1, if i = r′

1, if i = v

0, else

∀v ∈ V ∪ {r} (5.29)

0 ≤ hvij ≤ x′ij ∀(i, j) ∈ A∗,∀v ∈ V (5.30)

x′ij ∈ {0, 1} ∀(i, j) ∈ A∗,∀v ∈ V (5.31)

The second formulation uses level variables uv ∈ R+ for all nodes v ∈ V ∗ to
establish the Miller-Tucker-Zemlin constraints (5.37). These constraints guarantee
the resulting solutions to be cycle-free. For a v ∈ V ∗, uv indicates the number of
arcs on the path (r′ → v) in the corresponding feasible solution.

Msa′-MTZ:= {(5.32)–(5.41)}

with

x′(A) = k (5.32)

x′(δ+(r)) = 1 (5.33)

x′(δ+(r′)) = n− k (5.34)

x′(δ−(v)) = 1 ∀v ∈ V ∪ {r} (5.35)

x′r′v + x′vw ≤ 1 ∀(v, w) ∈ A (5.36)

(k + 3)x′vw + uv − uw + (k + 1)x′wv ≤ k + 2 ∀(v, w) ∈ A (5.37)

(k + 3)x′vw + uv − uw ≤ k + 2 ∀(v, w) ∈ Ar′ ∪Ar (5.38)

x′r′r = 1 (5.39)

ur′ = 0 (5.40)

uv ∈ R+ ∀v ∈ V ∗ (5.41)

52 CHAPTER 5. ORIENTATION-BASED MODELING

The computational results in [QCML10] show that the latter formulation gives
much weaker lower bounds than the flow-based formulation. For the related Steiner
tree problem, we know that most of the known ILPs, e.g., GSEC-, cut- and multi-
commodity flow based formulations are strictly stronger than MTZ-SEC based
ILPs [PD01b]. Hence, it seems natural that this is also the case in our setting.
In fact, a proof can be devised analogously to the one given in [PD01b].

We now show that Msa′-DFlow on (Ḡ∗, r′, c∗) is equivalent to Kca′-Mcf on
(Ḡr, r, c). We will thereby use the fact that the graph Ḡ∗ contains Ḡr as a subgraph
and the cost function c∗ is identical with the function c on Ḡr. Hence, we can identify
the variables x′ and x on the arc set A ∪Ar.

Theorem 5.13. The ILPs based on Kca′-Mcf and Msa′-DFlow are equivalent
for all considered KCT problems. Yet, Kca′-Mcf is more compact than Msa′-
DFlow.

Proof. Let PF ′ be the polyhedron containing the feasible solutions of the Msa′-
DFlow LP relaxation. We consider the following projection into the space of x
variables:

projx(PF) = {x ∈ [0, 1]A∪Ar | (x, y, f) ∈ PF },

projx(PF ′) = {x ∈ [0, 1]A∪Ar | (x′, h) ∈ PF ′ , ∀a ∈ A ∪Ar : xa = x′a}

Let x̄ ∈ projx(PF) be a feasile solution resulting from any (x̄, ȳ, f̄) ∈ PF . We
show that it is also in projx(PF ′), i.e., that we can construct a fractional solution
(x̄′, h̄) ∈ PF ′ with x̄′a := x̄a for each a ∈ A ∪ Ar. Therefore, we first set x̄′r′r := 1
and h̄rr′r := 1. For each v ∈ V , we set x̄′r′v := 1 − yv and h̄vr′v := 1 − yv. We
also set h̄vij := f̄vij for all v ∈ V , (i, j) ∈ A ∪ Ar. The resulting solution (x̄′, h̄)
straightforwardly satisfies all Msa′-DFlow constraints.

On the other hand, given a solution (x̄′, h̄) ∈ PF ′ , we can construct a feasible
(x̄, f̄ , ȳ) with x̄a = x̄′a for all a ∈ A ∪Ar: For each v ∈ V , we set ȳv := 1− h̄vr′v and
f̄vij := h̄vij for all (i, j) ∈ A∪Ar. We now show that (x̄, f̄ , ȳ) satisfies all Kca′-Mcf
constraints.

As 0 ≤ h̄vij ≤ 1 for all (i, j) ∈ A ∪ A′r ∪ Ar, we also have 0 ≤ ȳv, f̄
v
ij ≤ 1 for

all v ∈ V and (i, j) ∈ A ∪ Ar. Constraints (5.18) and (5.20) are straightforwardly
satisfied, as variables x̄ and x̄′ are identical on the arc set A ∪ Ar. Furthermore,
since for all i, v ∈ V ∪ {r} we have∑

j:(j,i)∈A∗
h̄vji =

∑
j:(j,i)∈A∪Ar

h̄vji + h̄vr′i and
∑

j:(i,j)∈A∗
h̄vij =

∑
j:(i,j)∈A∪Ar

h̄vij ,

the flow-conservation constraints (5.21) are also satisfied. It remains to show that
ȳ(V) = k + 1. Since Msa′-DFlow sends exactly 1 unit of flow for each node
v ∈ V ∪ {r}, using constraint (5.28) we have

∑
v∈V h̄

v
r′v = |V | − k − 1. We can

deduce:
y(V) =

∑
v∈V

(1− h̄vr′v) = |V | −
∑
v∈V

h̄vr′v = k + 1.

Although the formulations Msa′-DFlow and Kca′-Mcf are equivalent and Msa′-
DFlow avoids the use of the node variables yv, our DFlow formulation is more

5.4. POLYHEDRAL COMPARISONS 53

compact than Msa′-DFlow. In fact, the latter formulation contains flow variables
hvr′v that play exactly the role of yv variables, indicating to what extend the node
v is taken into the solution. At the same time, Msa′-DFlow has a larger amount
of network defining variables than Kca′-Mcf due to the larger input graph.

Computational results show that it is very time-consuming to compute the LP
relaxation of Msa′-DFlow. On the other hand, although computing such relax-
ations for Msa′-MTZ is very fast, the corresponding branch-and-bound algorithm
is also very time-consuming due to the weak lower-bounds. Quintao et al. then
use the stronger Msa′-DFlow formulation to derive Lagrangian lower and upper
bounds, resulting in a heuristic algorithm whose solution quality can be estimated
using the corresponding lower bounds. As mentioned before, computational results
in Chapter 7 show that our exact branch-and-cut algorithm based on Kca-DCut
is orders of magnitudes faster than all algorithms proposed in [QCML10].

54 CHAPTER 5. ORIENTATION-BASED MODELING

Chapter 6

Branch-and-Cut

The strongest known ILP models that can be used to solve unrooted KCT problems
are Kct-Gsec, Kca′-Mcf and Kca′-DCut. As we have shown in Chapter 5, these
formulations are equivalent from the polyhedral point of view. Nevertheless, we can
expect our Kca′-DCut approach to have certain advantages in the practice. For
the Kca′-Mcf ILP, these were discussed in the previous section. In the following,
we outline the practical merits of Kca′-DCut in comparison to the Kct-Gsec
model: The dcut-constraints are sparser than the GSECs, which usually leads to a
faster optimization in practice. This conjecture was experimentally confirmed, e.g.,
in [LWP+06] for the related prize-collecting Steiner tree problem, where a directed
cut formulation was compared to its GSECs-based counterpart. The former was
both faster in overall running time and required 1–2 orders of magnitude fewer
iterations. In Section 6.3 we will discuss the formal differences in the performances
between the separation routines for dcut-constraints and GSECs.

Hence, we use the Kca′-DCut formulation to develop and implement a branch-
and-cut algorithm for our KCT problems. For a general description of the branch-
and-cut scheme see Section 2.3.4.

6.1 Additional Constraints

Although Kca′-DCut has practical advantages over Kct-Gsec, we will extend our
Kca′-DCut formulation with some special GSECs. These constraints obviously
do not strengthen the original formulation, but they may lead to better overall
performance of our branch-and-cut routine. We will use such constraints for both
initialization and separation steps of our algorithm.

Special GSECs. Consider the following set of constraints:

xij + xji ≤ yi ∀i ∈ V,∀{i, j} ∈ E (6.1)

Intuitively, these constraints require for each selected arc that both incident nodes
are selected as well and ensure a unique orientation for each edge. For this reason
we may call them orientation constraints. They do not strengthen the Kca′-DCut
formulation as they represent the GSECs for two-element sets S = {i, j} ⊂ V ; from

55

56 CHAPTER 6. BRANCH-AND-CUT

the proof of Theorem 5.7, we know that these inequalities can be generated with
the help of (5.6) and (5.12).

Our test sets, as we will describe in Section 7, also contain grid graphs. Such
graphs have many 4-cycles, i.e., cycles that consist of 4 undirected edges. Since
these cycles are easy to identify (cf. Section 6.3), the special GSECs that forbid
the existence of such 4-cycles in the solution can be useful. Note that due to our
transformation, all 4-cycles are bidirected. Let C4 be the set of all bidirected 4-
cycles. A cycle C ∈ C4 then consists of 8 arcs and V (C) gives the nodes on C. We
call the following set of constraints 4-cycle GSECs:∑

a∈C
xa ≤

∑
i∈V (C)\{v}

yi ∀C ∈ C4, ∀v ∈ V (C). (6.2)

Asymmetry constraints. For each optimal solution T = (VT , ET) of the origi-
nally unrooted KCT problem, there are k+ 1 corresponding solutions of the Kca′-
DCut ILP. For any node v ∈ VT , the arborescence obtained by orienting T from
v outwards and adding the arc (r, v) represents an optimal solution of the corre-
sponding KCA problem.

Consider any proper <-relation defined on V . In order to exclude the above
symmetric solutions, and thus reduce the search space, the following asymmetry
constraints [Lju04] can be used:

xrj ≤ 1− yi ∀i, j ∈ V, i < j. (6.3)

These constraints ensure that for each KCA solution, the node adjacent to the root
is the one with the smallest possible “index”.

6.2 Initialization

For the initial partial LP we have to find a balance between too few and too many
constraints. Too few constraints would require too many time-consuming calls
to the separation routine and the LP-solver. On the other hand, too many con-
straints would lead to long LP-solver running times. Our algorithm starts with
the root-out-degree constraint (5.11), the edge cardinality constraint (5.9), and all
in-degree constraints (5.14). We prefer the in-degree constraints over the node car-
dinality constraint (5.10), as they strengthen the initial partial LP. As the proof of
Lemma 5.6 shows, all in-degree constraints, together with the root-out-degree and
the edge cardinality constraint already induce the node cardinality constraint, and
it is therefore not necessary to consider the latter. On the other hand, in order
to generate the in-degree constraints, we would require multiple dcut-constraints,
which are not available in the initial partial LP.

For the same reason, we also add the orientation constraints to our initial partial
LP. This speeds up the algorithm significantly, as these constraints do not have to
be separated explicitly by the branch-and-cut algorithm. This was first observed
in [Lju04] for the PCST and also confirmed by our own experiments.

6.3. SEPARATION 57

We also tried the above asymmetry constraints (6.3) to reduce the search space.
Anyhow, we will see in our experiments that the quadratic number of these con-
straints becomes a hindrance for large graphs and/or small k in practice.

6.3 Separation

The dcut-constraints (5.12) can be separated in polynomial time via the traditional
maximum flow separation scheme: We consider Ḡr as a network and interpret the
x-values of the current fractional LP solution as arc capacities. We compute the
maximum flow in Ḡr from r to each v ∈ V , using the implementation of [CG97]. If
the flow is less than yv, we extract one or more of the induced minimum r, v-cuts
(following the ideas of [KM98,LWP+06]) and add the corresponding constraints to
our model: We can easily extract the cuts closest to the source (front cut) and to
the sink (back cut). Let Sf be the set of all nodes reachable from the source via
unsaturated paths. Similarly, let Sb be the set of nodes with unsaturated paths to
the sink. We can identify these sets by simple BFS algorithms. The edges δ+(Sf)
leaving Sf form the front cut, the edges δ−(Sb) entering Sb are the back cut. We
can successively enlarge these two node sets by including the target nodes of the
front cut to Sf and the source nodes of the back cut to Sb, and restarting the BFS
searches. As long as both node sets do not coincide, we can extract so-called nested
cuts. Indeed, using these additional cuts significantly speeds up the computation.

Recall that in a separation procedure, we may search for the most violated
inequality of the current LP relaxation. In order to find the most violated inequal-
ity of the Kca′-DCut formulation, or to show that no such inequality exists, we
construct the flow network only once and perform at most |V | maximum flow cal-
culations on it. This is a main reason why the Kca′-DCut formulation performs
better than Kct-Gsec in practice: a single separation step for Kct-Gsec requires
2|V | − 2 maximum flow calculations, as already shown in [FHJM94]. Furthermore,
the corresponding flow network is not static over all those calculations, but has to
be adapted prior to each call of the maximum flow algorithm.

Our test sets, as described in Chapter 7, also contain grid graphs. In such
graphs, it is easy to detect and enumerate all 4-cycles by embedding the grids into
the plane and traversing all faces except for the single large one. In any planar
graph there is only a linear number of faces. For grids with n nodes we even know
that there are at most (

√
n− 1)

2
= (n+ 1− 2

√
n) 4-cycles. Hence we can separate

all constraints (6.2) in polynomial time by simply enumerating these cycles.

6.4 Upper Bounds

In the last decade, several heuristics and metaheuristics have been developed for the
KCT problem. Traditional branch-and-cut algorithms allow to use such algorithms
as primal heuristics, giving upper bounds that the branch-and-cut algorithm can
use for bounding purposes when branching. The use of such heuristics is two-fold:
(a) They can be used as start-heuristics, giving a good initial upper bound before
starting the actual branch-and-cut algorithm, and (b) they can be run multiple

58 CHAPTER 6. BRANCH-AND-CUT

times during the exact algorithm, using the current fractional solutions as an ad-
ditional input, or hint, in order to generate new and tighter upper bounds on the
fly.

Let h be a primal bound obtained by such a heuristic. We can add this bound
to our LP as ∑

a∈A
c(a) · xa ≤ h−∆.

Here, ∆ := min{c(a)− c(b) | c(a) > c(b), a, b ∈ A} denotes the minimal difference
between any two cost values. If the resulting ILP is found to be infeasible, we have
a proof that h was optimal, i.e., the heuristic solution was optimal.

As our experiments reveal, our algorithm is already very successful without the
use of any primal heuristic. Hence we compared our heuristic-less branch-and-cut
algorithm (DC−) with one using a perfect heuristic: a (hypothetical) algorithm that
requires no running time and gives the optimal solution. We can simulate such a
perfect heuristic by using the optimal solution obtained by a prior run of DC−.
We can then measure how long the algorithm takes to discover the infeasibility of
the ILP. We call this algorithm variant DC+. If the runtime performance of DC−

and DC+ are similar, we can conclude that using any heuristic for bounding is not
necessary. Unless specified otherwise, we always report on the DC− algorithm, i.e.,
the branch-and-cut algorithm without using any heuristic for upper bounds.

Chapter 7

Experiments

We implemented our algorithm in C++ using CPLEX 9.0 and LEDA 5.0.1. The
experiments were performed on a 2.33 GHz Intel Xeon 5140 in 32 bit mode. Al-
though the machine offers two cores, each process was restricted to a single core
and 2 GB RAM. In this chapter we report on the performance of our algorithm for
the unrooted EKCT and NKCT problems.

7.1 EKCT Instances

For the EKCT we tested our algorithm on all instances of the KCTLIB [BB03]
which consists of the following benchmark sets:

(BX) The instance set suggested in [BX00] contains 35 4-regular graphs with 25–
1000 nodes. The value of k is fixed to 20.

(UBM) The set presented in [UBM04] consists of randomly generated 20-regular
graphs with 500–5000 nodes. There are 10 graphs per instance size, with
edge-weights uniformly distributed from the interval [50, 500] for |V | ≤ 1000
and [100, 1000] for V ≥ 1500. We use the notation krel = X% to denote that k
is chosen to be X% of n = |V |. E.g., for a graph with 2500 nodes, krel = 10%
means that we choose k = 250. Each instance of the benchmark set has to
be solved for krel = {10%, . . . , 50%}. Urosevic et al. [UBM04] presented a
variable neighborhood decomposition search (VNDS), which is still the best
known metaheuristic for this benchmark set. However, there are no published
results on the behavior of VNDS on any other test instances.

(BB) The instance set presented in [BB05b] is divided into four subsets of dense,
sparse, grid and 4-regular graphs, respectively, with different sizes of up to
2500 nodes. We use the notation krel = X% to denote that k is chosen to
be X% of n = |V |. E.g., for a graph with 2500 nodes, krel = 10% means
that we choose k = 250. The values for k are defined as for (UBM) by
using krel = {10%, . . . , 90%}1, and additionally for k = 2 and k = n − 2.
For more details on these instances see Table 7.9. The most successful known

1For the grid instances, the values krel differ slightly.

59

60 CHAPTER 7. EXPERIMENTS

metaheuristics for (BB) are the hybrid evolutionary algorithm (HyEA) [Blu06]
and the ant colony optimization algorithm (ACO) [BS04]. This benchmark
set is the one most commonly used in publications.

Remark 7.1. The choices k = 2 and k = n − 2 for (BB) are rather insignificant
for the analysis of general KCT algorithms. We can solve the former case optimally
in O(|V ||E|) by building BFS trees of depth 2 for all nodes, thereby enumerating
all connected edge pairs. The latter can be solved to optimality by considering the
graph G \ {v}—the graph G without the node v—for all v ∈ V . For each such
graph we compute a minimum spanning tree and choose the minimum among them
as the solution. Hence we require O(|E||V | log |V |) time.

The results of [BB05b] have already shown that the (BX) instances are easy,
which was also confirmed by our experiments. Our algorithm needed 0.85 seconds
on average per instance to solve them to optimality; the median was 0.08 seconds.

Our computational experiments on (UBM) show that all instances can be solved
to provable optimality. Except for 20 out of the 350 instances, all of them can even
be solved in under two hours. The longer running instances are some large ones
with 4000–5000 nodes which require 40–50% of edges to be in the solution.

Table 7.1 gives the average running times of our algorithm, as well as the running
times of the VNDS metaheuristic in [UBM04]. Even though the latter times are
larger, we can expect them to be substantially smaller on recent machines, as they
where achieved on a Pentium II with 450 MHz. Unfortunately, this machine was too
old to be considered in the current SPEC performance evaluation tests [Spe08], so we
cannot fairly compare these running times. Rough estimates suggest a performance
difference of about 150×. Overall, the VNDS metaheuristic by Urosevic et al.
[UBM04] is clearly faster than our exact approach, but on the other hand, this is
only achieved at the cost of the solution quality. VNDS did never give an optimal
solution. Table 7.1 also shows the average differences between the optimal solutions
and the previously best known solutions (BKS), obtained by VNDS. We can observe
that the running times of the VNDS approach do not increase as strongly as our
approach with increasing k. We also report that the gaps of VNDS usually decrease
with higher k.

For the following analysis regarding the EKCT problem (Sections 7.2–7.4) we
will concentrate on the more common and diverse benchmark set (BB), and compare
our results to those of HyEA [Blu06], ACO [BS04], and the ILP-based algorithms
of Quintao et al. [QCML10]. An additional advantage of this benchmark set is
that the available data on the performance of these other algorithms is much more
detailed. In Section 7.5 we will report on our results on some further instance sets
that are not part of the KCTLIB.

7.2 Algorithmic Behavior

7.2.1 Parameter Influence

We start with investigating the relative merits of various possible parameter set-
tings. As our base case we consider the above described branch-and-cut algorithm

7.2. ALGORITHMIC BEHAVIOR 61

nds 500 1000 1500 2000 3000 4000 5000

a
v
g time 4.1/39.0 25.4/103 91.7/168 202/256 881/737 2853/1104 5919/1270

gap 1.5% 0.1% 0.1% 0.2% 0.2% 0.3% 0.3%
k
re
l(

%
)

10 2.8/15.3 13.0/52.9 44.4/123 52.2/152 148/225 279/534 506/719

20 2.6/46.9 14.4 /95.9 52.3/153 120/211 255/627 781/955 1296/1089

30 4.8/37.4 27.5/157 98.0/221 256/242 584/1135 1631/1083 4126/1381

40 4.8/48.2 41.4/174 184.3/219 400/323 1205/915 3803/1481 7770/1693

50 8.0/47.25 65.1/34.7 372/123 652/352 2212/785 8812/1468 14853/1892

* 5.6/47.25 30.7/34.7 79.6/123 180/352 — — —

Table 7.1: Average running times of DC− for (UBM) in seconds. “*” considers
krel = 50% for |V | ≤ 2000 and is achieved by using the asymmetry constraints (6.3).
The times in small font after the slashes are the times of VNDS reported in [UBM04].
We also give the average gap between the optimum and the best solutions obtained
by VNDS. Note that the times for VNDS were achieved on a much slower machine
(cf. text).

without special constraints or heuristics.

Figure 7.1 illustrates the effectiveness of the asymmetry constraints (6.3) de-
pending on increasing relative cardinality krel. We measured the speed-up by the
quotient t∅/tasy, where tasy and t∅ denote the running time with and without using
(6.3), respectively. The constraints allow a speed-up by more than an order of mag-
nitude for sparse, dense and regular graphs, but only for large cardinality k ≥ n

2 .
Our experiments show that for smaller k, a variable xri, for some i ∈ V , is quickly
set to 1 and stays at this value until the final result. In these cases the constraints
cannot help and only slow down the algorithm. Interestingly, the asymmetry con-
straints are never profitable for the grid instances. For graphs with more than 2000
nodes, using (6.3) is not possible due to memory restrictions, as the O(|V |2) many
asymmetry constraints are too much to handle. Hence, we omitted these graphs in
Figure 7.1.

We can validate these observations by reconsidering (UBM). In Table 7.1 we see
the improvement achieved by introducing the asymmetry constraints for krel = 50%.

We also report on the experiments with the 4-cycle GSECs (6.2) within the
separation routine for the grid graphs. The clear advantage of these constraints is
shown in Figure 7.2, which shows the speed-up factor t∅/tgsec obtained by the use
of these constraints.

Based on these results we apply a simple rule for all the remaining experiments:
We include the asymmetry constraints for all non-grid instances with less than 2500
nodes and k ≥ n

2 . For the grid instances we always separate the 4-cycle GSECs (6.2).

As described in Section 6.4, we also investigate the influence of primal heuristics
in our branch-and-cut algorithm. A comparison of the running times of DC+ (using
a perfect heuristic, cf. page 58) and DC− is shown in Figure 7.3 (thereby restricted
to instances with 1000 nodes). In general, our experiments show that DC+ is only
10–30% percent faster than DC− on average, even for the large graphs. Hence, we
conclude that a bounding heuristic is not crucial for the success of our algorithm.

62 CHAPTER 7. EXPERIMENTS

0,01

0,1

1

10

100

2 10% 20% 30% 40% 50% 60% 70% 80% 90% n-2

k, krel

dense

regular

sparse

sp
ee

d
-u

p

Figure 7.1: Speed-up factors for dense, regular and sparse graphs with |V | ≤ 2000
obtained when asymmetry constraints (6.3) are included in the initial LP

0,01

0,1

1

10

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

krel

sp
ee

d
-u

p

Figure 7.2: Speed-up factors for the grid instances of (BB) when 4-cycle
GSECs (6.2) are separated. We have a diamond-shaped data point for each instance
and krel value. This data point gives the corresponding speed-up factor achieved by
the use of 4-cycle GSECs. The short horizontal bars denote the average speed-up
over all instances per krel.

7.3. COMPARISON TO OTHER METHODS 63

-20%

0%

20%

40%

60%

80%

10% 20% 30% 40% 50% 60% 70% 80% 90%

k, krel

dense

regular

sparse

re
l.

 s
p
ee

d
-u

p

Figure 7.3: Relative speed-up (tDC− − tDC+)/tDC− (in percent) of DC+ compared
to DC− for the instances with 1000 nodes.

7.2.2 Algorithm’s Running Times

The detailed running times of our algorithm for all (BB) instances are presented
in Tables 7.2, 7.3, 7.4, 7.5, and 7.6 (the five columns on the right are discussed in
Section 7.3).

In Table 7.7 we summarize the average and median computation times of our
algorithm, sorted by size and categorized according to the special properties of the
underlying graphs. Generally, we leave table cells empty if there is no problem
instance with the according properties. We can observe that performance does not
differ significantly between the sparse, regular and dense graphs, but that the grid
instances are more difficult and require more computational power. This was also
noticed in [EFHM97,BE03,BUM06].

In Table 7.8, we show that the computation time is not only dependent on the
graph size, but also on the density of the graph. Therefore we give the average
CPU time for the specified instance sets (all (BB) except the grid instances) with
500 and 1000 nodes and relative cardinalities k of 10%, 20%, . . . , 50%.

The behavior of DC− also has a dependency on k. For the sparse, dense, and
regular instances the running time increases with increasing k for up to 50%, see
Figures 7.4(a), 7.4(c) and 7.4(d). For larger k it remains relatively stable. In
contrast to this, solving the grid instances (cf. Figure 7.4(b)) is more difficult for
the relatively small k-values.

7.3 Comparison to Other Methods

7.3.1 Runtime Quality

The original experiments for HyEA and ACO were performed on an Intel Pen-
tium IV, 3.06 GHz with 1GB RAM and a Pentium IV 2.4 GHz with 512MB RAM,

64 CHAPTER 7. EXPERIMENTStime DC− time [QCML10] obj.val.
k ILP LP MCF-LP MTZ-ILP LH opt LH

b
b

1
5
x
1
5

1
2 0.03 0.03 — — — 2 —

20 0.3 0.3 790.39 81.85 70.46 257 257
40 25.16 1.23 2427.98 24425.45 90.71 642 642
60 2.93 1.42 2230.31 153320.69 93.30 977 977
80 1.01 1.01 915.18 328839.66 100.70 1335 1335

100 1.01 0.84 — — — 1761 —
120 0.7 0.64 — — — 2235 —
140 0.5 0.5 — — — 2781 —
160 0.93 0.73 — — — 3417 —
180 0.56 0.56 — — — 4158 —
200 0.57 0.57 — — — 5040 —
220 0.66 0.66 — — — 6176 —
223 0.67 0.67 — — — 6400 —

b
b

1
5
x
1
5

2

2 0.04 0.04 — — — 6 —
20 148.39 0.35 809.50 273.16 81.48 253 253
40 2.3 0.41 314.86 6508.41 86.24 585 585
60 1.35 0.50 335.60 31317.61 87.03 927 927
80 0.97 0.64 1163.30 36628.68 96.31 1290 1290

100 0.67 0.67 — — — 1686 —
120 0.54 0.54 — — — 2120 —
140 0.46 0.46 — — — 2634 —
160 0.51 0.51 — — — 3248 —
180 0.59 0.54 — — — 3915 —
200 0.67 0.67 — — — 4718 —
220 0.99 0.99 — — — 5862 —
223 0.9 0.9 — — — 6101 —

b
b

4
5
x
5

1

2 0.02 0.02 — — — 2 —
20 8.24 0.23 390.89 1067.70 79.28 306 306
40 10.12 2.49 669.35 53752.90 87.48 695 695
60 7.76 2.63 55.67 OOM 94.58 1107 1107
80 21.46 2.43 892.37 OOM 103.38 1551 1551

100 6.54 2.57 — — — 1956 —
120 1.58 1.58 — — — 2444 —
140 1.4 1.4 — — — 3024 —
160 1.05 1.05 — — — 3688 —
180 0.92 0.92 — — — 4472 —
200 0.6 0.6 — — — 5461 —
220 0.9 0.9 — — — 6718 —
223 0.84 0.84 — — — 6946 —

b
b

4
5
x
5

2

2 0.04 0.04 — — — 8 —
20 6.17 0.13 412.14 732.20 80.26 302 302
40 0.84 0.36 462.78 7658.12 86.23 654 654
60 83.42 2.11 2903.91 OOM 95.39 1122 1122
80 3.5 3.30 2379.05 OOM 101.85 1617 1617

100 3.81 2.62 — — — 2129 —
120 3.25 2.34 — — — 2631 —
140 1.51 1.44 — — — 3174 —
160 1.22 1.15 — — — 3757 —
180 1.11 1.11 — — — 4458 —
200 1.22 1.22 — — — 5262 —
220 1.04 1.04 — — — 6347 —
223 0.95 0.95 — — — 6568 —

Table 7.2: Times (in sec.) and solution values of DC− and the algorithms
in [QCML10] for grid (BB) instances.

7.3. COMPARISON TO OTHER METHODS 65

time DC− time [QCML10] obj.val.
k ILP LP MCF-LP MTZ-ILP LH opt LH

b
b

3
3
x
3
3

1

2 0.15 0.15 — — — 3 —
100 37.28 34.41 * OOM 6633.15 1562 1577
200 146.88 116.01 * OOM 7079.54 3292 3342
300 194.3 167.06 * OOM 7755.70 5088 5207
400 224.36 207.29 * OOM 9011.41 7044 7172
500 113.09 105.65 * OOM 6710.19 9176 9332
600 52.42 52.42 — — — 11552 —
700 66.91 62.84 — — — 14270 —
800 80.64 80.64 — — — 17363 —
900 71.39 71.39 — — — 20911 —

1000 76.98 76.98 — — — 25199 —
1087 100.22 100.22 — — — 30417 —

b
b

3
3
x
3
3

2

2 0.16 0.16 — — — 3 —
100 74.88 67.75 * OOM 5548.97 1524 1547
200 86.06 71.42 * OOM 5797.90 3241 3379
300 75.56 52.54 * OOM 6096.48 5164 5296
400 52.61 52.61 * OOM 6259.84 7212 7339
500 82.95 68.96 * OOM 6578.05 9413 9510
600 58.75 56.05 — — — 11791 —
700 72.15 72.15 — — — 14461 —
800 74.88 70.38 — — — 17502 —
900 69.47 69.47 — — — 20989 —

1000 62.77 62.77 — — — 25273 —
1087 102.12 102.12 — — — 30326 —

b
b

5
0
x
5
0

1

2 0.34 0.34 — — — 2 —
250 5851.12 1649.01 — — — 3885 —
500 19513.1 11950 — — — 8059 —
750 4741.98 4741.98 — — — 12433 —

1000 2710.49 2679.91 — — — 17264 —
1250 2224.24 2132.51 — — — 22558 —
1500 1494.24 1477.69 — — — 28454 —
1750 1644.35 1594.02 — — — 35331 —
2000 1228.48 1228.48 — — — 43541 —
2250 1667.75 1667.75 — — — 53406 —
2498 1426.24 1426.24 — — — 67141 —

b
b

5
0
x
5
0

2

2 0.62 0.62 — — — 3 —
250 957.98 443.54 — — — 3581 —
500 6211.05 5483.35 — — — 7797 —
750 4136.36 3742.99 — — — 12346 —

1000 3208.90 3205.18 — — — 17445 —
1250 2353.30 2335.24 — — — 23229 —
1500 1369.41 1369.41 — — — 29697 —
1750 1390.10 1390.10 — — — 36978 —
2000 1955.45 1955.45 — — — 45592 —
2250 2149.56 2149.56 — — — 56029 —
2498 1991.96 1991.96 — — — 70439 —

Table 7.3: Times (in sec.) and solution values of DC− and the algorithms
in [QCML10] for grid (BB) instances.

