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QUATERNION HERMITIAN PLANES

Markus Stroppel

ABSTRACT. The quaternion hermitian planes are defined, and are characterized by certain groups
of automorphisms. For this purpose, characterizations of locally compact connected translation
planes (in the context of stable planes) and compact connected projective desarguesian planes are

given.

1. Introduction.

We study abelian groups of automorphisms of stable planes and characterize translation
groups and their duals. This result is applied to stable planes of dimension 8 admitting
unitary groups of degenerate hermitian forms on the three-dimensional left vector space
over Hamilton’s quaternions H. Together with previous results by R. Lowen [17] and the
author [26: 7.8], this allows to determine the eight-dimensional point homogeneous stable
planes admitting a unitary group T of H*: any such plane is isomorphic with the subplane
induced on some open orbit of T on the point set of the projective plane over Hamilton’s
quaternions, where the action of T is induced by the natural action of T on H? or its dual.
Partly, the results on stable planes seem to be new even in the more special context of
(affine) locally compact connected translation planes.

We need a notion of topological dimension. For each stable plane, both the point and
the line space are separable metric spaces [11: 1.9]. Consequently, their covering dimension
coincides with any reasonable topological dimension function. We will denote the covering
dimension of A by dim A. Note that the covering dimension of a real, complex or quaternion
vector space coincides with its vector space dimension over the reals.

Endowed with the compact-open topology derived from the action on M, the group
Aut (M) of all continuous collineations of a stable plane M = (M, M) becomes a locally
compact transformation group on M and M (see [11: 2.9]). A group of automorphisms
of a stable plane is a topological group A together with a continuous monomorphism
¢t: A — Aut(M), where Aut (M) has the compact-open topology derived from the action
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on M. For some results (especially criteria for compactness) it is necessary to make sure
that ¢ is a homeomorphism onto A‘. On the other hand there are some cases where one
is interested in the possibilities for actions of abstract topological groups, e.g. if one deals
with restrictions to invariant subplanes or with analytic subgroups of Lie groups. In the
present paper we take the latter point of view. The groups that we are mainly interested
in, however, are of such a kind that their toplogy is determined by the given (resp. the
possible) actions. See [5: 5] for details. We shall consider locally compact groups only
(recall that stabilizers, centralizers and normalizers are closed subgroups and therefore
locally compact again, cf. [9: §26, Cor.3]).

2. A characterization of the compact connected desarguesian projective planes.

Recall that, up to isomorphism, there are precisely three compact connected desarguesian
projective planes [22: Satz I]: namely the planes over the locally compact connected (skew)
fields R (real numbers), C (complex numbers), and H (Hamilton’s quaternions).

(2.1) Theorem. A compact connected projective translation plane P = (P, P) is desar-
guesian if, and only if, there 13 a locally compact group ® of automorphisms of P such that
the following hold for some F € {R,C,H}:
a) the group ® fizes an affine point.
b) the group of translations is isomorphic with (F2,4) as a topological group, and, via
conjugation in Aut (P), the group ® acts F-linearly on the group of translations.
¢) If F = H then the centralizer Cg (7) has dimension > 1 for each translation 7.
If F = C then the centralizer Cg (1) contains more than two elements for each transla-
tion 7.
If F =R then the centralizer Cg (7) is non-trivial for each translation 7.
Proof: i) If P is desarguesian, the stabilizer of any affine point contains a subgroup

¢ = GL; (F), and Cg (7) contains a conjugate of the group {(ig) i z € F} of shears.

ii)) We may identify the group T of translations with the set of affine points. Then @ <
GL; (F). According to [1] (see [21: 8.1, Satz 2, p. 201}, or [18: L.1, p. 1-7]), the plane P is
isomorphic with the desarguesian plane over F if the stabilizer T, of each line L through
o = (0,0) € F? is an F-subspace of T = F2. In the non-desarguesian case, one finds a
translation 7 € F2 \ {(0,0)} such that the F-subspace A spanned by 7 is not contained in
the line joining o and 7. The centralizer Cs (7) acts trivially on the point set A. If it is
not contained in a line, then the set A generates a Baer subplane or the whole plane, and
assertion c) follows from [28: 5.1] and [28: 6.3]. 0

(2.2) Remark. A similar result holds without the assumption of connectedness for
desarguesian planes over arbitrary locally compact (skew) fields: Assertion c) has to be
replaced by the assertion that Cg (7) is non-compact for each translation 7, and the group
® must be closed in Aut (P).
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3. Abelian groups of automorphisms of stable planes.

