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Kurzfassung 

Die beschleunigte Erwärmung der Arktis infolge des Klimawandels führt zu einer weit-

reichenden Degradation von Permafrost und wirkt sich auch auf die Stabilität arktischer 

Ökosysteme aus. Hierbei sind Thermokarst und Thermoerosion zwei prominente Prozesse 

der Permafrost Degradation. Die räumliche Verbreitung von thermo-erosiven Prozessen und 

den hieraus resultierenden Landformen (z.B. Gullys und Täler), sowie deren Einfluss auf die 

Permafrost Degradation sind noch unzureichend quantifiziert. Die vorliegende Arbeit widmet 

sich diesem Forschungsrückstand und nutzt eine Kombination aus Felddaten, hoch-

auflösenden Satellitendaten, sowie digitalen Geländemodellen (DGMs) für eine detaillierte 

Inventarisierung und räumliche Analyse von Thermoerosionsformen, um deren Dynamik und 

Relevanz bei der Degradation von eisreichem Permafrost zu verstehen. Das Untersuchungs-

gebiet im zentralen Lena Delta setzt sich zu großen Teilen aus eis- und organikreichen 

syngenetisch gefrorenen Sedimenten mit spät-pleistozänem Alter zusammen (Eis Komplex). 

Neben polygonaler Tundra, Thermokarst Seen, weiten Thermokarst Ebenen und ungestörtem 

Eis Komplex gibt es im Untersuchungsgebiet auch eine große Varietät von Thermoerosions-

Tälern. Während einer Expedition im Sommer 2013 wurden mittels Ecktzeitkinematik-GPS 

11 Kontrollpunkte, 28 topographische Quer-, sowie drei Längsprofile in drei repräsentativen 

Gebieten vermessen. Ein geometrisch konsistenter Datensatz aus GeoEye-1, RapidEye und 

ALOS PRISM Satellitendaten, sowie mehrere hochaufgelöste DGMs mit 5m Bodenauflösung 

wurden erstellt. Die DGMs wurden anhand der Felddaten hinsichtlich absoluter Höhe und 

Hangneigung evaluiert und das thermo-erosive Gewässernetzwerk auf Grundlage der 

Satellitendaten digital kartiert und morphometrisch analysiert. Die höchste DGM Genauigkeit 

wurde mit einer Kombination von sechs Stereopaaren der Jahre 2006 und 2009 erzielt und 

die aus dem DGM abgeleiteten Quer- und Längsprofile spiegeln die tatsächliche Form und 

Morphmometrie der Täler wieder. Das Fließgewässernetz zeigt innerhalb von weiten 

Thermokarstsenken einen hohen Grad an Organisation und ist auf den Eis Komplex Ober-

flächen nur schwach entwickelt. Die Täler sind tendenziell nach dem Höhengradienten des 

Untersuchungsgebietes in Richtung Nordwest orientiert. Talabschnitte außerhalb von 

Thermokarstsenken zeigen jedoch zwei Hauptrichtungen, die das polygonale Netz im Unter-

grund wiederspiegeln könnten. Einhergehend mit einer weiteren Erwärmung des 

Permafrosts infolge des Klimawandels werden Thermokarst und Thermo-Erosion wesentlich 

zur voranschreitenden Permafrost Degradation beitragen. In diesem Zusammenhang spielen 

die sich im Eis Komplex weiter ausbreitenden thermo-erosiven Gewässernetzwerke eine 

entscheidende Rolle bei dem Transport des durch Permafrost Degradation freigesetzten 

fossilen organischen Kohlenstoffs in das System der Laptev See.  
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Abstract 

Rapid warming of the Arctic promotes widespread degradation of permafrost and affects the 

stability of arctic ecosystems. Thermokarst and thermal erosion are two major processes of 

permafrost degradation. The spatial extent of thermo-erosional processes and related 

landforms (e.g. gullies and valleys) and their impact on the widespread degradation of 

permafrost remains not well quantified. Addressing this research gap, this study is using a 

combination of field data, high-resolution satellite data and photogrammetically derived 

digital elevation models (DEMs) to conduct a detailed inventory and spatial analysis of 

thermo-erosional landforms in order to understand their dynamics as well as their relevance 

for permafrost degradation. The study area in the central Lena Delta is mainly composed of 

ice- and organic-rich and syngenetically frozen deposits of Late Pleistocene age called Ice 

Complex. Besides polygonal tundra, thermokarst lakes, wide thermokarst depressions and 

undisturbed Ice Complex surfaces the study area features a broad variety of thermo-erosional 

valleys. During an expedition in summer 2013 RTK GPS measurements of 11 ground control 

points and 28 transversal and 4 longitudinal profiles were conducted in three key sites. 