66 CHAPTER 7. EXPERIMENTS

time DC− time [QCML10] obj.val.
k ILP LP MCF-LP MTZ-ILP LH opt LH

st
e
in

c
5

2 0.1 0.04 — — — 5 —
50 1.48 0.43 8124.35 1597.12 465.31 772 772

100 0.48 0.22 3359.5 2783.31 524.68 1712 1712
150 0.55 0.55 * 4641.91 619.55 2865 2874
200 0.88 0.88 17132.52 13695.98 641.64 4271 4271
250 2.44 2.44 28724.53 20226.13 712.38 5942 5945
300 3.44 2.73 — — — 7938 —
350 1.79 1.79 — — — 10236 —
400 1.67 1.67 — — — 12964 —
450 1.57 1.57 — — — 16321 —
498 1.86 1.86 — — — 20485 —

st
e
in

d
5

2 0.11 0.11 — — — 3 —
100 3.01 1.36 * 27822.98 7741.05 1503 1503
200 7.38 3.5 * 72865.63 8694.89 3440 3452
300 5.64 4.35 * OOM 7815.48 5817 5836
400 7.01 7.01 * OOM 8394.2 8685 8690
500 32.75 32.75 * OOM 9245.71 12054 12074
600 23.82 23.82 — — — 15911 —
700 24.93 24.02 — — — 20510 —
800 18.32 18.32 — — — 26053 —
900 15.92 15.92 — — — 32963 —
998 16.09 16.09 — — — 41572 —

st
e
in

e
5

2 0.33 0.33 — — — 3 —
250 9.52 7.69 — — — 3883 —
500 29.8 25.26 — — — 9270 —
750 96.69 60.16 — — — 15765 —

1000 180.06 157.04 — — — 23495 —
1250 245.54 245.54 — — — 32475 —
1500 479.72 377.00 — — — 42735 —
1750 741.97 582.38 — — — 54729 —
2000 893.98 893.98 — — — 68618 —
2250 2146.72 2224.48 — — — 85360 —
2498 2224.48 2224.48 — — — 106677 —

Table 7.4: Times (in sec.) and solution values of DC− and the algorithms
in [QCML10] for sparse (BB) instances.

7.3. COMPARISON TO OTHER METHODS 67

time DC− time [QCML10] obj.val.
k ILP LP MCF-LP MTZ-ILP LH opt LH

le
4
5
0

1
5
a

2 12.64 0.41 — — — 2 —
45 10.2 2.25 4982.81 7218.96 59 59
90 1.97 1.97 — — — 135 —

135 5.6 3.39 5501.04 14295.79 226 226
180 7.37 7.37 — — — 336 —
225 7.41 5.28 99599.15 16179.83 471 471
270 4.44 4.44 — — — 630 —
315 5.42 5.42 — — — 822 —
360 5.35 5.35 — — — 1060 —
405 7.91 7.91 * OOM 13351.92 1388 1388
448 6.02 6.02 — — — 2002 —

st
e
in

c
1
5

2 0.16 0.16 — — — 2 —
50 0.38 0.38 959.16 1427.78 208 208

100 0.96 0.71 4577.04 1605.2 481 481
150 3.19 2.16 5542.21 1804.98 802 802
200 2.33 2.09 39944.7 2073.63 1182 1182
250 4.9 4.52 * OOM 2230.47 1625 1625
300 6.45 4.18 — — — 2148 —
350 3.24 3.24 — — — 2795 —
400 6.49 6.49 — — — 3571 —
450 4.87 4.87 — — — 4553 —
498 3.58 3.58 — — — 5973 —

st
e
in

d
1
5

2 0.34 0.34 — — — 2 —
100 14.28 3.09 * OOM 20449.74 454 454
200 11.58 11.12 * OOM 22201.96 1018 1023
300 15.6 15.6 * OOM 22561.36 1674 1684
400 41.69 38.70 * OOM 22794.72 2446 2457
500 19.62 19.62 * OOM 26530.49 3365 3372
600 25.49 25.49 — — — 4420 —
700 23.56 23.56 — — — 5685 —
800 21.6 21.6 — — — 7236 —
900 24.57 24.57 — — — 9248 —
998 21.42 21.42 — — — 12504 —

Table 7.5: Times (in sec.) and solution values of DC− and the algorithms
in [QCML10] for dense (BB) instances.

68 CHAPTER 7. EXPERIMENTS

time DC− time [QCML10] obj.val.
k ILP LP MCF-LP MTZ-ILP LH opt LH

g
1
0
0
0
-4

-0
1

2 0.15 0.15 — — — 6 —
100 6.83 2.08 * * 9291.24 1523 1527
200 3.37 3.11 * 215106.66 10174.36 3308 3308
300 16.26 5.58 * OOM 11794.51 5325 5328
400 21.64 13.32 * OOM 10157.27 7572 7590
500 19.84 19.84 * OOM 10761.9 10042 10079
600 17.44 17.44 * OOM * 12705 *
700 31.14 24.30 * OOM * 15675 *
800 26.28 26.28 — — — 19015 —
900 33.1 30.12 — — — 22827 —
998 22.7 22.7 — — — 27946 —

g
1
0
0
0
-4

-0
5

2 0.16 0.16 — — — 7 —
100 1.94 1.81 * 148251.04 9487.4 1648 1658
200 2.31 2.31 * OOM 10246.42 3618 3649
300 6.76 5.89 * OOM 10263.63 5797 5821
400 14.69 13.93 * OOM 9962.52 8195 8217
500 21.88 20.96 * OOM 10432.05 10784 10797
600 27.79 14.14 * OOM * 13579 *
700 10.74 10.74 * OOM * 16674 *
800 10.78 10.78 — — — 20074 —
900 22.3 22.3 — — — 24029 —
998 18.67 18.67 — — — 29182 —

g
4
0
0
-4

-0
1

2 0.05 0.05 — — — 8 —
40 0.14 0.10 2281.68 155.5 406.4 563 563
80 0.29 0.21 3656.95 979.42 465.76 1304 1304

120 0.4 0.4 2871.22 3322.27 553.35 2132 2132
160 1.14 0.93 12296.15 132412.57 526.29 3062 3065
200 1.74 1.59 * * 534.37 4086 4095
240 1.1 1.1 — — — 5224 —
280 2 1.52 — — — 6487 —
320 0.96 0.96 — — — 7882 —
360 0.91 0.91 — — — 9468 —
398 0.84 0.84 — — — 11433 —

g
4
0
0
-4

-0
5

2 0.05 0.05 — — — 4 —
40 1.41 0.76 2905.24 1709.59 352.29 670 670
80 0.9 0.55 2974.7 3774.46 407.92 1445 1445

120 1.12 0.54 4626.19 6083.98 469.12 2291 2293
160 0.65 0.65 4217.41 32882.25 494.77 3192 3192
200 1.42 1.42 3651.64 13962.67 529.76 4156 4156
240 1.2 1.2 — — — 5198 —
280 3.54 3.09 — — — 6350 —
320 1.33 1.16 — — — 7682 —
360 0.97 0.97 — — — 9249 —
398 0.84 0.84 — — — 11236 —

Table 7.6: Times (in sec.) and solution values of DC− and the algorithms
in [QCML10] for regular (BB) instances.

7.3. COMPARISON TO OTHER METHODS 69

nodes 500 1000–1089 2500

group avg/med
tHyEA

tDC−
avg/med

tHyEA

tDC−
avg/med

tHyEA

tDC−

sparse 1.3/1.3 2.7 12.6/15.9 2.9 640.9/245.5 0.4
regular 1.0/1.0 3.9 15.3/16.9 7.5 — —

dense 5.0/5.1 4.9 19.2/21.4 2.9 — —
grid 7.0/1.0 0.6 82.4/74.9 1.7 3101.2/1973.7 0.2

Table 7.7: Average/median CPU time (in seconds) and the average speed-up factor
of DC− to HyEA for the instance set (BB). Cells are left empty if there exists no
instance matching the given criteria.

0,01

0,1

1

10

100

1000

2

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

n
-2

k, krel

se
c.

HyEA

ACO

DC-

(a) sparse steind5 (1000 nodes, 1250 edges)

0,01

0,1

1

10

100

1000

2

9
%

1
8

%

2
8

%

3
7

%

4
6

%

5
5

%

6
4

%

7
3

%

8
3

%

9
2

%

n
-2 2

9
%

1
8

%

2
8

%

3
7

%

4
6

%

5
5

%

6
4

%

7
3

%

8
3

%

9
2

%

n
-2

k, krel

HyEA

ACO

DC-

se
c.

(b) grid 33x33-1 and 33x33-2 (1089 nodes, 2112 edges)

Figure 7.4: Running times of DC−, HyEA, and ACO (in seconds) for instances
of (BB) with ∼1000 nodes, depending on k. The figures for the grid and regular
instances show the times for two different instances of the same type, respectively.

70 CHAPTER 7. EXPERIMENTS

0,01

0,1

1

10

100

1000

2

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

n
-2

k, krel

HyEA

ACO

DC-

se
c.

(c) dense steind15 (1000 nodes, 1250 edges)

0,01

0,1

1

10

100

1000

2

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

n
-2 2

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

n
-2

k, krel

HyEA
ACO
DC-

se
c.

(d) 4-regular g1000-4-1 and g1000-4-5 (1000 nodes, 2000 edges)

Figure 7.4: Continued.

7.3. COMPARISON TO OTHER METHODS 71

avg. deg set ≤500 nodes 1000 nodes
2.5 (BB) 1.0 8.1
4 (BB) 0.9 11.6
10 (BB) 2.2 18.8
20 (UBM) 4.6 32.3

36.3 (BB) 6.3 —

Table 7.8: Average CPU time (in seconds) over krel values of 10%, 20%, . . . , 50%,
sorted by the average degree of the graphs.

0%

25%

50%

75%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
krel

grid (225)

regular (all)

sparse (2500)

eq
.

Figure 7.5: Dependency of the BKS quality on krel, for selected instances. The
vertical axis gives the percentage of the tested instances for which the BKS provided
in [BB03] are optimal.

respectively. Using the well-known SPEC performance evaluation [Spe08], we com-
puted scaling factors of both machines to our computer: For the running time
comparison we divided the times given in [Blu06] and [BS04] by 1.75 and 2.33,
respectively. Anyhow, note that these factors are elaborate guesses at best and are
only meant to help the reader to better evaluate the relative performance. The
computational study on Msa′-DFlow and Msa′-MTZ based algorithms was per-
formed using CPLEX 10.2.0 on a Pentium Xeon machine running at 3.0 GHz with
2GBytes of RAM. Unfortunately these specification of the used computer is not
exact enough to compute the precise scaling factor to our computer, but we can
safely assume overall similar performance.

Table 7.7 gives the average factor of tHyEA/tDC− , i.e., the running time of our
algorithm compared to the (scaled) running time of HyEA. Analogously, Figure 7.4
shows the CPU time in (scaled) seconds of HyEA, ACO and our algorithm. We
observe that our DC− algorithm performs better than the best metaheuristics in
particular for the medium values of k, i.e., 40–70% of |V |, on all instances with up
to 1089 nodes, except for the very dense graph le450 15a with 450 nodes and 8168
edges, where HyEA was slightly faster. Interestingly, the gap between the heuristic
and the optimal solution tends to be larger especially for medium values of k (cf.

72 CHAPTER 7. EXPERIMENTS

instance (|V |,|E|) avg. deg eq. gapbks gapavg gapavg

ACO HyEA

regular g400-4-1 (400,800) 4 10/11 0.09 0.07 0.04
regular g400-4-5 (400,800) 4 8/11 0.19 0.31 0.35
regular g1000-4-1 (1000,2000) 4 7/11 0.07 0.65 0.12
regular g1000-4-5 (1000,2000) 4 3/11 0.08 0.45 0.35
sparse steinc5 (500,625) 2,5 11/11 — 0.97 0.06
sparse steind5 (1000,1250) 2,5 11/11 — 0.48 0.11
sparse steine5 (2500,3125) 2,5 3/11 0.13 n/a 0.23
dense le450a (450,8168) 36,3 11/11 — n/a 0.04
dense steinc15 (500,2500) 10 11/11 — 0.36 0.02
dense steind15 (1000,5000) 10 10/11 0.22 0.38 0.04
grid 15x15-1 (225,400) 3,7 13/13 — 1.27 0.18
grid 15x15-2 (225,400) 3,7 13/13 — 2.04 0.12
grid 45x5-1 (225,400) 3,6 4/13 0.54 n/a 1.22
grid 45x5-2 (225,400) 3,6 10/13 0.08 n/a 0.13
grid 33x33-1 (1089,2112) 3,9 3/12 0.31 1.70 0.57
grid 33x33-2 (1089,2112) 3,9 3/12 0.39 2.48 0.49
grid 100x10-1 (1000,1890) 3,8 3/12 0,42 n/a 0.30
grid 100x10-2 (1000,1890) 3,8 2/12 0,80 n/a 0.65
grid 50x50-1 (2500,4900) 3,9 2/11 0.95 n/a 1.27
grid 50x50-2 (2500,4900) 3,9 2/11 0.55 n/a 0.82

Table 7.9: Quality of previously best known solutions (BKS) provided in [BB03]
for selected instances. “eq.” denotes the number of instances for which the BKS
was optimal. For the other instances where BKS was not optimal, we give the
average relative gap (gapbks) between OPT and BKS. For all instances we also give
the average relative gap (gapavg) between the average solution of the metaheuristic
and OPT—including the 0-gaps for optimally solved instances. All gaps are given
in percent. Cells marked as “n/a” cannot be computed as the necessary data for
ACO is not available.

7.3. COMPARISON TO OTHER METHODS 73

next Section and Figure 7.5 for details).

In Tables 7.2–7.6, for each tested (BB) instance, we give the value of the
corresponding optimal solution as well as the CPU time DC− needed to compute
this solution, and the value of the Kca′-DCut LP-relaxation. Additionally, for
those instances that were also considered in [QCML10], we give the running times
needed to compute the LP relaxation of Msa′-DFlow (MCF) and those to compute
an optimal solution by a Msa′-MTZ-based branch-and-bound algorithm (MTZ).
Note that the long LP computation times of MCF made a corresponding branch-
and-bound impossible.

Furthermore, the tables contain statistics regarding a Lagrangian heuristic (LH)
of [QCML10]. OOM denotes aborted computations due to memory restrictions. We
put “—” if the instance has not been considered in [QCML10]. If they give no results
(eventhough the instance was considered by another of their algorithms) we denote
it by “*”.

We observe that MCF can solve LP relaxations only for grid instances with
225 nodes and small k values as well as sparse instances with up to 500 nodes. Al-
though the computation of LP-relaxations of MTZ is very fast, the running times of
the corresponding branch-and-bound algorithm are large due the extensive branch-
ing. MTZ optimally solves only some of the latter and a few more larger and
denser instances. Whereas our DC− solves all these instances in at most some
seconds (usually less than a second), MCF and MTZ already need several hours.
Furthermore, DC− also clearly outperfoms the Lagrangian heuristic which needs
significantly higher running times and does not compute provably optimal solu-
tions. Note that such large differences in runnig times cannot be only explained by
the use of different computers.

7.3.2 Solution Quality

For each instance of (BB), we compared the previously best known solutions, as
published in [BB03], with the optimal solution obtained by our algorithm, in order
to assess their quality. Most of the best known solutions (BKS) were found by
HyEA, followed by ACO. Note that these solutions were obtained by taking the
best solutions over 20 independent runs per instance. In Table 7.9 we show the
number of instances for which we proved that BKS was in fact not optimal, and
give the corresponding gap gapbks := (BKS−OPT)/OPT (in percent) per graph,
averaged over the different values for k. Here OPT denotes the optimal objective
value obtained by DC− and BKS denotes the best known solution obtained by either
ACO or HyEA. Analogously, we give the gaps gapavg := (AVG−OPT)/OPT (in
percent), where AVG denotes the average solution over 20 runs, obtained by a
metaheuristic. We observe that—concerning the solution quality—metaheuristics
work quite well on instances with up to 1000 nodes and relatively small k. In
particular, for k = 2 and k = n− 2 they always found an optimal solution.

Note that having comparable solution quality, the above metaheuristics are
much faster than the Lagrangian heuristic presented in [QCML10].

74 CHAPTER 7. EXPERIMENTS

sp
a
rs

e
,

d
e
n

se
,

re
g
u

la
r

g
ri

d
|V
|

5
0
0

1
0
0
0

2
5
0
0

2
2
5

1
0
8
9

2
5
0
0

k
re
l

∅
as

y
m

∅
as

y
m

∅
∅

g
se

c
∅

g
se

c
∅

g
se

c

cuts

≤
3
3

15
.3

6.
3

39
.7

11
.2

6
4
.0

6
2
2
.3

6
7
4
.2

9
6
1
.7

7
1
0
.0

2
9
7
8
.3

2
9
2
4
.0

3
4
–
6
6

38
.1

5.
3

11
5.

7
14

.5
20

9
.3

2
4
1
.4

1
7
8
.5

7
5
2
.7

4
9
9
.0

1
7
7
0
.0

1
3
5
8
.0

≥
6
6

11
5.

5
6.

3
25

0.
7

22
.2

46
0
.0

1
0
7
.8

6
9
.9

4
1
0
.3

2
4
2
.0

1
1
7
3
.7

7
1
3
0
.0

B&B
≤

3
3

7.
0

2.
9

8.
1

3.
8

5
.3

8
4
.7

1
0
8
.8

7
.3

7
.7

9
.5

1
6
.3

3
4
–
6
6

2.
0

1.
1

5.
8

1.
0

5
.0

5
.8

9
.1

3
.3

4
.8

2
8
.5

2
.8

≥
6
6

0.
7

0.
3

0.
8

0.
5

7
.7

0
.3

0
.4

1
.7

1
.8

0
.8

0
.5

gapLP

≤
3
3

0.
13

9%
0.

03
2%

0.
0
0
8
%

2
.6

4
5
%

0
.0

5
3
%

0
.0

4
6
%

3
4
–
6
6

0.
00

6%
0.

00
3%

0.
0
0
1
%

0
.1

4
8
%

0
.0

0
2
%

0
.0

0
1
%

≥
6
6

0.
00

1%
0.

00
1%

0.
0
0
0
%

0
.0

0
6
%

0
.0

0
1
%

0
.0

0
0
%

time

≤
3
3

1.
9

7.
2

16
.9

59
.6

4
5
.3

1
4
.5

2
4
.7

1
5
2
.5

1
0
2
.5

6
8
2
7
.1

6
9
0
1
.9

3
4
–
6
6

4.
6

3.
8

26
.3

26
.6

3
0
1
.8

3
.5

3
.1

1
6
6
.8

9
7
.4

3
2
0
1
.4

2
2
2
6
.8

≥
6
6

24
.1

3.
2

71
.2

21
.9

12
6
0
.9

1
.2

0
.8

1
1
7
.8

7
2
.6

2
7
9
0
.6

1
6
7
2
.6

%rt

≤
3
3

67
.1

%
80

.3
%

68
.8

%
76

.1
%

75
.9

%
1
8
.6

%
2
6
.4

%
8
5
.1

6
%

8
3
.3

%
8
2
.5

%
6
9
.1

%
3
4
–
6
6

93
.3

%
88

.9
%

90
.9

%
93

.3
%

88
.6

%
8
0
.4

%
8
2
.6

%
9
5
.9

%
9
4
.1

%
9
7
.2

%
9
8
.8

%
≥

6
6

96
.3

%
96

.7
%

96
.5

%
97

.1
%

92
.8

%
9
8
.9

%
9
7
.8

%
9
5
.9

%
9
8
.0

%
9
9
.0

%
9
9
.5

%

Table 7.10: Behavior of DC− on (BB), depending on graph type, size (|V |), krel

(in %), and additional constraints (∅ denotes no additional constraints, asym and
gsec denote the constraints (6.3) and (6.2), respectively). We give the number
of generated dcut-constraints (cuts), the number of additional branch-and-bound
nodes apart from the root (B&B), the gap between the LP relaxation at the root
and the optimal integer solution (gapLP), the overall computation time (time) and
the percentage of that time spent at the root problem (%rt). The table ignores the
irrelevant settings k = 2 and k = |V | − 2.

7.4. BRANCH-AND-CUT SPECIFIC STATISTICS 75

0

200

400

600

800

1000

1200

10% 20% 30% 40% 50% 60% 70% 80% 90%

grid
grid gsec
dense
regular
sparse
asym

krel

#dc

Figure 7.6: Dependency of the number of generated dcut-constraints on krel, for
instances with 1000–1089 nodes. The solid lines denote the parameter choices used
in the comparative study. When using the asymmetry constraints (asym), the lines
for sparse, regular, and dense graphs become visually indistinguishable; hence we
show their average.

7.4 Branch-and-Cut Specific Statistics

We conclude this part of the experimental study by analyzing certain properties of
DC− to better understand why it performs that well. Table 7.10 shows that the
gaps between the value of the LP relaxation obtained at the root node of the branch-
and-bound tree and the integer optimal solution are very tight and in fact often
optimal. Furthermore, we observe that we need only very few cuts and branches to
solve the ILPs.

The most interesting fact—in accordance with the runtime dependency on k—is
visualized in Figure 7.6, selecting the graphs with 1000 nodes as a representative
example. We see that for the sparse, regular, and dense graphs, the number of
separated dcut-constraints grows with increasing k. Also observe that when using
the asymmetry constraints (6.3), the number of necessary dcut-constraints drops
further. In contrast to these observation, we see that for the grid graphs the number
of required cuts is actually decreasing for growing k.

7.5 Further EKCT Instances

We investigated our algorithm’s behavior on two additional sets of graphs, not
considered in other practical papers for the KCT problem.

(UBM) with larger cardinality: In contrast to the originally suggested cardi-
nalities for (UBM), we also performed tests for krel = {60%, . . . , 90%}. This
allows us to investigate our algorithm’s behavior for large cardinalities and
the influence of the asymmetry constraints (6.3). Table 7.11 summarizes the

76 CHAPTER 7. EXPERIMENTS

|V | 500 1000 1500 2000

k
re
l

60% 6.3 33.0 68.0 177.9
70% 5.0 27.8 59.8 165.6
80% 5.0 30.7 63.2 156.5
90% 4.4 32.4 53.8 151.1

Table 7.11: Average running times (in seconds) of DC− using asymmetry con-
straints (6.3), for (UBM) instances with higher krel.

dimension 6 7 8 9 10 11 12
of nodes 64 128 256 512 1024 2048 4096
avg. time in sec. 0.03 0.16 1.10 9.58 45.59 316.40

Table 7.12: Average running times for the hypercube instances.

average running times of our algorithm. We are able to solve all instances to
provable optimality. The running times are even slightly decreasing for the
larger k values, due to the help of (6.3). Overall, these results, as well as the
speedup observed in Table 7.1, confirms our finding that these constraints are
beneficial for krel ≥ 50%.

Hypercubes: This benchmark set was introduced in [RdAR+01] and is also part
of SteinLib [KMV03]. It contains 6 hypercube graphs of dimension 6–12 with
edge weights uniformly distributed in the interval [100,110]. A hypercube of
dimension d has 2d nodes interconnected to form the edges of a hypercube. We
choose this benchmark set as these graphs turn out to be highly challenging for
the Steiner tree problem, as, e.g., the structure and the similar edge weights
do not allow strong preprocessing strategies. In contrast to these observation,
our experiments show that in the context of the KCT and for the tested values
of krel = {10%, 20%, . . . , 90%}, these instances can be efficiently solved using
Kca′-DCut, cf. Table 7.12.

7.6 Node-weighted KCT

We also applied our algorithm to the NKCT problem using the cost transformation
described in Section 5.2.

7.6.1 NKCT Instances

For the NKCT problem there is no established benchmark library such as KCTLIB
for EKCT. However, the following instance sets are used in the literature:

(BE) This set was used in [EFHM97, BE03] and contains 20 randomly generated
connected graphs and grid graphs with 10, 20 and 30 nodes.

(BUM) Grid graphs with 30×30, 40×40 and 50×50 nodes and random graphs with
3000, 4000, and 5000 nodes of average density 10 are presented in [BUM06].
For each size of a graph there are 10 different instances with random node-
weights that are uniformly distributed in the interval [10, 100]. The considered

7.6. NODE-WEIGHTED KCT 77

krel values are {10%, . . . , 50%}. This set is used for the VNDS [BUM06],
ant colony algorithm with integrated dynamic programming [BB05a] and
for the previously mentioned hyEA [Blu06]. A performance comparison of
these algorithms on the (BUM) set is presented in [Blu06]. For the random
instances, VNDS clearly outperforms other metaheuristics, whereas HyEA
gives better results for the grid graphs and small cardinalities.

QCML In [QCML10], computational results are presented on grid instances with
10× 10, 15× 15 and 20× 20 nodes generated as suggested in [BUM06]. Note
that as the node weights are randomly chosen, these instances differ from the
original grid instances of the above (BUM) set.

Unfortunately, the random instances from the (BUM) set were not available for
us. The (BE) instance set contains quite small graphs with up to 30 nodes, which
do not represent any challenge for our algorithm and are too small for an extensive
analysis. Hence, we report on the performance of our algorithm on the NKCT
problem instances only on the grid graphs of the (BUM) and (QCML) sets.

7.6.2 Parameter Influence

In order to test the right parameter setting we randomly took two instances per each
instance size and applied different algorithm variants only on this smaller instance
set. We tested all combinations of using the following binary parameters, which
are 1 when the specified effect is activated:

asym Add asymmetry constraints to the initial LP.

mcc In the separation procedure, look for minimum cardinality cuts (mc-cuts),
i.e., cuts containing the smallest number of cut edges among all most violated
cuts of type (5.12).

gsec Separate 4-cycle GSECs (6.2).

In Figure 7.7 we visualize our findings for the selected (QCML) and (BUM)
instances with 400 and 900 nodes, respectively. An interesting finding is that for
solving these node-weighted instances with krel ≤ 50% efficiently in practice, it is
crucial to use mc-cuts. The same strategy did never turn out to be particularly
useful for the edge-weighted KCT problem. However, for the survivable network
design problems (cf. Part III of this thesis), this technique also significantly reduces
the computational time of the corresponding branch-and-cut algorithm. As it was
the case for the edge-weighted grid instances, it is always better not to use asym-
metry constraints for the initial LP. The impact of 4-cycle GSECs is not as big as
for the edge-weighted KCT instances. Hence, we decided to run DC− with mcc = 1
whereas asym = gsec = 0 in the following.

7.6.3 Evaluation

Recall that (QCML) instances contain grid graphs with 100, 225 and 400 nodes
whereas (BUM) instances are larger grid graphs with 900, 1600 and 2500 nodes.

78 CHAPTER 7. EXPERIMENTS

1

10

100

1000

10000

4
0

8
0

1
2

0

1
6

0

2
0

0

QCML 20x20

ti
m

e
in

 s
ec

.

0 - 0 - 0 0 - 0 - 1 0 - 1 - 0 0 - 1 - 1

1 - 0 - 0 1 - 0 - 1 1 - 1 - 0 1 - 1 - 1

(a)

1

10

100

1000

10000

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

BUM 30x30

ti
m

e
in

 s
ec

.

0 - 0 - 0 0 - 0 - 1 0 - 1 - 0 0 - 1 - 1

1 - 0 - 0 1 - 0 - 1 1 - 1 - 0 1 - 1 - 1

(b)

Figure 7.7: Comparison of average running times for different parameter settings
on a sample set of node-weighted 20x20 and 30x30 grid graphs. The parameters
are listed as follows mcc-gsec-asym.

7.6. NODE-WEIGHTED KCT 79

We solve all (QCML) instances to provable optimality within few seconds. The
running times and optimal solutions for all these instances are listed in Table 7.13
that also contains the running times of MCF, MTZ, and the Lagrangian heuristic,
as well the solution values of the latter. These results show that also on the node-
weighted instances, our algorithms are much faster (by orders of magnitude) than
the heuristic and exact approaches of [QCML10].

As it is more difficult to solve the (larger) grid instances of (BUM) than (QCML),
we present a detailed analysis of DC− based on (BUM), cf. Table 7.14. Our exper-
iments show that we can solve all but one of these instances with up to 1600 nodes
and most of those with 2500 to provable optimality in under two hours. For graphs
with up to 1600 nodes we require under half an hour. Analogously to the edge-
weighted grid instances, the lower bounds obtained by solving the LP relaxation
of Kca′-DCut are very close to the optimum and get more tight with growing
krel. This is also the reason why it does not pay of using primal heuristics for our
algorithm: most of the CPU time of DC− is spent over computing the lower bounds
and the number of branch-and-bound nodes is comparably small.

For small values of krel, the corresponding LP relaxation is less tight and more
branching is required. For larger values of krel the lower bounds are much tighter,
but the time needed to compute these bounds also grows. This is the reason why
instances with krel = 10% and krel = 50% are harder than the others.

Using Table 7.15, we can compare the running times and the solution quality
of our algorithm with those of the state-of-the-art metaheuristics for node-weighted
grid instances, HyEA [Blu06] and VNDS [BUM06]. Note that the latter algorithm
again was run on a comparably old 733MHz Pentium III computer, so we cannot
fairly estimate the speed-up factor of our computer. The running times of HyEA
are divided by factor 1.75, as explained on page 71. These special purpose meta-
heuristics for the NKCT are indeed faster than our exact approach, though not
optimal in most cases.

Comparing our results on EKCT and NKCT, we can say that our algorithm per-
forms faster on the edge-weighted instances than on the node-weighted ones. This is
in particular the case for the large grid instances with krel = 50%. We suppose that
this is because solving the NKCT problem via Kca′-DCut produces many sym-
metric solutions as all arcs entering the same node have the same cost. Breaking
this symmetry would possibly lead to better performance of our algorithm.

80 CHAPTER 7. EXPERIMENTS

time DC− time [QCML10] obj.val.
k ILP LP MCF-LP MTZ-ILP LH opt LH

n10x10 1 50 0.32 0.31 280.4 16794.61 28.14 16052 16052
n10x10 2 50 0.16 0.16 38.88 1142.42 24.44 14026 14026
n10x10 3 50 0.16 0.16 234.85 535.55 27.21 13117 13117
n10x10 4 50 0.44 0.24 362.4 14087.91 27.19 14254 14283
n10x10 5 50 0.33 0.28 469.26 32373.64 25.06 17093 17093
n15x15 1 112 2.72 2.56 8161.55 55682.19 150.44 38322 38322
n15x15 2 112 2.17 2.17 8192.85 OOM 149.62 32061 32081
n15x15 3 112 3.31 3.31 14822.86 OOM 150.46 31321 31321
n15x15 4 112 2.01 2.01 7247.34 OOM 152.28 30681 30931
n15x15 5 112 2.10 2.10 10541.46 OOM 149.83 29869 30063
n20x20 1 200 13.22 13.22 113885.98 OOM 516.33 55443 55641
n20x20 2 200 13.33 13.33 63061.88 OOM 469.21 54894 55073
n20x20 3 200 11.14 11.14 161523.95 OOM 489.58 53912 54127
n20x20 4 200 10.45 10.45 106490.39 OOM 500.62 53512 53761
n20x20 5 200 15.30 15.30 81925.95 OOM 518.46 62364 62557

Table 7.13: Times (in sec.) and solution values of DC− and the algorithms
in [QCML10] for (QCML) instances.

|V | krel o/i time B&B gapLP rt% cuts
900 10 10/10 381.71 18.10 0.28 58.66 2174.4

20 10/10 306.04 6.80 0.02 84.19 2090.8
30 10/10 148.60 5.40 0.01 86.11 1565.6
40 10/10 143.00 1.90 0.01 92.02 1500.8
50 10/10 726.57 0.20 0.00 99.77 2445.6

1600 10 9/10 3303.99 340.60 0.43 48.10 4224.0
20 10/10 1642.59 12.60 0.02 84.89 3536.0
30 10/10 1110.66 5.10 0.01 93.12 3048.6
40 10/10 819.38 2.60 0.01 93.72 2582.6
50 10/10 1252.34 1.30 0.00 95.92 2803.4

2500 10 5/10 5170.57 47.50 0.23 77.37 5328.8
20 8/10 4868.68 7.40 0.00 93.34 5228.0
30 10/10 4058.91 4.90 0.00 90.23 4417.2
40 9/10 4323.48 4.70 0.00 93.77 4455.2
50 1/10 6337.64 0.10 0.00 99.98 5212.0

Table 7.14: Behavior of DC− on the node-weighted grid instances of (BUM), de-
pending on graph size (|V | = 900, 1600, 2500) and krel (in %). Column “o/i” gives
the number of instances optimally solved in 2 hours together with the number of
considered instances. We furthermore give the overall computation time (time), the
number of additional branch-and-bound nodes apart from the root (B&B), the gap
between the LP relaxation at the root and the optimal integer solution (gapLP),
the percentage of that time spent at the root problem (%rt), and the number of
generated dcut-constraints (cuts).