(8.1) Definitions.

a) A stable plane is a non-degenerate linear space M = (M, M), where the point space M
and the line space M are endowed with locally compact Hausdorff topologies such that

¢ the covering dimension dim M is positive and finite
e joining of points and intersecting of lines are continuous operations
e the set of intersecting lines is open in M x M.

b) For any subset E C M that contains a quadrangle, a non-degenerate linear space
E = (E,£) is induced on E, where £ C M consists of those lines that meet E in more
than one point. If E C M is locally compact and dim E > 0, then E is a stable plane.
The linear space E is called full in M if any point that is incident with two lines of £
belongs to E.

c) For any subset X C M that contains a quadrangle, the subplane generated by X in M
is the smallest closed full subplane E = (E,£) of M satisfying X C E.

d) A stable plane is called almost projective if the complement of some line is an affine
plane [13: 4.1].

(3.2) Remarks. General information about stable planes can be found in the work of

R. Lowen ([11], [13], [15]). For our purposes, the following properties are of particular

importance:

a) The only possible values for dim M are the integers 2, 4, 8, and 16 (see [15: Th. 1]).

b) If X is a connected subset of M that is not contained in any line, then the subplane
generated by X is a stable plane.

¢) For any proper closed full subplane E = (E,£) of M = (M, M), we have that dim E <
dim M, see [28: 3.3].

d) For each point p € M, the line pencil M, = {L| p€ L € M} is a compact con-
nected homotopy Il-sphere, where | = dim M, = dim L = 1 dim M (see [11: 1.14, 1.17),
[15: Th. 1, Th. 3)).

(3.3) Lemma. Let A be a connected locally compact abelian group of automorphisms of a
stable plane M = (M, M) with dim M = 2l. Then we have one of the following (mutually
ezclusive) cases:
a) A is quasi-perspective (i.e. each orbit in M is contained in a line).
In this case, the stabilizer of any line moved by A is trivial, and dim A < dim M = 2I.
b) There is a point p € M whose orbit p® generates the whole plane.
Consequently, the stabilizer A, is trivial, and dim A < dim M = 2L
c¢) There are points whose orbits are not contained in any line, but each of these orbits
generates a proper subplane.
In this case, dim A < %I < dim M.
Proof: Obviously, the three cases are mutually exclusive.
i) In case a), the orbit of each point z moved by A is contained in 2 unique line F;, which
is fixed by A. Consequently, the stabilizer Ag of a line G moved by A acts trivially on G
and on each of the images of G. Having two axes, the group Ag is trivial. The bound for
the dimension of A follows from [8].
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ii) In case b), the stabilizer of p acts trivially on p® (since A is abelian), hence trivially
on M and is therefore trivial. The bound for the dimension of A follows from [8] again.

iii) In case c), we proceed by induction on I. For I =1, there are no proper full subplanes
of M, and case c) cannot occur. Assume that [ > 1. Then ! is one of the integers 2, 4, or
8 (see [15]). Let E = (E,£) be a proper A-invariant subplane of maximal dimension. The
locally compact connected abelian group A is a product A = ®© of connected groups,
where ® acts almost effectively on E, while © is the connected component of the kernel
of the action of A on E. By induction, we have that dim® < dim E < l. Obviously, the
assertion is true in the case where © = 1. If ® = 1, choose a line L that contains at least
two points of E. Then L is fixed by A = ©, and for any point y € L \ E we have that
dimy® < l. On the other hand, maximality of dim E yields that (E,y?) =Mand A, = 1.
Thus we obtain that dim A < I. If ® # 1 # ©, there is a line L that contains at least two
points of E and is moved by ®. Choose y € L\ E. Since (E,y*) = M, we have that O, =1
and dim © = dimy®. The orbit y® = y*® generates a A-invariant subplane of dimension
d, and d > 2dimy® = 2dim ©. By our assumption, we have that d < dim E < I. Hence
dim© < %, and the assertion follows from the fact that dim A = dim ® + dim ©. 0

(3.4) Corollary. Let A be a connected locally compact abelian group of automorphisms
of a stable plane M = (M, M) and assume that dimA = dim M. Then esther A acts
quasi-perspectively with an open orbit in M, or A has an open orbit in M. In both cases,
the action of A on the open orbit i3 sharply transitive.

