
Results in Mathematics 
Vol. 23 (1993) 

0378-6218/93/040387-11$1.50+0.20/0 
(e) 1993 Birkhauser Verlag, Basel 

QUATERNION HERMITIAN PLANES 

Markus StroppeJ 

ABSTRACT. The quaternion hermitian planes Me defined, and are characterized by certain groups 
of automorphism.s. For this purpose, characterizations of locally compact connected translation 
planes (in the context of stable planes) and compact connected projective desa.rguesian planes are 
given. 

1. Introduction. 
We study abelian groups of automorphisms of stable planes and characterize translation 
groups and their duals. This result i. applied to stable planes of dimension 8 admitting 
unitary groups of'degenerate hermitian forms on the three-dimensional left vector space 
over Hamilton's quaternions H. Together with previous results by R. LOwen [171 and the 
author [26: 7.81, this allows to determine the eight-dimensional point homogeneous stable 
planes admitting a unitary group T of H': any such plane is isomorphic with the subplane 
induced on some open orbit of T on the point set of the projective plane over Hamilton's 
quaternions, where the action of T is induced by the natural action of T on H3 or its dual. 
Partly, the results on stable planes seem to be new even in the more special context of 
(affine) locally compact connecled translation planes. 

We need a notion of topological dimension. For each stable plane, both the point and 
the line space are separable metric spaces [11: 1.9). Consequently, their covering dimension 
coincides with any reasonable topological dimension function. We will denote the covering 
dimension of A by dim A. Note that the covering dimension of a real, complex or quaternioD 
vector space coincides with its vector space dimension over the rew. 

Endowed with the compact-open topology derived from the action on M, the group 
Aut (M) of all conlinuous collineations of a .table plane M = (M,M) becomes a locally 
compact transformation group on M and M (see [11: 2.9]). A group of aulomorphi3m.1 
of a .stable plane is a topological group 6. together with a continuous monomorphism 
, : ~ _ Aut (M), where Aut (M) has the compact-open topology derived from the action 
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on M. For some results (especially criteria for compactness) it is necessary to make sure 
that L is a homeomorphism onto A'. On the other hand there are some cases where one 
is interested in the possibilities for actions of abstract topological groups, e.g. if one deals 
with restrictions to invariant subplanes or with analytic subgroups of Lie groups. In the 
present paper we take the latter point of view. The groups that we are mainly interested 
in, however, are of such a kind that their toplogy is determined by the given (resp. the 
possible) actions. See (5: 5J for details. We shall consider locally compact groups only 
(recall that stabilizers, centralizers and normalizers are closed subgroups and therefore 
locally compact again, d. [9: §26, Cor.3]). 

2. A characterization of the compact connected desarguesian projective planes. 
Recall that, up to isomorphism, there are precisely three compacL connected desarguesian 
projective planes [22: Satz 1[: namely the planes over the locally compact conneeled (skew) 
fields R (real numbers), C (complex numbers) , and H (Hamilton's quaternions). 

(2.1) Theorern_. A compact connected projective tran"lation plane P = (P,'P) i.s de"ar· 
gue"ian if, and only if, there i.s a locally compact group <II of automorphi.sm.s of P .such that 
the following hold for .ome F E {R,C,H}: 
aJ the group <I> fix .. an affine point. 
b) the group of tran.slationJ i.s i.somorphic with (F2, +) a.s a topological group, and, VIa 

conjugation in Aut (P), the group ~ aeu F ·linearly on the group of tran.5lation.s . 
e) IfF = H then the centralizer C. (1") ha" dimen.5ion > 1 for each tran.tlation T. 

If F = C then the centralizer C. (r) contairu more than two element., for each tran.sla­
tion 'T • 

If F = R then the centralizer C. (T) it non· trivial for each tran.Jiation T. 
Proof: i) If P is desarguesian, the stabilizer of any affine point contains a subgroup 

iI> :::: G L,( F), and C. (T) contains a conjugate of the group { ( ; n I x E F} of shears. 