7.6. NODE-WEIGHTED KCT 81

|V | krel copt gapavg gapavg tILP t/1.75 t
HyEA VNDS DC− HyEA VNDS

900 10 8166.7 0.49 4.96 381.71 36.25 (24.00)
20 17636.1 0.74 2.03 306.04 55.99 (88.00)
30 28629.3 0.75 0.49 148.60 59.51 (126.00)
40 42064.9 0.52 0.12 143.00 67.31 (80.00)
50 59392.9 0.27 0.21 726.57 63.03 (213.00)

1600 10(*) 17365.6 1.59 3.83 5750.71 131.08 (112.00)
20 37052.4 1.26 5.16 1642.59 170.18 (114.00)
30 59414.8 1.50 3.16 1110.66 154.17 (261.00)
40 85375.9 1.40 1.23 819.38 168.88 (261.00)
50 117503.5 0.94 0.13 1252.34 148.93 (303.00)

2500 30 122690.7 1.89 4.49 4058.91 162.85 (482.00)
40(*) 179052.5 1.70 1.77 4648.26 179.17 (575.00)

Table 7.15: Comparison of running time (in seconds) and solution quality of DC−

with hyEA [Blu06] and VNDS [BUM06] on node-weighted grid instances of (BUM),
depending on graph size (|V | = 900, 1600, 2500) and krel (in %). All values are
averaged over 10 instances per each value of |V | and krel. We denote the value
of the optimal solution copt and by gapavg the average relative gap between the
best found solution of the metaheuristic and copt. The running times of HyEA
given in [Blu06] are divided by 1.75, due to the speed-up factor of the thereby used
computer. The running times of VNDS are given in brackets as we do not know
the corresponding speed-up factor, cf. text.

82 CHAPTER 7. EXPERIMENTS

Part III

{0,1,2}-Survivable Network
Design

83

Chapter 8

Considered Problems

In this chapter we consider problems of designing survivable network topologies.
Such problems arise in real-world settings, e.g., in telecommunication. The task is to
connect each pair of a given set of customers using a set of potential route-segments
(e.g., streets) and an additional set of connection points between these route-
segments (e.g., some technical devices or road-intersections). There are charges
for using a given route-segment, e.g., these can be rental costs or working costs for
laying a connection cable. Thus, we want to select the route-segments such that
the resulting network is of minimum cost, connecting all customers. Up to now,
we could model this problem as a traditional Steiner tree problem. Yet, for some
customers it is important to guarantee a survivable connection: if some of the con-
nection components do not work properly (e.g., due to cable damage or some other
technical problems), alternative connections between such customers should exist.

Formalizing the above task as a graph problem, we can view the set of customers
and connection points as graph nodes and the route-segments as edges between
these nodes with a corresponding cost function. The task is to find a cost-minimal
connected subgraph N that includes all nodes associated with customers. The sur-
vivability property can be expressed by requiring N to contain the desired number of
disjoint paths between the specified customers. Depending on this number and the
definition of disjointness—we may require the paths to be edge- or node-disjoint—
we get a set of combinatorial optimization problems, all of which use the following
common problem input:

Input. We are given a graph G = (V,E), a cost function c : E → R+, and
a vector of connectivity requirements %G ∈ {0, 1, . . . , k}|V |, where k is a positive
integer number. We will omit the subscript in %G if the corresponding graph is clear
from the context. For notational simplicity, we define Ri := {v ∈ V | %(v) = i} for
all 0 ≤ i ≤ k, and call the set R :=

⋃
i 6=0Ri the customer nodes.

Problem 8.1 (kNCON). The {0, 1, . . . , k}-node-connected Steiner network problem
is to find a subgraph N = (VN , EN) of G that contains all nodes v ∈ R, minimizes∑

e∈EN
c(e) and satisfies the following connectivity property: for every pair of nodes

s, t ∈ VN , N contains %(s, t) := min{%(s), %(t)} node-disjoint paths connecting
them.

85

86 CHAPTER 8. CONSIDERED PROBLEMS

Problem 8.2 (kECON). The {0, 1, . . . , k}-edge-connected Steiner network problem
is obtained from kNCON by replacing node-disjointness with edge-disjointness.

Problem 8.3 (kCON). We summarize both kECON and kNCON under the term
kCON.

Some real-world tasks require a survivable connection between a customer and
a special root node r ∈ V . Such a root node can represent an important connection
hub or an already existing infrastructure network which should be extended by
connecting new customers as it was the case in [WRP+06,WRP+07]. This can be
formalized by the following problem:

Problem 8.4 (kRSN). The {0, 1, . . . , k}-root-connected Steiner network problem is
closely related to kNCON but requires the node-wise k-connectedness with respect
to the root r: each node v ∈ R has to have %(v) node-disjoint paths to r. This
problem is also known as rooted SNDP [LN09] or single-source SNDP [CCK08].

Note that requiring edge-disjointness in the above problem setting would be
equivalent to the already defined kECON problem.

All above problems can also be defined w.r.t. a prize-collecting setting. In this
case, we are given a prize function p : R → R+, representing the potential prize
(profit) of a node v ∈ R for including it into a solution network, and a prespecified
node r ∈ V that has to be included in any optimal solution. The task is to maximize
the overall profit defined as the difference between the gains of the nodes contained
in the solution and the total network installation costs. Thus we obtain the following
three problems:

Problem 8.5 (kPCECON). The task for the prize-collecting {0, 1, . . . , k}-edge-
connected Steiner network problem is to find a subgraph N = (VN , EN) with
r ∈ VN that minimizes

∑
e∈EN

c(e) −
∑

v∈VN∩R p(v). Thereby, the connectivity
requirements of the customers chosen for the network have to be satisfied as for the
kECON.

Problem 8.6 (kPCNCON). The task for the prize-collecting {0, 1, . . . , k}-node-
connected Steiner network problem is to find a subgraph N = (VN , EN) with
r ∈ VN that minimizes

∑
e∈EN

c(e) −
∑

v∈VN∩R p(v). Thereby, the connectivity
requirements of the customers chosen for the network have to be satisfied as for the
kNCON.

Problem 8.7 (kRPCSN). The task for the prize-collecting {0, . . . , k}-root-connect-
ed Steiner network problem is to find a subgraph N = (VN , EN) that minimizes∑

e∈EN
c(e)−

∑
v∈VN∩R p(v). Thereby, connectivity requirements of those customers

chosen for the network have to be satisfied as for kRSN.

Problem 8.8 ({0, 1, . . . , k}-SND). We summarize the kECON, kNCON and kRSN
problems and their prize-collecting variants under the term {0, 1, . . . , k}-Steiner
network design problems.

In this thesis we only consider {0, . . . , k}-SND problems with k = 2. A summary
of these problems is presented in Table 8. Although our algorithms are mainly

87

Problem Type Edge-Connectivity
Node-Connectivity

rooted unrooted

spanning 2ECON 2RSN 2NCON

prize-collecting PC2ECON 2RPCSN PC2NCON

Table 8.1: Summary of the problems discussed in this part of the thesis

(a) 2ECON (b) 2R(PC)SN

(c) 2NCON

Figure 8.1: Feasible networks for different {0,1,2}-SND problems. Bold edges belong
to the solution networks whereas the dashed ones do not. Double circles represent
R2 nodes, white circles correspond to R1, and small circles to R0. (b) The black
node in the middle represents the root r.

developed in the context of node-connectivity requirements, they are also able to
deal with the corresponding edge-connected problem variants. Figures 8.1(a), 8.1(b)
and 8.1(c) illustrate examples of feasible solutions to 2ECON, 2RSN and 2NCON,
respectively.

In this part of the thesis we develop new exact algorithms for large real-world
2RSN and 2NCON problem instances and their prize-collecting variants. Thus
the main emphasis of our work is on survivable network design problems with
low-connectivity requirements and node-disjointness constraints. Both 2RSN and
2NCON problems are prominent special cases of the general survivable network
design problem, also known as generalized Steiner network. In Chapter 9, we will
classify our problems within this larger class and give an extensive overview over
these and related problems. Thereby, we discuss complexity issues and existing
heuristic and approximation algorithms. As we are particularly interested in exact
algorithms for our problems we will discuss the work that has been done in this
area in a separate section.

Most existing exact algorithms use integer linear program formulations that
are based on undirected graphs. However, for 2ECON, we know that orientation
properties of the feasible solution networks can be used to derive stronger ILP for-
mulations that lead to more efficient algorithms, in theory as well as in practice.
For the feasible solution networks of node-connectivity problems no such orienta-
tion properties were known that could be used for stronger ILP formulations. In
Chapter 10, we discuss the structure of {0,1,2}-SND solutions and derive novel

88 CHAPTER 8. CONSIDERED PROBLEMS

orientation properties. We will then exploit these for our new ILP formulations.
Our branch-and-cut algorithm will be described in Chapter 11. Its extensive ex-

perimental analysis will be given in Chapter 12, where we also introduce a common
benchmark set for our {0,1,2}-SND problems: until now, different test instances
were used by numerous research communities. We collected all these instances into
a one benchmark set that can be used for future research.

Chapter 9

Literature Overview

9.1 The CON problem

Both kCON and kRSN are special cases of the more general network design problem
that was first introduced in [SWK69]. Winter [Win87b] called the problem the
generalized Steiner network problem and in, e.g., [FJW06,KM05a] it can be found
as survivable network design problem. In this thesis we use the name CON(G, k) or
simply CON established by Stoer [Sto92].

Problem 9.1 (CON). Instead of a vector of connectivity requirements for the nodes
in V , the input of the CON problem contains a symmetric matrix of connectivity
requirements with entries %(u, v) ∈ {0, 1, . . . , k} for each pair of nodes u, v ∈ V .
The ECON and NCON problems consist of finding a network of minimum cost
such that for every pair of nodes u, v ∈ V there exist at least %(u, v) edge- or node-
disjoint paths, respectively. We speak about the CON problem when we do not
need to distinguish between the ECON and NCON variants.

The CON problem contains the Steiner tree and the traveling salesman problems
as special cases and is therefore, in general, NP-hard. To model the input of kCON
as an instance of CON we define %(u, v) := min{%(u), %(v)}. Analogously, for the
kRSN input we set %(r, v) = %(v, r) := %(v) and %(u, v) := 0 for u, v 6= r. Recall
that for both problems we have k = max{%(v) | v ∈ V }.

The CON problem has been extensively studied by various research communi-
ties, see, e.g., [KM05a, KN07, Rag95, Sto92, Win87b] for surveys. However, less
is known for the prize-collecting survivable network design variant. A survey
on approximation algorithms for these latter (and related) variants can be found
in [HKKN10]. In this chapter, we will list the most significant results for CON and
its most prominent subvariants, in order to give the reader an intuition about the
hardness and structure of these problems. For this purpose, we first give a brief
overview over the known algorithms for the general CON problem. We then report
on the kNCON and kRSN problems, also paying attention to their special cases
with uniform connectivity types. In this section, as well as in Sections 9.2 and 9.3,
we outline polynomially solvable special cases, heuristics and, finally, approximation
algorithms for CON, kCON and kRSN, respectively. A literature overview of the
corresponding exact algorithms is given in Section 9.4, followed by an overview over

89

90 CHAPTER 9. LITERATURE OVERVIEW

the published experimental studies for CON problems in Section 9.5. Such studies
were conducted only for some heuristics and ILP-based exact algorithms. To our
knowledge, the practical performance of approximation algorithms has never been
analyzed.

Some papers deal with algorithms for the CON problem that allow the use of
multiple edges. We do not report on them here as most of these algorithms cannot
be used for the CON problem without multiple edges. Moreover, we do not list the
results for CON(G,1), i.e., for MST, STP, PCST, and shortest path problems. The
algorithms for these special cases cannot be applied to the case of k = 2 which is
the focus of this thesis. In the following we will only report on the results for k ≥ 2
as they may be particularly relevant for our 2RSN and 2NCON problems.

The following two problems are often considered special cases of the CON prob-
lem and are subject of extensive research that goes beyond the scope of this thesis
(see, e.g., [Nut09c,KN07] for details). We will only report on polynomially solvable
special cases of these problems.

Problem 9.2 (CON with binary costs). The unweighted connectivity augmentation
problem is to augment a given graph H = (VH , EH) with a minimum number of
edges in

(
VH
2

)
\ EH such that the resulting graph satisfies the given edge- or node-

connectivity requirements %(u, v) ≤ k for all u, v ∈ VH . To model the unweighted
connectivity augmentation problem as CON(G, k) we define G as a complete graph
with V = VH and c(e) := 0 if e ∈ EH and c(e) := 1 otherwise.

Problem 9.3 (CON with uniform costs). Given a node set V and edge- or node-
connectivity requirements %(u, v) ≤ k for every pair of nodes u, v ∈ V , the task is
to find a graph satisfying these requirements with the minimum number of edges.
This problem can be modeled as CON(G, k) by defining G as a complete graph on
a node set V with uniform costs.

The edge-connectivity versions of Problems 9.2 and 9.3 are polynomially solvable
if the use of parallel edges or additional nodes is allowed, see [Fra92] and [CF70], re-
spectively. Further polynomial special cases arise when restricting the domain of the
connectivity matrix, cf. Section 9.2.2. Note that the complexity of Problem 9.3 with
general connectivity requirements is still open. An unpublished 2-approximation is
mentioned in [Nut09c].

Heuristics. For ECON, several construction and local search heuristics are given
in [SWK69] for complete input graphs. A GRASP heuristic (Greedy Randomized
Adaptive Search Procedure) for NCON, which is based on multiple applications
of randomized construction heuristics and local search procedures, is presented
in [CRR03]. Furthermore, a dual-ascent algorithm for the CON problems was pre-
sented in [Rag95] leading to both, heuristic and methods to obtain lower bounds.

Approximation algorithms. For ECON, the best known approximation algo-
rithm guarantees factor 2 [Jai98]. It is based on an iterative rounding technique
and therefore not combinatorial. Other algorithms (with worse factors) are either

9.2. KCON 91

based on a primal-dual approach [GGP+94, WGMV95] or are purely combinato-
rial [BMM04].

For the general NCON problem, no constant factor approximation is known.
The first non-trivial approximation was very recently published in [CK09] and
guarantees the factor O(k3 log |V |). Furthermore, if the costs satisfy the trian-
gle inequality, there exists a O(k)-approximation [CV07]. For k = 2 and general
costs, a 2-approximation was presented in [FJW06] and uses techniques similar
to [Jai98]. Previously, a primal-dual 3-approximation for the latter problem was
suggested in [RW97].

Clearly, all above algorithms can also be applied to our {0,1,2}-SND problems
as they are designed to solve the more general network design problems.

9.2 kCON

Polynomially solvable cases. The kCON problem is known to be polynomially
solvable in following cases:

1. The kECON problem with even %(v) for all v ∈ V is polynomially solvable on
series-parallel graphs [KM05b].

2. For both 2ECON and 2NCON problems, i.e., % ∈ {0, 1, 2}|V |, Raghavan
[Rag04] presented linear time algorithms on series-parallel graphs. Therein
he also suggests how to use these algorithms for preprocessing.

3. A polynomial-time algorithm based on the ellipsoid-method was suggested
in [BKM08] for the 2ECON problem with % ∈ {1, 2}|V | on a subclass of series-
parallel graphs which strictly contains all the outerplanar graphs. Note that
a constructive algorithm for a more general 2CON problem on series-parallel
graphs was already given by Raghavan [Rag04].

4. The 2NCON problem is polynomially solvable if the underlying graph is a
k-tree [GR02]. A graph G = (V,E) with k ≤ |V | is a k-tree if it can be
constructed from a clique on k nodes by successively inserting a new node
and connecting it to each node of the clique.

5. Further polynomial special cases arise from restricting the connectivity re-
quirements, see Section 9.2.1 and 9.2.2.

Heuristics. For the case % ∈ {1, 2}|V |, several construction and local search
heuristics for 2NCON were developed in [MS89]. A genetic algorithm for the
2NCON problem was given in [GR02]. For 2ECON two combinatorial heuristics
are presented in [BMM04]. They are special cases of an approximation algorithm
for the ECON problem presented in the same paper. Also for 2ECON, an improved
dual-ascent procedure was described in [Rag95].

92 CHAPTER 9. LITERATURE OVERVIEW

Approximation algorithms. The best known approximation ratio for kECON
is 2, as it is a special case of the ECON problem. For 2ECON, if the costs satisfy the
triangle inequalities the above mentioned heuristics of [BMM04] have approximation
ratios of 5

2 and 7
3 , respectively.

9.2.1 k-Connected Steiner Networks

Problem 9.4 (kCSN). If a kCON instance has %(v) ∈ {0, k} for every v ∈ V , we
are dealing with the k-connected Steiner network problem.

Structural results. Monma et al. [MMP90] analyzed the 2CSN problem where
the input graph is complete and the cost function is metric. They show that any non-
customer node used in an optimal network has degree 3. Furthermore they prove
another interesting result: Let N be the set of all nodes with requirement 2. The
cost of the minimum 2-connected network spanning N (2CSS, cf. next section) is at
most 4

3 of the cost of the minimum 2-connected Steiner network including N . More
structural results on Euclidean 2CSN problem can be found in [WZ05,PLZC07].

Polynomially solvable cases. The following special cases of the kCSN problems
are known to be polynomially solvable:

1. The k-shortest path problem, i.e, exactly two nodes in u,w ∈ V have connec-
tivity requirement k and all other nodes are in R0 [Suu74,ST84].

2. As mentioned before, the 2CON problem is polynomially solvable on series-
parallel graphs. Hence, the 2CSN problem is also polynomially solvable
on this graph class. This fact, however, has been shown before: linear-
time algorithms for both edge- and node-connectivity were presented for
some special graph classes such as outerplanar1 [Win85] and series-parallel
graphs [Win86]. A polynomial algorithm for 2ECSN on series-parallel graphs
was given in [BM97].

3. For Halin graphs, linear-time algorithms are known for k = 2 and k = 3,
for both edge- and node-connectivity [Win87a, Win87b]. Later, Coullard et
al. [CRRW93] gave a linear time algorithm with node-disjointness constraints
for Halin graphs and graphs that do not contain W4 as a minor.

Approximation algorithms. It was shown in [CCK08] that the kCSN problem
is kΩ(1)-hard to approximate. For node-connectivity requirements and general k,
Nutov [Nut09b] presented a O(k2 log k)-approximation, improving the previously
best known factor O(k2 log |V |) due to Chuzhoy and Khanna [CK09].

9.2.2 k-Connected Spanning Subgraph

Problem 9.5 (kCSS). If a kCON instance has a uniform vector %, i.e., %(v) = k
for every v ∈ V , we are dealing with the k-connected spanning subgraph problem.

1Outerplanar graphs are also series-parallel.

9.2. KCON 93

Polynomially solvable cases. The kCSS problem is known to be polynomially
solvable in the following cases:

1. Problem 9.2 with uniform connectivity requirements %(v) = 2 for all v ∈
V [ET76a,RG77]. All known polynomial algorithms for uniform %(v) > 2 for
all v ∈ V require the use of parallel edges [CS89,NGM90,UKW88,WN87].

2. Problem 9.3 with node-connectivity requirements and uniform % [Har62].

3. The general kECSS problem on series-parallel graphs [BM96].

Structural results. The following theorem was shown in [FJ82]:

Theorem 9.6. Consider a complete graph G with a cost function c : E → R+

that satisfies the triangle inequality. There exists an optimal solution to every such
2ECSS instance that is also optimal for 2NCSS. Thus, for the above input 2ECSS
and 2NCSS are equivalent.

Also for the case of a complete input graph G, Monma et al. [MMP90] charac-
terize optimal solutions of the 2-connected spanning subgraph problem as follows:

(1) There exists an optimal solution N where all nodes have degree 2 or 3.

(2) N is edge-minimal, i.e., deleting any edge leaves a bridge.

(3) Deleting any pair of edges inN leaves a bridge in one of the resulting connected
components.

Bienstock et al. [BBM90] extended the above characterization for the general k-
connected spanning subgraph problem. Monma et al. [MMP90] furthermore showed
that every 2-connected graph N with properties (1)–(3) is the unique minimum-
cost 2-connected network spanning V for the graph-theoretic distance function, i.e.,
c({u, v}) is the number of edges in a shortest path from u to v. This result is,
however, not valid for general k, even when restricted to the metric costs [BBM90].

Heuristics. For general k, Ko and Monma [KM89] developed heuristics based on
the ideas of [MS89]. For k = 2, a bootstrap heuristic was given in [CA95].

Approximation algorithms. For the kCSS problem, a large body of approxima-
tion algorithms has been developed in the last 20 years. There are several surveys
on this topic, e.g., [Khu97,KM05a].

For general weights and k = 2, the best approximation ratio for both edge-
and node-connectivity is 2. For edge-connectivity this was achieved by Khuller
and Vishkin [KV94]. Penn and Shasha-Krupnik [PSK97] achieved this factor for
node-connectivity using results of Khuller and Raghavachari [PSK97].

For general k, the approximation factor 2 holds only for edge-connectivity [KV94,
Jai98]. Unfortunately, for node-connectivity no constant factor approximation al-
gorithm is known yet. The first k-approximation was suggested in [KN03], and
further improvements were then achieved in [KN05, FL08]. Finally, the factor

94 CHAPTER 9. LITERATURE OVERVIEW

O(log k · log |V |
|V |−k) was achieved in [Nut09a]. Unless k = |V | − o(|V |), the lat-

ter factor reduces to O(log k). Note that the 2H(k)-approximation (where H(k) =
1 + 1

2 + · · · + 1
k) presented in [RW97] was erroneous and does not hold for general

k [RW02]. If the costs satisfy the triangle inequalities, a 2+ k−1
|V | -approximation can

be found in [KN03].
Better approximation factors are known for restricted k: For k ≤

√
|V |/6, a

O(log k)-approximation algorithm is given in [CVV02]. For k ≤ 7, the problem can
be approximated with factor

⌈
k+1

2

⌉
[KR96,ADNP99,DN99,KN03].

9.3 kRSN

Until now, little was known about the kRSN problem. Approximation algorithms
appeared only very recently. Several heuristics were presented in the context of
ILP-based algorithms for the 2R(PC)SN problems.

Heuristics For 2R(PC)SN, a heuristic was suggested in [LR08]. As it is similar
to our heuristic framework for 2NCON and 2R(PC)SN, we briefly describe it here.
First, a Steiner tree T = (VT , ET) on G with terminal set R is computed. Then,
T is extended by successively ensuring 2-connectivity of R2 customers: For every
v ∈ R2, two node-disjoint paths from r to v are computed in a transformed directed
graph using the algorithm of Suurballe and Tarjan [ST84]. Thereby, the costs of
arcs corresponding to edges in ET are set to 0.

Approximation algorithms. The general kRSN problem is hard to approxi-
mate, see [LN09,KKL04] for details. For k = 2, there is a 2-approximation [FJW06],
as 2RSN is a special case of NCON(G, 2) (cf. Section 9.2). For k ≥ 3, the first ap-
proximation algorithm (with factor kO(k2) log4 |V |) was given in [CCK08]. Recently,
the general kRSN problem was shown to be approximatable within k log k [Nut09b].
This improves the factor k2 log |V | presented in [CK09, Nut09d]. For the k-out-
connectivity problem, which is the kRSN problem with %(v) = k for all v ∈ V \ {r},
there exists a 2-approximation [KR96].

9.4 ILP-based Exact Algorithms for {0,1,2}-SND

In [Rag95], Raghavan developed and analyzed several cut- and flow-based ILP mod-
els for the general CON problem and its variants with connected feasible solutions.
Further ILPs were suggested in [BMM04]. However, for such general connectivity
requirements there are no experimental studies on exact ILP-based algorithms.

In the following we describe the known ILPs for 2CON and 2R(PC)SN in detail
as they form the foundation of our own research. The corresponding polytopes for
2CON have been investigated, and different classes of valid inequalities have been
derived, in particular in papers by Stoer and Raghavan (with coauthors Grötschel,
Monma and Magnanti) [GMS91, GMS92a, GMS92b, MR05]. From now on, we will
usually reference their theses [Rag95,Sto92] for simplicity and consistent notations.
A survey on polyhedral results regarding this topic can also be found in [KM05a].

9.4. ILP-BASED EXACT ALGORITHMS FOR {0,1,2}-SND 95

9.4.1 ILP Based on Undirected Graphs

2CON. A cut-based ILP for the 2CON problem was first developed by Grötschel,
Monma and Stoer [GMS91]. We call this formulation 2CON-UCut. Its central
idea is to express the connectivity requirements by considering undirected cuts: To
guarantee the connectedness of a solution subgraph, all cuts separating each pair
of R nodes have to contain at least one edge. Furthermore, for each pair of R2

nodes, the cardinality of all corresponding cuts has to be at least 2. To ensure the
2-node-connectedness for 2NCON instances, we require that all cuts between pairs
of R2 nodes contain at least one edge, when considering any graph resulting from
removing a single node.

The 2CON-UCut ILP uses binary variables ze, for all e ∈ E, that are set to 1
if the corresponding edge is selected into the solution, and to 0 otherwise. In the
following we use the shorthand Gw for G \ {w} := (V \ {w}, E \ δ(w)) for w ∈ V .
Recall that, given a variable vector ξ and a set of indices J , we use the shorthand
ξ(J) :=

∑
j∈J ξj .

2CON-UCut : min
∑
e∈E

c(e) · ze (9.1)

z(δ(S)) ≥ 1 ∀S ⊂ V, ∅ 6= S ∩R 6= R (9.2)

z(δ(S)) ≥ 2 ∀S ⊂ V, ∅ 6= S ∩R2 6= R2 (9.3)

z(δGw(S)) ≥ 1 ∀w ∈ V,∀S ⊂ V, ∅ 6= S ∩ (R2 \ {w}) 6= R2 \ {w} (9.4)

ze ∈ {0, 1} ∀e ∈ E (9.5)

We call (9.2) and (9.3) undirected cut constraints and (9.4) undirected node-
cut . The latter are only included when considering 2NCON, otherwise we solve
2ECON. Grötschel et al. [GMS92b] describe the polyhedral structure of this formu-
lation. In particular, they analyze in which situations the inequalities (9.2)–(9.4)
define facets of the corresponding 2CON polytope. Moreover, they introduce fur-
ther classes of inequalities that may strengthen the corresponding LP relaxations.
Among these classes are the partition, node-partition, and lifted 2-cover inequali-
ties, which were later used within effective branch-and-cut algorithm for the 2CON
problems [GMS92a]. Note that the partition and node-partition inequalities are gen-
eralizations of the undirected cut- and node-cut inequalities. Kerivin et al. [KMN04]
enhance the 2CON-UCut ILP with F-partition inequalities and include them in
their branch-and-cut algorithm, cf. next section. These inequalities are valid when
%(v) ∈ {1, 2} for all v ∈ V .

When designing a branch-and-cut algorithm, effective separation algorithms for
the considered inequality classes are of major importance. The separation problem
for the undirected cut- and node-cut inequalities is polynomially solvable. The
separation problem for partition, node-partition and lifted 2-cover inequalities is in
general NP-hard [GMS92a]. Yet, heuristic separation algorithms for these classes
can be found in [GMS92a]. In [KM02,BK04], it was shown that partition inequalities
can be separated in polynomial time if %(v) ∈ {1, 2} for all v ∈ V . However, these
algorithms require O(|V |9) and O(|V |7) time, respectively, making them unusable

96 CHAPTER 9. LITERATURE OVERVIEW

in practice. Heuristic separation routines for (F-)partition inequalities are also
presented in [KMN04]. Note that for F-partition inequalities the corresponding
complexity is still open.

There also exists an ILP on undirected graphs based on multi-commodity flow
(2CON-UFlow) due to Raghavan [Rag95, p. 26], which is equivalent to 2CON-
UCut from the polyhedral point of view [Rag95, pp. 85–87]. The idea of 2CON-
UFlow is the following: Establishing the connectivity requirement between a pair
of customers s, t ∈ R can be expressed by sending exactly min{%(s), %(t)} units of
flow between them. Therefore, a straightforward idea would be to define the set
of commodities U = {(s, t) | s, t ∈ R}. This would require O(|R|2) commodities.
However, Raghavan [Rag95, pp. 89–92] showed that O(|R|) commodities actually
suffice. In fact, therein 2CON-UFlow and the corresponding commodity reduction
are given for the more general CON(G, k) problem. We restate it in the context of
the 2CON problem:

Consider the following two sets of commodities: The “cyclic” commodity set
C2 := {(vi, vi+1) | 0 ≤ i < |R2|}, whereby 〈v1, v2, v3, . . .〉 is an arbitrary ordering of
the nodes of R2 and v0 := v|R2|. This commodity set is required to establish the
2-node-connectivity between all R2 customers. Furthermore, in order to ensure the
simple connectivity for the nodes of R1 we arbitrarily choose a fixed node r ∈ R2

and define the set of commodities C1 = {(r, v) | v ∈ R1}. A flow of commodity
χ ∈ C1 ∪ C2 on the edge {i, j} ∈ E is modeled by a continuous variable hχij . The
network-defining variables z are the same as for 2CON-UCut.

2CON-UFlow : min
∑
e∈E

c(e) · ze (9.6)

∑
i:{i,v}∈E

hχiv −
∑

i:{v,i}∈E

hχvi =

−1, if v = s

1, if v = t

0, else

∀χ = (s, t) ∈ C1, ∀v ∈ V (9.7)

∑
i:{i,v}∈E

hχiv −
∑

i:{v,i}∈E

hχvi =

−2, if v = s

2, if v = t

0, else

∀χ = (s, t) ∈ C2, ∀v ∈ V (9.8)

∑
i:{v,i}∈E

hχvi ≤ 1
∀χ = (s, t) ∈ C2,
v ∈ V \ {s, t} (9.9)

0 ≤ hχvw ≤ zvw ∀{v, w} ∈ E,∀χ ∈ C1 ∪ C2 (9.10)

ze ∈ {0, 1} ∀e ∈ E (9.11)

We call the above formulation 2NCON-UFlow if the inequalities (9.9) are
included in the model and 2ECON-UFlow otherwise.

Theorem 9.7 ([Rag95]). 2CON-UCut and 2CON-UFlow are equivalent from
the polyhedral point of view.

2R(PC)SN. Wagner et al. [WRP+06, WRP+07] gave an ILP for 2R(PC)SN.
Thereby, they use the term “directed cuts” when describing their formulation. How-

9.4. ILP-BASED EXACT ALGORITHMS FOR {0,1,2}-SND 97

ever, we can show that this formulation is equivalent to the traditional undirected
approach. We show this in the next section where we discuss orientation-based
ILPs.

Further ILP-based algorithms were given for the bmax-SND problem, which is the
2RPCSN problem where the connectivity requirement for R2 customers is relaxed
as follows: for each node v ∈ R2 there exists a path of length at most bmax to some
node which has two disjoint paths to the root node r. For such problems, several
path-based ILP formulations can be found in [LR08,LRP09,LR10].