(3.5) Examples.
a) On the projective quaternion plane, the 5-dimensional abelian group

s 0 =z
0 s y s,z,y€C, s5=1
0 0 s

acts almost effectively and leaves invariant the complex subplane. Thus the bound in
(3.3.c) is almost attained. Using results on the dimension of groups that act trivially on
a subplane (cf. [12: 1.5}, [26: 4.19] or [28: 5.1, 7.6, 8.21]), this bound may be improved.

b) The bounds in (3.3.b), (3.3.a) are attained by full translation groups or their duals,
respectively.

(3.8) Proposition.

Let M = (M, M) be a stable plane of dimension 2l, and let A = R? be a group of auto-

morphisms of M such that each one-parameter subgroup acts quasi-perspectively.

a) If A is not quasi-perspective, then M is an almost projective translation plane with A
acting as full group of translations.

b) If A is quasi-perspective, then the set F of fized poinis of A has at most one element.
If such a point z exzists, each element § € A has center z. For each pointz € M\ F,
we have that A; = R!, and A, acts sharply transitively on M. \ {F:}, where F; is the
line containing z®. In particular, the group A is transitive on F; \ F, and A; = Ar,)-

c) If A is quasi-perspective, then M is a dual affine (or projective) translation plane if,
and only if, the set Fao = {L € M| 3z € M:{z} # z® C L} is compact.

d) We may identify A with the topological group (F2,+), where F is the l-dimensional
division algebra over R (i.e. F € {R,C,H, 0}). If, with respect to such an identification,
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the stabilizer A, is a line through the origin (i.e. an F-subspace in the cases | < 4) for
each point z € M, then the set {A; | z € M\ F} is an open subset of the pencil through
the origin.

Proof: i) In case a), let Z be a one-parameter group of A = R?!. Since A is abelian,
the set 7= = {Le€ M| 3z € M:{z} #2% C L} is left invariant by A. By [12: 1.1] the
projection z ++ F, (where F} is the line containing z=) induces a local homeomorphism of
any line (moved by A) to Fz. Thus ! = dimFz > dim A/, for G € Fz. On the other
hand, A; = 1 implies that dim Ag < [ and therefore | = dimAg = dimA/AG. For any
one-parameter group © of A not contained in Ag, we consider the line H that contains
the orbit z©. Since G # H, we have that Ag gy < A; =1and Ag =R 2 Ap. According
to [1], the orbit z* carries an affine translation plane A. The stable plane M contains A
and is contained in the projective hull of A, hence it is almost projective.

ii) In the quasi-perspective case, choose any line L # F; through a point z that is not
fixed by A. Then Ay = 1, and dimﬁ/Az < l. From the fact that dimA:/AL <l we
deduce that dimA,; = | = dim L#=. Thus L?+ is open in M, for each L € M. \ {F:}.
Since M \ {F.} is connected, we infer that A, acts sharply transitively on M. \ {F:},
from which we obtain that M. \ { F;} is homeomorphic with R! and A, = R!. Choose any
point ¥ € M \'F; that is moved by A. Then the line zy € M. \ {F;} can be moved to L
by an element of A, leaving invariant F;,. Therefore, each line L € M; \ {F:} intersects
with any line Fy, € F5. Now A acts transitively on Fy \ F, and A, fixes each point in F},.
iii) By ii), each line L that is moved by A intersects with each line Fy € Fa. If the setFx
is compact, we conclude that L is a compact line. Passing to the opposite plane [13: 1.1},
case c) is reduced to case a). If A acts as a dual translation group, then 75 equals the
pencil through the center z (cf. b)) and is therefore compact.

iv) Let P;F denote the set of lines through the origin, endowed with the quotient topology
from the mapping

r:A\1=F*\ {0} »P,F:6§—F§

Assume that A, € P;F for each point z. We choose a line L that is moved by A. According
to ii), this line intersects with each line F; € Fa, and A; = Ayr,). Now the mapping

p:L—=PiF:z— A;

is well defined and injective. For z, € L we may choose §, in the unit sphere of A = R?
such that A, is the line joining the origin and §,. Since the unit sphere is compact, there
is a sequence §,, converging to some §. For z, — z we obtain that § € A;. Thus A,
equals the line joining the origin and §,, and the graph {(z,A:)| z € L} of p is closed in
L x PiF. Since P;F is compact, we conclude that u is continous [3: XI, Th. 2.7]. Now
the restriction of p to any compact neighbourhood C C L is a homeomorphism onto C*.
Since P;F has the domain invariance property, we find that x is an open embedding. O