ii) We may identify the group T of translations with the set of affine points. Then <I> ~ 
GL, (F). According to (lJ (see (21: 8.1, Satz 2, p. 201J , or [18: 1.1, p. 1-7]), the plane P is 
isomorphic with the desarguesian plane over F if the stabilizer TL of each line L through 
o = (0, 0) E F' is an F-subspace of T = F'. In the non-desarguesian case, one finds a 
translation.,. E F' \ ((a, 0)) such that the F-subspace A spanned by T is not contained in 
the line joining 0 and T. The centralizer C. (7") acts trivially on the point set A. IT it is 
not contained in a line, then the set A generates a Bacr subplane or the whole plane, and 
assertion c) follows from [28: 5.1J and [28: 6.3J. 0 

(2.2) Remark. A similar result holds without the assumption of connectedness for 
desarguesian planes over arbitrary locally compact (skew) fields : Asse.rtion c) has to be 
replaced by the assertion that C+ (T) is non-compact for each translation T, and the group 
<I> must be clo>ed in Aut (P). 
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3. Abelian groups of automorphisms of stable planes. 

(3.1) Definitions. 

389 

a) A ~table plane is a non-degenerate linear space M = (M, M) , where the point space M 
and the line space M are endowed with locally compact Hausdorff topologies such that 
• the covering dimension dim M is positive and finite 
• joining of points and intersecting of lines are continuous operations 
• the set of intersecting lines is open in M x M. 

b) For any subset E ,; M that contains a quadrangle, a non-degenerate linear space 
E = (E,£) is induced on E, where £'; M consists of those lines that meet E in more 
than one point. If E ,; M i. locally compact and dim E > 0, then E is a stable plane. 
The linear space E is called full in M if any point that i. incident with two lines of £ 
belongs to E. 

c) For any subset X ,; M that contains a quadrangle, the subplane generated by X in M 
is the smallest closed full subplane E = (E, £) of M satisfying X ,; E. 

d) A stable plane is called almo,t projective if the complement of some line is an affine 
plane [13: 4.1). 

(3.2) Remarks. General information about stable planes can be found in the work of 
R. Lowen ([ll), [13), [15)). For our purposes, the following properties are of particular 
importance: 
0) The only possible value. for dim M are the integers 2, 4, 8, and 16 (see [15: Th. 1)). 
b) If X is a connected subset of M that is not contained in any line, then the sub plane 

generated by X is a stable plane. 
c) For any proper closed full subplane E = (E,£) of M = (M,M), we have that dimE < 

dim M, see [28: 3.3). 
d) For each point p E M, the line pencil Mp = {L I pEL E M} is a compact con­

nected homotopy I-sphere, where I = dimMp = dimL = !dimM (see [ll: 1.14, 1.17), 
[15: Th. 1, Th. 3)). 

(3.3) Lemma. Let lJ. be a connected locally compact abelian group of automorphi,ffij of a 
,table pla.ne M = (M,M) with dimM = 21. Then we have one of the following (mutually 
ezdwive) caJe": 
a) 6. i.s qU4.5i-per"pective {i.e. each orbit in M i" contained in a line}. 

In thi" caJe, the "tabilizer of any line moved by A. i" trivial, and dim A. ':5 dim M = 2/. 
b) There i.! a point p E M who"e orbit p6 generate" the whole plane. 

Con"equently, the "tabilizer flp i.! trivial, and dim fl ~ dim M = 2l. 
c) There are pointJ who.!e orbit" are not contained in any line, but each of !he"e orbit" 

generate" a proper "ubplane. 
In thi" ca.!e, dimfl $ ~l < dimM. 