9.4.2 Orientation-based ILPs

Edge-connectivity. We recall that an orientation of an undirected graph G is a
directed graph Ĝ that is obtained by transforming each edge of G into a directed
arc. For 2ECON, it was shown by Chopra [Cho92] and Raghavan [Rag95] that
considering a certain orientability property of feasible solutions leads to ILP formu-
lations that are polytope-wise stronger than the undirected formulations mentioned
above. These ILPs exploit Theorem 2.7, i.e., Robbin’s characterization of the 2-
edge-connected graphs: An undirected graph G′ = (V ′, E′) is 2-edge-connected if
and only if there exists an orientation Ĝ′ of G′ such that for every pair of nodes
u, v ∈ V ′ there are directed paths (u→ v) and (v → u) in Ĝ′.

Optimal solutions to the 2ECON problem always have the following structure:
they consist of exactly one non-trivial 2-edge-connected component that contains
all R2 nodes and there may be several trees attached to this component. Using
Theorem 2.7, one can easily see that every such network can be oriented as follows:
For every pair of nodes u, v ∈ R2 there is a directed path from u to v. Furthermore,
if we choose a root node r ∈ R2, there is a directed path from r to w for every node
w ∈ R1. Vice versa, each network that can be oriented in such a way is a feasible
solution to the 2ECON problem.

Thus, the input of the 2ECON problem can be transformed into the following
equivalent problem: Let Ḡ = (V,A) be the bidirection of G with costs c((u, v)) =
c((v, u)) = c({u, v}). We search for a cost-minimum subgraph of Ḡ that has the
above orientation properties. We rephrase the ILP formulation due to Chopra
using our notations. Therefore, we introduce binary variables xij that are 1, if the
solution network contains the arc (i, j) ∈ A and 0 otherwise. Furthermore, we fix
some arbitrary node r ∈ R2.

2ECON-DCutc : min
∑
a∈A

c(a) · xa (9.12)

xvw + xwv ≤ 1 ∀{v, w} ∈ E (9.13)

x(δ−(S)) ≥ 1 ∀S ⊆ V, ∅ 6= S ∩R2 6= R2 (9.14)

x(δ−(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R1 6= ∅ (9.15)

xa ∈ {0, 1} ∀a ∈ A (9.16)

Observation 9.8. In order to obtain the orientation described above it suffices to
require a directed path from some root node r ∈ R2 to every other node in R\ r and
a directed path (v → r) for every node v ∈ R2.

98 CHAPTER 9. LITERATURE OVERVIEW

The above observation allows us to formulate an orientation-based ILP based
on directed cuts which uses less inequalities than 2ECON-DCutc. From now on
we will use the shorthands R′i := Ri \ {r} for 0 ≤ i ≤ 2, and R′ := R \ {r}.

2ECON-DCut : min
∑
a∈A

c(a) · xa (9.17)

xvw + xwv ≤ 1 ∀{v, w} ∈ E (9.18)

x(δ−(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R′ 6= ∅ (9.19)

x(δ+(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R′2 6= ∅ (9.20)

xa ∈ {0, 1} ∀a ∈ A (9.21)

Chopra showed that 2ECON-DCut is strictly stronger than 2ECON-UCut
even if the latter is enhanced with partition inequalities. In fact, the partition
inequalities are already induced by the directed cut inequalities. It was shown by
Stoer [Sto92] that partition inequalities can be facet-defining for 2CON problems
under certain assumptions. This suggests that the LP relaxation of 2ECON-DCut
may deliver quite good lower bounds.

In [KMN04] it is observed that if V = R2, the partition inequalities are already
induced by the undirected cut inequalities. In fact, Raghavan showed that under
these circumstances the undirected and the directed formulations are equivalent for
2ECON, cf. Theorem 9.11.

Raghavan [Rag95] stated a 2ECON formulation based on directed multi-com-
modity flow, which he showed to be equivalent to 2ECON-DCut. Again, a naive
idea would be to create a commodity for each pair of nodes s, t ∈ R2. However,
considering Observation 9.8, less commodities are sufficient. Consider the set of
commodities C = {(r, v) | v ∈ R′} ∪ {(v, r) | v ∈ R′2}. The directed flow of a
commodity χ ∈ C on the arc (i, j) ∈ A is modeled by a continuous variable fχij . We
furthermore use the network-defining variables x as for 2ECON-DCut.

2ECON-DFlow : min
∑
a∈A

c(a) · xa (9.22)

∑
i:(i,v)∈A

fχiv −
∑

i:(v,i)∈A

fχvi =

−1, if v = s

1, if v = t

0, else

∀χ = (s, t) ∈ C, ∀v ∈ V (9.23)

xvw + xwv ≤ 1 ∀{v, w} ∈ E (9.24)

0 ≤ fχa ≤ xa ∀a ∈ A,∀χ ∈ C (9.25)

xa ∈ {0, 1} ∀a ∈ A (9.26)

The proofs of the following theorems can be found in [Rag95, pp.162–163] where
they were given in the context of the CON(G, k) problem.

Theorem 9.9. 2ECON-DCut and 2ECON-DFlow are equivalent.

9.4. ILP-BASED EXACT ALGORITHMS FOR {0,1,2}-SND 99

a b c

d

e

(a)

b c

a

r

(b)

Figure 9.1: Examples of infeasible orientations, cf. text.

Theorem 9.10. Consider general connectivity requirements % ∈ {0, 1, 2}|V |. Then
2ECON-DCut and 2ECON-DFlow are strictly stronger than 2ECON-UCut
and 2ECON-UFlow.

Theorem 9.11. If %(v) ∈ {0, 2}|V |, i.e., R1 = ∅, 2ECON-DCut, 2ECON-
DFlow, 2ECON-UCut, and 2ECON-UFlow are all equivalent.

Node-connectivity. Prior to our solution, finding an orientation-based formu-
lation for {0,1,2}-SND problems with node-connectivity requirements was a long-
standing open problem, see, e.g., [Rag95, p. 183] and [Sto92, pp. 32,134]. The
main hindrance why such formulations were not known before was that there were
no suitable characterizations of the 2-node-connected graphs that could be used in
this context. Note that extending Theorem 2.7 in a natural way for these graphs,
i.e., requiring node-disjoint directed paths between each pair of the graph nodes,
does not yield a valid characterization: Assume that such an orientation would al-
ways exist, and consider the shadow of the directed graph shown in Figure 9.1(a).
In order to obtain two node-disjoint paths between the nodes a and b, we have only
two (symmetric) possibilities to orient the edges {a, d}, {d, b}, {b, e}, {e, a}. Choos-
ing any of these orientations, we have only one possible orientation of the edges
{e, c}, {c, d}, as we have to guarantee node-disjoint paths (b→ c) and (c→ b). Yet,
the obtained orientation does not contain the required node-disjoint paths (a→ c)
and (c→ a).

For 2RPCSN, Wagner et al. tried to give an orientation-based formulation for
2RPCSN [WRP+07]. Similar to 2ECON-DCut they considered the bidirected
graph Ḡ. The idea was to characterize feasible solutions of the 2RPCSN problem
by subgraphs of Ḡ where every chosen customer v ∈ R2 has two directed paths
(r → v). Figure 9.1(b) shows that such orientations do not actually describe all
feasible solutions to a 2RPCSN problem: The shadow of the shown graph represents
a feasible solution of a 2RPCSN problem. The drawn arcs represent the only pos-
sibility of orienting the graph edges in order to connect the node a in the required
way. This prohibits the nodes b and c to be connected correctly. Hence, in or-
der to ensure feasibility, the authors permit solutions, where both directions (v, w)
and (w, v) are allowed simultaneously. Thus, this formulation is not stronger but
equivalent to an undirected one and furthermore requires twice as many variables.

Raghavan [Rag95, pp. 180–181] suggested the strongest known formulation for
2NCON. Thereby, he strengthened the 2NCON-UFlow formulation by integrating

100 CHAPTER 9. LITERATURE OVERVIEW

central ideas of 2ECON-DFlow. We denote Raghavan’s formulation by 2NCON-
MFlow (mixed flow). It uses two multi-commodity flows g and h simultaneously:
g represents directed flow for the induced 2ECON problem, whereas h represents
an non-oriented flow with node-disjointness constraints.2 The two flows are bound
to each other only by their common use of the ze variables. Raghavan also posed
the questions whether there is a way to link g and h more directly and whether
such linking would strengthen the formulation. In this thesis, we positively answer
both these questions.

2NCON-MFlow uses the commodity sets C2 and C as defined for 2CON-
UFlow and 2ECON-DFlow, respectively:

2NCON-MFlow : min
∑
e∈E

c(e)ze (9.27)

∑
(i,v)∈A

gχiv −
∑

(v,i)∈A

gχvi =

−1, if v = s

1, if v = t

0, else

∀χ = (s, t) ∈ C, ∀v ∈ V (9.28)

gχvw + gχ
′

wv ≤ zvw ∀{v, w} ∈ E,∀χ, χ′ ∈ C (9.29)

gχvw ≥ 0 ∀(v, w) ∈ A,∀χ ∈ C (9.30)

∑
(i,v)∈A

hχiv −
∑

(v,i)∈A

hχvi =

−2, if v = s

2, if v = t

0, else

∀χ = (s, t) ∈ C2, ∀v ∈ V (9.31)

0 ≤ hχvw ≤ zvw ∀(v, w) ∈ A,∀χ ∈ C2 (9.32)∑
(v,i)∈A

hχvi ≤ 1 ∀χ = (s, t) ∈ C2, v ∈ V \ {s, t} (9.33)

ze ∈ {0, 1} ∀e ∈ E (9.34)

9.5 Experimental Studies for {0, 1, 2}-SND Problems

In this section we point out papers where different solution methods are experimen-
tally compared and give an overview over the used test instances for the {0,1,2}-
SND problems. We thereby do not report on the running times of the different
algorithms: In the course of the last 20 years considerable hard- and software im-
provements have been achieved, rendering direct comparison across different papers
meaningless. As we already mentioned before, no computational study exists on
any approximation algorithm for survivable network design. Therefore, we only
report on experimental studies for heuristics and exact algorithms.

Heuristics. For the 2NCON problem with %(v) ∈ {1, 2}, Monma and Shall-
cross [MS89] tested their heuristics on 20 randomly generated dense graphs with
Euclidean edge weights, containing up to 200 nodes. Furthermore, they applied

2Note that this formulation has been developed for general kNCON problems, where it is called
improved undirected flow formulation with node-disjointness constraints.

9.5. EXPERIMENTAL STUDIES FOR {0, 1, 2}-SND PROBLEMS 101

their algorithm on 3 real-world sparse graphs from [Sto92]. Stoer [Sto92] applied
these heuristics to further real-world instances to find good upper bounds for her
exact algorithm. Thereby, the relative gap between the heuristic solution and the
optimal solution was always below 1,5%.

Ghashghai and Rardin [GR02] tested their genetic algorithm for the 2CSN prob-
lem on 6 complete graphs with 40 nodes and Euclidean costs. They tried these
instances with selecting 30% and 50% of the nodes into R2. The above papers do
not compare their heuristics to any other algorithms.

For the 2CSS problem, Clark and Anandalingam [CA95] compared their boot-
strap heuristics with those of [MS89]. They used a large set of complete graphs
with up to 200 nodes. Unfortunately, the considered edge weights are not specified.
The authors claim that their heuristics lead to better solution quality at the cost
of higher running times.

For 2ECON, Raghavan [Rag95] presented a computational study of his dual-
ascent algorithm that is based on the 2ECON-DFlow ILP. He used random graphs
with up to 300 nodes and 3000 edges with Euclidean costs and also some generated
test problems with up to 120 nodes and 180 edges similar to the telecommunication
data used in [Sto92]. As the algorithm produces both lower and upper bounds for
the 2ECON problem, the quality of the algorithm can be judged by considering the
running times and relative gaps between these bounds.

Exact algorithms. For 2ECON, computational studies were conducted for exact
algorithms using both undirected and orientation-based ILPs. For 2NCON, no
effective orientation-based ILP was known except for the 2NCON-MFlow. The
latter ILP, however, has never been implemented. Hence, all known experiments for
2NCON use ILPs based on undirected graphs. The only relevant computationaly
study for this problem was published in [Sto92] and for the 2R(PC)SN problem
in [WRP+06,WRP+07].

Raghavan [Rag95] used the 2ECON-DFlow ILP in order to solve small 2ECON
problems to optimality. Thereby he did not use column generation or similar meth-
ods to reduce the running times. Using CPLEX 2.1 on a Sun SPARCstation 10 the
largest solvable graphs (within a half an hour) contained 40 nodes.

Also for the 2ECON problem, Chopra [Cho92] tested his branch-and-cut algo-
rithm for the orientation-based ILP on several random sparse and complete graphs
with up to 100 nodes and both random and Euclidean edge weights. Furthermore,
neither preprocessing routines nor additional strengthening inequalities were used.
The algorithm solved all instances to provable optimality. The author also notes
that the running time of his algorithm decreases, if the instance does not contain
R0 nodes. The solution of the LP relaxation was already optimal a significant num-
ber of times, thus emphasizing the strength of the corresponding formulation. The
relative optimality gap averaged over all instances was 0.1%.

Stoer [Sto92] presented computational results on a branch-and-cut algorithm for
2CON problems based on 2CON-UCut. The algorithm was tested on 7 real world
instances provided by Bell Communication Research. The input graphs were rather
sparse containing up to 116 nodes and 173 edges. Only one of these instances also
contained R0 nodes. Moreover, the structure of the instances allowed preprocessing

102 CHAPTER 9. LITERATURE OVERVIEW

routines to reduce the size of the input graphs to at most 39 nodes and 86 edges.
The authors used heuristic methods to separate partition, node-partition and 2-
cover inequalities. Although the algorithm was tested using quite old software, all
above instances could be solved to optimality. Note that Chopra’s algorithm [Cho92]
had comparable running times on sparse instances of the same size. The algorithm
was also tested on some random (not further specified) instances. As the density of
these graphs was significantly higher, the algorithm did not perform as well as on
the real-world data. Furthermore, the running time dramatically increased when
the number of R0 nodes increased.

Kerivin et al. [KMN04] tested complete graphs with up to 574 nodes from the
benchmark library TSPLIB [TSP]. The edge costs are Euclidean and therefore sat-
isfy the triangle inequality. The authors give results for 2CSS problems with both
edge- and node-connectivity constraints. Yet, note that the 2ECSS and 2NCSS
problems are equivalent on the above problem input, as we mentioned in Theo-
rem 9.6. Therefore, the performance of the algorithm on these two problems is
identical. Also note that for such instances the undirected formulation is equivalent
to the directed one due to Theorem 9.11. Therefore, for such input graphs the
undirected formulation will always give better practical results, as the size of the
undirected ILP is smaller. Kerivin et al. also used the above graphs for the 2ECON
problem with %(v) ∈ {1, 2}. However, for this problem variant the size of the in-
put graphs was restricted to 101 nodes. They used 2ECON-UCut and separated
the partition and F-partition inequalities heuristically. All instances were solved to
optimality, and the authors figure out that partition and F-partition inequalities
significantly improve the obtained lower bounds from the LP relaxation, although
only few F-partition constraints were separated. However, it is not clear whether
separating these constraints also speeds up the computation, as the running times
without separating them are not given.

Experiments for 2R(PC)SN were conducted in [WRP+06,WRP+07]. The con-
sidered instances are based on real-world access net data of the city district Cologne-
Ossendorf. We thoroughly describe these instances in Section 12 in more detail.

9.6 Our Contribution

As stated in Section 9.4.2, a strong orientation-based ILP for {0,1,2}-SND problems
with node-connectivity constraints was not known before. The central result of this
part of the thesis is the development of such a formulation. To this ends we provide
a characterization of 2-node-connected graphs via rooted orientation properties.
This graph-theoretical result allows us to derive two classes of orientation-based
ILP formulations for 2RSN, 2RPCSN and 2NCON: DFlow and DCut. We prove
the theoretical advantages of these directed models compared to the previously
known ILP approaches. On the other hand, we show that our two concepts are
equivalent from the polyhedral point of view. Nonetheless, our experimental study
shows that the cut formulation is much more powerful in practice. Based on DCut,
we develop a branch-and-cut algorithm for {0,1,2}-SND problems which allows us
to solve test instances with up to 4900 nodes to provable optimality.

As we could see in the previous section, till now there is no common benchmark

9.6. OUR CONTRIBUTION 103

set in order to test algorithms for {0,1,2}-SND problems. Most of the previously
used instances are not directly available. Although randomized routines for gen-
erating problem instances are sometimes precisely described, it is not sufficient for
a fair comparison with other algorithms for the same problem. In this thesis, we
propose TSNDLib [TSN08], a collection of benchmark instances for {0,1,2}-SND
problems and encourage other researchers to use them for this type of problems.

The only relevant experimental study on exact algorithms for the 2NCON prob-
lem is published in [Sto92]. However, the size of the thereby considered instances
did not exceed 40 nodes (after applying preprocessing routines). Hence, our com-
putational study is the first for 2NCON conducted on a rich and diverse benchmark
library that contains instances with up to 4900 nodes. Unfortunately, the code of
the branch-and-cut algorithms based on the 2CON-UFlow (developed in [Sto92]
and [KMN04]) were not available for us and we were not able to evaluate their
performance for 2NCON on our benchmark instances. For the 2(PC)SN problem,
we compare the perfomance of our algorithm with those of [WRP+06,WRP+07].

Although the main focus of our work lies on the node-connectivity aspect of
{0,1,2}-SND problems, combining our results with the results on 2ECON in [Cho92,
Rag95], we were for the first time able to develop a common branch-and-cut frame-
work based on graph orientation that solves 2ECON, 2NCON, and 2R(PC)SN prob-
lems.

104 CHAPTER 9. LITERATURE OVERVIEW

Chapter 10

Orientation-based Modeling

In Sections 10.1 and 10.2 we describe and characterize the particular structure of
feasible solutions to the 2NCON and 2RSN problems. The thereby induced novel
characterization of general 2-node-connected graphs is given in Section 10.3. We
use the latter to model two novel cut- and flow-based ILPs for the {0,1,2}-SND
problems in Section 10.4. A polyhedral analysis of our models and a comparison to
the previously known ILPs is presented in Section 10.5.

10.1 Solution Structure

Exploiting knowledge about the particular structure of feasible solutions can help
to design algorithms that are more effective in practice than the previous ones. We
therefore analyze networks that are feasible for our problems. For this purpose we
need some basic definitions and notations.

Definition 10.1. Let (G′, U) be a tuple of an undirected connected graph G′ =
(V ′, E′) and U ⊆ V ′ with |V ′| ≥ 3 and |U | ≥ 2. G′ with respect to U is:

• (1, 2)-edge-connected , if all nodes u ∈ U lie in the same 2-edge-connected
component.

• (1, 2)-root-node-connected , if for a given root node r ∈ V ′ each node u ∈ U
belongs to a block that also contains r.

• (1, 2)-node-connected , if all nodes u ∈ U lie in the same block.

Observation 10.2. Let (G′, U) be a tuple as defined above.

• If G′ is (1, 2)-root-node-connected w.r.t. U , then it is also (1, 2)-edge-connected
w.r.t. U .

• G′ is (1, 2)-node-connected w.r.t. U if and only if G′ is (1, 2)-root-node-con-
nected w.r.t. U , for all possible choices of r ∈ U .

The following observation allows us to identify feasible 2ECON, 2RSN and
2NCON networks with the notations given in Definition 10.1.

105

106 CHAPTER 10. ORIENTATION-BASED MODELING

Observation 10.3. Given an instance of a {0, 1, 2}-SND problem with the cus-
tomer set R = R1 ∪R2. Let N = (VN , EN) be any feasible solution of the 2ECON,
2RSN, or 2NCON problem. We can observe that R ⊆ VN and (N,R2) is (1, 2)-
edge-connected, (1, 2)-root-node-connected, or (1, 2)-node-connected, respectively.

10.2 Orientation Theorems

10.2.1 2ECON – Excursion

Due to the existence of Theorem 2.7, it was possible to give the characterization
of feasible 2ECON networks [Cho92,Rag95], i.e., (1, 2)-edge-connected graphs with
respect to R2. In order to give a better insight into the similarities and differences
between the problem with edge-connectivity (2ECON) and our node-connectivity
problems 2RSN and 2NCON, we rephrase this result using our own notations and
definitions.

Theorem 10.4. Let (G′, U) be a tuple as defined above. G′ is (1, 2)-edge-connected
with respect to U if and only if for any node r ∈ U there exists an orientation Ĝ
such that:

(P1) For each node v ∈ V ′ \ U , Ĝ contains a directed path (r → v).

(P2) For each node v ∈ U \ {r}, Ĝ contains a directed path (r → v) and a directed
path (v → r).

The above equivalence between (1, 2)-edge-connected graphs and graph orien-
tations with the properties (P1) and (P2) allows us to transform 2ECON into an
equivalent problem defined on directed graphs (cf. Section 9.4.2).

We now characterize all feasible solutions to 2RSN and 2NCON, i.e., graphs
that contain R1 and are (1, 2)-root-node-connected or (1, 2)-node-connected w.r.t.
R2, respectively.

10.2.2 2RSN

Theorem 10.5. For a given tuple (G′, U) as defined above and a root node r ∈ V ′,
G′ is (1, 2)-root-node-connected with respect to U if and only if there exists an
orientation Ĝ of G′ that satisfies the properties (P1), (P2) and:

(P3) For each node v ∈ U \ {r} the directed paths (v → r) and (r → v) are node-
disjoint except for r and v.

Indeed, given a valid orientation, it is trivial to show that (G′, U) is (1, 2)-root-
node-connected. Hence, in order to prove the theorem we have to show that if
(G′, U) is (1, 2)-root-node-connected then there exists a valid orientation Ĝ of G′.
Before doing this we define an orientation procedure for a general 2-node-connected
graph B = (VB, EB) and a given root node rB ∈ VB. The following procedure
basically consists of identifying and orienting an open ear decomposition P0, . . . , Pl,
where P0 and P1 form a cycle containing rB. Recall that the concept of open
ear decomposition for the 2-node-connected graphs was discussed in Section 2.1.

10.2. ORIENTATION THEOREMS 107

Nevertheless, to make the proof of Theorem 10.5 selfcontained, we also prove the
existence of such a decomposition and the correctness of our orientation procedure.

Definition 10.6 (Orientation Procedure). We use ` : V ′ → [0, 1]∪{∞} as a labeling
function and call a node v ∈ V labeled if `(v) < ∞. Initially, we set `(v) := ∞ for
all v ∈ V . We start by identifying a cycle Z in B containing rB, and orient its edges
consistently in one of the two possible directions. We then label each node on Z
with increasing fractional numbers between 0 and 1, according to this orientation,
starting with `(rB) := 0. Hence, all edges of Z (except its last edge ê) are oriented
from the smaller towards the larger label number. We will now orient the remaining
undirected edges in such a way that this invariant is valid for all oriented edges:

We define an augmenting path P = [a → b] as a simple path of unoriented
edges where only the disjoint start and end nodes are labeled, and `(a) < `(b). To
orient B, we repeatedly find an augmenting path P = [a→ b] and orient it from a
to b, labeling all inner nodes with increasing fractional numbers greater than `(a)
but smaller than `(b); these labels are to be unique over all labelings so far. The
procedure terminates as soon as no augmenting path can be found in B.

Lemma 10.7. The above orientation procedure, if applied to a 2-node-connected
graph B, produces an orientation B̂ of B, i.e., all edges of B are uniquely oriented,
and B̂ satisfies: For each node v ∈ B there are node-disjoint paths (rB → v)
and (v → rB).

Proof. Assume that at some point there is at least one unoriented edge e left,
but we cannot find any augmenting path. Clearly, e has to be part of some path
Q = [c → d] of unoriented edges with labeled nodes c and d. Since neither Q nor
its reversal is an augmenting path, we have `(c) = `(d) and therefore c = d, i.e., Q
is a cycle of unoriented edges, and none of its nodes except for c are labeled. Since
B is 2-node-connected, there has to be an additional unoriented path from some
node q ∈ Q to some labeled node p (p, q 6= c). But then, the path [p → q → c] (or
its reversal) would be an augmenting path, which is a contradiction.

By the above construction, we guarantee that each labeled node has at least one
incoming and one outgoing edge. Furthermore, each oriented edge (except for ê)
is oriented from the smaller towards the larger label number. Hence, each oriented
path will always contain monotonously increasing label numbers (with the exception
of ê). This means that any directed circle starting from rB and going through any
labeled node v will be simple, and we therefore have node-disjoint paths (rB → v)
and (v → rB).

The above orientation procedure produces only one edge that is oriented from
the larger label number to the smaller one. As `(r) < `(v) for each v ∈ VB \ {r} we
have the following important observation:

Observation 10.8. The orientation procedure guarantees that there is only a single
edge ê that is directed towards r.

We are now ready to prove the Theorem 10.5:

108 CHAPTER 10. ORIENTATION-BASED MODELING

Proof. (of Theorem 10.5) Let Bi, i ∈ I, be the blocks of G′ with Bi ∩ U 6= ∅.
For each i ∈ I we have r ∈ Bi by definition and clearly U ⊆

⋃
i∈I Bi. We orient

each Bi according to the orientation procedure defined above. Due to Lemma 10.7
the resulting orientation satisfies properties (P1), (P2) and (P3) for all nodes v ∈⋃
i∈I Bi.

The nodes v /∈
⋃
i∈I Bi form subgraphs attached to

⋃
i∈I Bi. Note that when-

ever G′ represents an optimal solution to the 2RSN problem we can assume these
subgraphs to be trees. If we orient these subgraphs using DFS away from the cor-
responding cut nodes, we obtain directed paths (r → v) for all v ∈ V \ {r} which
concludes the construction of Ĝ.

10.2.3 2NCON

We now characterize feasible solutions to the 2NCON problem, i.e., (1, 2)-node-
connected graphs with respect to R2.

Theorem 10.9. Let (G′, U) be a tuple as described above. G′ is (1, 2)-node-
connected with respect to U if and only if for any root node r ∈ U there exists
an orientation Ĝ of G′ with the properties (P1)–(P3) and additionally:

(P4) The in-degree of r is equal to one.

Proof. Let Ĝ be a valid orientation of G′ with respect to some root node r ∈ U .
We first show that (G′, U) is (1, 2)-node-connected. Obviously, (G′, U) is (1,2)-
root-node-connected for r. Therefore, each node v ∈ U belong to some block Bi
that also contains r. Assume that there are at least two different blocks B1 and
B2 containing the nodes v1, v2 ∈ U \ {r}, respectively. Then r has to be a cut
node contained in both blocks. But since a valid orientation requires directed paths
(v1 → r) and (v2 → r) there have to be at least two edges being directed towards r
which is a contradiction to the validity of the orientation Ĝ. Hence we know that
all nodes u ∈ U lie in the same block, i.e., G′ is (1,2)-node-connected.

Now, assume (G′, U) is (1, 2)-node-connected, and we show that there exists a
valid orientation Ĝ of G′. By definition, all nodes u ∈ U lie in the same block.
According to Observation 10.2, for any chosen root r ∈ U it is also (1, 2)-root-node-
connected with respect to U \ {r}. Using the orientation procedure above for any
arbitrarily chosen root r ∈ U , we obtain an orientation satisfying (P1)–(P3).

As there is only one single block containing all nodes v ∈ U , the orientation
procedure guarantees that r has only one ingoing arc (cf. Observation 10.8).

10.3 Orientations of 2-Node-Connected Graphs

10.3.1 Our Characterization

The orientation procedure defined in the previous section actually gives us a char-
acterization of general 2-node-connected graphs.

Theorem 10.10. An undirected graph G′ = (V ′, E′) is 2-node-connected if and
only if for an arbitrary chosen root node r ∈ V ′ there exists an orientation Ĝ such

10.4. ILP MODELING 109

that the in-degree of the root node is exactly 1 and for each node v ∈ V ′ \ {r}, Ĝ
contains a directed path (r → v) and a directed path (v → r) that are node-disjoint
except for r and v.

Proof. Lemma 10.7 and Observation 10.8 guarantee that applying our orientation
procedure to a 2-node-connected graph G′ gives a valid orientation.

On the other hand, given a valid orientation Ĝ, we show that the underlying
graph G′ is 2-node-connected. For any pair of nodes u,w ∈ V ′ there exists a path
(u → w) that is, e.g., the concatenation of directed paths (u → r) and (r → w)
and analogously a backward path (w → u). Due to Theorem 2.7 the underlying
undirected graph G′ is hence 2-edge-connected and does not contain any bridges.
We show that all nodes v ∈ V ′ \ {r} share a common block with r. Assume that
there are at least two blocks B1 and B2 containing the nodes v1, v2 ∈ V ′ \ {r},
respectively. Then r has to be a cut node contained in both blocks. But since a
valid orientation requires directed paths (v1 → r) and (v2 → r) there have to be
at least two edges being directed towards r which is a contradiction to the validity
of the orientation Ĝ. Hence we know that Ĝ will only contain a single non-trivial
block and therefore it is 2-node-connected.

10.3.2 s, t-Orientation: A Different Approach?

There is another well-known orientation-based characterization of 2-node-connected
graphs. Recall Theorem 2.9 stated in Section 2.1: A given graph G′ is 2-node-
connected if and only if for any edge {s, t} ∈ E′ there exists an s, t-orientation, i.e.,
a directed acyclic graph, where s is the only source and t is the only sink. Such
an orientation can be obtained, e.g., from an open ear decomposition of G′ that
starts with the edge {s, t}. Indeed, for a fixed choice of {s, t} = {r, v} for some
v ∈ V ′, the corresponding construction is very similar to our orientation procedure,
with the only difference that {s, t} is oriented from s to t, and not from t to s as in
Ĝ. However, this characterization could not be efficiently used before as the basis
of orientation-based ILPs for the 2NCON problem, as it requires the knowledge
of at least one edge that is contained in all 2NCON solutions. Meanwhile, our
characterization is constructed such that it is directly applicable in our context: it
chooses a reference node r and orients the graph with respect to it. Choosing r
among the R2 nodes guarantees that r is contained in all 2NCON solutions.

10.4 ILP Modeling

We transform the input of 2RSN and 2NCON problems into an equivalent input for
the directed 2-root-connected Steiner network (D2RSN) and the directed {0,1,2}-
node-connected Steiner network problem (D2NCON) problems, respectively, and
provide novel directed cut and directed flow based formulations. Finally, we modify
the former model for some prize-collecting problem variants.

Both D2RSN and D2NCON problems can be defined on any directed graph D.
However, in the context of this thesis, we always deal with the input (Ḡ, c̄, r,R1,R2)
where Ḡ = (V,A) is the bidirection of G with costs c̄((u, v)) = c̄((v, u)) := c({u, v}).

110 CHAPTER 10. ORIENTATION-BASED MODELING

b'

a

d'

cc'

b

a'

v'

v

d

Figure 10.1: Counterexample to modeling 2-node-connectivity via 2-edge-connect-
ivity, cf. text.

If we deal with 2NCON, the root r is an arbitrary chosen R2 node. Recall that we
already defined R′i := Ri \ {r} for 0 ≤ i ≤ 2, and R′ := R \ {r}.

The optimal solution to D2RSN on the instance (Ḡ, c̄, r,R1,R2) is a weight-
minimal oriented subgraph N̂ = (VN , AN) in Ḡ with R ⊆ VN that is (1, 2)-root-
node-connected—i.e., it satisfies the properties (P1)–(P3)—with respect to r and
U = R2. Analogously, if we require (1, 2)-node-connectedness—i.e., properties
(P1)–(P4)—then N̂ is an optimal solution to D2NCON. Note that if we ignore
both (P3) and (P4), N̂ is an optimal solution to the D2ECON problem.