Geometric data fusion of GeoEye-1, RapidEye and ALOS PRISM datasets was performed and 

several high-resolution DEMs were generated. The DEMs were evaluated for absolute height 

and slope against the field dataset and the thermo-erosional stream network was mapped 

and morphometric analysis of the identified features was performed. The highest DEM 

accuracy was achieved when using a combination of six stereopairs from the years 2006 and 

2009. The DEM derived transversal and longitudinal profiles reflect the actual shape and 

morphometry of the valleys. The identified stream network shows levels of high organization 

within thermokarst depressions and is poorly developed on the Ice Complex surface. The 

stream orientation tends to follow the height gradient of the study area towards northwest, 

while streams outside of thermokarst depression show two main directions that could reflect 

the polygonal network in the ground. Accompanying permafrost warming thermokarst and 

thermo-erosional activity will further promote permafrost degradation. In this context 

thermo-erosional stream networks will expand within the Ice Complex and act as a major 

agent for the transport of remobilized fossil organic carbon to the Laptev Sea system. 
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1 Introduction 

The Arctic is a substantial and very sensitive element in the Earth’s climate system that is 

undergoing rapid and far reaching changes. The last decades in the Arctic are characterized 

by significant warming due to climate change. These changes occur about two times faster 

than the global average [AMAP, 2011] and have a significant impact on polar permafrost 

regions. As a consequence permafrost thermal state is affected by rising temperatures and 

resulting permafrost degradation is leading to fundamental landscape changes as observed 

throughout the northern latitudes [AMAP, 2011; Romanovsky et al., 2010b]. Within the frozen 

deposits of northern permafrost regions 1762 Pg of carbon is stored, about twice as much as 

is present in today’s atmosphere [Tarnocai et al., 2009]. This ancient carbon pool is very 

sensitive to temperature changes and can potentially be mobilized through thawing [McGuire 

et al., 2009; Schuur et al., 2008]. When released into the atmosphere these carbon stocks 

could further accelerate global warming resulting in a positive feedback mechanism [Koven et 

al., 2011].  

In periglacial environments, thermokarst and thermal erosion are two major processes of 

permafrost degradation that form prominent landscape features in Arctic lowlands. While 

thermokarst is defined as a process by which characteristic landforms result from the 

thawing of ice-rich permafrost or the melting of massive ice, thermal erosion is the erosion of 

ice-bearing permafrost by the combined thermal and mechanical action of moving water [van 

Everdingen, 2005]. This process is leading to the erosion of ice-bearing coastlines [Günther et 

al., 2013], shores of lakes with significant wave activity [Jones et al., 2011], riverbanks 

[Costard et al., 2007] and land surfaces [Morgenstern, 2012]. Thermokarst and thermo-ero-

sional processes not only contribute to the release of fossil organic matter to the atmosphere 

[Schuur et al., 2009], but substantially alter the water and energy balances of the affected 

ecosystems and consequently change the living conditions of arctic communities.  

While thermokarst-related processes and resulting landscape features have been well 

studied in Siberian ice-rich permafrost regions [Grosse et al., 2007; Günther, 2009; 

Morgenstern et al., 2013; Ulrich et al., 2010], few detailed investigations have been under-

taken regarding thermo-erosional processes, the resulting features and their relevance for 

permafrost degradation. Thermo-erosional valleys in the Lena River Delta have been de-

scribed by Grigoriev [1993]. In the context of an overall quantification of thermokarst-

affected terrain types in two regions of the East Siberian, thermo-erosional valleys were 

mapped by Grosse et al. [2006]. Morgenstern [2012] conducted a detailed inventory of 

thermo-erosional landforms for three ice-rich arctic lowland sites in Siberia based on Landsat 

imagery and revealed substantial differences in the drainage networks that depend on 
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previous degradation by thermokarst, neo-tectonics and the general hydrological and relief 

situation. On Bylot Island in the Canadian Arctic, rapid formation of thermo-erosional gullies 

and the development of subsurface channels are reported [Fortier et al., 2007; Godin et al., 

2014]. The impacts of thermal erosion on the local environment are diverse and include: the 

erosion of ice-rich sediments; alteration of sediment; nutrient and carbon transport to rivers, 

lakes and the sea; the restructuring of drainage networks; changing of stream runoff volumes 

and their timing; and the drainage of thermokarst lakes [Rowland et al., 2010]. Thus, the 

understanding of thermo-erosional processes in the context of climate change and the wide-

spread degradation of permafrost landscapes is of major importance. 

For the morphometric analysis of thermo-erosional features (e.g. channels, gullies, 

valleys) and their surrounding terrain, high resolution Digital Elevation Models (DEM) are 

fundamental. Operational remote sensing elevation products that are available for arctic 

regions are delivered with a medium to coarse resolution that is insufficient for detailed 

morphometric studies. Therefore, the use of photogrammetric techniques to extract high-

resolution DEMs from stereoscopic remote sensing datasets is a common and useful 

approach [Wilson, 2012]. However, photogrammetric DEM generation in low-contrast arctic 

tundra environments with low height gradients is challenging and time consuming, and DEM 

products must carefully be validated [Kääb, 2008]. Therefore, extensive field-work and 

ground truthing is essential to perform multi-platform and multi-temporal image fusion, and 

to control the quality of the derived products. 