Proof: Obviously, the three cases are mutually exclusive. 
i) In case a) , the orbit of each point z moved by fl is contained in a unique line Fz , which 
is fixed by 1:1.. Consequently, the stabilizer ll.G of a line G moved by ll. acts trivially on G 
and on each of the images of G. Having two axes, the group t:J.G is trivial. The bound for 
the dimension of lJ. follows from [8). 
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ii) In case b), the stabilizer of p acts trivially on p" (since I:>. is abelian) , hence trivially 
on M and is therefore trivial. The bound for the dimension of I:>. follows from [8] again. 
iii) In case c), we proceed by induction on I. For I = 1, there are no proper full subplanes 
of M, and case c) cannot occur. Assume that I > 1. Then I is one of the integers 2, 4, or 
8 (see [15]). Let E = (E,E) be a proper ~-invariant subplane of maximal dimension. The 
locally compact connected abelian group I:>. is a product ~ = il?0 of connected group., 
where ~ acts almost effectively on E, while e is the connected component of the kernel 
of the action of ~ on E. By induction, we have that dimil? $ dimE $ I. Obviously, the 
assertion is true in the case where e = 1. H ~ = I, choose a line L that contains at least 
two points of E . Then L is fixed by ~ = 0, and for any point y E L \ E we have th.t 
dimy" $1. On the other hand, maximality of dimE yields that (E,y") = M and~. = 1. 
Thus we obtain that dim~ $ I. If il? # 1 # 0, there is aline L that contains at least two 
points of E and is moved by il? Choose y E L \E. Since (E,y") = M, we have th.t 0. = 1 
and dim 8 = dim ye. The orbit y" = y.e generates a ~-invariant subplane of dimension 
d, and d ~ 2dimye = 2dim0. By our assumption, we have that d $ dimE $ I. Hence 
dim 8 $ k, and the assertion follows from the fact that diml:>. = dim il? + dim 0. 0 
(3.4) Corollary. Let I:>. be a conneded locally compact abe/ian group of automorphi'mJ 
of a 'tab I, plane M = (M,M) and allum, that diml:>. = dimM. Then either ~ act.! 
qua"i-per3pectively with an open orbit in M I or t:1 ha" an open orbit in M. In both ca,se.t, 
the action of tl. on the open orbit i" $harply tran"itive. 
(3_5) Examples. 
a) On the projective quaternion plane, the 5-wmensional abelian group 

acts almost effectively and leaves invariant the complex subplane. Thus the bound in 
(3.3.c) is almost attained. Using results on the dimension of groups th.t act trivially on 
a subplane (c!. [12: 1.5], [26: 4.19] or [28: 5.1, 7.6,8.21]), tbis bound may be improved. 

b) The bounds in (3.3.b), (3.3.a) are attained by full translation groups or their duals, 
respectively. 

(3.6) Proposition. 
Let M = (M, M) be a .table plane of dimen,ion 21, and let ~ :! R2I be a group of auto· 
morphi317l.3 of M "uch that each one·parameter .subgroup act" qu""i.per"pectively. 
a) If 6 i" not qua"i·per"pective, then M i.! an almo.!t projective tran"'~tion plane with a 

acting aJ full group of tranJlationJ. 
b) If ~ i. qUaJi-peTJpective, then the .et F of fixed point.. of ~ ha, at mo,t one element. 

If "uch a point z exi.!t.s, each element 6 E l:J. ha.! center z. For each point z E M \ F, 
we have that l:J.~ ~ R', and l:J.~ acts .!karply traruitively on M z- \ {Fz-}, where Fz- i.s the 
line containing z.d . In particular, the group l:J. ;." tran"itive on Fz- \ F, and l:J.z- = ll(F.J ' 

c) If l:J. i.! quQ..5i.per.!pective, then M i.! a dual affine (or projective) trarulation plane if, 
and only if, the .. I;F" = {LEMI3zEM:{z} #z" ~ L} i, compact. 

d) We may identify ~ with the topological group (F', +), whcre F i. the I-dimen'ional 
divi,ion algebra over R (i. e. F E {R, C, H, O}). If, with r"ped to ,uch an identificatiDn. 
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the .stabilizer /j.~ is a line through the origin (i.e. an F.3ub.space in the ca.JI~" I :5 4) for 
each point z E M, then the .. t (~. I z EM, F) i, an open ,ub .. t of the pencil through 
the origin. 