From Theorems 10.5 and 10.9 we have:

Corollary 10.11. Any feasible 2RSN and 2NCON solution for (G, c, [r],R1,R2)
can be transformed into a corresponding feasible D2RSN and D2NCON solution for
(Ḡ, c̄, r,R1,R2), respectively, with the same objective value, and vice versa.

Modeling 2-node-connectivity via 2-edge-connectivity? One may try to
model node-connectivity by only computing edge-connectivity in a modified under-
lying graph. In related problems it is often possible to split each node v into a
pair of nodes v, v′, connected via an arc (v, v′). Then, each undirected edge (u, v)
is transformed into two directed arcs (u′, v), (v′, u). We give a counterexample to
this strategy for 2NCON. Assume a complete graph on five nodes {a, b, c, d, v} with
two distinct edge cost values: all edges incident to v, as well as the edges {a, b} and
{c, d} are cheap, whereas the other edges are expensive. Figure 10.1 shows an opti-
mal directed solution w.r.t. 2-edge-connectivity in this so-modified graph. Observe
that the solution’s shadow is in fact 2-node-connected. Yet, when transforming the
solution back into the original graph, we have to merge v, v′, and v becomes a cut
node. This renders the solution infeasible for 2NCON.

10.4.1 DFlow

DFlow is a multi-commodity-based ILP that is be able to solve 2ECON, 2NCON
and 2RSN problems. We first formulate it for 2RSN. We then extend it with a

10.4. ILP MODELING 111

single additional inequality in order to solve 2NCON and also show how to use it
for 2ECON.

Connecting each customer v ∈ R′ to a root node r can be expressed by sending
exactly one unit of flow from r to v in Ḡ. To guarantee the redundant connection
for each customer v ∈ R′2, we send one unit of flow back to the root. Thereby it
has to be ensured that the pairs of forward and backward flows do not use common
nodes and edges except for v and r. The arcs with a positive amount of flow then
define our solution network.

We use the same set of variables and commodities as for 2ECON-DFlow:
Binary variables xij are 1, if the solution network contains the arc (i, j) ∈ A and 0
otherwise. The commodity set is C = {(r, v) | v ∈ R′} ∪ {(v, r) | v ∈ R′2}. A flow of
commodity χ ∈ C on the arc (i, j) ∈ A is modeled by the continuous variable fχij .
Recall that, given a variable vector ξ and a set of indices J , we use the shorthand
ξ(J) :=

∑
j∈J ξj .

DFlow : min
∑
a∈A

c(a) · xa (10.1)

∑
i:(i,v)∈A

fχiv −
∑

i:(v,i)∈A

fχvi =

−1, if v = s

1, if v = t

0, else

∀χ = (s, t) ∈ C, ∀v ∈ V (10.2)

∑
i:(i,w)∈A

(
f

(v,r)
iw + f

(r,v)
iw

)
≤ 1 ∀v ∈ R′2,∀w ∈ V \ {r, v} (10.3)

xvw + xwv ≤ 1 ∀{v, w} ∈ E (10.4)

0 ≤ fχa ≤ xa ∀a ∈ A,∀χ ∈ C (10.5)

xa ∈ {0, 1} ∀a ∈ A (10.6)

The flow-conservation constraints (10.2) define the sent flow and ensure the flow
balances, while the coupling constraints (10.3) ensure the node-disjointness of the
pairs of forward and backward flow, by guaranteeing that at most one unit of flow
per commodity pair is sent into any node. The inequalities (10.5) ensure the flow
capacities and bind the flow variables f to the network-defining variables x. For the
latter, (10.4) ensures that we have a unique orientation for the selected edges. Due
to Theorem 10.4, the constraints (10.2), (10.5), (10.4), and (10.6) ensure that every
R′2 customer belongs to the same edge-biconnected component as r. Theorem 10.9
and 10.5, and constraint (10.3) guarantee that this component is (1, 2)-root-node-
connected with respect to R′2.

According to Theorem 10.9, adding the following equation (10.7) leads to a
multi-commodity flow ILP for the 2NCON problem. It ensures that we select only
a single arc that is oriented towards the root r:∑

(i,r)∈A

xir = 1. (10.7)

Without (10.3) and (10.7), our DFlow formulation is equivalent to the 2ECON-
DFlow.

112 CHAPTER 10. ORIENTATION-BASED MODELING

10.4.2 DCut

Alternatively, we can formulate an ILP based on directed cuts—DCut—that also
solves the 2ECON, 2NCON and 2RSN problems.

DCut : min
∑
a∈A

c(a) · xa (10.8)

xvw + xwv ≤ 1 ∀{v, w} ∈ E (10.9)

x(δ−(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R′ 6= ∅ (10.10)

x(δ+(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R′2 6= ∅ (10.11)

x(δ−
Ḡw

(S1)) + x(δ+
Ḡw

(S2)) ≥ 1

{
∀w ∈ V \ {r},∀S1, S2 ⊆ V \ {r, w},
S1 ∩ S2 ∩R′2 6= ∅

(10.12)

xa ∈ {0, 1} ∀a ∈ A (10.13)

As before, (10.9) guarantees the unique orientation of chosen edges. The constraints
(10.10) and (10.11) are called forward and backward dcut-constraints, respectively.
They ensure the existence of the required paths, and (10.12) assures the node-
disjointness of these paths: After removing any node w, either the forward or the
backward path still has to exist. Thus an optimal solution of the above ILP defines
an optimal solution of the 2RSN problem.

Analogous to DFlow, extending DCut with (10.7) gives us a cut-based ILP on
bidirected graphs for the 2NCON problem. Without (10.12) and (10.7), our DCut
formulation is equivalent to 2ECON-DCut.

10.4.3 Extension to the Prize-Collecting Model

For prize-collecting variants of 2CON problems we cannot easily choose a root node
in advance since we do not know any node that will definitively be selected. The
situation does not arise for 2RSN, as even in the prize-collecting setting the prespec-
ified root will always have to be contained in the solution network. We show how
our DCut model can be extended to model the prize-collecting variant 2RPCSN.
Observe that we can extend the DFlow model analogously. As introduced in Sec-
tion 8, we are given a prize p(v) for each node v. We introduce a second set of
binary variables yv for v ∈ V that are 1, if v is in the solution network N̂ , and 0
otherwise. By definition, yr = 1. The cut constraints require a non-zero cut only if
a node in the considered cut set is selected:

2R(PC)SN-DCut : min
∑
a∈A

c(a) · xa −
∑
v∈V

p(v) · yv (10.14)

10.5. POLYHEDRAL COMPARISON 113

xuv + xvu ≤ yv ∀v ∈ V,∀(v, u) ∈ A (10.15)

x(δ−(S)) ≥ yv ∀S ⊆ V \ {r},∀v ∈ S ∩R (10.16)

x(δ+(S)) ≥ yv ∀S ⊆ V \ {r},∀v ∈ S ∩R2 (10.17)

x(δ+
Gw

(S1)) + x(δ−Gw
(S2)) ≥ yv

{
∀w ∈ V \ {r}, ∀S1, S2 ⊆ V \ {r, w},
∀v ∈ S1 ∩ S2 ∩R′2

(10.18)

xa, yv ∈ {0, 1} ∀a ∈ A,∀v ∈ V (10.19)

By adding the constraint (10.7) to this formulation, we obtain an ILP model of
the 2PCNCON problem. Alternatively, by omitting (10.18) we obtain a 2PCECON
ILP model.

10.5 Polyhedral Comparison

The polyhedral comparison provided in this section is done for 2NCON. The results
related to 2R(PC)SN can be derived correspondingly, so we omit their proofs. We
first compare the strength of the two concepts proposed above, DCut and DFlow.
We then compare them with previously known ILP formulations and conclude this
section with a hierarchy of the strength of LP relaxations for 2NCON.

10.5.1 Strength of DCut and DFlow

Let

PDF := {(x, f) ∈ [0, 1]|A| × [0, 1]|A|·|R| | (x, f) satisfies (10.2)–(10.4) and (10.7)}

and
PDC := {x ∈ [0, 1]|A| | x satisfies (10.9)–(10.12) and (10.7)}

be the polytopes corresponding to LP relaxations of DFlow and DCut for 2NCON,
respectively. To compare these polyhedra, we consider the projection of PDF into
the space of x variables, i.e.,

projx(PDF) := {x | (x, f) ∈ PDF }.

Theorem 10.12. For 2NCON, DFlow and DCut are equivalent.

Proof. Due to Observation 2.17 we have to show projx(PDF) = PDC .
projx(PDF) ⊆ PDC : It is a classical and direct consequence of the max-flow

min-cut theorem that if an assignment (x̄, f̄) for (x, f) is feasible for DFlow, then
x̄ is feasible for DCut, i.e., x̄ satisfies the constraints (10.10)–(10.12). Assume there
is a set S ⊆ V \ {r} with v ∈ S ∩ R′ and x̄(δ−(S)) < 1. Then the minimum r, v-
cut—and therefore the maximum r, v-flow—is less than 1. This is a contradiction
to the corresponding flow constraint (10.2) with commodity (r, v). Therefore, the
constraints (10.10) and, analogously also (10.11), are satisfied.

Let v ∈ R′2. Since f satisfies DFlow, there is exactly one unit of commodity
(r, v) going from r to v, and one unit of (v, r) going from v to r: the total amount

114 CHAPTER 10. ORIENTATION-BASED MODELING

(a)

Figure 10.2: Sketch for the proof of Theorem 10.12, part of PDC ⊆ projx(PDF).

of flow between r and v is 2. The constraints (10.3) ensure that deleting any node
w 6= r in G can decrease this amount by at most one flow unit. Hence there is
an (undirected) max-flow—and therefore a minimum undirected cut—of at least 1
between r and v in any Gw, which induces (10.12).

PDC ⊆ projx(PDF) : We show that if an assignment x̄ for x is feasible for DCut,

then there exists a flow f̄ such that (x̄, f̄) is feasible for DFlow. Clearly, all
DFlow constraints dealing only with x-variables are satisfied as they are identical
to the DCut formulation. It remains to show that we can fit flow into the network
using the x-values as capacities. Note that the flows of different commodities are
mostly independent of each other, as only the coupling constraints (10.3) define a
dependency between the forward and the backward flow for each v ∈ R′2. It is clear
that we can find a 1-flow from r to any v ∈ R′1, since (10.10) guarantees a minimum
cut between r and v of at least 1. Analogously, because of (10.10) and (10.11), we
can also find a forward and a backward flow (f̄ (r,v), f̄ (v,r)) for each v ∈ R′2, and it
remains to show that there always exists such a pair of flows that satisfies (10.3)
for all nodes w ∈ V \ {r, v}.

Let us assume there exists no such pair of flows. Let (f̂ (r,v), f̂ (v,r)) be the flows
satisfying (10.2) and (10.5) such that the maximal violation of (10.3) is minimal.
Let ŵ be a node where such a maximal violation occurs. The paths used by the
flow can then be divided into multiple paths that go through ŵ and multiple paths
which do not go through ŵ. We denote these path sets by P and Q, respectively.
Let α > 1 be the amount of flow over P , and we have β = 2 − α < 1 as the flow
over Q.

Due to (10.12) we know that there exists a set Q+ of additional paths not going
through ŵ over which we can send β+ > 0 amount of flow, such that β + β+ = 1.
Consider the flow pair (f̃ (r,v), f̃ (v,r)), where the flow over ŵ is only 1, and the
second flow unit is sent over that paths of Q and Q+.1 Since the original flow was
minimal in terms of constraint violation, this new pair of flows has a different node
w̃ over which at least α flow units are sent, say γ ≥ α. Clearly, w̃ is part of Q+.

1We can choose this new pair of flows such that (10.2) and (10.5) still holds, since, even if the
newly routed flow over Q+ sends the total amount β+ in a single direction (say from r to v), we
know that f̂ satisfies (10.2) and therefore sends at least α − 1 = β+ units into each direction. In
the modified flow we can hence remove enough directed flow per direction from P to allow valid
flow using Q+ instead.

10.5. POLYHEDRAL COMPARISON 115

Even if Q+ contributes all of its flow units to γ, we have γ = γ′ + β+ and thus:
α ≤ β+ + γ′ = 1− β + γ′ = 1− 2 + α+ γ′ =⇒ 1 ≤ γ′

The paths of Q cannot contribute to γ, since then we could modify the original
flow (f̂ (r,v), f̂ (v,r)) such that (10.3) is less violated for ŵ (without introducing an
additional violation of at least α). Thus γ′ has contributions from paths of P . Since
the new flow sends exactly 1 unit over P , all paths in P have to go through ŵ and w̃:
otherwise we could choose a path going through ŵ and not through w̃ and further
reduce the flow through the latter. Hence, in (f̂ (r,v), f̂ (v,r)) both ŵ and w̃ have a
through-flow of α, and the paths in P can be subdivided into subpaths between r
and w̃, w̃ and ŵ, and ŵ and v, assuming w.l.o.g. that w̃ is closer to r than ŵ. But
then we can iterate the above argument, send only 1 unit of flow through ŵ and w̃,
and find an additional node w̌ with too much through-flow. This argument can be
iterated ad infinitum, requiring an infinitely large graph.

By analogous proofs we obtain:

Corollary 10.13. DFlow and DCut are equivalent for 2RSN and 2RPCSN.

10.5.2 Comparison to the Undirected Cut Formulation

We compare our 2NCON-DCut formulation with the currently best known and
widely used 2NCON-UCut formulation. For better readability we restate it here:

2NCON-UCut : min
∑
e∈E

c(e) · ze (10.20)

z(δ(S)) ≥ 1 ∀S ⊂ V, ∅ 6= S ∩R 6= R (10.21)

z(δ(S)) ≥ 2 ∀S ⊂ V, ∅ 6= S ∩R2 6= R2 (10.22)

z(δGw(S)) ≥ 1 ∀w ∈ V,∀S ⊂ V, ∅ 6= S ∩ (R2 \ {w}) 6= R2 \ {w} (10.23)

ze ∈ {0, 1} ∀e ∈ E (10.24)

For 2ECON it is known (cf. [Cho92,Rag95]) that directed formulations are strictly
stronger than undirected ones, as long as R1 6= ∅. For 2NCON, we can also show
that our (rooted, directed) 2NCON-DCut formulation is strictly stronger than the
(unrooted, undirected) 2NCON-UCut formulation. Furthermore, this even holds
if R1 = ∅.

Let PUC be the polyhedron corresponding to the LP relaxation of 2NCON-
UCut. For PDC , we can use the natural projection

projz(PDC) := {z ∈ [0, 1]|E| | x ∈ PDC , zij = xij + xji ∀e = {i, j} ∈ E}.

Theorem 10.14. 2NCON-DCut formulation is strictly stronger than 2NCON-
UCut. This also holds if R1 = ∅.

Proof. We first show that projz(PDC) ⊆ PUC , i.e., that any z̄ ∈ projz(PDC) satisfies
constraints (10.21)–(10.23). Let x̄ be the vector from which we projected z̄. For any
set S ⊂ V we have z̄(δ(S)) = z̄(δ(V \S)) = x̄(δ−(V \S)) + x̄(δ−(V)). Consider any
constraint (10.21) with its corresponding set S. If r ∈ S, we can consider (10.10) and

116 CHAPTER 10. ORIENTATION-BASED MODELING

(a) R1 6= ∅: 2NCON-DCut is
strictly stronger than 2NCON-
UCut.

(b) R1 = ∅: 2NCON-DCut is
strictly stronger than 2NCON-
UCut.

(c) The node-partition in-
equalities are not satisfied.

Figure 10.3: In the above figures, the root node is denoted by the black circle. A
empty circle denotes a R1 node, a double circle denotes a R2 node. Single edges
correspond to a fractional solution of 0.5, double edges correspond to a fractional
solution of 1.

have x̄(δ−(V \S)) ≥ 1. Analogously, if r /∈ S, we have x̄(δ−(S)) = x̄(δ+(V \S)) ≥ 1.
Therefore, in both cases we have z̄(δ(S)) ≥ 1.

Consider any constraint (10.22) with its corresponding set S; we show: z̄(δ(S)) =
x̄(δ−(S)) + x̄(δ+(S)) ≥ 2. If r ∈ V \S, the inequalities (10.10) and (10.11) directly
give the above formula. If r ∈ S, we can consider the cut set V \ S instead of S,
as z̄(δ(S)) = z̄(δ(V \ S)). Using the same argument for the graph Gw we use the
inequalities (10.23) to show that z̄ satisfies (10.12) with S1 = S2.

It remains to show that there exists a 2NCON instance where PDC leads to
strictly stronger bounds, i.e.,

min{cTz | z ∈ PUC} � min{cTz | z ∈ projz(PDC)}.

We therefore use the graph G = ({a, b, r, c, d}, E1 ∪ E2) with the root node r, de-
picted in Figure 10.3(a). Thereby, we have a, b ∈ R1, r, c, d ∈ R2 and the edges of
E1 and E2 of uniform costs α forming triangle graphs on the node sets {a, b, r} and
{r, c, d}, respectively.

Setting z̄e = 0.5 for each e ∈ E1 and z̄e = 1 for each e ∈ E2 gives us a
feasible solution to 2NCON-UCut of cost 1.5α+ 3α, cf. Figure 10.3(a). However,
every feasible solution of 2NCON-DCut for the above instance will cost at least
2α+ 3α: Consider the bidirection Ḡ = ({a, b, r, c, d}, A1 ∪A2) of G: As the forward
dcut-constraints have to be satisfied for the R1 nodes, x(A1) has to be at least 2.
Analogously, satisfying forward and backward dcut-constraints for the nodes c and
d, we obtain x(A2) ≥ 3.

Figure 10.3(b) shows that projz(PDC) 6= PUC even if R1 = ∅. The drawing rep-
resents a feasible fractional solution z̄ ∈ PUC , whereby all nodes are R2 customers.
The edges incident to the root node have the costs α′ and other edges are of cost β′,
with 0 ≤ α′ � β′. The value of the above solution is 3α′ + 1.5β′. However, for the
same problem instance, the optimal value of the LP relaxation of 2NCON-DCut
is 2α′ + 2β′, as it can be easily verified by solving the LP relaxation.

We can easily give an undirected cut formulation 2R(PC)SN-UCut that is
very similar to 2NCON-UCut. The main difference is that the cuts are defined
with respect to the given root:

10.5. POLYHEDRAL COMPARISON 117

2RPCSN-UCut : min
∑
e∈E

c(e) · ze −
∑
v∈V

p(v) · yv (10.25)

z(δ(S)) ≥ yv ∀S ⊆ V \ {r},∀v ∈ S ∩R1 (10.26)

z(δ(S)) ≥ 2yv ∀S ⊆ V \ {r},∀v ∈ S ∩R2 (10.27)

z(δGw(S)) ≥ yv ∀S ⊆ V \ {r},∀v ∈ S ∩R2,∀w ∈ V \ {r, v} (10.28)

ze, yv ∈ {0, 1} ∀e ∈ E, v ∈ V (10.29)

Theorem 10.15. 2R(PC)SN-DCut is strictly stronger than 2R(PC)SN-UCut,
in general. If R1 = ∅, they are equivalent.

Proof. For R1 6= ∅, the proof is analogous to the proof of Theorem 10.14.
Consider now the case R1 = ∅. The idea of the following proof was first used

by Raghavan [Rag95] in the context of 2ECON. We show that if (z̄, ȳ) is feasible
for 2R(PC)SN-UCut, there exists a solution (x̄, ȳ) with z̄ij = x̄ij + x̄ji for all
{i, j} ∈ E feasible to 2R(PC)SN-DCut. In fact, a solution (x̄, ȳ) obtained by
setting x̄ij = x̄ji := z̄ij/2 for all {i, j} ∈ E satisfies the inequalities (10.16) (and
analogously (10.17)): For a set S ∈ V \ {r} and v ∈ S ∩R2, we have

x̄(δ−(S)) = z̄(δ(S))/2
(10.27)

≥ 2yv/2 = yv.

Furthermore, for any v 6= w ∈ V , S1, S2 ⊆ V \ {r, w} we have

x̄(δ+
Gw

(S1)) + x̄(δ−Gw
(S2)) = z̄(δ(S1))/2 + z̄(δ(S2))/2

(10.16),(10.17)

≥ yv.

Summarizing the results of Theorems 9.10, 9.11, 10.14, 10.15 we obtain:

Corollary 10.16. For our considered problem classes, the relationship between
DCut and UCut is established as below.

√
means that the DCut formulation

is strictly stronger, ⇔ means that both are equivalent. The relationships hold true
independent on whether R0 = ∅ or not; clearly, |R2| ≥ 2.

2ECON 2NCON 2RSN, 2RPCSN

R1 = ∅ ⇔
√

⇔
R1 6= ∅

√ √ √

10.5.3 Comparison to the Mixed Flow Formulation

Till now, the strongest ILP for 2NCON was the MFlow-ILP (cf. Section 9.4).
We show that our 2NCON-DCut is beneficial. Recall that MFlow is stated as
follows:

MFlow : min
∑
e∈E

c(e)ze (10.30)

118 CHAPTER 10. ORIENTATION-BASED MODELING

∑
(i,v)∈A

gχiv −
∑

(v,i)∈A

gχvi =

−1, if v = s

1, if v = t

0, else

∀χ = (s, t) ∈ C,∀v ∈ V (10.31)

gχvw + gχ
′

wv ≤ zvw ∀{v, w} ∈ E,∀χ, χ′ ∈ C (10.32)

gχvw ≥ 0 ∀(v, w) ∈ A,∀χ ∈ C (10.33)

∑
(i,v)∈A

hχiv −
∑

(v,i)∈A

hχvi =

−2, if v = s

2, if v = t

0, else

∀χ = (s, t) ∈ C2,∀v ∈ V (10.34)

0 ≤ hχvw ≤ zvw ∀(v, w) ∈ A,∀χ ∈ C2 (10.35)∑
(v,i)∈A

hχvi ≤ 1 ∀χ = (s, t) ∈ C2, v ∈ V \ {s, t} (10.36)

ze ∈ {0, 1} ∀e ∈ E (10.37)

Let PMF be the polyhedron of the feasible solutions of the LP relaxation of
MFlow and

projz(PMF) := {z ∈ [0, 1]|E| | (z, g, h) ∈ PMF }

its projection into the variable space of z. We also consider extended projections
including the flow variables f ∈ [0, 1]|A|·|C| eventhough they are not in the objective
function. Let

projz,f (PDF) := {(z, f) | (x, f) ∈ PDF , ze = xij + xji ∀e = {i, j} ∈ E}

be such a projection of PDF (cf. page 113) and

projz,f (PMF) := {(z, f) | (z, g, h) ∈ PMF , f = g}

the projection of PMF ignoring the h flow. In other words, we identify the flows f
and g.

We show that the lower bounds obtained by the LP relaxations of our 2NCON-
DFlow formulation are at least as tight as those of the mixed flow formulation.
Therefore note that the flow f is a kind of natural fusion of the flow g and the
node-disjointness properties of h.

Theorem 10.17. 2NCON-DFlow is weakly stronger than MFlow. Further-
more, there exist instances such that projz,f (PDF) ⊂ projz,f (PMF).

Proof. We show that for any feasible solution (x̄, f̄) of 2NCON-DFlow we can
obtain an equivalent feasible solution (z̄, ḡ, h̄) of MFlow, using projz,f as described
above. Based on these projections, it is easy to see that (10.31), (10.32), and (10.33)
are satisfied. It remains to show that we can always find a feasible flow solution h
within the network G with the projected edge capacities z. If χ = (s, t) ∈ C, we

can choose h̄χe := f̄χe + f̄
(t,s)
e , which satisfies (10.34), (10.35), (10.36) due to (10.5)

and projz. For χ ∈ C2, we look at the maximum s, t-flow in G with capacities
z and consider any corresponding minimum s, t-cut; let S and V \ S be the cut
sets containing s and t, respectively. W.l.o.g. assume that r ∈ S. Since (10.2)

10.5. POLYHEDRAL COMPARISON 119

is satisfied for the commodities (r, t) and (t, r), the maximum undirected r, t-flow,
and therefore also the maximum undirected s, t-flow hχ, is at least 2. Assume we
cannot send hχ without violating (10.36). Then there exists a single node w such
that the total capacity κ of the cut edges which do not send their flow through w
is less than one. If w 6= r, (10.3) guarantees that we can send two (undirected)
flow units between r and t whereby at most one unit is sent through w. This is a
contradiction to κ. If w = r, (10.7) guarantees an in-flow into r of exactly 1 for
both the s, r- and the t, r-flow. Hence, using the two 1-flows f̄ (s,r) and f̄ (t,r) we
can send an undirected flow of at least 1 between s and t without using r, which is
again a contradiction to κ.

To establish the second claim it is enough to construct a feasible flow g in
MFlow which sends more than one unit into the root r. This is infeasible for
2NCON-DFlow as (10.7) is violated.

2NCON-DFlow requires less variables and constraints than MFlow, hence:

Observation 10.18. 2NCON-DFlow is more compact than MFlow.

Our formulation answers the question by Raghavan [Rag95, p. 183] whether his flow
variables g, h can be bounded together more tightly. Note that Theorem 10.9 is cru-
cial for the validity of our approach, which explains why this compact formulation
could not be used legitimately before.

10.5.4 Additional Cut-Constraints

Recall that 2NCON-UCut without (10.23) is the traditional 2ECON-UCut. It
has been shown in [Sto92] that the latter formulation can be strengthened by adding
certain classes of valid inequalities that are NP-hard to separate. Chopra [Cho92]
showed that his 2ECON-DCut formulation inherently includes one of these classes,
namely the partition inequalities: Let {S1, . . . , Sp} be a proper partition of V into p
non-empty sets such that Si∩R 6= ∅ for each 1 ≤ i ≤ p. We denote by δ(S1, . . . , Sp)
the set of edges connecting different partition sets. We can require

z(δ(S1, . . . , Sp)) ≥

{
p if at least two Si contain R2 nodes,

p− 1 otherwise.
(10.38)

Stoer [Sto92, pp. 130–134] showed that the latter formulation also includes the
more general class of the (polynomially separable) Prodon inequalities: Let b be
any positive vector indexed over all subsets S for which the inequalities (9.14)
and/or (9.15) are defined. We denote by B(b) :=

∑
S bS the sum over all its entries

and let Bj
i (b) :=

∑
S:i∈S,j /∈S bS . We can require∑
{i,j}∈E

max{Bj
i (b), B

i
j(b)} · zij ≥ B(b).

Moreover, Raghavan showed that his improved undirected multi-commodity flow
formulation for kECON, which for k = 2 is equivalent to both 2ECON-DFlow
and 2ECON-DCut, also includes the odd-hole inequalities and the more general

120 CHAPTER 10. ORIENTATION-BASED MODELING

combinatorial-design inequalities [Rag95, pp. 165–180]. These inequalities require
certain minimum edge selections based on special subgraphs in G.

In fact, the validity of the last three inequality classes was shown by project-
ing them from the directed cut based formulations. By dropping the constraints
(10.12) and (10.7) from 2NCON-DCut, we obtain 2ECON-DCut. Hence we can
conclude:

Proposition 10.19. 2NCON-DCut and 2NCON-DFlow inherently ensure the
validity of the partition, Prodon, odd-hole, and combinatorial-design inequalities.

For a node v ∈ V let {S1, . . . , Sp} be a proper partition of V \ {v} into p
non-empty sets such that Si ∩ R2 6= ∅ for each 1 ≤ i ≤ p. Let δGv(S1, . . . , Sp)
be the set of edges connecting different partition sets in Gv. The node-partition
inequalities—i.e., undirected partition inequalities where one node is removed from
the graph—strengthen the 2NCON-UCut formulation and can be written as

z(δGv(S1, . . . , Sp)) ≥ p− 1. (10.39)

These inequalities were first proposed in [GM90] and then generalized in [Sto92,
pp. 91–94]. It was an open question [Rag95, p. 183] whether MFlow would induce
this constraint class. Our following result constitutes a negative answer for this
question:

Proposition 10.20. In general, none of the above formulations induces the node-
partition inequalities (10.39).

Proof. See Figure 10.3(c) for an example, which denotes the x variables of the arcs.
Once more, we use the natural projection xvw + xwv = zvw for all {v, w} ∈ E
to obtain an undirected network: When removing the central node, the partition
inequality with three partition sets is violated. Yet the solution is feasible for the
LP relaxation of 2NCON-DCut.

Some of the undirected node-partition inequalities are, however, inherently included
in 2NCON-DCut:

Proposition 10.21. Let x̄ ∈ PDC . Then x̄ satisfies the node-partition inequalities
for all valid partitions of V \ {r}.

Proof. Consider any partition S1, . . . , Sp, p ≥ 2, of the node set V \ {r} such that
Si ∩R2 6= ∅ for all 1 ≤ i ≤ p. From (10.10) und (10.7) it follows:

z(δGr(S1, . . . , Sp)) =
∑

1≤i≤p
x(δ−(Si))− x(δ+(r)) ≥ p− 1.

Observation 10.22. For nodes v ∈ R2 with deg(v) = 2 in G, the node-partition
inequalities are always induced. This holds even for 2NCON-UCut. Hence, such
nodes in general do not represent good choices as the root nodes in 2NCON-DCut,
as we gain more by choosing another R2 node with larger degree.

We obtain the following hierarchy of formulations for 2NCON:

10.5. POLYHEDRAL COMPARISON 121

Corollary 10.23. The following hierarchical scheme summarizes the relationships
between the LP relaxations of the ILP models considered throughout this chapter for
2NCON.

DCut+

DCut DFlow

UCut

UCut+

MFlow

UFlow

A filled arrow specifies that the target formulation is strictly stronger than the source
formulation. An empty arrow specifies that the target formulation is weakly stronger
as the source formulation. Thereby, UCut+ denotes UCut with partition inequal-
ities, and DCut+ denotes DCut with node partition inequalities.

122 CHAPTER 10. ORIENTATION-BASED MODELING

Chapter 11

Branch-and-Cut

From the point of formulation strength, using DFlow instead of DCut might
seem like a reasonable choice in general, as both the number of variables and con-
straints are polynomially bounded whereas DCut has an exponential number of
constraints. However, this drawback of DCut can turn out to be beneficial, as the
actual computation of an optimal solution will in general not require all of these
constraints. The required constraints in DCut can be easily separated using simple
polynomial maximum flow algorithms, see below. Hence, we can obtain the optimal
fractional solution of the LP relaxation at the root of the branch-and-bound tree in
polynomial time, based on the theorem regarding the equivalence of optimization
and separation; cf. Section 2.3.4 and, e.g., [Wol98]. Furthermore, the number of
variables in DCut is independent of |R| as it only requires variables xij for all
(i, j) ∈ A. This is beneficial especially for large |R|.

Based on the DCut approach, we develop a branch-and-cut code, where we can
use the same branch-and-cut strategy for both problems, 2R(PC)SN and 2NCON.

11.1 Initialization

We start with the constraints (10.9) and the subset of the constraints (10.10),
(10.11) for |S| = 1. Even for 2NCON and 2RSN, we use an extended DCut formu-
lation, including binary variables yv for v ∈ R0. Although they do not strengthen
the DCut model, the following flow-preservation constraints significantly speed up
the computation time:∑

k:(k,i)∈A

xki ≥ yi and
∑

k:(i,k)∈A

xik ≥ yi, ∀i ∈ R0. (11.1)

These inequalities specify that no node from R0 will ever have only incoming or
only outgoing arcs. They are especially useful for instances with few customers and
comparably long paths connecting them in the optimal solution.