This study aims at closing research gaps regarding the degradation of ice rich permafrost 

in Siberian arctic lowlands by thermal erosion. This will be done by performing 

morphometric analyses by using a combination of field and remote sensing data and high-

resolution DEMs.  

The following research questions are formulated: 

- Are DEMs extracted from ALOS-PRISM satellite data a suitable basis for the morpho-

metric analysis of thermo-erosional valleys in ice-rich permafrost? 

- How are thermo-erosional valleys distributed in the study area? 

- What are the driving factors for the presence of the identified valley types?  

Based on the research questions the main objectives are: 

- To generate high-resolution DEM products 

- To evaluate the ALOS-PRISM DEM for the morphometric parameters elevation and 

slope. 

- To map and characterize thermo-erosional landforms. 

- To identify the driving factors for the development of these landforms.  
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2 Scientific background 

2.1 Permafrost 

Permafrost is defined as “ground (soil or rock and included ice and organic material), that 

remains at or below 0°C for at least two consecutive years” van Everdingen [2005]. According 

to this definition, permafrost regions make up ca. 24 % of the land area of the Northern 

Hemisphere [Zhang et al., 2008]. In Russia, more than half of the landmass is underlain by 

permafrost, thus it is one of the world largest permafrost regions [Romanovsky et al., 2010a] 

(Figure 2-1). The periglacial extent not only includes high latitude landscapes, but also vast 

areas of the continental shelves of the Arctic Ocean and mountainous areas in lower latitudes 

[Romanovsky et al., 2010b] (Figure 2-1).  

The most important environmental drivers of permafrost conditions are topographic 

features (e.g. relief and aspect), snow cover, vegetation, subsurface material and the moisture 

content of the ground [French, 2007; Washburn, 1979].  

 

Figure 2-1: Permafrost extent in the Northern Hemisphere; after Brown et al. [1997] in Heginbottom et al. [2012]. 

 

Four major regions of permafrost distribution can be distinguished (Figure 2-1 and 

Figure 2-2): 
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1. Within the continuous zone 90 to 100 % of the area is underlain by permafrost. It is 

mostly found in the high latitudes of the Northern Hemisphere, with climate 

conditions that favor active formation of frozen ground (ca. -15°C mean annual air 

temperature). Most continuous permafrost was formed during or before the last 

glacial period. 

2. In the discontinuous zone permafrost covers 50 to 90 % and is separated by taliks. 

3. Within the sporadic zone permafrost covers an area of 10 to 50 %. It is often relict 

and in the process of degradation, or it is much younger and formed within the last 

several thousand years. 

4. The isolated zone shows only single patches of frozen ground in an otherwise 

unfrozen area and covers <10 % of the total area. This zone is a result of advanced 

permafrost degradation [French, 2007; Romanovsky et al., 2010b; Weise, 1983].  

 

 

Figure 2-2: Transect of the 
permafrost zone of East 
Siberia, after French [2007] 

 

 

Permafrost is overlain by an active layer (Figure 2-3), which is affected by seasonal freeze 

and thaw cycles. The depth of the active layer can vary significantly from year to year as well 

as between locations. It is strongly connected to the permafrost controlling factors listed 

above. The permafrost table is the boundary between the active layer and the upper limit of 

the permafrost (Figure 2-3) [Washburn, 1979]. 

The most important factor for the temperature regime of the active layer is the vegetation 

cover with its isolating properties. Furthermore exposition, topography and sediment type 

influence the thickness of the active layer. While active layer thicknesses of up to 3 m can be 

observed in subarctic regions or areas with coarse grained sediments, just several 

centimeters of thawing occur in high arctic regions. 
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Figure 2-3: Vertical differentiation of the 
permafrost zone; talik1: suprapermafrost; 
talik²: closed; talik³: intrapermafrost; talik4: 
subpermafrost; after French [2007], modified 
by Strauss [2010]. 

2.2 Ground ice 

Ground ice is a main feature of permafrost and refers to all types of ice contained in freezing 

and frozen grounds [van Everdingen, 2005]. The stability of landscapes containing frozen 

soils is strongly connected to the ground ice content and the degradation of permafrost 

would mean a loss in system stability [Romanovsky et al., 2007].  

According to Mackay [1972] ground ice can be classified into four types: 1) pore ice, 2) 

segregated ice, 3) vein ice and 4) intrusive ice. Particularly important for this research is a 

type of vein ice called ice wedges (Figure 2-4 and Figure 2-5). Due to a rapid temperature 

drop in the winter, the ground can shrink and crack. In late May or early June, melt water 

from snow then trickles down into the cracks and forms thin veinlets of ice. Through 

repeated cracking at the same place the ice wedge grows from year to year [Lachenbruch, 

1963; Mackay, 1990] (Figure 2-5).  