(3.7) Remarks.
a) Inits natural (linear) action on the real affine plane, the group { (“ b) l a,b > 0} ~ R?
is not a translation group and not quasi-perspective (indeed, the one-parameter
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subgroup {(“a-—l)l a> 0} is not quasi-perspective). There are also compact 4

dimensional projective planes admitting a group of automorphisms that is isomorphic
with R* but is not a translation group, see [10: Satz 1,3)].

b) For I = 1, there are no proper translation planes. Translation planes admitting large
automorphism groups have been studied by D. Betten in the case I = 2. The cases
| = 4,8 have been treated by H. Hahl. See (2], [6], [7], and the references given there.

c) In the situation of (3.6,d), there do occur proper open subsets of the pencil through the
origin: E.g., let P be a compact connected projective translation plane with translation
group A. Then A acts quasi-perspectively on the dual P* of P. Removing in P* all the
points that lie on lines in some closed set of lines through the common center of the
elements of A, we obtain a stable plane, on which A acts in the way described.

In many cases, one may check quasi-perspectivity of one-parameter groups by considering
their centralizers in Aut(M). The following criterion, which is a generalization of (2.1),
will be used later.

(3.8) Lemma. Let F € {R,C,H}, and assume that a group A = F? of automorphisms
of a stable plane M = (M, M) acts sharply transitively on M. Let ® be a locally compact
group of automorphisms of M such that ® fizes a point p € M, normalizes A and acts
F-linearly on A = F? (via conjugation). If F = H and dim Cy (8) > 1 for each 6 € A, or
if F € {R,C} and dim Cy (8§) 2 1 for each § € A, then each one-parameter subgroup of A
acts quasi-perspectively, and the geomeiry induced on z2 is the desarguesian affine plane
with A acting as full group of translations.

Proof: Assume that there is a one-parameter subgroup = of A that does not act quasi-
perspectively. The F-subspace A spanned by E is spanned by any element £ € =\ 1. Since
A acts transitively on M, the orbit p* is not contained in a line. From the fact that A, =1
we infer that the subplane E generated by p* is either a Baer subplane or equal to M. The
group Cg (£) acts trivially on A, hence trivially on E, and we have reached a contradiction
to [28: 5.1, 6.3] (cf. [28: 3.2]). The assertion follows from (2.1). 0

4. Hermitian and dual hermitian quaternion planes.

For any matrix A = € H**™ let

(@i5); cicn,1<icm

(8i5)1<icni<icm = (Bji)1<icm,1<i<n

denote the matrix obtained by conjugation of the entries and transposition. Observe that
for each y € H® we obtain that

e R 1
7= (v1,%2,¥3) = (ﬁz) -
Vs
(4.1) Definition. Let f be one of the (skew) hermitian forms on H* defined by f(z,y) =

zJi, where J is the diagonal matrix diag(v;,v2,v3) with

(lalll)': (1!13_1)1 (_1: _1$1)s (i7i$i)
Y= (UI:”Za'US) = { (1,1,0), (13"'1’0)3 ("_111':0)1 (‘i,i,O)
(110,0)1 (‘?010)
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In the hermitian cases (i.e. v € R®), define

M(”t.”:.ﬂs) = {HE

z € H*\ {0}, z(“"’u,)i>0}’

In the skew hermitian cases, define

M(v,,02,05) = {H:r.:

z € H®\ {0}, :(”'v:us)i#O}.

Then the sets M, are open, nonvoid subsets of the projective quaternion plane that are
left invariant by the corresponding unitary group

(7o )i ()

Moreover, this group acts transitively on the corresponding set M, by Witt’s theorem [20].
For each v, the geometry M, induced on M, (or MY on M, U M_,, if v € R®) is a stable
plane with U, acting almost effectively as a group of automorphisms. In accordance with
R. Lowen (14], we call these planes the guaternion hermitian planes. The group U, will
be referred to as the induced group.
For convenience, we list the possibilities in a table. Let

o
denote the set of isotropic points. The point set {g| ¢ € L € S} will be called a quaternion
cylinder Ci if S is a subset of a line pencil M, in the projective quaternion plane such
that S is homeomorphic with the sphere Si.