Proof: i) In case a), lei::: be a one-parameter group of 6. ~ R". Since ~ is abelian. 
the set h = {L E M I 3z E M:{x} f z" ~ L} is left invariant by~. By 112: 1.1J the 
projection.:z: 1-+ F% (where Fz is the line containing z=) induces a local homeomorphism of 
any line (moved by~) to F". Thus I = dimF" ~ dim~/ ~G for G E F". On the other 
hand. ~. = 1 implies thai dim ~G < 1 and therefore 1 = dim 6.G = dim ~ / ~G' For any 
one-parameter group 0 of 6. not contained in AGI we consider the line H that contains 
the orbit x 9 . Since G -I H. we have thai ~G,H :5 6.. = 1 and ~G ~ R' ~ 6.H. According 
to [1], the orbit xA carries an affine translation plane A. The stable plane M contains A 
and is contained in the projective hull of A, hence it is almost projective. 
ii) In the quasi-perspective case, choose any line L :f:. Fr through a point z that is not 
fixed by~. Then 6.L = 1. and dim~/~. :5 I. From Ihe fact that dim~./ ~L :5 I we 
deduce that dim~. = I = dimL"'·. Thus L"'· is open in M. for each L E M., {F.}. 
Since M. , {F.} is connected. we infer Ihal ~. acts sharply transitively on M. , {F.}. 
from which we obtain that M. , {F. } is homeomorphic with R' and 6.. ~ R'. Choose any 
point y E M "F. that is moved by ~. Then the line xy E M. , {F.} can be moved to L 
by an element of .6.2;1 leaving invariant FII • Therefore, ea.ch line L E M2; \ {F2;} intersects 
with any line FlI E ;:tJ.. Now.6.J; acts transitively on FII \F, and.6. l1 fixes each point in FlI . 
iii) By ii). each line L that i, moved by 6. intersects with each line F, E F",. IT the setF", 
is compact, we conclude that L is a compact line. P&ssing to the opposite plane 113: l.l}, 
case c) is reduced to case a). IT ~ acts as a dual Iranslation grouP. then F", equals the 
pencil through Ihe center z (ef. b)) and is therefore compact. 
iv) Let 1', F denote the set of lines through the origin. endowed with the quotient topology 
from the mapping 

'If : ~ , 1 = F' , {O} -> 1',F : 6 ..... H . 

Assume that 6.2; E 'PI F for each point z. We choose a. line L that is moved by fl.. According 
to ii), this line intersects with each line FJ; E FA , and fl.J; = .6.(F.J. Now the mapping 

is well defined and injective. For:en E L we may choose 6n in the unit sphere of .6. = R21 
such that fl. z .. is the line joining the origin and 8n. Since the unit sphere is compact, there 
is a sequence 8n• converging to some 6. For:en -+ :e we obtain that 5 E .6.%' Thus.6.% 
equals the line joining the origin and 6n• and Ihe graph {(z.~.) I Z E L} of I' is closed in 
L x 1', F. Since 1', F is compact. we conclude Ihat I' is conlinous [3: XI. Th, 2.7J. Now 
the restriction of J1 to any compact neighbourhood eeL is a homeomorphism onto C,.,. . 
Since 1', F has the domain invariance property. we find thai I' is an open embedding. 0 

(3.7) Remarks, 

a) In its nalural (linear) action on the real affine plane. the group { ( '.) I a. b > O} e! R' 
is not a translation group and not quasi-perspective (indeed, the one-parameter 
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subgroup {( II a-I) I a> o} is not quasi-perspective). There are also compact 4-
dimensional projective planes admitting a group of automorphisms that is isomorphic 
with R' but is not a translation group, see [10: Satz 1,3)1. 

b) For 1 = 1, there are no proper translation planes. Translation planes admitting large 
automorphism groups have been studied by D. Betten in the case 1 = 2. The cases 
I = 4,8 have been treated by H. Hii.hl. See [2), [6), [7), and the references given there. 

c) In the situation of (3.6,d), there do occur proper open subsets of the pencil through the 
origin: E.g., let P be a compact connected projective translation plane with translation 
group 1:.. Then I:. acts quasi-perspectively on the dual P' of P. Removing in P' all the 
points that lie on lines in some clo~ed set of lines through the common center of the 
elements of 6., we obtain a stable plane, on which tl. acts in the way described. 

In many cases, one may check quasi-perspectivity of one-parameter groups by considering 
their centralizers in Aut (M). The following criterion, which is a generalization of (2.1), 
will be used later. 

(3.8) Lemma. Let F E {R,C,H}, and ... ,ume that a group I:. :l! F2 of automorphi'lllJ 
of a ,table plane M = (M,M) act.! 'harply tran.itively on M. Let ~ be a locally compact 
group of 4utomorphi.5ffl.5 of M .such that 4t fixe" a point p EM, normalize" t:J. and acts 
F .Iinearly on I:. = F2 (via conjugation). If F = H and dim C. (0) > 1 for each <5 E IJ., or 
if F E (R, C) and dim C~ (0) ~ 1 for each 0 E 1:., then each one·parameter ."bgroup of II 
act" qu.a.5i~peTjpt!ctively, and the geometry induced on z,d i.5 the de"argue"ian affine plane 
with I:. acting ... full group of tran.lation.J. 