  

Figure 2-4: Scheme of the evolution of an ice wedge 
according to the contraction cracks [Lachenbruch, 
1963] 

Figure 2-5: Schematic diagram showing the growth of 
epigenetic and syngenetic ice wedges; point in time: (1) 
first, (2) second, (3) third; ice wedge at (a) first (b) 
second (c) third point in time [Mackay, 1990]. 
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Syngenetic ice wedges form at approximately the same time as the enclosing sediments 

accumulate, whereas epigenetic ice wedges form after sediment deposition [French, 2007] 

(Figure 2-5). Ice wedges originate through thermally induced cracking of the frozen 

groundand form under stable climatic conditions. Therefore simply their existence allows 

paleoclimatic interpretations [Washburn, 1979]. 

2.3 Polygonal nets and lakes 

Ice wedges can form polygonal net features on the ground surface (Figure 2-6). These are 

characteristic for arctic tundra regions and widespread in the Lena Delta region [French, 

2007] (Figure 2-7). There are two main types of ice wedge polygons: 1) low-center polygons 

and 2) high-center polygons. In low-center polygons the rim is usually higher than the center 

and ponds are developing inside (Figure 2-7).  

The degradation of the polygon rims and changes in the hydrological regime can 

transform low-center polygons to high-center polygons, which are often accompanied by 

stream incision along the lines of the bordering ice wedges, interpolygon ponds and thaw 

lakes. While low-center polygons indicate a wet or poorly drained tundra environment, high-

center polygons are mainly a feature of a dry tundra [French, 2007]. 

  

Figure 2-6: Schematic view of modern polygonal nets. 
After Romanovskii [1977], modified by Strauss [2010] 

Figure 2-7: Polygonal tundra with polygon ponds in 
the Lena Delta 

2.4 Ice Complex and Yedoma 

Ice-rich and syngenetically frozen deposits of Late Pleistocene age are often referred to as 

“Ice Complex” [Schirrmeister et al., 2012]. Ice Complex is exposed at shores and riverbanks by 

up to 50 m high outcrops composed of more or less degraded ice wedge bodies with 

thermokarst mounds in between (Figure 2-8). These exposed outcrops vertically or 

diagonally cut the polygonal ice wedge systems. Ice Complex deposits contain ice wedges 

which make up to 80 % of the total volume [Schirrmeister et al., 2011]. 
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Figure 2-8: Exposed Ice Complex sequence at the eastern shore of Kurungnakh Island, Lena Delta 2013. 

Originally, “Yedoma” defines relief features in East Siberian lowlands, for instance ele-

vated areas dissected by thermokarst depressions. Due to this striking relief feature, the 

native Yakutian people called it “Yedoma”, which means “corroded earth” [Tomirdiaro, 1982]. 

Nowadays Yedoma is regarded as a morphological unit consisting of hills that are dissected 

by alas depressions. It is suggested that the Yedoma hills are remnants of former 

accumulation plains [Romanovsky et al., 2010a]. In this work the term Ice Complex is used for 

this stratigraphic unit.  

With regard to climate change, it is predicted that the Ice Complex deposits will be 

transformed from a long-term carbon sink to a major carbon source as these organic-rich 

sediments thaw and greenhouse gases are subsequently released [Walter et al., 2006; Zimov 

et al., 2006]. 

2.5 Permafrost degradation 

2.5.1 Thermokarst and alasses 

Thermokarst is a main process of permafrost degradation that forms characteristic landforms 

due to surface subsidence caused by the disturbance of the permafrost’s thermal equilibrium. 

Climate change, disturbance of vegetation cover, fire, the shift of drainage channels or human 

activities can initiate thermokarst activity [French, 2007; Washburn, 1979]. 

As a result the active layer depth is increased and permafrost thaws beyond seasonal 

cycles. The volume loss of thawing ground ice can lead to the formation of thermokarst 

depressions, which are often called alasses in Siberia. In the Yakutian language an alas is a 

grassy, treeless meadow that occupies a flat-floored thermokarst depression with steep sides 

[Tomirdiaro, 1982]. Alasses are round to oval and many contain shallow lakes [Washburn, 

1979]. The vertical dimension of alasses can be up to 40 m depth. Horizontally they can range 
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from 100 m to a few kilometers in diameter when adjacent alasses coalesce and form wide 

alas valleys (Figure 2-9; Stage 4a) [Washburn, 1979]. 

 
 

Figure 2-9: Stages of alas relief 
development in Central Yakutia; after 
Soloviev [1973], in French [2007]. 

2.5.2 Thermal erosion and thermo-erosional valleys 

Thermal erosion is “The erosion of ice-bearing permafrost by the combined thermal and 

mechanical action of moving water” [van Everdingen, 2005]. 