U(U:,vz.va} == {A € H¥*3

N(,,h,,z,t.,] = {Ha: zeH® \ {0}, . (va vy "a) I

- N full group of Eriiasis
point set (v1,v3,vs) siitai s name of plan
M1, 0 PSLs(H) | elliptic plane

(1,1,-1) exterior
M_y,1,) S+ PU; (H) (1) K interior } hyperbolic plane
M11,-1) U M3 1,-1) . united
Ad(,'l;,;) Ss PU; (H) (z) skew hyperbolic plane
M(l,l,o) {00} AT'L; (H) dual euclidean plane
Ma,-1,0) { cylinder }
i C AT'U-H(1 . ] plane
M(1|"]|0) U M‘("'l,l.“) . : ( ) unlted cy].mder
M(i,i,o) Cy APU;H(i) skew cylinder plane
M,0,0) L AT'L; (H) affine plane
Miio.0)
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Note the curiosity that the familiar euclidean plane does not occur in this context (of
course the underlying affine plane does occur, but the euclidean motion group only occurs
in its dual action). The induced group differs from the full group of automorphisms in the
cases where v € {(1,1,1),(1,1,0),(¢,0,0)}.

Duality of the projective quaternion plane allows to introduce dual guaternion hermitian
planes as follows: for any quaternion hermitian plane M, = (M,, M) define the dual
quaternion hermitian plane D = (D, D) to be the geometry induced on D = M, considered
as set of points in the dual projective plane. In the nondegenerate cases, we obtain the
projective or the exterior hyperbolic plane. If v € {(1,0,0),(3,0,0)}, the dual plane is just
the dual euclidean plane (a larger group is induced, however). For » = (1,1,0), we obtain
the euclidean (affine) plane. In the cases v € {(1,-1,0),(,1,0)} we get almost projective
planes, and the induced groups contain the full translation group. There is exactly one
open point orbit under the induced group in these cases, namely the affine plane. To these
homogeneous open subplanes we refer as quaternion hermitian translation planes. Note
that for these geometries the groups differ rather than the underlying affine planes.

(4.2) Remarks.
a) The hermitian planes induced on M,, where
" {(1,1,1), (1,1,-1), (-1,-1,1), (i,i,i)}
(1,1,0), (1,0,0),  (3,0,0) ’
are determined by the induced groups U, (cf. [17], [26: 7.8]). For the cases v €
{(1,1,0),(1,0,0),(#,0,0)}, we give an independent proof (in terms of translation
planes). In fact, we are going to characterize the quaternion hermitian planes and
the quaternion hermitian translation planes by (subgroups of) the induced groups.
b) For stable planes of low dimension (i.e. 2 or 4), R. Lowen has characterized the hermitian

planes in terms of existence of many reflections [14]. A similar attempt should work for
quaternion hermitian planes. This is, however, beyond the scope of this note.

(4.3) Lemma.

Let ®A be a group of automorphisms of an 8-dimensional stable plane, with A = R® = H?
and ® = U(J), where J € {(11) . (1_1) ; ("-)} describes a non-degenerate (skew)
hermitian form on H?. Assume that ® acts on A in the usual, H-linear way. If A acts

quass-perspectively, then the following hold:

a) There is a line L such that (PA)L = &.

b) For each point z € L, the stabilizer ®, equals the normalizer Ng (A;), and (PA); =
@:A:-

¢) The central snvolution o = ("1 _1) of ® has azis L.

d) The involution a = ( ™', ) € ® has at least one fized point on L.

Proof: i) Choose any line’ H that is moved by A. According to (3.4), we have that
Ay = 1. Let x : A — & be the canonical mapping. We infer that "'(@A)H is an
isomorphism of (8A)y onto ®. Therefore (A)y is a Levi-complement as well as ®, and
there is some § € A such that & = (3A)y° = (®A)gs.
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ii) From A; = Arp,) (cf. (3.6)) we obtain that the normalizer Ng (A.) fixes the axis F,
and the intersection point z = F; A L. On the other hand, the stabilizer ®, fixes the
line F; and therefore normalizes A(r,) (recall that A is normalized by ®). If ¢ ¢ &, then
z¥ ¢ F; and ¥4 NF; = 0. Therefore pAN(@A), = 0, and we have that ¢ € &, whenever
@6 € (2A).. We conclude that (PA); = ®.A,. This proves assertion b).

iii) The involution o normalizes each R-subspace of A. Therefore assertion b) yields that
o € ®(r), and assertion c) is proved.

iv) For each § € A, \ 1, the centralizer Cg (§) fixes the axis F, of § and is therefore
contained in ®,. For each non-isotropic § (with respect to the sesquilinear form induced
by J on A), there is a conjugate of a in Cg (§). If @ has no fixed points in L, we have
therefore that each stabilizer A, is an isotropic H-subspace in A. There is, however, no
open set of isotropic subspaces in P;H, in contradiction to (3.6.d). a