11.2 Separation

The forward dcut-constraints (10.10) can be separated in polynomial time via the
traditional separation scheme based on maximum flow computations: after obtain-

123

124 CHAPTER 11. BRANCH-AND-CUT

ing some LP relaxation for our partial ILP, we compute the maximum flow from r
to each v ∈ R in Ḡ using the arc values of the current solution as arc capacities.
If the resulting value is less than 1 (or yv, in case of 2RPCSN), we use front, back,
and nested cuts (cf. Section 6.3) to extract one or more of the induced minimum
r, v-cuts, and add the corresponding constraints to our (I)LP model. The backward
dcut-constraints (10.11) can be separated analogously.

If there are no violated constraints of type (10.10) nor (10.11), we solve the
separation problem for the constraints of type (10.12) in a similar way: for each
node v ∈ R2 and for each node w ∈ V , w 6= v we compute maximum flows in Ḡw
from r to v and from v to r. If the sum of these flows is less than 1 (or yv, for
2RPCSN), we add the corresponding inequalities.

Furthermore, to speed up the separation of node-disjointness constraints, we
use the following idea: consider an integer solution where the constraints (10.10)
and (10.11) are satisfied, i.e., we have directed paths (r → v) and (v → r) for
any v ∈ R2. If we assume that these paths have a common node w, then there
are often at least two incoming and two outgoing edges at w. Therefore, when
separating constraints (10.12), we first try nodes w ∈ V with x̄(δ−(w)) > 1 and
x̄(δ+(w)) > 1 in our fractional solution. Finally, it turns out to be beneficial to
select the cuts containing the smallest number of arcs among all violated cuts of
type (10.10), (10.11) or (10.12). In fact, this simple property is crucial for solving
large graphs efficiently in practice.

11.3 Upper Bounds

In the following, we present a general heuristic for our {0,1,2}-SND problems. We
then show how to use a fractional solution of the LP relaxation to obtain an LP-
based heuristic. This heuristic can then be used in our branch-and-cut framework
in order to obtain upper bounds for the optimal solution.

11.3.1 Initial Heuristic

Let (G,R = R1∪̇R2, r, c) be an instance of a {0,1,2}-SND problem with node-
connectivity, i.e., 2(PC)NCON or 2(PC)RSN. The first step of our heuristic is to
compute a subgraph G that is feasible for the given problem. The second step is
to remove redundant edges, i.e., edges whose removal does not violate the given
connectivity requirements and descreases the overall solution cost.

Construct a Feasible Solution. First we compute a Steiner tree T in G con-
necting the set R, using the traditional Steiner tree heuristic of Mehlhorn [Meh88].
In order to assure the required 2-node-connectivity of R2 nodes, we iteratively ex-
tend T : Let G′ = (V ′ ⊆ V,E′ ⊆ V) with T ⊆ G′ be our current solution and
B ⊆ V ′ the set of nodes in G′ that are already biconnected with r. Initially, we
have G′ = T , B = {r} and set c(e) := 0 for all e ∈ E′. Consider a node v ∈ R2 \B
that is currently not biconnected correctly. Let Pv be the unique [r → v]-path in
T , b be the node in Pv ∩ B closest to v, and Pv(b) the subpath of Pv from v to b.
We then extend G′ by ensuring two node-disjoint [r → v]-paths as follows:

11.3. UPPER BOUNDS 125

(a)

a

b

c

d

r

(b)

Figure 11.1: Double circles represent R2 nodes, white circles correspond to R1, and
small circles to R0. The black node represents the root r. Bold edges belong to a
feasible Steiner tree. (a) If we delete all bold edges, there is no feasible path between
the R2 customer and r. (b) The nodes b and d are R2-leaves: if we biconnect b
with r, e.g. via the edge {r, b}, the node a is also biconnected.

1. We temporarily remove all inner nodes of Pv(b) from G. If b 6= r, b is also
temporarily deleted from G.

2. If we are dealing with the 2NCON problem: if B 6= {r} and b = r, we also
temporarily remove r from G.

3. We use Dijkstra’s algorithm to find a shortest path P (v,B) between v and
the component B in G.

4. We add P (v,B) to G′, set the corresponding edge-weights to zero, and up-
date B.

Note that step 2 of the above procedure constitutes the main and only difference
between a heuristic for the 2(PC)NCON problem and the one for the 2R(PC)SN
problem. It ensures that the current 2NCON solution always contains only one
2-node-connected component.

By the above operations, all nodes of Pv also become 2-connected. Hence, we
have to perform these steps only for R2-leaves, i.e., R2 nodes that do not have
any further R2 customers in their subtrees of T , see Figure 11.1(b). In order to
save computation time, this set can be efficiently updated in step 4. The quality
of the obtained solution may strongly depend on the order in which the R2-leaves
are processed in our algorithm. In order to achieve better solutions, this set can
be sorted according to the number of R2 nodes or/and the number of edges on the
path P (v,B).

Observe that even if the given problem instance is feasible, it may happen that
our algorithm does not find any feasible solution. The removal of some nodes in
step 1 may disconnect the current solution subgraph such that no shortest path can
be found in step 3, cf. Figure 11.1(a) for an example. However, our experiments show
that for the tested instances this happens quite rarely, allowing us to successfully
use this heuristic within our branch-and-cut framework.

Shrinking. In general, G′ can be further improved by local optimizations. We
know that G′ consists of one or more non-trivial 2-connected components, which

126 CHAPTER 11. BRANCH-AND-CUT

have only the root node in common. All other components of the graph form trees
that are attached to some 2-connected component.

For every 2-connected component B of G′ we compute its core graph B̃, where
every line with inner nodes v ∈ V \ (R2 ∪ r) is replaced by a single edge. Let Pẽ
denote the path in G′ corresponding to an edge ẽ of B̃.

In the next step, we look for the redundant edges in B̃, i.e., edges that can be
removed without destroying its biconnectivity. We thereby consider its edges in
decreasing order of their corresponding paths’ costs.

2NCON and 2RSN. Consider the non-prize-collecting problem variants. An edge
ẽ can be removed from B̃ if all connectivity requirements are still satisfied for
B̃− e. If Pẽ does not contain any inner R1 node, we remove it completely from G′.
Otherwise, as these R1 nodes have to be in part of the solution, we remove only
a subpath of maximum cost where all inner nodes are from R0. Clearly, such a
subpath can be easily computed in a linear time.

Prize-collecting problem variants. When not all customer nodes have to be included
into the final solution, we can apply the following local improvement steps:

1. As described above, the solution subgraph may contain trees that are attached
to some 2-connected component. For each such tree, using the attachment
node as its root, we can solve the prize-collecting tree problem (PCST) in order
to decide which R1 are profitable enough to be contained in our solution. As
described in [Wol98], the rooted PCST problem can be solved in linear time,
when applied to trees. For the next step, we temporarily remove these trees
from G and consider the attachment nodes to be R1 customers with the
corresponding prizes of their subtrees added to their original prize.

2. Let B̃ be defined as above, ẽ a removable edge in B̃ (in the non-prize-collecting
setting), and Pẽ the corresponding path in B̃. If Pẽ contains no R1 node, we
can easily delete Pẽ also in the prize-collecting setting. Otherwise we have
to decide whether it is worth to include such nodes into the solution and if
this is the case, which edges of Pẽ are superfluous for the 1-connectedness of
these. More formally, let Pẽ = [v1 → vn] be a line in B̃ with inner nodes
v2, . . . , vn−1, some of which are R1 nodes. We have to determine the nodes
va and vb, 1 ≤ a < b ≤ n, such that removing [va → vb] maximizes the overall
profit of connecting the remaining (not necessarily all) R1 nodes. Algorithm 1
gives a procedure to determine this subpath in O(|Pẽ|) time: In the first sweep,
we compute the profit of the (forward) path [v1 → vi] for each node vi ∈ R1

of Pẽ. In the second sweep, we not only compute the profit of the (backward)
path [vn → vi] for each vi ∈ R1, but also determine a j, i < j ≤ n, such that
the sum of the profits of [v0 → vi] and [vj → vn] is maximized. By keeping
the most profitable pair i, j we identify optimal va and vb.

Complexity. We can construct the initial Steiner tree T in O(|E| + |V | log |V |)
time [Meh88]. We then have O(|R2|) many path addition steps. We can easily find
and sort all R2 leaves in O(|V |) time using, e.g., bucket sort. For each such step,

11.3. UPPER BOUNDS 127

Algorithm 1 Optimal pruning of a line contaning R1 nodes for the prize-collecting
problem variants.

1: fsum := 0 . running sum of profit for [v1 → vi]
2: fcost[i] := 0∀1 ≤ i ≤ n . store profit for [v1 → vi]
3: for all i = 2, . . . , n− 1 do
4: fsum := fsum− c({vi−1, vi})
5: if vi ∈ R1 then
6: fsum := fsum + p(vi)
7: fcost[i] := fsum
8: end if
9: end for

10: bsum := 0 . running sum of profit for [vn → vi]
11: bcost := 0 . current profit for [vn → vj] over all j > i
12: overall := 0 . current (and final) overall profit
13: va := v1, vb := vn, vj := vn
14: for all i = n− 1, . . . , 1 do
15: bsum := bsum− c({vi, vi+1})
16: if vi /∈ R0 then
17: if fcost[i] + bcost > overall then
18: overall := fcost[i] + bcost
19: va := vi
20: vb := vj
21: end if
22: bsum := bsum + p(vi)
23: if bsum > bcost then
24: bcost := bsum
25: vj := vi
26: end if
27: end if
28: end for

Dijstkra’s O(|E|+ |V | log |V |) algorithm dominates the other substeps (temporary
removing of tree edges, updating of B and list of R2 leaves) that are linear in |V |.
Hence, constructing an initial solution requires O(|R2|(|E|+ |V | log |V |)) time.

Observe that decomposing G′ in its biconnected components requires O(|E|)
time and that the biconnected components and attached trees are pairwise edge-
disjoint. Optimally shrinking an attached tree requires only linear time in its num-
ber of edges. Hence, optimizing all these trees takes O(|E|) time. For any bicon-
nected component B with q edges, we can compute its core graph B̃ in O(q) time
and then sort its edges in O(q log q) time. For each edge ẽ of B̃ we test whether
its removal leaves a biconnected graph (O(q)) and optimally reduce Pẽ (O(|Pẽ|)).
Since all these paths are disjoint, pruning any biconnected component takes O(q2)
time. Hence, the overall worst case for the shrinking step arises when there is a
biconnected component with O(|E|) edges.

The running time of our heuristic is hence dominated by the shrinking procedure

128 CHAPTER 11. BRANCH-AND-CUT

and overall takes O(|E|2) time.

11.3.2 LP-based Heuristic

During the branch-and-cut computation we are given a sequence of fractional solu-
tions (x̄, ȳ) (or only x̄) of LP relaxations that are defined on the bidirected graph
Ḡ = (V,A). We can use these values as hints in order to find better upper bounds.

We obtain our LP-based heuristic by applying our initial heuristic to an instance
(G,C, r, w) with C and w defined as follows: for the 2RSN and 2NCON problems
we set C := R′. In the case we are dealing with their prize-collecting variants, we
use the ȳ-values of the current LP relaxation in order to determine the set C as it
was done by Ljubic [Lju04]. In our context, we tested the following strategies:

• A node v is included in C with probability ȳv.

• A node v is included in C if ȳ ≥ 0.5.

For each edge {i, j} ∈ E we used the following strategies to define the edge cost
function w:

W1 w({i, j}) = 1−max{x̄ij , x̄ji}

W2 w({i, j}) = (1−max{x̄ij , x̄ji}) · c({i, j})

Overall, our algorithm computes (if successful) a feasible undirected solution.
Its solution value can be used an upper bound in our branch-and-cut framework.
If, for some reason, we need a corresponding oriented solution, we can use our
orientation procedure (cf. Definition 10.6) or any s, t-numbering algorithm w.r.t.
any chosen arc incident to r.

Chapter 12

Experiments

We implemented our DCut based branch-and-cut (DC) and a DFlow based
branch-and-bound (DF) algorithm using CPLEX 9.0’s branch-and-bound frame-
work. Both implementations are able to solve 2ECON, 2NCON, 2RSN and their
prize-collecting variants. The additionally necessary separation routines for DC are
implemented in C++ using LEDA 5.1.1 and the efficient maximum flow algorithm
of [CG97]. All tests were performed on an Intel Xeon 5140 2.33Ghz CPU in 32
bit mode. Each process is restricted to a single core, 2 GB RAM, and 2 hours
computation time per problem instance.

Our computational study concentrates on the instances of the {0,1,2}-SND prob-
lems with node-connectivity requirements for which the directed formulations are
stronger from the polyhedral point of view, cf. Corollary 10.16. E.g., we do not
consider instances for 2R(PC)SN problems with R1 = ∅ or 2NCON problems on
complete graphs with Euclidean costs with R1 = ∅. Our goal is to experimentally
confirm the strength of our orientation-based formulations for node-connectivity,
and show its general applicability in practice.

In Section 12.1 we suggest a benchmark library TSNDLib that can also be used
for further research on {0,1,2}-SND problems. In Section 12.2 we experiment with
different parameter settings for the DC algorithm using a representative subset
of the former benchmark library. The performance of DC is then analyzed and
compared to the performance of DF, cf. Sections 12.3 and 12.4. For the 2RPCSN
problem we use a superset of the instances used in [WRP+07, WRP+06]; we can
experimentally compare our algorithms to those based on undirected formulations
given in those publications.

12.1 Benchmark Instances: TSNDLib

In general, until now only few computational results for {0,1,2}-SND problems
with node-connectivity requirements were published in the literature and there is
no common benchmark set of instances, cf. Section 9.5. Hence, one of our additional
aims was to create such a benchmark library.1 We therefore collected the available

1A known library of test instances SNDLib [OPTW07] provides instances for survivable capac-
itated network design problems, i.e., problems where the aim is not only to topologically design

129

130 CHAPTER 12. EXPERIMENTS

test instances used by various authors for different problem settings and included
them—together with several new instances—in our TSNDLib (Topological Surviv-
able Network Design Library) [TSN08]. On the cited web page, one can also find
information on the computational results conducted on each of the benchmark sets.
In the following, we briefly describe these instances and discuss their usefulness for
our computational study.

Most real-world applications of {0,1,2}-SND problems seem to be based on
rather sparse graphs [Bac05, Sto92]. For the 2NCON problem, Stoer [Sto92] used
a set of sparse real-world instances with up to 116 nodes. Unfortunately, this data
is not available anymore2. On the other hand, our results indicate that such small
and sparse networks are usually solved within less than a second.

For the 2R(PC)SN problems, Bachhiesl [Bac05] proposed the following three
different benchmark sets that have also been used in [WRP+06, WRP+07, LR08,
LRP09]. These instances can be used not only for the 2R(PC)SN but also for the
2NCON problem, interpreting the given root node as an R2 customer. Some of
these instances are infeasible for 2NCON as the underlying graph does not allow
two node-disjoint paths between certain customers. Hence, for 2NCON, we report
only on the feasible instances.

ClgS and ClgM. These instances use the real-world access net data of the city
district Cologne-Ossendorf. For our experiments we consider the small (ClgS)
and medium (ClgM) sized instance sets. Thereby, each set contains 25 in-
stances. The underlying graphs have 190 nodes and 377 edges, and 1757
nodes and 3877 edges, respectively. The instances differ in the choice of cus-
tomer nodes, and have 3–6 R1, and 2–3 R2 customers.

Grid. This set contains artificial instances based on grid graphs with 100, 400,
900,. . . , 4900 nodes. For each graph size there are 2×15 instances, using two
different cost functions, respectively. They differ in their choice of the 5–13
R1 and 3–8 R2 customers, respectively.

PCSTLib+. The PCSTLib benchmark [JMP00] for the prize-collecting Steiner
tree problem was used in several studies, e.g., [JMP00, LWP+06, LR03], and
contains random graphs divided into two groups K and P, where 15%–27%
and 34%–50% of the nodes are (R1) customers, respectively. Both classes
are constructed such that the resulting graphs would have roughly constant
expected average degree and (average non-zero prize)/(average edge cost) ra-
tios. The average degree is roughly 6 for P and 7–8 for K instances. Beyond
this, the graphs of K are designed to be similar to street map layouts, those
of P do not have any specific structure. More details on the corresponding
instances can be found in [JMP00]. For the {0,1,2}-SND problems, [Bac05]
generated PCSTLib+ by considering the underlying graphs with 100, 200, and
400 nodes in each group and modifying them such that roughly 1/3 of the
customer nodes are selected to be in R2.

a network, but demand routing and capacity issues have to be considered. Consequently, those
graphs are usually smaller than the graphs we want to consider for {0,1,2}-SND problems.

2Personal communication.

12.2. TUNING OF DC 131

Due to the diversity of these instances and the partial real-world aspect, we
take them as a basis for our computational study. As the original Cologne and
Grid instances have rather few customers—which seems unusual in practice—we
also generated modified instances:

ClgS+. These are the ClgS instances, selecting 20% (10 % R1 and 10% R2) of the
nodes as customers.

Grid+. These are the Grid instances, selecting 20% (10 % R1 and 10% R2) of the
nodes as customers.

Besides, Wagner [Wag07] proposed an additional artificial benchmark set:

T+. Considering the well-known TSPLib (see below), these instances are corre-
sponding Euclidean Delaunay triangulations on varying graph sizes where
25% (10%) of all nodes are R1 (R2) customers.

Even though most real-world applications seem to be based on rather sparse
graphs, other papers also consider dense and complete graphs [KMN04, Rag95,
GR02,MS89]. Thus, in order to test the general applicability of our algorithm and
to create a diverse benchmark library, we also use the following benchmark set:

TSPLIB+. This set contains complete graphs with Euclidean weights from the
TSPLIB benchmark library that was originally proposed for the traveling
salesman problem [TSP]. In the context of the 2CON problems, it was used
by Kerivin et al. [KMN04]. We generate instances with the following customer
distribution (%R1,%R2): (0,25), (0,50), (0,100), (10,10), (25,25), (25,75),
(50,50), (75,25). Recall that for 2NCON instances consisting of complete
graphs (G = V,E) with Euclidean edge-weights and ρv ∈ {0, 2} or ρv ∈ {2}
for all graph nodes v (used, e.g., in [KMN04]), a 2ECON model is sufficient
to generate 2NCON solutions. In this case, the (more compact) undirected
model is preferable from a theoretical point of view, cf. Corollary 10.16. Nev-
ertheless, we included such instances in our benchmark library in order to give
other researchers the possibility to test and compare the special purpose al-
gorithms for the corresponding problems. In this thesis, however, we present
computational results on instances with R1 6= ∅. Furthermore, as the set
TSPLIB+ is very unlikely in real-world scenarios, we test the performance of
our algorithm on these instances in a separate section.

12.2 Tuning of DC

We first want to investigate on the impact of different parameter settings on the run-
ning time of DC for 2NCON and 2RPCSN. We therefore use a subset of our bench-
mark instances that contains 2–3 instances of each type. To obtain an unskewed
comparison, we turned off all automatic cut-generation etc., usually performed by
CPLEX.

We first consider minimum cardinality cuts (mc-cuts), i.e., the cuts containing
the smallest number of arcs among all most violated cuts of type (10.10), (10.11)

132 CHAPTER 12. EXPERIMENTS

2NCON 2RPCSN
#o t(s) #o t(s)

|V | #i mc 0 mc 1 mc 0 mc 1 mc 0 mc 1 mc 0 mc 1

ClgS 190 3 3 3 0.31 0.06 3 3 0.21 0.06
ClgS+ 190 3 3 3 3.17 0.35 3 3 0.00 0.01
ClgM 1757 3 0 2 — 177.86 1 2 5252.89 152.72
ClgM+ 1757 2 0 0 — — 2 2 0.22 0.23
Grid 100 2 2 2 0.15 0.05 2 2 0.09 0.04

400 2 2 2 16.59 2.12 2 2 13.38 1.32
900 2 2 2 993.18 53.85 2 2 385.88 40.35
2500 2 2 2 1872.80 114.99 2 2 3370.47 163.98
4900 2 0 1 — 4973.29 0 1 — 2392.59

Grid+ 100 2 2 2 0.61 0.61 2 2 0.13 0.06
400 2 2 2 37.97 7.78 2 2 12.28 3.30
900 2 0 0 — — 1 1 1723.13 1746.38

T+ <200 2 2 2 4.78 2.57 2 2 5.03 3.02
200-400 5 4 5 77.28 17.03 5 5 34.94 14.30
>400 2 1 1 415.63 170.80 2 2 481.31 127.81

K 100 3 3 3 1.30 0.75 3 3 0.96 0.59
400 3 2 2 111.67 45.29 3 3 274.34 119.66

P 100 5 (4) 4 4 0.50 1.02 5 5 0.29 0.45
200 1 1 1 2.73 3.11 1 1 1.91 3.37
400 5 (1) 1 1 394.99 205.93 5 5 116.99 210.40

Table 12.1: Comparison of average running times of DC with (mc 1) and without
(mc 0) using mc-cuts within our separation routine for a representative subset of
instances. For each set we also give the number of tested instances (#i), indicating
the number of 2NCON feasible instances in brackets. #o denotes the number of
instances that could be solved to optimality within 2 hours. The times are averaged
over those instances that were solved by both algorithm variants (if both were
successful at least once).

or (10.12). Table 12.1 shows that separating mc-cuts, instead of just any identified
ones, is crucial for solving large graphs efficiently in practice. In fact, this speeds
up our algorithm on all instance sets except for the P instances. This speed-up is
particularly impressive for ClgM and large Grid instances. Based on these result,
we decide to use mc-cuts for all instances, except for the set P , for our further
experiments.

Further experiments on the set TSPLIB+, see Section 12.6, show that using mc-
cuts is only advantageous for the setting where R1 and R2 contain 10% of the graph
nodes each. For the other settings, i.e., when there are 50% or 100% customer nodes,
the use of mc-cuts significantly slows down the performance of DC, especially for
larger input graphs. As this finding is consistent to the results for the P instances
(which are also more dense and contain more customers) we deduce that the use of
mc-cuts is only beneficial for sparse graphs with a small percentage of customers.

We further compared the running times of DC, starting with different initial
ILPs. Thereby we considered the following settings:

I1. We start with the constraints (10.9) that ensure unique orientations of edges,

12.3. COMPARISON OF DFLOW AND DCUT 133

and the forward dcut-constraints (10.10) for |S| = 1, i.e.,

x(δ−(v)) ≥ yv ∀v ∈ R′.

I2. Additionally to the setting I1, we add the backward dcut-constraints (10.11)
for |S| = 1, i.e.,

x(δ+(v)) ≥ yv ∀v ∈ R′2.

I3. Additionally to the setting I2, we add the flow-preservation constraints (11.1).

In Table 12.2 we summarize the performance of the corresponding algorithmic
variants. For instances with a very small percentage of customers, using flow-
preservation constraints seem to be very intuitive, as their solutions usually contain
long paths between each pair of customers. Our results show that using the setting
I3, we can significantly reduce the running time not only for the latter instances,
but for nearly all benchmark sets. For TSPLIB+ instances (again see Section 12.6
for details) the performance difference between I2 and I3 is rather insignificant. In
fact, for R0 = ∅ the setting I2 and I3 naturally coincide. We use the setting I2 for
all TSPLIB+ instances, otherwise we always use I3.

We also experimented with primal heuristics developed in Section 11.3.2 within
our DC algorithm. In Table 12.3 we show the results of the following three algorithm
variants:

H0 We run DC without using any heuristic.

H1 We use our LP-based heuristic using the strategy W1 to define the edge costs,
cf. Section 11.3.2.

H2 We use our LP-based heuristic using the strategy W2 to define the edge costs,
cf. Section 11.3.2.

Intuitively, the use of a primal heuristic can be advantageous for instances with
a large gap between the value of the LP relaxation and the optimal solution, i.e.,
instances that require a large branch-and-bound tree. Our analysis of DC shows
that this is the case for the instances with a high number of customers. However,
it turns out that even in such cases, the running times of DC using the settings H1
or H2 are even higher than the running times for pure DC. Hence, we will always
use H0 in the following.

12.3 Comparison of DFlow and DCut

In this section, we compare the performance of DF and DC. Again, to obtain
an unskewed comparison, we turned off all automatic cut-generation etc., usually
performed by CPLEX. Furthermore, we use the parameter settings as described
in the above section. Our experiments show that DC outperforms DF in terms of
running time and success ratio on all instance sets and for all considered {0,1,2}-
SND problem variants.

134 CHAPTER 12. EXPERIMENTS

2N
C

O
N

2
R

P
C

S
N

#
o

t(
s)

#
o

t(
s)

|V
|

#
i

I1
I2

I3
I1

I2
I3

I1
I2

I3
I1

I2
I3

C
lg

S
19

0
3

3
3

3
0.

06
0
.0

5
0
.0

5
3

3
3

0
.0

6
0
.0

6
0
.0

5
C

lg
M

17
57

3
2

2
3

17
7.

86
1
7
1
.9

6
6
9
.6

8
2

2
3

9
6
.8

9
1
9
0
.1

4
7
1
.9

6
C

lg
M

+
17

57
2

0
0

0
—

—
—

2
2

2
0
.2

3
0
.2

3
0
.2

3
C

lg
S
+

19
0

3
3

3
3

0.
35

0
.3

3
0
.2

2
3

3
3

0
.0

1
0
.0

0
0
.0

1
G

ri
d

10
0

2
2

2
2

0.
05

0
.0

4
0
.0

4
2

2
2

0
.0

4
0
.0

3
0
.0

3
40

0
2

2
2

2
2.

12
2
.4

2
1
.8

2
2

2
2

1
.3

2
1
.4

0
1
.0

1
90

0
2

2
2

2
53

.8
5

2
9
.9

0
1
4
.4

4
2

2
2

4
0
.3

5
3
8
.4

5
1
7
.7

8
25

00
2

2
2

2
11

4.
99

1
0
4
.3

2
6
2
.5

2
2

2
2

1
6
3
.9

8
1
8
5
.7

5
9
6
.6

7
49

00
2

1
1

1
49

73
.2

9
3
2
8
8
.8

9
3
9
8
1
.7

9
1

1
1

2
3
9
2
.5

9
2
1
5
2
.2

6
1
6
5
8
.3

8
G

ri
d
+

10
0

2
2

2
2

0.
61

0
.5

1
0
.2

8
2

2
2

0
.0

6
0
.0

6
0
.0

5
40

0
2

2
2

2
7.

78
8
.1

0
5
.2

6
2

2
2

3
.3

0
3
.0

5
1
.9

2
90

0
2

0
0

0
—

—
—

1
1

2
1
7
4
6
.3

8
4
0
3
.9

4
3
7
8
.2

7
T

+
<

20
0

2
2

2
2

2.
57

0
.8

9
0
.8

2
2

2
2

3
.0

2
2
.1

9
1
.9

2
20

0–
40

0
5

5
5

5
48

2.
29

1
3
7
.1

7
8
7
.6

2
5

5
5

1
4
.3

0
2
1
.1

1
9
.6

1
>

40
0

2
1

1
1

17
0.

80
1
1
8
.4

4
1
5
0
.1

4
2

2
2

1
2
7
.8

1
8
3
.4

4
8
4
.1

4
K

10
0

3
3

3
3

0.
75

0
.6

8
0
.6

8
3

3
3

0
.5

9
0
.5

7
0
.4

5
40

0
3

2
3

2
45

.2
9

3
5
.0

7
3
2
.8

5
3

3
3

1
1
9
.6

6
8
4
.0

5
8
5
.3

4

P
10

0
5(

4)
4

4
4

0.
50

0
.4

3
0
.3

5
5

5
5

0
.2

9
0
.3

0
0
.1

9
20

0
1

1
1

1
2.

73
1
.9

9
1
.4

9
1

1
1

1
.9

1
1
.7

0
1
.1

3
40

0
5(

1)
1

1
1

39
4.

99
2
9
5
.5

5
5
1
.9

4
5

5
5

1
1
6
.9

9
5
7
0
.5

2
4
2
.7

0

Table 12.2: Comparison of average running times of DC with different settings for
the initial ILP. We used the mc-cuts for all instances, except for P.

12.3. COMPARISON OF DFLOW AND DCUT 135

2
N

C
O

N
2
R

P
C

S
N

#
o

t(
s)

#
o

t(
s)

|V
|

#
i

H
0

H
1

H
2

H
0

H
1

H
2

H
0

H
1

H
2

H
0

H
1

H
2

C
lg

S
19

0
3

3
3

3
0
.0

5
0
.0

6
0
.0

6
3

3
3

0
.0

5
0
.0

4
0
.0

5
C

lg
S
+

19
0

3
3

3
3

0
.2

2
0
.2

4
0
.2

3
3

3
3

0
.0

1
0
.0

1
0
.0

0
C

lg
M

17
57

3
3

2
2

6
9
.6

8
1
0
2
.7

2
1
1
0
.6

9
3

2
2

7
1
.9

6
1
1
9
.8

5
1
3
1
.9

1
C

lg
M

+
17

57
2

0
0

0
—

—
—

2
2

2
0
.2

3
0
.2

6
0
.2

6
G

ri
d

10
0

2
2

2
2

0
.0

4
0
.0

3
0
.0

4
2

2
2

0
.0

3
0
.0

3
0
.0

3
40

0
2

2
2

2
1
.8

2
1
.7

9
1
.7

3
2

2
2

1
.0

1
1
.0

7
1
.0

8
90

0
2

2
2

2
1
4
.4

4
2
2
.4

9
1
8
.9

6
2

2
2

1
7
.7

8
1
5
.8

5
1
5
.8

4
25

00
2

2
2

2
6
2
.5

2
1
1
4
.6

1
1
0
3
.1

8
2

2
2

9
6
.6

7
1
1
1
.9

5
1
1
1
.6

3
49

00
2

1
1

1
3
9
8
1
.7

9
3
2
6
6
.4

1
3
6
0
9
.3

5
1

1
1

1
6
5
8
.3

8
1
5
2
8
.0

8
1
9
7
3
.7

8
G

ri
d
+

10
0

2
2

2
2

0
.2

8
0
.3

3
0
.3

4
2

2
2

0
.0

5
0
.0

5
0
.0

5
40

0
2

2
2

2
5
.2

6
4
.7

6
4
.7

2
2

2
2

1
.9

2
2
.0

1
2
.0

4
90

0
2

0
0

0
2

2
2

9
6
1
.0

0
1
3
8
8
.1

8
1
2
4
3
.4

2
T

+
<

20
0

2
2

2
2

0
.8

2
0
.9

5
0
.8

9
2

2
2

1
.9

2
3
.7

2
3
.7

2
20

0–
40

0
5

5
5

5
8
7
.6

2
8
1
.9

6
8
0
.6

8
5

5
5

9
.6

1
2
1
.9

4
2
1
.9

0
>

40
0

2
1

1
1

1
5
0
.1

4
1
5
3
.5

7
1
2
3
.6

3
2

2
2

8
4
.1

4
9
4
7
.4

7
9
5
6
.6

5
K

10
0

3
3

3
3

0
.6

8
1
.4

2
1
.7

2
3

3
3

0
.4

5
2
.2

6
2
.7

8
40

0
3

2
2

2
3
2
.8

5
5
8
.1

8
7
2
.3

3
3

3
3

8
5
.3

4
2
8
6
.2

2
4
3
7
.6

7

P
10

0
5(

4)
4

4
4

0
.3

5
0
.4

1
0
.4

6
5

5
5

0
.1

9
0
.1

6
0
.1

7
20

0
1

1
1

1
1
.4

9
1
.4

3
1
.4

5
1

1
1

1
.1

3
0
.9

9
1
.0

2
40

0
5(

1)
1

1
1

5
1
.9

4
5
6
.6

1
5
8
.8

2
5

5
5

4
2
.7

0
5
8
.0

0
7
6
.4

0

Table 12.3: Comparison of average running times of DC with (and without) different
heuristics. We use the mc-cuts for all instances except for the set P, and the setting
I3 for the initial LP.