Unlike thermokarst activity, where the eroded sediments stay at the same location, the 

process of thermal erosion includes the transport of the thawed sediments. This process 

occurs at sea coasts promoting coastal erosion [Günther et al., 2013; Lantuit et al., 2011], 

along riverbanks resulting in the shifting of islands [Costard et al., 2003], and on surfaces of 

ice-rich sediments where it causes the rapid formation of thermo-erosional gullies and 

valleys [Godin et al., 2014; Morgenstern, 2012]. Still, in today’s understanding of periglacial 

geomorphology the link between slope form and process is still unclear; distinguishing 

between past and present processes is a major problem because many periglacial landscapes 

are in disequilibrium with current cold-climate conditions [French, 2007]. 

According to Morgenstern et al. [2014] eight different categories of thermo-erosional 

valleys can be distinguished for Siberian Ice Complex study sites (Table 2-1). 
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Table 2-1: Types of thermo-erosional valleys in Siberian ice-rich permafrost according to Morgenstern et al. [2014] 

Category Occurrence Characteristics Hydrologic 

regime 

a) Short, straight 

gullies 

On alas and thermo-

karst lake slopes 

Radially arranged around lakes and alasses; 

v- to u-shaped; steep gradient; up to few 

meters deep and wide; dense, fresh vegeta-

tion 

Intermittent 

streams 

b) Drainage 

pathways  

in alasses 

On alas floor Connect residual and secondary thermo-

karst lakes in partly drained alasses with the 

stream network outside the alasses; slightly 

intented into the alas floor; low gradient; up 

to a few meters wide; dense, vital vegetation 

Intermittent and 

small perma-

nent streams 

c) V-shaped 

ravines 

Along steep coasts and 

cliffs; often due to lake 

drainage 

V-shaped; steep to moderate gradient, up to 

tens of meters deep and wide; vegetation 

cover on floor and lower slopes often dis-

turbed 

Intermittent 

streams 

d) V-shaped 

valleys 

In upper parts of the 

watersheds on Ice 

Complex surfaces 

Mostly tributary valleys; v-shaped; moderate 

to low gradient, up to tens of meters deep 

and hundreds of meters wide; intact vegeta-

tion cover 

Streams 

e) U-shaped 

valleys 

On Ice Complex surface U-shaped; low gradient, up to tens of meters 

deep and several to tens of meters wide; flat 

valley floor with vital vegetation 

Intermittent and 

small perma-

nent streams 

f) U-shaped 

valleys of 

permanent 

streams and 

rivers 

Lower parts of long 

streams close to their 

mouth 

U-shaped; low gradient, up to tens of meters 

deep and hundreds of meters wide; broad 

floors with distinct floodplains; often bare 

sediment exposed; oxbow and small thermo-

karst lakes 

Permanent, 

meandering 

streams 

g) Broad valley 

floodplains 

Lower parts of long 

streams close to their 

mouth 

Low gradient, up to tens of meters deep and 

hundreds of meters to kilometers wide; 

broad floors with distinct floodplains; often 

bare sediment exposed; oxbow and small 

thermokarst lakes 

Permanent, 

meandering 

streams 

h) Water tracks On gently sloping Ice 

Complex surfaces; on 

large, slightly inclined 

alas floors 

Arranged in parallel; low gradient; not or 

only slightly indented into the surface; dense, 

vital vegetation 

Poorly 

developed 

runoff systems 
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3 Study area and regional setting 

The Lena River Delta in the southern Laptev Sea has an approximate center point at 72°N and 

126°E and is the largest of the arctic deltas. It covers about 32 000 km² and is highly dis-

sected by rivers and streams with more than 1 500 islands [Are and Reimnitz, 2000]. The 

mean annual discharge between 1999 and 2008 of the Lena River into the Delta area and the 

Laptev Sea amounts to 588 km³ from a contributing watershed area of 2.46 106 km² [Holmes 

et al., 2012]. About 70 % of the riverine sediment discharge of the Laptev Sea is provided by 

the Lena River [Rachold et al., 2000]. 

The Lena Delta is located in the zone of continuous permafrost with a maximum 

thickness of about 500 to 600 meter [Romanovskii et al., 2004]. The basis for the present 

permafrost distribution in the region was the Middle to Late Pleistocene, when the global 

water level was about 120 m lower and the shoreline of the Arctic Ocean was several 

kilometers seawards of today’s shore. The cold and dry climate led to permafrost aggradation 

in the study area on a flat accumulation plane in front of the Chekanovsky Ridge 

[Schirrmeister et al., 2011] (Figure 3-1). The change of the environmental conditions to a 

warmer and wetter climate during the transition of the Late Pleistocene to the Holocene did 

promote permafrost degradation and thermokarst processes began to form the landscape 

[Wetterich et al., 2008]. These have been active throughout the Holocene with varying 

intensity [Romanovskii et al., 2004].  