Proof: Assume that there is a one-parameter subgroup:::: of ll. that does not act quasi. 
perspectively. The F-subspace A spanned by =: is spanned by any element e E =: \ 1. Since 
l:l acts transitively on M, the orbit P= is not contained in a line. From the fact that l:lp = 1 
we infer that the subplane E generated by P" is either a Baer subplane or equal to M. The 
group C. (e) acts trivially on A, hence trivialiy on E, and we have reached a contradiction 
to [28: 5.1, 6.3) (cf. [28: 3.2)). The assertion follows from (2.1). 0 

4. Hermitian and dual hermitian quaternion planes. 
For any matrix A = (aij )l<i<n 1< >< m E H" xm, let __ , _1_ 

(ajj)l:$iSn,l:5i:$m = (ajih:$j$m,19:$n 

denote the matrix obtained by conjugation of the entries and transposition. Observe that 
for each y E H' we obtain that 

(4.1) Definition. Let f be one of the (skew) hermitian forms on H' defined by f(z , y): 
zJy, where J is the diagonal matrix diag(v"v"v.) with 

{ 

(1,1,1), (1,1,-1) , 
v = (v"v"v,) E (1,1,0), (1,-1,0), 

(1,0,0), 

(-1, -1, 1), 
(-1,1,0), 

(i,i,i) } 
(i,i,O) 
(i,O,O) 
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In the hermitian cases (i.e. v E R3), define 

In the skew hermitian cases, define 

M(v"",v,) = {HZ Z E H' \ {O}, Z (v' v, vJ i oF o}. 
Then the sets Mv are open, nonvoid subsets of the projedive quaternion plane that arc 
left invariant by the corresponding unitary group 

Moreover, this group acts transitively on the corresponding set MIJ by Witt'5 theorem [20]. 
For each v, the geometry Mv induced on Mv (or M~ on Mv U M_" if v E R') is a stable 
plane with Uv acting almost effectively as a group of automorphisms. In accordance with 
R. Lowen (14J, we call these planes the quaternion hermitian plane.!. The group U", will 
be referred to as the induced group. 
For convenience, we list the possibilities in a table. Let 

denote the set of isotropic points. The point set {q I q E L E S} will be called a quaternion 
cylinder Cit if S is a subsel of a line pencil Mp in the projective quaternion plane such 
that S is homeomorphic with the sphere S •• 

point set ~(\>1 ,\>2 ,\>3) 

full group of 
name of plane 

automoIphisms 

M(1,I ,I) 0 PSL, (H) elliptic plane 

M(I ,I,_I) } { ute,io' } 
M(_I,_I,I) S, PU, (H)(l) int~rior hyperbolic plane 

M(l ,l,_l) U M(l ,l ,_ l) muted 
Mu ' o 5, PU,(H)(i) skew hyperbolic plane ... 
M(I,I.O) {oo} ArL, (H) dual euclidean plane 

M(I, _ I,O) } C, ArU,H(l) { <y)ind" } I pane 
M(I ,_I ,O) U M(_I ,I,O) united cylinder 

MUiO) C, ArU,H(i) skew cylinder plane 

M(I,o,o) L ArL, (H) affine plane 
Muo 0\ 
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Note the curiosity that the familiar euclidean plane does not occur in this context (of 
course the underlying affine plane does occur, but the euclidean motion group only OCcurs 
in its dual action). The induced group differs from the full group of automorphisms in Ihe 
cases where v E {(I,l,I),(I,I,O),(i,O,O)). 
Duality of the projective quatemion plane allows to introduce dual quaternion henniti4n 
plan .. as follows: for any qualernion bermitian plane M, = (M"M) define Ihe dual 
qualernion hermilian plane 0 = (D, V) 10 be the geometry induced on D = M, considered 
as set of points in the dual projective plane. In the nondegenerate cases, we obtain the 
projeclive or the exterior hyperbolic plane. If v E {(1,0,0), (i, 0,0)) , the dual plane is jusl 
the dual euclidean plane (a larger group is induced, however). For v = (1,1,0), we obtain 
the euclidean (affine) plane. In the cases v E {(I, -1,O),(i,i,O)j we gel almosl projective 
planes, and the induced groups contain the full translation group. There is exactly one 
open point orbit under the induced group in these cases, namely the affine pla.ne. To these 
homogeneouJ open Bubpla.nes we refer as quaternion hermitian tran"lation plane,,_ Note 
thai for these geometries the groups differ rather than the underlying affine planes. 