136 CHAPTER 12. EXPERIMENTS

ClgS ClgS+ Grid Grid+ K P
190 190 100 400 900 1600 100 100 100

2NCON
DC 0.06 0.44 0.10 1.54 17.73 86.15 0.13 0.69 0.35
DF 0.3 446.3 7.0 226.0 1505 (6209)* 22.4 19.9 1500

2RSN
DC 0.07 0.4 0.08 1.3 17.4 94.0 0.09 1.0 0.7
DF 0.4 154.5 6.4 240.2 1554 — 30 13.1 2194

2RPCSN
DC 0.06 0.01 0.08 1.4 12.7 74.6 0.06 0.35 0.18
DF 0.3 7.6 5.9 261.3 1778 — 8.6 19.1 1136

Table 12.4: Average CPU time in seconds for instance groups solved by both DC
and DF. K and P denote the groups of PCSTLib+. “*” DF solves only 67% of the
instances. None of the instances not in this table can be solved by DF within 2
hours.

ClgM Grid Grid+ K P
1757 2500 3600 4900 400 900 400 400

o/i 24/25 30/30 30/30 24/30 30/30 11/30 4/6 1/1
2NCON avg (777) 294 746 (2671) 37 (1267) (1466) 52

med (51) 144 458 (2051) 4 (297) (34) 52
o/i 24/25 30/30 30/30 23/30 30/30 5/30 3/6 1/1

2RSN avg 734 141 423 (2307) 31 (645) (53) 84
med (53) 109 480 (2156) 8.0 (652) (52) 84
o/i 24/25 30/30 30/30 26/30 30/30 26/30 11/11 1/1

2RPCSN avg (763) 129 518 (2459) 7.0 (742) 209 38.21
med (41) 131 458 (1913) 4 (376) 165 26

Table 12.5: Average and median running times for instance groups only solved by
DC. Times in brackets denote that not all instances are solved within 2 hours. “o/i”
gives the number of solved instances and the total number of instances, respectively.
None of the instances left of the double vertical line require branching, except for
one Grid instance with 3600 nodes and three Grid instances with 4900 nodes. For
PCSTLib+, we report only on feasible instances.

An overview on the average running times of DC and DF is given in Table 12.4.
We thereby only report on the instance groups which can—at least in part—be
solved to optimality by both DC and DF. Table 12.5 shows the results for the
other (larger) instance groups that can be solved only by DC. Note that, except for
2NCON on grids with 1600 nodes, all groups where either completely solvable by
DF, or DF solved none of its instances.

We observe that the runtime performance of DC is quite similar on the different
problem classes 2NCON, 2RSN and 2RPCSN. The same holds for DF. All instances
with less than 200 nodes are solved to optimality by DC in less than a second
on average. The only instance set where both algorithms perform comparably
well is ClgS, which is due to the fact that the underlying LPs of DFlow are
rather small due to the small number of customers, and the overhead of DC’s cut
separation routines is comparably expensive. Note that neither approach requires
any branching for ClgS and small Grid instances. Already a slight increase in the
number of customers is sufficient for DC to outperform DFLow, see, e.g., the results

12.3. COMPARISON OF DFLOW AND DCUT 137

0
,0

1

0
,1 1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

bayg29
bays29
dantzi…
att48
eil51

berlin52
st70

eil76
pr76
rat99

kroA100
kroB100
kroC100
kroD100
kroE100

rd100
eil101
lin105
pr107
gr120
pr124

bier127
ch130
pr136
pr144
ch150

kroA150
kroB150

pr152
u159

rat195
d198

kroA200
kroB200

ts225
tsp225
pr226
gil262
pr264
a280

pr299
lin318
rd400
fl417
pr439

pcb442
d493

att532
pa561
u574

rat575
p654
d657
u724

rat783
pr1002
u1060

time in sec.
2
R

S
N

2
R

P
C

S
N

2
N

C
O

N

Figure 12.1: Running time (in seconds) of DC for T+, comparing different problem
settings. Missing data points denote that the corresponding problem was not solved
to provable optimality within 2 hours.

138 CHAPTER 12. EXPERIMENTS

Figure 12.2: 2NCON for PCSTLib+. Time required (in seconds) to solve the
DFlow and DCut ILPs and their corresponding LP relaxations. Data points
are missing when the computation exceeded the 2 hours timeout limit.

for Grid instances of size 100. This effect is further amplified by larger underlying
graphs, as this results in an even larger increase of variables for DFlow. While the
cut approach is able to solve all Grid instances with up to 3600 nodes to optimality
within 1 hour, the largest instances which can be completely solved by DFlow in 2
hours contain 900 nodes. We see that, due to their high number of customers, DC
is highly advantageous even for the smallest graphs of PCSTLib+: for the P group
with 100 nodes, it is 2000–3000 times faster than DFlow.

For the T+ instances, the findings are consistent with the ones just reported, as
only DC was able to solve instances. Interestingly, DC solves all instances with up
to 1000 nodes within two hours in the context of 2RPCSN, while some of these in-
stances turn out to be more difficult for the 2RSN and 2NCON settings. Figure 12.1
shows the respective running times of DC for the different problem settings.

A further common measure to assess and compare ILP formulations is to look at
the lower bounds resulting from their LP relaxations, i.e., the solution at the root
node of the branch-and-bound tree (LPr). In our case, these values are identical as
the corresponding polytopes are equivalent, cf. Theorem 10.12.

DC also outperforms DF in terms of running times needed to solve the (equiva-
lent) LP relaxation. When DF is not able to solve the given instance to optimality
within 2 hours, it is due to a large size of the LP and the most part of the computa-
tion time is needed to solve the root relaxation. In contrast to this, when branching
is required, DC uses only a comparably small percentage of the total running time
to solve the root relaxation. For the Grid+ instances with 400 nodes, DF cannot

12.4. ANALYSIS OF DCUT PERFORMANCE 139

100 190 400 900
Grid+ K P ClgS+ Grid+ K* P Grid+**

tILP 0.13 0.69 0.35 0.44 37.3 1466 — 51.8 1267 —
tLP 0.11 0.64 0.18 0.30 8.1 24.6 18.9 14.5 82.2 —
gaplp 0.16 0.09 0.18 0.12 0.35 0.21 0.61 0.34 0.26 ***
#BB 0.9 2.2 14.3 1.3 47.2 557 864 114 27.1 —
r.br. 16.7 33.3 100 42.1 100 100 100 100 100 100

Table 12.6: Results for 2NCON computed via DC, when branching was required.
“*” and “**”: only 66.7% and 33.7% were solved, respectively. The left/right
column gives the statistics of the solved/unsolved instances after 2h. For the latter
we use an upper bound (found by DC without any primal heuristic) to estimate the
gap. The statistics corresponding to “***” can be found on page 139.

even solve the first LP relaxation within the given time bound. The DC algorithm,
on the other hand, requires only 37 seconds on average to solve an ILP, whereby
the corresponding LP relaxation is solved within 8 seconds. In Figure 12.2, we vi-
sualize these observations w.r.t. 2NCON and the PCSTLib+ instances. The results
for 2R(PC)SN are analogous.

12.4 Analysis of DCut Performance

As the performance of our DC algorithm is similar for different problem settings,
we only consider its performance for the most prominent 2NCON problem in the
following. We observe that the LP relaxation of our ILPs usually give strong lower
bounds. For many instances—i.p. all Grid and ClgS instances—the relaxation al-
ready gives an integral and thus optimal solution. In Table 12.6, we report on the
quality and time (tLP) of the solutions at the root node, i.e., the LP relaxation of

the full model. For each set we compute the average relative gaplp := (OPT−LPr)
OPT

in percent, whereby OPT denotes the optimal objective value of the ILP. Addi-
tionally, we give the average total runtime tILP, the average percentage of instances
that require branching (r.br.), and the average number of branch-and-bound nodes
(#BB). Note that, within 2 hours, DC solves 4/6 of the K instances with 400
nodes. However, DC is able to find an integral upper bound (UB) for all unsolved
instances, without the use of a heuristic. Hence, we also give an average relative
gap∗lp = (UB−LPr)

UB . We optimally solve 11 out of 30 Grid+ instances with 900 nodes
within 2 hours. The other 19 instances cannot be solved as we ran out of memory
after 2555 seconds on average. For 17 unsolved instances, DC manages to compute
the LP relaxation and for 5 instances also integral upper bounds are found. For the
latter instances, we can hence compute the above defined gap∗lp = 0.5%.

12.5 Directed vs. Undirected Models for 2RPCSN

For the 2RPCSN problem we compared our results for DF and DC with the
running times of the algorithms based on the undirected formulations published

140 CHAPTER 12. EXPERIMENTS

0

1

10

100

1000

10000
4

0
0

-I
1
-0

1
4

0
0

-I
1
-0

2
4

0
0

-I
1
-0

3
4

0
0

-I
1
-0

4
4

0
0

-I
1
-0

5
4

0
0

-I
1
-0

6
4

0
0

-I
1
-0

7
4

0
0

-I
1
-0

8
4

0
0

-I
1
-0

9
4

0
0

-I
1
-1

0
4

0
0

-I
1
-1

1
4

0
0
-I

1
-1

2
4

0
0
-I

1
-1

3
4

0
0

-I
1
-1

4
4

0
0

-I
1
-1

5
4

0
0

-I
2
-0

1
4

0
0

-I
2
-0

2
4

0
0

-I
2
-0

3
4

0
0

-I
2
-0

4
4

0
0

-I
2
-0

5
4

0
0

-I
2
-0

6
4

0
0

-I
2
-0

7
4

0
0

-I
2
-0

8
4

0
0

-I
2
-0

9
4

0
0

-I
2
-1

0
4

0
0

-I
2
-1

1
4

0
0

-I
2
-1

2
4

0
0

-I
2
-1

3
4

0
0

-I
2
-1

4
4

0
0

-I
2
-1

5

ti
m

e
in

 s
ec

.

UC UF DF DC

(a) Grid instances with 400 nodes

0,01

0,1

1

10

100

1000

10000

K
1

0
0

K
1

0
0

-1
K

1
0

0
-1

0
K

1
0

0
-2

K
1

0
0

-3
K

1
0

0
-4

K
1

0
0

-5
K

1
0

0
-6

K
1

0
0

-7
K

1
0

0
-8

K
1

0
0

-9
K

2
0

0
K

4
0

0
K

4
0

0
-1

K
4

0
0

-1
0

K
4

0
0

-2
K

4
0

0
-3

K
4

0
0

-4
K

4
0

0
-5

K
4

0
0

-6
K

4
0

0
-7

K
4

0
0

-8
K

4
0

0
-9

P
1

0
0

P
1

0
0

-1
P

1
0

0
-2

P
1

0
0

-3
P

1
0

0
-4

P
2

0
0

P
4

0
0

P
4

0
0

-1
P

4
0

0
-2

P
4

0
0

-3
P

4
0

0
-4

ti
m

e
in

 s
ec

.

UC

UF

DF

DC

(b) PCSTLib+ instances

Figure 12.3: Diagrams comparing UCut and UFlow approaches to our DCut
and DFlow formulations.

12.6. ANALYSIS OF DC ON TSPLIB+ 141

0,01

0,1

1

10

100

C
lg

S
-0

1

C
lg

S
-0

2

C
lg

S
-0

3

C
lg

S
-0

4

C
lg

S
-0

5

C
lg

S
-0

6

C
lg

S
-0

7

C
lg

S
-0

8

C
lg

S
-0

9

C
lg

S
-1

0

C
lg

S
-1

1

C
lg

S
-1

2

C
lg

S
-1

3

C
lg

S
-1

4

C
lg

S
-1

5

C
lg

S
-1

6

C
lg

S
-1

7

C
lg

S
-1

8

C
lg

S
-1

9

C
lg

S
-2

0

C
lg

S
-2

1

C
lg

S
-2

2

C
lg

S
-2

3

C
lg

S
-2

4

C
lg

S
-2

5

ti
m

e
in

 s
ec

.
UCut UFlow DFlow DCut

(c) ClgS instances

Figure 12.3: Continued.

in [WRP+06, WRP+07]. Note that although the latter algorithms were run on
a stronger Intel Xeon 3.6 GHz machine with the new version CPLEX 10.0.1 and
LEDA 5.1.1, DC clearly outperforms them on all tested instances, cf. Figure 12.3.
DC solves all Grid instances with up to 3600 nodes and most of the instances with
4900 nodes to provable optimality. For the previous approaches, the largest solvable
Grid instance has 400 nodes and the required running times are much longer, cf.
Figure 12.3(a). This is of particular interest, as one expects flow formulations to
perform quite well on instances with such a small percentage of customers.

12.6 Analysis of DC on TSPLIB+

Our main goal was to develop a fast exact algorithm able to solve large real-world
instances. As we mentioned before, the underlying graphs of such instances are
typically sparse. Nevertheless, we also tested the performance of DC for 2NCON
on complete graphs with different customer settings in order to evaluate the over-
all effectiveness of our algorithm. We therefore used TSPLIB+ instances, as such
similar instances were already used in the literature in the context of 2CON prob-
lems [KMN04,MS89]. Furthermore, random complete graphs were used in [Cho92,
GR02, CA95]. Since the previously used customer choices are not available to us,
we cannot fairly compare our results to other published results.3 Testing different

3We hence encourage others to use TSNDLib in the future, to avoid problems with random
instances without a published deterministic generator based on pseudo-random numbers.

142 CHAPTER 12. EXPERIMENTS

parameter settings on a small sample set of TSPLIB+ instances, we found out that
using mc-cuts never pays of, which is the main difference to the previously tested
sparse instances with a small number of customers. Furthermore, based on the
above test results, we decided to use the I2 setting for the choice of the initial LP
and not to use any primal heuristic within our algorithm.

Table 12.7 summarizes the results of DC on TSPLIB+ instances. We can observe
that the total running time increases with the overall ratio of customers. On the
other hand the ratio of customers being R2 customers does not clearly impact
the algorithm’s performance: all three instance types with 100% customers behave
similarly. Interestingly, we observe that the LP relaxations for the 100% customer
instances are typically obtained faster than for the (25%,25%) instances. Yet, the
weaker LP gap and the consequently larger branch-and-bound tree reverse this
potential advantage. Overall we note that even complete instances with many (or
all) nodes being customers can be solved consistently up to the size of 150 nodes.

Note that since our approach is designed for the {0,1,2}-SND problems, it can
also be used to solve the special cases where the vector connectivity requirements
ρ are restricted, cf. Section 9. Indeed, except for complete Euclidean problems,
our DCut formulation is the strongest known formulation also for the minimum 2-
node-connected Steiner network and minimum 2-node-connected spanning subgraph
problems. However, in these cases, it can be advantageous to use algorithms that
are tailored for the special problem structure.

12.6. ANALYSIS OF DC ON TSPLIB+ 143

(R
1
,R

2
)

(1
0,

10
)

(2
5
,2

5
)

(2
5
,7

5
)

(5
0
,5

0
)

(7
5
,2

5
)

in
st

,
|V
|

o
IL

P
L

P
g
lp

o
IL

P
L

P
g
lp

o
IL

P
L

P
g
lp

o
IL

P
L

P
g
lp

o
IL

P
L

P
g
lp

ei
l5

1
5

0
.5

2
0.

52
0.

00
5

0
.5

7
0
.3

5
0
.1

8
5

1
7
.9

4
0
.4

3
1
.0

0
5

0
.9

2
0
.4

5
0
.2

1
5

0
.2

9
0
.2

7
0
.0

3
st

70
5

3
.1

2
3.

12
0.

00
5

1
.7

3
1
.7

3
0
.0

0
5

8
.0

3
1
.7

0
0
.6

8
5

6
.8

7
2
.0

9
0
.5

0
5

4
.2

1
1
.8

8
0
.3

3
ei

l7
6

5
3
.8

0
3.

74
0.

04
5

1
2
.3

7
3
.4

6
0
.4

5
5

1
1
7
.8

7
4
.4

6
0
.4

7
5

3
7
.4

5
3
.2

4
0
.3

5
5

1
4
.7

6
2
.3

4
0
.2

1
p

r7
6

5
6
.0

6
5.

54
0.

07
5

2
4
.1

3
3
.2

9
0
.5

9
5

1
3
8
.0

2
2
.6

5
0
.9

7
5

1
1
8
.4

4
2
.4

4
0
.9

5
5

9
1
.8

0
1
.5

9
0
.8

1
ra

t9
9

5
3
3
.1

8
33

.1
8

0.
00

5
3
8
.1

6
1
1
.7

1
0
.4

0
5

5
5
.1

0
5
.0

0
0
.4

2
5

3
2
.9

6
6
.5

8
0
.2

5
5

1
7
.2

9
6
.5

3
0
.1

6
k
ro

A
10

0
5

1
8
.7

8
18

.7
8

0.
00

5
1
8
.2

7
1
6
.1

1
0
.0

4
5

1
4
3
.6

1
8
.6

3
0
.9

4
5

1
3
1
.1

9
7
.0

3
0
.6

6
4

1
2
.8

0
7
.6

1
0
.2

3
k
ro

B
10

0
5

3
6
.4

5
36

.4
5

0.
00

5
1
4
.6

7
1
2
.9

7
0
.0

5
5

2
4
0
.6

8
7
.2

9
0
.9

0
5

4
6
.0

3
7
.2

9
0
.5

8
5

2
0
.6

9
7
.8

4
0
.1

7
k
ro

C
10

0
5

2
1
.4

2
21

.4
2

0.
00

5
1
4
.5

4
1
2
.0

4
0
.1

1
5

7
0
.5

4
6
.7

3
1
.0

5
5

4
7
.3

9
9
.0

7
0
.8

2
5

2
0
.7

5
7
.8

1
0
.4

3
k
ro

D
10

0
5

2
7
.3

5
27

.3
5

0.
00

5
1
5
.9

3
1
3
.1

5
0
.0

9
5

5
0
.6

8
8
.0

6
0
.5

5
5

4
6
.1

8
7
.3

2
0
.6

2
5

8
.9

7
6
.5

1
0
.1

3
k
ro

E
10

0
5

3
0
.7

5
30

.6
0

0.
01

5
1
0
.2

9
9
.5

8
0
.0

3
5

4
4
3
.4

3
8
.3

9
1
.0

1
5

9
5
.1

5
8
.9

1
0
.5

7
5

2
3
.4

1
8
.3

2
0
.2

9
rd

10
0

5
2
7
.6

3
26

.3
6

0.
01

5
1
0
1
.8

7
9
.3

5
0
.3

7
5

1
6
.8

2
7
.5

8
0
.3

3
5

6
8
.8

4
8
.0

6
0
.5

5
5

1
1
.3

4
6
.8

0
0
.0

8
li

n
10

5
5

6
3
.4

6
63

.4
6

0.
00

5
3
2
.8

3
1
6
.5

6
0
.2

2
5

1
0
.2

7
9
.1

7
0
.0

7
5

1
2
.2

2
9
.3

2
0
.1

2
5

1
2
.6

2
1
0
.6

1
0
.0

9
p

r1
07

5
3
2
.6

7
32

.6
7

0.
00

5
1
9
.6

4
1
9
.0

6
0
.0

2
5

1
1
.1

8
1
0
.5

4
0
.0

0
5

8
.0

5
8
.0

5
0
.0

0
5

5
.9

9
5
.9

9
0
.0

0
p

r1
24

5
1
7
6
.8

0
11

5.
66

0.
07

5
6
6
.0

3
5
0
.4

6
0
.1

0
5

1
0
0
.6

1
1
6
.2

8
1
.3

1
5

5
2
.2

2
1
8
.4

6
0
.9

6
5

3
8
.2

7
1
6
.7

0
0
.4

1
b

ie
r1

27
5

8
9
.6

1
85

.2
4

0.
06

5
1
5
7
.0

7
7
8
.4

6
0
.1

5
5

8
6
.9

1
3
3
.5

7
0
.3

6
5

2
1
1
.4

9
3
5
.1

9
0
.2

9
5

1
0
2
.3

3
2
9
.4

8
0
.1

3
ch

13
0

5
1
1
0
.2

4
10

7.
78

0.
02

4
8
0
.9

6
5
2
.7

3
0
.1

0
5

2
6
1
.2

8
3
5
.8

7
0
.3

7
5

3
1
5
.6

4
3
2
.2

3
0
.2

6
5

5
0
.1

2
2
8
.4

4
0
.1

6
p

r1
44

5
1
6
5
.7

5
16

5.
75

0.
00

4
8
1
.1

4
8
5
.5

7
0
.0

0
5

2
9
2
.9

4
4
4
.6

5
0
.5

8
5

8
5
4
.6

1
4
8
.1

8
0
.8

4
5

3
4
7
.0

2
4
1
.5

7
0
.5

6
ch

15
0

5
1
3
4
.7

1
13

4.
71

0.
00

5
9
6
8
.7

4
7
6
.0

0
0
.2

6
2

2
1
6
8
.7

4
5
9
.2

5
0
.3

5
1

9
9
.3

6
4
6
.6

6
0
.2

6
5

1
0
4
3
.6

9
5
5
.0

7
0
.5

7
p

r1
52

3
7
6
0
.7

9
52

0.
79

0.
10

0
—

2
0
7
.4

9
—

4
8
9
3
.0

8
4
7
.7

0
0
.6

1
5

1
4
6
6
.5

3
5
3
.6

1
0
.6

5
5

1
5
6
0
.6

9
6
9
.0

7
0
.6

6
ra

t1
95

4
7
0
6
.6

9
58

9.
33

0.
07

2
2
3
7
.6

1
2
2
0
.5

3
0
.1

4
0

—
1
5
1
.7

1
—

0
—

1
7
1
.2

1
—

4
1
2
3
1
.2

9
1
6
3
.1

4
0
.1

3
d

19
8

5
3
2
5
1
.5

2
32

00
.6

5
0.

02
4

1
7
9
9
.8

7
1
1
3
2
.9

2
0
.0

7
2

1
5
2
8
.0

1
1
9
8
.9

8
0
.0

9
4

1
2
4
7
.4

3
2
1
1
.8

5
0
.1

8
5

7
0
7
.1

1
2
4
3
.5

2
0
.1

2
k
ro

B
20

0
4

2
0
9
1
.7

3
16

76
.5

0
0.

09
1

4
5
2
.1

1
4
7
5
.8

3
0
.0

0
0

—
1
9
0
.4

1
—

5
8
7
7
.6

2
2
2
7
.9

1
0
.2

8
4

5
4
5
.3

3
1
9
3
.1

0
0
.1

7
ts

22
5

3
1
0
0
1
.3

3
99

8.
46

0.
00

1
2
1
9
8
.2

0
4
3
2
.6

0
0
.1

3
0

—
1
6
3
.8

9
—

0
—

3
2
2
.6

8
—

0
—

3
3
8
.0

0
—

p
r2

64
5

4
6
3
6
.0

8
46

36
.0

8
0.

00
1

1
9
0
4
.7

2
1
8
2
5
.9

1
0
.0

4
3

4
8
5
6
.0

5
4
8
4
.8

3
0
.3

1
5

2
1
2
5
.8

6
4
6
8
.3

8
0
.2

1
5

6
8
1
.0

1
5
8
5
.5

6
0
.0

6
p

r2
99

4
5
3
6
7
.2

6
52

39
.6

7
0.

00
0

3
2
0
0
.0

1
—

0
—

9
4
4
.5

6
—

0
—

1
3
0
2
.1

3
—

0
—

1
2
5
9
.6

8
—

li
n

31
8

2
5
9
6
6
.7

1
67

07
.4

6
0.

00
1

5
9
1
7
.8

1
5
6
1
9
.8

0
0
.0

1
0

—
2
0
4
9
.4

7
—

0
—

2
3
6
0
.4

1
—

0
—

2
4
6
1
.5

9
—

u
57

4
0

—
72

37
.0

5
—

0
—

7
2
3
4
.4

6
—

0
—

7
2
9
2
.7

7
—

0
—

7
2
9
4
.5

4
—

0
—

7
2
7
1
.8

6
—

T
h

e
n
u
m

b
er

in
th

e
in

st
an

ce
n

am
es

gi
ve

th
e

n
u

m
b

er
o
f

n
o
d

es
.

“
o
”

d
en

o
te

s
th

e
n
u

m
b

er
o
f

o
p

ti
m

a
ll

y
so

lv
ed

in
st

a
n

ce
s

o
u

t
o
f

5
(p

er
in

st
an

ce
n

am
e

an
d

cu
st

om
er

se
tt

in
g)

.
L

P
ti

m
es

a
re

av
er

a
g
ed

ov
er

a
ll

5
in

st
a
n

ce
s.

Table 12.7: Results for the TSPLIB+ with many customers.

144 CHAPTER 12. EXPERIMENTS

Part IV

Epilogue

145

Chapter 13

Conclusions and Outlook

In this thesis we designed exact algorithms for topological network design prob-
lems such as the k-cardinality tree and {0,1,2}-survivable network design problems.
Therefore, we derived new strong ILP models based on orientation properties of
feasible solutions and used them within a branch-and-cut scheme. Our ILP mod-
els are the strongest known models for the considered problems: our extensive
polyhedral analysis shows that, whereas there exists an undirected formulation for
the k-cardinality tree problem which is equivalently strong (but has some disad-
vantages in practice), our model for the {0,1,2}-survivable network problems with
node-disjointness is strictly stronger than all previously known models. Thus, we
answered the long open question whether there exists an orientation property of
2-node-connected graphs that can be used to derive stronger ILPs for the 2NCON
problem.

Our computational studies show that our algorithms solve almost all known
instances to provable optimality within reasonable time bounds. For EKCT it op-
timally solves all instances of KCTLIB and is even faster than the state-of-the-art
metaheuristics for instances with up to 1000 nodes. The results of this thesis show
that recent advances in computational power and ILP solvers, if used in conjunc-
tion with strong ILP formulations, allow exact algorithms to become feasible or
even preferable alternatives to other, e.g., metaheuristic, approaches. Our results
can therefore be seen as an example that we should not easily give up on exact
algorithms simply because the problem is NP-hard or because old approaches did
not show their practical applicability.

For most of the known instances of KCT and {0,1,2}-SNDP problems, our
algorithms are the first to compute provably optimal solutions. Hence, using these
optimal solutions it is now possible to better evaluate current and future heuristic
methods and lower bounding procedures than before.

Further constraints. For the KCT problem, we found out that grid instances
with small cardinalities k are generally harder to solve than other instances. Fur-
thermore, node-weighted instances are harder than their edge-weighted counterparts
which seems to be be due to the symmetries in the resulting KCA instance as all
arcs with the same target node have identical costs. It would be worthwhile to in-
vestigate whether this structure can be exploited via additional constraints, further

147

148 CHAPTER 13. CONCLUSIONS AND OUTLOOK

strengthening the Kca′-DCut formulation.

Our results for KCT furthermore show that usually most of the CPU time is
spent for computing the LP relaxation and that the relative gap between this lower
bound and the optimum solution is quite small. However, this is not the case for
small values of k. On the other hand, for such instances the solution is significantly
smaller than the original graph. It may be that special preprocessing routines or
strengthening inequalities can be designed to identify parts of the graph that can
be safely excluded from the search space as they cannot be contained in the optimal
solution.

In contrast to this, for the 2NCON problem we can observe that the LP relax-
ations are solved quickly compared to the time needed to solve the corresponding
ILP. Hence, many branch-and-bounds nodes are required to solve the instances to
optimality. At this point, our algorithm may be improved by identifying further
classes of strengthening inequalities and/or improving the branching strategy.

Orientations for further problems. For a special variant of a 2NCON problem
where there exists an edge {s, t} that has to be contained in every optimal solution,
we can use the s, t-orientations in order to derive an even stronger ILP formulation:
We can transform such a problem into a problem of finding feasible orientations,
w.r.t. two roots s and t, requiring the arc (s, t) to be in the solution, all nodes v of
the solution network to have a (s, v)-path, and all nodes v ∈ R2 two node-disjoint
directed paths (s, v) and (v, t). Furthermore, we can require resulting orientations to
be cycle-free by adding additional constraints, thus strengthening the formulation.

Furthermore, our orientation-based approaches can also be applied to other
network design problems where feasible solutions are trees, 2-connected, or mixture
of both. For example it could be applied to problems with degree-constraints or
group-generalizations of Steiner problems (given multiple groups of nodes, pick one
representative per group and connect these representatives).

Another promising field where our research can be successively reused is summa-
rized as connected facility location. Thereby, we search for a cost-minimal solution
where we have to select facilities, assign customers to these facilities, and subse-
quently interconnect the facilities. The latter interconnection may be required not
only to be a tree, but to satisfy further survivability constraints. Arborescence based
CFL models have recently been presented by my co-author [LG10,GL11]. Consid-
ering certain 2-node-connectivity requirements, we presented and investigated the
2-interconnected facility location problem (2iCFL) both from the complexity the-
ory and the mathematical programming point of view [CKM09]. For the latter we
applied our orientation theorems and obtained a practically worthwhile algorithm.

Approximation algorithms. Both the k-cardinality tree and {0,1,2}-survivable
network design problems have been subject of extensive research in the field of
approximation algorithms. In contrast to other (meta-)heuristic algorithms, such
approximations have only been considered in a theoretical setting and, to the best
of our knowledge, there are no published implementations or studies that would
evaluate their practical performance and applicability. We hope that at some point
the research in this interesting field will be taken into practice to experimentally

149

evaluate its advantages and drawbacks. For the {0,1,2}-SND problem, this thesis
suggests TSNDLib, a collection of benchmark instances, that can be used for this
purpose.

For both considered problem classes, the best known approximation algorithms
are based on undirected ILP formulations that are based on undirected graphs.
The best known approximation factor for the related Steiner tree problem was
given recently in [BGRS10]. In contrast to the previously known approximations,
it uses a directed ILP formulation for the first time. It would be worthwhile to see,
whether our orientation-based ILPs can be used to derive better approximation
factors for KCT or {0,1,2}-SND problems.

150 CHAPTER 13. CONCLUSIONS AND OUTLOOK

Bibliography

[ABV95] B. Awerbuch, Y. Azar A. Blum, and S. Vempala. Improved approx-
imation guarantees for minimum-weight k-trees and prize-collecting
salesmen. In Proc. of STOC ’95, pages 277–283. ACM, 1995.

[ACPS93] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic
theory of graph reduction. Journal of the ACM, 40(5):1134–1164, 1993.

[ADNP99] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation
algorithm for finding an optimum 3-vertex-connected spanning sub-
graph. Journal of Algorithms, 32(1):21–30, 1999.

[AK00] S. Arora and G. Karakostas. A (2 + ε)-approximation algorithm for
the k-MST problem. In Proc. SODA ’00, pages 754–759. SIAM, 2000.

[Bac05] P. Bachhiesl. The OPT- and the SST-problems for real world access
network design – basic definitions and test instances. Working Re-
port NetQuest 01/2005, Carinthia Tech Institute, Klagenfurt, Austria,
2005.

[BB03] C. Blum and M. Blesa. KCTLIB – a library for the edge-weighted
k-cardinality tree problem. http://iridia.ulb.ac.be/~cblum/

kctlib/, 2003.

[BB05a] C. Blum and M. Blesa. Combining ant colony optimization with dy-
namic programming for solving the k-cardinality tree problem. In Proc.
IWANN’05, volume 3512 of LNCS. Springer, 2005.

[BB05b] C. Blum and M. J. Blesa. New metaheuristic approaches for the edge-
weighted k-cardinality tree problem. Computers & Operations Re-
search, 32:1355–1377, 2005.

[BBM90] D. Bienstock, E. F. Brickell, and C. L. Monma. On the structure of
minimum-weight k-connected spanning networks. SIAM Journal on
Discrete Mathematics, 3(3):320–329, 1990.