The Lena River Delta is situated in a neotectonic zone that is characterized by high 

seismic activity and resulting vertical movements of several blocks [Are and Reimnitz, 2000]. 

The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea and uplift of the Siberian 

coast ridges are the main drivers for these processes [Schwamborn et al., 2002]. These 

activities are important factors for today’s complex structure of the delta channels and were 

most likely responsible for changing the major flow directions within the delta during the 

Holocene [Schwamborn et al., 2002]. 
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Figure 3-1: Geomorphological overview of the Lena River Delta and the location of the study area Kurungnakh 
Island. Background image from MDA [2004]. 

Three main geomorphologic units can be differentiated in the Lena Delta (Figure 3-1). 

The first main terrace is today’s active delta with heights from 1-12 m above sea level (MASL) 

and has formed since the Middle Holocene. It covers mainly the eastern part of the delta and 

is characterized by patterned ground formed by ice-wedge polygons with relative ice-rich 

sediments or active floodplains without patterned ground and with low ice and organic 

contents. The second terrace with heights ranging from 11-30 MASL was formed during the 

Late Pleistocene to Early Holocene. Located in the northwestern part of the delta, it covers 

about 23 % of the delta area and is composed of sandy sediments with low ice contents. The 

polygonal micro relief is less expressed and more thermokarst activity is observed. The third 

main terrace ranges from 30-60 MASL and is the oldest part of the delta area. It’s upper layer 

has not a fluvial-deltaic origin but today’s islands in the south of the Delta represent erosional 

remnants of a Late Pleistocene accumulation plane consisting of fine grained, organic- and 

ice-rich sediments of the Chekanovsky Ridge and the Kharaulakh Ridge located in the south. 

Underneath these Ice Complex deposits are fluvial sands. The thickness of the active layer is 

usually in the range of 30–50 cm during summer. 

The region is characterized by an arctic continental climate with strong variations over 

the year. While the mean annual air temperature is −13°C, the mean temperature in January 
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is −32°C and 6.5°C in July. The mean annual precipitation is low and amounts to about 190 

mm (WWIS, 2004). Precipitation is occurring mostly in summer between the middle of May 

and the end of September with a mean of 125 mm between the years 1999 and 2011. 70% of 

these rainfall events are characterized as light rainfall events with 1 mm precipitation and 

only 1% of the measured events are characterized as heavy precipitation events 

(precipitation > 16mm) [Boike et al., 2013].  

Snow plays an important and complex role in the periglacial geomorphology by limiting 

the heat transfer between the atmosphere and the ground, thus mean ground temperatures 

are warmer than the mean air temperatures during winter [Stieglitz et al., 2003]. The snow 

also forms patches in depressions and valleys that can last longer and lead to surface erosion 

from flowing water upon melting. Furthermore, eolian input remains on the snow patches 

and leads to the formation of debris near the snow patch [Kunitsky et al., 2002]. In the Lena 

Delta a snow cover is developing in October that breaks up again in July. Its average thickness 

is about 40 cm, but strong variations can occur when the winter storms transport the snow, 

particularly in incised areas like valleys and thermokarst depressions. In these protected 

areas snow banks can remain during the summer (Figure 3-2). 

  

Figure 3-2: „Lucky Lake Valley“ middle catchment in summer (left) and spring (right) with snow patch overlain by 
eolian sediments. Left image taken at 12th of July 2013, right image taken by Antje Eulenburg at 16th of June 2014. 

Due to the harsh climate conditions and a distinct solar seasonality, plant growth is 

limited. Almost no photosynthetic activity is observed during the polar night from October 

until March, while in summer during polar day photosynthesis is possible all day. Conse-

quently the Lena Delta is covered by typical tundra vegetation of various types. Major 

components are grasses, sedges, mosses, lichens, herbs, and dwarf shrubs [Kutzbach et al., 

2004]. 

The study area of Kurungnakh Island is made up of the first and third terraces and 

comprises polygonal ponds and thermokarst lakes, alasses, undisturbed Ice Complex surfaces 

and thermo-erosional valleys (Figure 3-3). As Morgenstern et al. [2014] states, similar sites 
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west of the Lena Delta feature more thermo-erosional permafrost degradation features, while 

comparable sites east of the Lena Delta are dominated by the presence of thermokarst. Thus, 

the geomorphological situation on Kurungnakh Island with a mixture of both processes and 

related landforms is special and offers the opportunity to study the interaction of both 

processes. 

 

Figure 3-3: Generalized cross-section of exposures along the Olenyokskaya Channel at the eastern coast of 
Kurungnakh Island. From Schirrmeister et al. [2011]. 