(4.2) Remarks. 
a) The hermitian planes induced on MVI where 

E {(I,I,I), (1,1,-1), (-1,-1,1), (i,i,i)} 
v (1,1,0), (1,0,0), (i,O,O) , 

are delermined by the induced groups U. (cf. [17), [26: 7.8)). For Ihe cases v E 
{(I, 1,0), (1, 0, 0), (i, 0, O)j, we give an independent proof (in lerms of translation 
planes). In fact, we are going to characlerize Ihe qualernion hermitian planes and 
Ihe quaternion hermilian Iranslation planes by (subgroups of) Ihe induced groups. 

b) For stable planes o£low dimension (i.e. 2 or 4), R. Lowen has characterized the hermilian 
planes in terms of existence of many reilections [14). A similar attempt should work for 
quaternion hennitian planes. This is, however, beyond the scope of this note. 

(4.3) Lemma. 
Let 4>.6 be a group of automorphi.H1l.J of an 8-dimen"ional 3table plane, with ll. ~ R8 = H2 
and eli = U(J), where J E {( ',) , (' -1) ,( i i)} d .. crib .. a non· degenerate (,/;elll) 
hermitian form on H2. A.,.,ume that ~ aeu on A in the uJual, H-linear way. If l1 aeu 
qu ... i.peTJpectively, then the following hold: 
a) There iJ a line L such that ('1'Ll)L = '1'. 
b) For each point 1: E L , the .5tabilizer cI>~ equal" the normalizer N. (8;1:), and (~A)J: ;::: 

~J:.6.z' 

c) The central involution u = ( -1 -1) of cf? hG" azi" L . 

d) The involution a = ( -',) E eli has at leOJt one fixed point on L. 
Proof: i) Choose any line H Ihal is moved hy Ll. According 10 (3.4), we have that 

LlH = 1. Lei I< : eliLl ..... '1' be the canonical mapping. We infer that I<I(eliLl)H is an 

isomorphism of ('1'Ll)H onlo '1'. Therefore ('1'Ll)H is a Levi-complement as well as '1', and , . 
there is some 5 ELl such that eli = ('1'Ll)H = (eliLl)H'. 
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ii) From 6. = 61F.) (c!. (3.6)) we obtain that the normalizer N. (6.) fixes the aDs F. 
and the intersection point x = F. "L. On the other hand, the stabilizer <1>. fixes the 
line F. and therefore normalizes 6[F.) (recall that 6 is normalized by <1». IT '" ~ <1>. then 
z~ ~ F. and x~A nF. = 0. Therefore ",6n(<I>6). = 0, and we have that", E <1>. whenever 
'1'5 E (<1>6) •. We conclude that (<I>Ll.). = <1>.6 •. This proves assertion b). 
ill) The involution u normalizes each R-subspace of 6. Therefore assertion b) yields that 
q E '1»[L], and assertion c) is proved. 
iv) For each 5 E 6. \ 1, the centralizer C. (5) fixes the aDs F. of 5 and is therefore 
contained in ~:. For each non-isotropic 6 (with respect to the sesquilinear form induced 
by J on 6), there i, a conjugate of l>. in C. (5). If l>. has no fixed points in L, we have 
therefore that each stabilizer 6.% is an isotropic H-subspace in fl.. There is, however, no 
open set of isotropic suhspaces in 'Pl H, in contradiction to (3.6.d). 0 
(4.4) Proposition. L<t <l>l> be a group of automorphi,",", of an eight·dimeruional ,table 
plane, with l> ~ R' = H' and <I> = U(J), where J E {( 11) , (1 -1) ,(;;)} d .. crib .. 
a non-degenerate (.5kew) hermitian form on H2. A.uume that cP act" on 6. in the uJual, 
H-linear way. 
0) If 6 i. not qua.i·perJpective, then M ;., ;"omorphic with the plane induced on the com· 

plement of .wme clo.H!d 4ub.set of a line in the projective quaternion plane, and the group 
~.6. ac~ in the u.mal way. 