[BCV95] A. Blum, P. Chalasani, and S. Vempala. A constant-factor approxima-
tion for the k-MST problem in the plane. In Proc. STOC ’95, pages
294–302. ACM, 1995.

151

152 BIBLIOGRAPHY

[BE03] C. Blum and M. Ehrgott. Local search algorithms for the k-cardinality
tree problem. Discrete Applied Mathematics, 128(2–3):511–540, 2003.

[BGRS10] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An improved lp-
based approximation for steiner tree. In Proc. STOC ’10, pages 583–
592. ACM, 2010.

[BK04] F. Barahona and H. Kerivin. Separation of partition inequalities with
terminals. Discrete Optimization, 1(2):129–140, 2004.

[BKM08] M. Didi Biha, H. Kerivin, and A. R. Mahjoub. On the polytope of the
(1,2)-survivable network design problem. SIAM Journal on Discrete
Mathematics, 22(4):1640–1666, 2008.

[Blu06] C. Blum. A new hybrid evolutionary algorithm for the huge k-
cardinality tree problem. In Proc. GECCO’06, pages 515–522. ACM,
2006.

[Blu07] C. Blum. Revisiting dynamic programming for finding optimal sub-
trees in trees. European Journal of Operational Research, 177(1):102–
115, 2007.

[BLW87] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation
of optimal subgraphs of decomposable graphs. Journal of Algorithms,
8(2):216–235, 1987.

[BM96] M. Didi Biha and A. R. Mahjoub. k-edge connected polyhedra on
series-parallel graphs. Operations Research Letters, 19(2):71–78, 1996.

[BM97] M. Bäıou and A. R. Mahjoub. Steiner 2-edge connected subgraph
polytopes on series-parallel graphs. SIAM Journal on Discrete Math-
ematics, 10(3):505–514, 1997.

[BMM04] A. Balakrishnan, T. L. Magnanti, and P. Mirchandani. Connectivity–
splitting models for survivable network design. Networks, 43(1):10–27,
2004.

[Bra02] U. Brandes. Eager s, t-ordering. In Proc. ESA ’02, volume 2461 of
LNCS, pages 247–256. Springer, 2002.

[BRV96] A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation
algorithm for the k-MST problem. In Proc. STOC ’96, pages 442–448.
ACM, 1996.

[BS04] T. N. Bui and G. Sundarraj. Ant system for the k-cardinality tree
problem. In Proc. GECCO ’04, volume 3102 of LNCS, pages 36–47.
Springer, 2004.

[BUM06] J. Brimberg, D. Urošević, and N. Mladenović. Variable neighborhood
search for the vertex weighted k-cardinality tree problem. European
Journal of Operational Research, 171(1):74–84, 2006.

BIBLIOGRAPHY 153

[BX00] M. J. Blesa and F. Xhafa. A C++ Implementation of Tabu Search for
k-Cardinality Tree Problem based on Generic Programming and Com-
ponent Reuse. In c/o tranSIT GmbH, editor, Net.ObjectDsays 2000
Tagungsband, pages 648–652, Erfurt, Germany, 2000. Net.ObjectDays-
Forum.

[CA95] L. W. Clarke and G. Anandalingam. A bootstrap heuristic for de-
signing minimum cost survivable networks. Computers & Operations
Research, 22(9):921–934, 1995.

[CCK08] T. Chakraborty, J. Chuzhoy, and S. Khanna. Network design for vertex
connectivity. In Proc. STOC ’08, pages 167–176. ACM, 2008.

[CF70] W. Chou and H. Frank. Survivable communication networks and the
terminal capacity matrix. IEEE Transactions on Circuit Theory, CT-
17:183–192, 1970.

[CG97] B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel
method for the maximum flow problem. Algorithmica, 19:390–410,
1997.

[Chi08] M. Chimani. Computing Crossing Numbers. PhD thesis, TU Dort-
mund, 2008.

[Cho92] S. Chopra. Polyhedra of the equivalent subgraph problem and some
edge connectivity problems. SIAM Journal on Discrete Mathematics,
5(3):321–337, 1992.

[CK94] S. Y. Cheung and A. Kumar. Efficient quorumcast routing algorithms.
In Proc. INFOCOM ’94, pages 840–847. IEEE Society Press, 1994.

[CK09] J. Chuzhoy and S. Khanna. An o(k3logn)-approximation algorithm
for vertex-connectivity survivable network design. In Proc. FOCS ’09,
pages 437–441. IEEE Computer Society, 2009.

[CKLM08a] M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Obtaining optimal
k-cardinality trees fast. In Proc. ALENEX’08, pages 27–36. SIAM,
2008.

[CKLM08b] M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Strong formula-
tions for 2-node-connected Steiner network problems. In Proc. COCOA
’08), volume 5165 of LNCS, pages 190–200. Springer, 2008.

[CKLM09] M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Obtaining optimal
k-cardinality trees fast. Journal of Experimental Algorithmics, 14:2.5–
2.23, 2009.

[CKLM10] M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Orientation-
based models for 0,1,2-survivable network design: theory and practice.
Mathematical Programming, 124:413–439, 2010.

154 BIBLIOGRAPHY

[CKM07] M. Chimani, M. Kandyba, and P. Mutzel. A new ILP formulation for
2-root-connected prize-collecting Steiner networks. In Proc. ESA ’07,
volume 4698 of LNCS, pages 681–692. Springer, 2007.

[CKM09] M. Chimani, M. Kandyba, and M. Martens. 2-interconnected facil-
ity location: Specifications, complexity results, and exact solutions.
Technical report TR09–1–008, Chair XI Algorithm Engineering, TU
Dortmund, 2009. submitted to journal.

[CKP07] M. Chimani, M. Kandyba, and M. Preuss. Hybrid numerical optimiza-
tion for combinatorial network problems. In Proc. HM ’07, volume
4771 of LNCS, pages 185–200. Springer, 2007.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2001.

[CRR03] H. Cancela, F. Robledo, and G. Rubino. Network design with node
connectivity constraints. In Proc. LANC ’03, pages 13–20. ACM, 2003.

[CRRW93] C. R. Coullard, A. Rais, R. L. Rardin, and D. K. Wagner. Linear-time
algorithm for the 2-connected Steiner subgraph problem on special
classes of graphs. Networks, 23(3):195–206, 1993.

[CRW01] F. A. Chudak, T. Roughgarden, and D. P. Williamson. Approximate k-
MSTs and k-Steiner trees via the primal-dual method and Lagrangean
relaxation. In Proc. IPCO ’01, volume 2081 of LNCS, pages 60–70.
Springer, 2001.

[CS89] G-R. Cai and Y-G. Sun. The minimum augmentation of any graph to
a k-edge-connected graph. Networks, 19:151–172, 1989.

[CV07] J. Cheriyan and A. Vetta. Approximation algorithms for network
design with metric costs. SIAM Journal on Discrete Mathematics,
21(3):612–636, 2007.

[CVV02] J. Cheriyan, S. Vempala, and A. Vetta. Approximation algorithms
for minimum-cost k-vertex connected subgraphs. In Proc. STOC ’02,
pages 306–312. ACM, 2002.

[dFdMR95] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Bipolar
orientations revisited. Discrete Applied Mathematics, 56(2–3):157–179,
1995.

[DN99] Y. Dinitz and Z. Nutov. A 3-approximation algorithm for finding opti-
mum 4,5-vertex connected spanning subgraphs. Journal of Algorithms,
32(1):31–40, 1999.

[Ebe83] J. Ebert. st-ordering the vertices of biconnected graphs. Computing,
30(1):19–33, 1983.

BIBLIOGRAPHY 155

[EF96] M. Ehrgott and J. Freitag. K TREE/K SUBGRAPH: a program pack-
age for minimal weighted k-cardinality tree subgraph problem. Euro-
pean Journal of Operational Research, 1(93):214–225, 1996.

[EFHM97] M. Ehrgott, J. Freitag, H.W. Hamacher, and F. Maffioli. Heuristics
for the k-cardinality tree and subgraph problem. Asia Pacific Journal
of Operational Research, 14(1):87–114, 1997.

[EFS56] P. Elias, A. Feinstein, and C. E. Shannon. A note on the maximal
flow through a network. IRE Transactions on Information Theory, IT
2:117–119, 1956.

[Epp97] D. Eppstein. Faster geometric k-point MST approximation. Compu-
tational Geometry: Theory and Applications, 8(5):231–240, 1997.

[ET76a] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM
Journal on Computing, 5(4):653–665, 1976.

[ET76b] S. Even and R. E. Tarjan. Computing an st-Numbering. Theoretical
Computer Science, 2(3):339–344, 1976.

[ET77] S. Even and R. E. Tarjan. Corrigendum: Computing an st-numbering.
TCS 2(1976):339-344. Theoretical Computer Science, 4(1):123, 1977.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[FH92] L. R. Foulds and H. W. Hamacher. A new integer programming ap-
proach to (restricted) facilities layout problems allowing flexible facility
shapes. Technical report 1992-3, University of Waikato, Department
of Management Sience, 1992.

[FHJM94] M. Fischetti, W. Hamacher, K. Jornsten, and F. Maffioli. Weighted
k-cardinality trees: Complexity and polyhedral structure. Networks,
24:11–21, 1994.

[FJ82] G. N. Frederickson and J. JáJá. On the relationship between the bicon-
nectivity augmentation and traveling salesman problems. Theoretical
Computer Science, 19:189–201, 1982.

[FJW06] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-
approximation algorithms for minimum-cost vertex connectivity prob-
lems. Journal of Computer and System Sciences, 72(5):838–867, 2006.

[FL08] J. Fakcharoenphol and B. Laekhanukit. An O(log2 k)-approximation
algorithm for the k-vertex connected spanning subgraph problem. In
Proc. STOC ’08, pages 153–158. ACM, 2008.

[Fra92] A. Frank. Augmenting graphs to meet edge-connectivity requirements.
SIAM Journal on Discrete Mathematics, 5(1):25–53, 1992.

156 BIBLIOGRAPHY

[Gal57] D. Gale. A theorem on flows in networks. Pacific Journal of Mathe-
matics, 7:1073–1082, 1957.

[Gar96] N. Garg. A 3-approximation for the minimum tree spanning k vertices.
In Proc. FOCS’96, pages 302–309. IEEE Computer Society, 1996.

[Gar05] N. Garg. Saving an epsilon: a 2-approximation for the k-MST problem
in graphs. In Proc. STOC’05, pages 396–402. ACM, 2005.

[GGP+94] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, É. Tardos,
and D. P. Williamson. Improved approximation algorithms for network
design problems. In Proc. SODA ’94, pages 223–232. SIAM, 1994.

[GH97] N. Garg and D. S. Hochbaum. An O(log k)-approximation algorithm
for the k minimum spanning tree problem in the plane. Algorithmica,
18(1):111–121, 1997.

[GL11] S. Gollowitzer and I. Ljubic. MIP models for connected facility loca-
tion: A theoretical and computational study. Computers & Operations
Research, 38(2):435–449, 2011.

[GM90] M. Grötschel and C. L. Monma. Integer polyhedra arising from certain
network design problems with connectivity constraints. SIAM Journal
on Discrete Mathematics, 3(4):502–523, 1990.

[GM93] M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations.
Networks, 23:19–28, 1993.

[GMS91] M. Grötschel, C. L. Monma, and M. Stoer. Polyhedral Approaches to
Network Survivability. In Reliability of Computer and Communication
Networks, Proc. Workshop 1989, volume 5 of Discrete Mathematics
and Theoretical Computer Science, pages 121–141, 1991.

[GMS92a] M. Grötschel, C. L. Monma, and M. Stoer. Computational results
with a cutting plane algorithm for designing communication networks
with low-connectivity constraints. Operatios Research, 40(2):309–330,
1992.

[GMS92b] M. Grötschel, C. L. Monma, and M. Stoer. Facets for polyhedra aris-
ing in the design of communication networks with low-connectivity
constraints. SIAM Journal on Optimization, 2(3):474–504, 1992.

[GR02] E. Ghashghai and R. L. Rardin. Using a hybrid of exact and genetic
algorithms to design survivable networks. Computers & Operations
Research, 29(1):53–66, 2002.

[GW95] M. X. Goemans and D. P. Williamson. A general approximation tech-
nique for constrained forest problems. SIAM Journal on Computing,
24(2):296–317, 1995.

BIBLIOGRAPHY 157

[Har62] F. Harary. The maximum connectivity of a graph. Proc. of the National
Academy of Sciences, 48:1142–1146, 1962.

[Har69] F. Harary. Graph Theory. Addison-Wesley, 1969.

[HJM91] H. W. Hamacher, K. Joernsten, and F. Maffioli. Weighted k-cardinality
trees. Technical report 91.023, Politecnico di Milano, Dipartimento di
Elettronica, 1991.

[HKKN10] M. Hajiaghayi, R. Khandekar, G. Kortsarz, and Z. Nutov. Prize-
collecting steiner network problems. In Proc. IPCO’10, volume 6080
of LNCS, pages 71–84. Springer, 2010.

[Jai98] K. Jain. A factor 2 approximation algorithm for the generalized Steiner
network problem. Combinatorica, 21:39–60, 1998.

[JL97] K. Joernsten and A. Lokketangen. Tabu search for weighted k-
cardinality trees. Asia Pacific Journal of Operational Research, 14:9–
26, 1997.

[JMP00] D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting Steiner
tree problem: Theory and practice. In Proc. SODA ’00, pages 760–769.
SIAM, 2000.

[Khu97] S. Khuller. Approximation algorithms for finding highly connected
subgraphs. In D. Hochbaum, editor, Approximation algorithms for
NP-hard problems, pages 236–265. 1997.

[KKL04] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approxima-
tion for vertex-connectivity network design problems. SIAM Journal
on Computing, 33(3):704–720, 2004.

[KM89] C.-W. Ko and C. L. Monma. Heuristic methods for designing highly
survivable communication networks. Technical report, Bellcore, Mor-
ristown, 1989.

[KM98] T. Koch and A. Martin. Solving Steiner tree problems in graphs to
optimality. Networks, 32:207–232, 1998.

[KM02] H. Kerivin and A. R. Mahjoub. Separation of partition inequalities
for the (1,2)-survivable network design problem. Operations Research
Letters, 30:265–268, 2002.

[KM05a] H. Kerivin and A. R. Mahjoub. Design of survivable networks: A
survey. Networks, 46(1):1–21, 2005.

[KM05b] H. Kerivin and A. R. Mahjoub. On survivable network polyhedra.
Discrete Mathematics, 290(2–3):183–210, 2005.

[KMN04] H. Kerivin, A. R. Mahjoub, and C. Nocq. (1,2)-survivable networks:
Facets and branch-and-cut. In M. Grötschel, editor, The Sharpest Cut,
MPS-SIAM Series on Optimization, pages 121–152. 2004.

158 BIBLIOGRAPHY

[KMV03] T. Koch, A. Martin, and S. Voß. SteinLib – an updated library
on Steiner tree problems in graphs. http://elib.zib.de/steinlib,
2003.

[KN03] G. Kortsarz and Z. Nutov. Approximating node connectivity problems
via set covers. Algorithmica, 37(2):75–92, 2003.

[KN05] G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs
via critical graphs. SIAM Journal on Computing, 35(1):247–257, 2005.

[KN07] G. Kortsarz and Z. Nutov. Approximating minimum cost connectiv-
ity problems. In T. F. Gonzalez, editor, Handbook of Approximation
Algorithms and Metaheuristics. 2007.

[KR96] S. Khuller and B. Raghavachari. Improved approximation algorithms
for uniform connectivity problems. Journal of Algorithms, 21(2):434–
450, 1996.

[KV94] S. Khuller and U. Vishkin. Biconnectivity approximations and graph
carvings. Journal of the ACM, 41(2):214–235, 1994.

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity
testing of graphs. In P. Rosenstiehl, editor, Theory of Graphs, pages
215–232. 1967.

[LG10] I. Ljubic and S. Gollowitzer. Layered graph approaches to the hop con-
strained connected facility location problem. Technical Report 2010-
08, University of Vienna, 2010.

[Lju04] I. Ljubić. Exact and Memetic Algorithms for Two Network Design
Problems. PhD thesis, TU Vienna, 2004.

[LN09] Y. Lando and Z. Nutov. Inapproximability of survivable networks.
Theoretical Computer Science, 410(21–23):2122–2125, 2009.

[LR03] A. Lucena and M. G. C. Resende. Strong lower bounds for the prize-
collecting Steiner problem in graphs. Discrete Applied Mathematics,
141(1-3):277–294, 2003.

[LR08] M. Leitner and G. Raidl. Lagrangian decomposition, metaheuristics,
and hybrid approaches for the design of the last mile in fiber optic
networks. In Proc. HM ’08, volume 5296 of LNCS, pages 158–174.
Springer, 2008.

[LR10] M. Leitner and G. Raidl. Strong lower bounds for a survivable network
design problem. In Proc. ISCO ’10, volume 36 of Electronic Notes in
Discrete Mathematics, pages 295–302, 2010.

[LRP09] M. Leitner, G. Raidl, and U. Pferschy. Accelerating column generation
for a survivable network design problem. In Proc. INOC ’09, 2009.

BIBLIOGRAPHY 159

[LWP+06] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fis-
chetti. An algorithmic framework for the exact solution of the prize-
collecting Steiner tree problem. Mathematical Programming, 105(2–
3):427–449, 2006.

[Maf91] F. Maffioli. Finding a best subtree of a tree. Technical report 91.041,
Politecnico di Milano, Dipartimento di Elettronica, 1991.

[MBCV99] J. S. B. Mitchell, A. Blum, P. Chalasani, and S. Vempala. A constant-
factor approximation algorithm for the geometric k-MST problem in
the plane. SIAM Journal on Computing, 28(3):771–781, 1999.

[Meh88] K. Mehlhorn. A faster approximation for the Steiner problem in
graphs. Information Processing Letters, 27:125–128, 1988.

[Men27] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathemati-
cae, 10:96–115, 1927.

[Mit99] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdi-
visions: A simple polynomial-time approximation scheme for geomet-
ric TSP, k-MST, and related problems. SIAM Journal on Computing,
28(4):1298–1309, 1999.

[MMP90] C. L. Monma, B. S. Munson, and W. R. Pulleyblank. Minimum-
weight two-connected spanning networks. Mathematical Programming,
46(2):153–171, 1990.

[MR05] T. L. Magnanti and S. Raghavan. Strong formulations for network
design problems with connectivity requirements. Networks, 45(2):61–
79, 2005.

[MS89] C. L. Monma and D. F. Shallcross. Methods for designing communi-
cations networks with certain two-connected survivability constraints.
Operations Research, 37(4):531–541, 1989.

[NGM90] D. Naor, D. Gusfield, and Ch. Martel. A fast algorithm for optimally
increasing the edge-connectivity. In Proc. FOCS ’90, pages 698–707.
IEEE Computer Society, 1990.

[Nut09a] Z. Nutov. An almost O(log k)-approximation for k-connected sub-
graphs. In Proc. SODA ’09, pages 912–921. SIAM, 2009.

[Nut09b] Z. Nutov. Approximating minimum cost connectivity problems via
uncrossable bifamilies and spider-cover decompositions. In Proc. FOCS
’09, pages 417–426. IEEE Computer Society, 2009.

[Nut09c] Z. Nutov. Approximating node-connectivity augmentation problems.
In Proc. APPROX ’09 / RANDOM ’09, volume 5687 of LNCS, pages
286–297. Springer, 2009.

160 BIBLIOGRAPHY

[Nut09d] Z. Nutov. A note on rooted survivable networks. Information Process-
ing Letters, 109(19):1114–1119, 2009.

[NW99] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Opti-
mization. Discrete Mathematics and Optimization. Wiley-Interscience,
1999.

[OPTW07] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib
1.0–Survivable Network Design Library. In Proc. INOC ’07, 2007.
http://sndlib.zib.de.

[PD01a] T. Polzin and S. V. Daneshmand. A comparison of steiner tree relax-
ations. Discrete Applied Mathematics, 112(1-3):241–261, 2001.

[PD01b] T. Polzin and S. V. Daneshmand. A comparison of steiner tree relax-
ations. Discrete Applied Mathematics, 112:241–261, 2001.

[PD01c] T. Polzin and S. V. Daneshmand. Improved algorithms for the Steiner
problem in networks. Discrete Applied Mathematics, 112(1-3):263–300,
2001.

[PLZC07] S. Peng, M. Li, S. Zhang, and T. C. E. Cheng. Some new structural
properties of shortest 2-connected Steiner networks. In Proc. FAW ’07,
volume 4613 of LNCS, pages 317–324. Springer, 2007.

[PR91] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the res-
olution of large-scale symmetric traveling salesman problems. SIAM
Review, 33(1):60–100, 1991.

[PSK97] M. Penn and H. Shasha-Krupnik. Improved approximation algo-
rithms for weighted 2-and 3-vertex connectivity augmentation prob-
lems. Journal of Algorithms, 22(1):187–196, 1997.

[PW97] H.W. Philpott and N. Wormald. On the optimal extraction of ore
from an open-cast mine. Technical report, University of Auckland,
New Zealand, 1997.

[QCM08] F. P. Quintão, A. S. Cunha, and G. R. Mateus. Integer programming
formulations for the k-cardinality tree problem. Electronic Notes in
Discrete Mathematics, 30:225–230, 2008.

[QCML10] F. P. Quintão, A. S. Cunha, G. R. Mateus, and A. Lucena. The k-
cardinality tree problem: Reformulations and lagrangian relaxation.
Discrete Applied Mathematics, 158(12):1305–1314, 2010.

[Rag95] S. Raghavan. Formulations and Algorithms for the Network Design
Problems with Connectivity Requirements. PhD thesis, MIT, Cam-
bridge, MA, 1995.

[Rag04] S. Raghavan. Low-connectivity network design on series-parallel
graphs. Networks, 43(3):163–176, 2004.

BIBLIOGRAPHY 161

[RdAR+01] I. Rossetti, M. P. de Aragão, C.C. Ribeiro, E. Uchoa, and R. F. Wer-
neck. New benchmark instances for the Steiner problem in graphs. In
Extended Abstracts of the 4th Metaheuristics International Conference,
pages 557–561, 2001.

[RG77] A. Rosenthal and A. Goldner. Smallest augmentation to biconnect a
graph. SIAM Journal on Computing, 6:55–66, 1977.

[Rob39] H.E. Robbins. A theorem on graphs with an application to a problem
of traffic control. American Mathematical Monthly, 46:281–283, 1939.

[RSM+96] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S.
Ravi. Spanning trees – short or small. SIAM Journal of Discrete
Mathematics, 9:128–200, 1996.

[RW97] R. Ravi and D. P. Williamson. An approximation algorithm for
minimum-cost vertex-connectivity problems. Algorithmica, 18(1):21–
43, 1997.

[RW02] R. Ravi and D. P. Williamson. Erratum: An approximation algo-
rithm for minimum-cost vertex-connectivity problems. Algorithmica,
34(1):98–107, 2002.

[Sch98] A. Schrijver. Theory of Linear and Integer Programming. Discrete
Mathematics and Optimization. Wiley-Interscience, 1998.

[Seg87] A. Segev. The node-weighted Steiner tree problem. Networks, 17(1):1–
17, 1987.

[Spe08] Spec. Standard performance evaluation corporation. http://www.

spec.org/, 2008.

[ST84] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest
pairs of disjoint paths. Networks, 14:325–336, 1984.

[Sto92] M. Stoer. Design of Survivable Networks, volume 1531 of Lecture Notes
in Mathematics. Springer, 1992.

[Suu74] J. W. Suurballe. Disjoint paths in a network. Networks, 4:125–145,
1974.

[SWK69] K. Steiglitz, P. Weigner, and D. J. Kleitman. The design of minimum-
cost survivable networks. IEEE Transactions on Circuit Theory,
16:455–460, 1969.

[TSN08] TSNDLib: Collection of benchmark instances for Topological {0,1,2}-
Survivable Network Design problems, 2008. http://ls11-www.cs.

tu-dortmund.de/TSNDLib/.

[TSP] TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/.

162 BIBLIOGRAPHY

[UBM04] D. Urošević, J. Brimberg, and N. Mladenović. Variable neighborhood
decomposition search for the edge weighted k-cardinality tree problem.
Computers & Operations Research, 31(8):1205–1213, 2004.

[UKW88] S. Ueno, Y. Kajitani, and H. Wada. Minimum augmentation of a tree
to a k-edge-connected graph. Networks, 18:19–25, 1988.

[Wag07] D. Wagner. Generierung und Adaptierung von Testinstanzen für das
OPT und SST Problem. Technical Report 03/2007, Carinthia Tech
Institute, Klagenfurt, Austria, 2007. In german.

[WGMV95] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani. A
primal-dual approximation algorithm for generalized Steiner network
problems. Combinatorica, 15(3):435–454, 1995.

[Win85] P. Winter. Generalized Steiner problem in outerplanar networks. BIT,
25(3):485–496, 1985.

[Win86] P. Winter. Generalized Steiner problem in series-parallel networks.
Journal of Algorithms, 7(4):549–566, 1986.

[Win87a] P. Winter. Steiner problem in Halin networks. Discrete Applied Math-
ematics, 17(3):281–294, 1987.

[Win87b] P. Winter. Steiner problem in networks: A survey. Networks,
17(2):129–167, 1987.

[WN87] T. Watanabe and A. Nakamura. Edge-connectivity augmentation
problems. Computer and System Sciences, 35:96–144, 1987.

[Woe92] G. J. Woeginger. Computing maximum valued regions. Acta Cyber-
netica, 10(4):303–316, 1992.

[Wol98] L. A. Wolsey. Integer Programming. Discrete Mathematics and Opti-
mization. Wiley-Interscience, 1998.

[WRP+06] D. Wagner, G. R. Raidl, U. Pferschy, P. Mutzel, and P. Bachhiesl. A
multi-commodity flow approach for the design of the last mile in real-
world fiber optic networks. In Proc. OR ’06, pages 197–202. Springer,
2006.

[WRP+07] D. Wagner, G. R. Raidl, U. Pferschy, P. Mutzel, and P. Bachhiesl. A
directed cut for the design of the last mile in real-world fiber optic
networks. In Proc. INOC ’07, 2007.

[WZ05] P. Winter and M. Zachariasen. Two-connected Steiner networks:
structural properties. Operations Research Letters, 33(4):395–402,
2005.

[ZL93] A. Zelikovsky and D. Lozovanu. Minimal and bounded trees. In Tezele
Cong. XVIII Acad. Romano-Americane, Kishinev, pages 25–26, 1993.

Index

{0, 1, . . . , k}-SND, 86
2CON-UCut, 95
2CON-UFlow, 96
2ECON-DCut, 97
2ECON-DFlow, 98
2NCON-MFlow, 99
4-cycle GSECs, 56

AKCT, 26
approximation

algorithm, 18
factor, 18

arborescence, 13
arc, 11
asymmetry constraint, 56

backward dcut-constraint, 112
bidirected graph, 12
bidirection, 12
binary ILP, 18
bipolar orientation, 16
block, 14
branch-and-cut, 21
branching, 21
bridge, 13

C, 98
C1, 96
C2, 96
capacity, 12
combinatorial optimization problem, 17
component

2-edge-connected, 13
2-node-connected, 13
connected, 13
strongly connected, 13

CON, 89

with binary costs, 90

with uniform costs, 90

connected graph, 13

connectivity number, 15

consistency constraint, 46

constrained minimum spanning ar-
borescence, 34

coupling constraints, 111

customer, 17, 85

cut, 12

back, 57

capacity, 15

directed, 12

edges, 12

front, 57

nested, 57

node, 13

set, 12

s, t, 12

undirected, 12

cutting planes, 20

cycle, 13

DC, 129

DCut, 112

dcut-constraint, 39, 112

backward, 112

forward, 112

degree, 11

in-, 11

out-, 11

DF, 129

DFlow, 111

directed cut, 12

directed graph, 11

strongly connected, 13

163

164 INDEX

weakly connected, 13

ear, 14
ear decomposition, 14
ECON, 89
edge, 11

adjacent, 11
incident, 11

edge-connectivity number, 15
EKCT, 25
Euclidean k-cardinality tree, 27
E(V ′), 13
exact algorithm, 18

feasible solution, 18
flow, 12

amount, 12
maximum, 12

flow-conservation constraint, 12, 111
flow-preservation constraint, 123
forest, 13
forward dcut-constraint, 112

generalized Steiner network, 89
graph, 11

(1, 2)-edge-connected, 105
(1, 2)-node-connected, 105
(1, 2)-root-node-connected, 105
k-node-connected, 15
k-regular, 11
2-edge-connected, 13
2-node-connected, 13
bidirected, 12
complete, 11
connected, 13
directed, 11
grid, 11
oriented, 12
simple, 11
triangle, 11
underlying undirected, 12
undirected, 11

graph-theoretic distance, 93
grid graph, 11
GSECs, 32

4-cycle, 56
G[V ′], 13

heuristic, 18

ILP, 18
binary, 18
equivalent, 20
strictly stronger, 20
weakly stronger, 20

integer linear program, 18

k-cardinality arborescence, 37
k-cardinality prize-collecting Steiner

tree, 26
k-cardinality subgraph, 27
k-cardinality tree, 25

all-weighted, 26
edge-weighted, 25
node-weighted, 26

k-connected spanning subgraph, 92
k-connected Steiner network, 92
k-minimum spanning tree, 26
k-MST, 26
k-outconnectivity, 94
k-Steiner tree, 26
k-tree, 91
KCA, 37
Kca-DCut, 39
Kca′-DCut, 40
Kca′-Mcf, 48
kCON, 86
kCSN, 92
kCSS, 92
KCT, 26

rooted, 26
unrooted, 26

Kct-Gsec, 32
Kct-UCut, 43
Kct′-UCut, 43
kECON, 86
kNCON, 85
kPCECON, 86
kPCNCON, 86
KPCST, 26
kRPCSN, 86
kRSN, 86
KST, 26

leaf, 13

INDEX 165

LH, 73
line, 13
linear description, 19
linear program, 18
LP, 18
LP relaxation, 19

equivalent, 19
strictly stronger, 19
weakly stronger, 19

LP-based heuristic, 21

maximum flow, 12
mc-cut, 77, 131
MCF, 73
Miller-Tucker-Zemlin, 34
minimum cardinality cut, 77, 131
minimum spanning tree, 17
MSA, 50
MSA′, 34
Msa′-DFlow, 51
Msa′-MTZ, 51
MST, 17
MTZ, 73
MTZ SECs, 34

NCON, 89
NKCT, 26
node, 11

adjacent, 11
end, 11
start, 11

node cardinality constraint, 33
node-connectivity number, 15

OOM, 73
open ear, 14

decomposition, 14
optimal solution, 18
orientation, 12

s, t, 16
bipolar, 16

orientation constraint, 55

path, 13
edge-disjoint, 13
node-disjoint, 13

PCST, 18
PEKCT, 27
perfect heuristic, 58

polyhedron, 19
polytope, 19
primal heuristic, 57
primal heursitic, 21
prize-collecting Steiner tree, 18

R, 85
R2-leaf, 125
Ri, 85
rKct-UCut, 34

SECs, 32
separation problem, 21
shadow, 12
sink, 12
solution

feasible, 18
fractional, 19
optimal, 18

source, 12
Steiner tree, 17
s, t-ordering, 16
s, t-orientation, 16
STP, 17
strength

LP relaxations, 19
ILPs, 20

subgraph, 13
induced, 13

subgraph selection problem, 17
subset selection problem, 17
subtour elimination constraint, 32
subtree, 13
survivable network design, 87, 89

terminal, 17
topological network design, 17
tree, 13
triangle graph, 11
trough, 29
TSP, 18

undirected
cut, 12
cut constraint, 33, 95
graph, 11
node-cut constraint, 95

unweighted connectivity augmentation,
90