Kurungnakh Island comprises some low lying areas covering the island’s northeastern 

part, a small part in the south, the western border and the northern part of the island. These 

areas belong to the active floodplain system of the Lena River Delta channels. An extensive 

alas valley with north-south orientation is located in the central part of the island. Higher 

elevated regions located east and west of the alas valley represent the Ice Complex surface 

with maximum heights of 55 MASL [Morgenstern et al., 2013]. Within the Ice Complex, several 

alas depressions are incised into the surface and are often connected with the surrounding 

delta channels through thermo-erosional valleys.  

In this study three sites are of major importance, the “Drained Lake Valley” (DLV) at the 

eastern coast, the “Lucky Lake valley” (LLV) in the south and the “Main Valley” (MV) in the 

western part of the island (Figure 3-4). Each of them represents different stages of valley 

evolution, thus permafrost degradation, since they are positioned in a) Ice Complex, b) a 

transitional zone of the third and the first terrace and c) Ice Complex that is severely 

degraded by thermokarst. 
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Figure 3-4: Kurungnakh Island and the three key sites a) "Main Valley", b) "Lucky Lake Valley" and c) "Drained 
Lake Valley". Background image top: RapidEye, band combination 5,2,1, projection UTM Zone 52N within WGS 84 
datum. Background image of the key sites: GeoEye-1, band combination 4,2,1; projection UTM Zone 52N within 
WGS 84 datum. 
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4 Methods 

The methodological approach of this work is to combine fieldwork, photogrammetric and 

remote sensing techniques and morphometric and spatial analysis in order to quantify and 

understand thermo-erosional processes that take place in ice-rich permafrost deposits of 

Kurungnakh Island. The following major tasks have been performed: 1) obtaining ground 

truth data in the field; 2) multisensory satellite image fusion; 3) generation of a high-resolu-

tion DEM for Kurungnakh Island; 4), mapping of thermo-erosional features and 5) morpho-

metric and spatial analysis of thermo-erosional features. Figure 4-1 shows the general study 

scheme. 

 

Figure 4-1: Overview of the methodological approach. 

The geometric correction of satellite data and the DEM generation were performed using 

PCI Geomatica’s software package Ortho Engine 2013. DEM evaluation, mapping as well as 

morphometric and spatial analyses were done using the geographical information system 

(GIS) ArcGIS 10.2 of ESRI. 

4.1 Fieldwork 

Field data were obtained during an expedition to the Lena River Delta in July 2013. Fieldwork 

included the description of general surface and relief properties of the landscape as well as 

precise geodetic surveys of ground control points (GCPs) and thermo-erosional landforms. 

These surveys were conducted using a Leica Viva global navigation satellite system (GNSS) 

system operating in real-time kinematic mode (RTK). Surveys with RTK GNSS are very 



Methods 

16 

  

attractive for high-accuracy and high-productivity global positioning system (GPS) surveying, 

since they can deliver positioning accuracies of ± 2 cm in a few seconds [Hasegawa et al., 

2000; Hauck, 2013]. Within RTK mode two GPS receivers are set up (base and rover, see 

Figure 4-2) that take simultaneous measurements and are communicating over radio 

connection. When the base coordinates and measurements are processed to resolve the 

ambiguity and sent to the rover, it obtains centimeter-level positioning accuracy due to phase 

observation [Lillesand et al., 2004; Mekik and Arslanoglu, 2009]. The projection was set to 

geographic WGS 84 co-ordinate system. Because radio signal loss occurred within a distance 

of about 2 km a base station was set up in every study site. The dataset was exported from 

the device as .html file, modified within a table and imported as .txt in the GIS. Coordinates 

were re-projected to UTM WGS 84 zone 52 N. 

 

Figure 4-2: Set up of GPS in RTK mode. Left: RTK rover 
with GPS- and radio antenna, right: base station with 
GPS-antenna and radio connected to a 12V battery. 

 GCPs are identifiable non-moving features that are used for the geometric correction of 

remote sensing data. The collection of GCPs is difficult in tundra environments because they 

are highly dynamic due to freeze and thaw processes, and also the absence of anthropogenic 

features like road crossings. During the field campaign eleven GCPs were collected, mostly at 

the edges of small ponds, at interconnections of polygon rims and at outflows of small 

thermokarst lakes. 

Thermo-erosional landforms were mainly surveyed in transversal and longitudinal 

profiles. Transversal profiles were measured at representative locations of different valley 

segments, beginning from and ending at the terrain surface, i.e. the uphill Ice Complex 

surface. However, the discrimination of the terrain surface is often challenging in tundra 

landscapes because of low height gradients and the resulting gentle slopes. A break line of the 

valley profiles is mostly not visible in the field. The profile points were measured at positions 

with a significant change in slope gradient. 
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Overall 44 profiles were taken in three key sites during the field campaign: 

- “Main Valley“:    11 transversal and 1 longitudinal. 

- “Drained Lake Valley“:  5 transversal and 2 longitudinal. 