b) If 6 i. qua.ipeTJpective and J = (' 1 ), then the .table plane M ;., ;"omorphic with the 
dual euclidean quaternion plane, or itJ projective clo.sure. 

c) If /). i" qua.si·per.spective and J = (1 -1)' then the .stable plane M ha" a.n open 4i/)' . 

invariant "ubplane that i" isomorphic with the cylinder plane M(l,-l,O)' 

d) If /). i.s qU4.si-per.spective, J = (i i)' and the involution a = ( -11) i.s not planar, then 

the .stable plane M ha" an open ~.6.·invariant .subplane that i.s i.5omorphic with the .skew 
cylinder plane M(i,i,O)' 

Proof: i) Assume that /). is not quasi.perspective. According to (3.4), there is a point p 
such that 6, = 1. Gomparing dimensions, we obtain that (<I>Ll.), = (<I>l»,/ Ll., - <1>. Since 
t is a Levi-complement, we may assume that ~ = (~.6.)p" Using Witt's theorem [20], the 
centralizer C. (.5) is computed easily for each 5 E l>. Now assertion a) follows from (3.8). 

ii) Assume that 6 acts quasi-perspectively, and J = (11)' Then the compact group <I> = 
U, (H) acts transitively on the connected set :h = {L E M I 3x EM: {x} i' xA ~ L} 
(cf. [19: Th. 1]). By (3.6.b), the plane M is a dual affine translation plane or its projective 
closure. Passing to the dual plane reduces this situation to case a). 
ill) Assume that J = (1 -1)' According to (4.3) and [26: 4.19J or [28: 6.5), the involution l>. 

is neither free nor planar. Therefore there is a point x E L that is the center or lies on the 
aD, of a. In the first case, we obtain that l>. = CA (a), and <1>. = N. (CA (a» by (4.3.b). 
In the second case, we have that au fixes the axes of Q and u. Since these axes intersed 
in x, and since commuting involutions cannot have the same axis [29: 9), we obtain that 
au E eI(z)' Now (11) induces an (outer) automorphism of~, interchanging Q and au. 

Therefore the ,tabilizer (~l>). i. determined. According to (3.6.b), there are two line 
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orbits in M .. namely {F.} and M. \ {F.} = L"·. Now (4)~)L = 4> and (4)~)F. = 4>.6.. 
and the geometry induced on ",+" can be reconstructed according to [27J or [26: 6.3J. 

iv) Assume that J = (; ;). According to (4.3). the involution" is not free. By assumption. 

a is not planar, and we can proceed analogously to iii) (recall that a and au are conjugate 
in U(J». 0 

(4.5) Remark. The groups considered in (4.4) are proper subgroups of U(I.I,O). U(I,_I,O) 

and U(;,;,O). respectively. For the skew cylinder planes the full group U(;,;,O) yields that Q 

is not planar: the centralizer of a in U(i,i,Q) contains the group ETE, where 

According to [17J. this group cannot act almost effectively on a four-dimensional plane. 
Since ETE has no normal subgroup of dimension 1. we obtain from [26: 4.19) or [28: 6.3J 
that a is not planar. 
Restricting ourselves to point homogeneous stable planes. we can state the following resuit: 

(4.6) Theorem. Among the point homogeneou.s "table planes oj dimeruion 8, the quater· 
nion hermitian plane" are, u.p to duality and i"omorphi"m, determined uniquely by the 
correJponding unitary group". 

Proof: Let M. be a quaternion hermitian plane with induced group U. . IT v E 
{(1.1.1).(1.-1.-1).(-1.-1.1)) the assertion has been proved by R. Lowen [17J. Note 
that M(I,I,_I) is the dual of MC-I,-I,I)' The case where v = (i.i.i) has been treated by 
the author in [26: 7.8J. The remaining cases (where the hermitian form is degenerated and 
the induced group is not simple but of mixed type) are covered by Proposition (4.4). 0 

(4.7) Remark. The assumption of point-homogeneity is necessary to make the reconstruc· 
tion method of [27J applicable. There remains the problem to decide whether each stable 
plane that admits one of the groups U \I is isomorphic with some U v-invariant subplane of 
the projective plane over H. 
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