(4.4) Proposition. Let A be e group of automorphisms of an eight-dimensional stable

plane, with A = R® = H? and ® = U(J), where J € {(11) ; (1_1) ,(ii)} describes

a non-degenerate (skew) hermitian form on H?. Assume that ® acts on A in the usual,

H-linear way.

a) If A is not quasi-perspective, then M s isomorphic with the plane induced on the com-
plement of some closed subset of a line in the projective quaternion plane, and the group
QA acts in the usual way.

b) If A is quasiperspective and J = (1 . ), then the stable plane M s isomorphic with the
dual euclidean quaternion plane, or its projective closure.

¢) If A is quasi-perspective and J = (1 _1), then the stable plane M has an open PA-
invariant subplane that is isomorphic with the cylinder plane M(; _; o).

d) If A is quasi-perspective, J = (' .-), and the involution a = (_1 1) is not planar, then
the stable plane M has an open ®A-invariant subplane that is isomorphic with the skew
cylinder plane Mg; ; o).

Proof: i) Assume that A is not quasi-perspective. According to (3.4), there is a point p
such that A, = 1. Comparing dimensions, we obtain that (2A), = (‘FA)p/Ar = &. Since
$ is a Levi-complement, we may assume that & = (®A),. Using Witt’s theorem [20], the
centralizer Cg () is computed easily for each § € A. Now assertion a) follows from (3.8).
ii) Assume that A acts quasi-perspectively, and J = (1 1). Then the compact group ¢ =
Uz (H) acts transitively on the connected set Fa = {L € M | IzeM:{z} #22 C L}
(cf. [19: Th. 1]). By (3.6.b), the plane M is a dual affine translation plane or its projective
closure. Passing to the dual plane reduces this situation to case a).

iii) Assume that J = (1 _, ) . According to (4.3) and [26: 4.19] or [28: 6.5}, the involution a

is neither free nor planar. Therefore there is a point z € L that is the center or lies on the

axis of . In the first case, we obtain that A, = Ca (a), and &, = N3 (Ca (a)) by (4.3.b).

In the second case, we have that ac fixes the axes of a and ¢. Since these axes intersect

in z, and since commuting involutions cannot have the same axis [29: 9], we obtain that

ao € ;). Now (1’) induces an (outer) automorphism of @, interchanging a and ao.
Therefore the stabilizer ($A). is determined. According to (3.6.b), there are two line
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orbits in M,, namely {F;} and M.\ {F;} = L?<. Now (®A)r = & and (PA)r, = &4,
and the geometry induced on z#4 can be reconstructed according to [27] or [26: 6.3].

iv) Assume that J = ( ",-). According to (4.3), the involution & is not free. By assumption,
a is not planar, and we can proceed analogously to iii) (recall that a and ao are conjugate
in U(J)). o
(4.5) Remark. The groups considered in (4.4) are proper subgroups of U1,1,0, Uga,-1,0)
and Uy ; ), respectively. For the skew cylinder planes the full group Uy; ; o) yields that a
is not planar: the centralizer of & in Uy; ;) contains the group LTZE, where

s {() s {()epe- ()

According to [17], this group cannot act almost effectively on a four-dimensional plane.
Since £TE has no normal subgroup of dimension 1, we obtain from [26: 4.19] or [28: 6.3]
that « is not planar.

heH}

Restricting ourselves to point homogeneous stable planes, we can state the following result:

(4.8) Theorem. Among the point homogeneous stable planes of dimension 8, the quater-
nion hermitian planes are, up to duality and isomorphism, determined uniquely by the
corresponding unitary groups.

Proof: Let M, be a quaternion hermitian plane with induced group U,. I v €
{(1,1,1),(1,-1,-1),(-1,—1,1)} the assertion has been proved by R. Lowen [17]. Note
that My ;1) is the dual of M(_; _; ;). The case where v = (i,7,7) has been treated by
the author in [26: 7.8]. The remaining cases (where the hermitian form is degenerated and
the induced group is not simple but of mixed type) are covered by Proposition (4.4). O

(4.7) Remark. The assumption of point-homogeneity is necessary to make the reconstruc-
tion method of [27] applicable. There remains the problem to decide whether each stable
plane that admits one of the groups U, is isomorphic with some U,-invariant subplane of
the projective plane over H.
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