- “Lucky Lake Valley“:   12 transversal and 1 longitudinal. 

4.2 Image fusion 

“Image fusion refers to the acquisition, processing and synergistic combination of infor-

mation provided by various sensors or by the same sensor in many measuring contexts.” 

Simone et al. [2002]. The Registration of multiple source imagery in this context is one of the 

most important issues when dealing with remote sensing data [Moigne et al., 2011] 

In order to provide a consistent image of thermo-erosional landforms for Kurungnakh 

Island a common best-practice strategy of image selection, fusion, examination and analysis 

was applied. Using multi-temporal and multi-platform remotely sensed data, various 

distortions associated with the platform, the map projection and the shape of the study area 

surface have to be considered. In this study high and very high spatial resolution optical 

space-borne imagery with differing geometric characteristics were used (see Table 4-1). All 

images were acquired at different times and oblique viewing and azimuth angles. 

Conventional 2-D polynomial rectification functions do not correct for relief induced and 

image acquisition system distortions, and 2-D ground control points only correct for local 

distortions and are very sensitive to input errors [Toutin, 2004]. Therefore block adjustment 

and subsequent orthorectification using rational polynomial coefficients (RPC) in PCI 

Geomatica’s 2013 module Ortho Engine was performed. RPC models are derived from the 

physical sensor model to describe the object-image geometry and to transform three-

dimensional object-space coordinates into two-dimensional image-space coordinates 

[Grodecki and Dial, 2003]. Fraser and Ravanbakhsh [2009] report geopositioning accuracies 

for GeoEye-1 images of 0.1 m in planimetry and 0.25 m in height using a single GCP within an 

RPC model. 

Table 4-1: Overview of used remote sensing data, their characteristics and results of the geometric correction. 

Sensor No. of 

scenes 

Date 

yyyy/mm/dd 

Ground 

resolution [m] 

RMSE 

[m] 

Number of 

GCPs 

GeoEye-1 2 2010/05/08 0.5 / 2.0 0.36 4 

RapidEye 1 2010/07/05 6.5 2.86 17 

ALOS PRISM 
6 

4 

2006/09/21 
2009/09/12 

2.5 2.34 195 
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The basis for the registration of the GeoEye-1 and RapidEye scenes is the network of high 

accuracy GCPs from the RTK survey. For the registration of the GeoEye-1 scenes, that were 

pansharpened using the algorithm developed by Yun [2002], very good results with sub 

meter accuracy were obtained using 4 GCPs (Table 4-1). Because the GeoEye-1 scenes only 

cover the southern part of Kurungnakh Island, a RapidEye scene was registered with 

combined GCPs and planimetric information from GeoEye-1 and height information from 

topographic maps; RapidEye imagery also has RPC information and combines high spatial 

resolution with considerable coverage. The scenes from the “Panchromatic Remote-sensing 

Instrument for Stereo Mapping” (PRISM) on board of the “Advanced Land Observation 

Satellite” (ALOS) were finally registered on the basis of the Rapid Eye scene with the satellite 

orbital model by Toutin [2004] implemented in Ortho Engine. Neighboring and overlapping 

scenes were handled as joint photogrammetric image blocks to get higher redundancy in the 

image model. 

4.3 DEM generation 

Overlapping satellite images (stereopairs) provide the opportunity to extract height infor-

mation for subsequent DEM generation using the principle of image parallax. The term 

parallax refers to the apparent change in relative positions of stationary objects caused by a 

change in viewing position [Lillesand et al., 2004]. 

ALOS PRISM carries a three line scanner instrument, which provides high-resolution 

panchromatic optical images. These images of about 2.5 m ground sampling distance are 

acquired in the same orbit in nadir and respectively 23.8° forward and backward directions, 

providing a base to height ratio (B/H) of 1 (see Figure 4-3) [JAXA, 2008]. The base to height 

ratio is the distance on the ground between two centers of overlapping images, divided by the 

aircraft altitude. Values between 0.5 and 1 are reported to be reasonable for DEM extraction 

[Hasegawa et al., 2000]. 

 

 

Figure 4-3: Configuration of the 
PRISM sensor on board of the 
ALOS platform. Takaku et al. 
[2007] 
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Based on these overlapping images high-resolution DEMs resembling the visible surface in 

ground sampling distances of about 2.5 to 10 m can be derived.; These are comparable to 

height information from topographic maps with the scale of 1:25 000 [Takaku et al., 2007]. 

However, for images of the ALOS PRISM sensor with acquisition dates before early 2007, 

radiometric quality problems due to black reference calibration, jpeg-compression and 

saturation effects are reported that result in effects of striping and blocking [Gruen and Wolff, 

2007]. These effects combined with the homogenous Tundra landscape can severely affect 

the matching process during DEM extraction. The algorithm by Kamiya [2008] was applied to 

reduce the jpeg-noise effects for the images with acquisition date of 2006.  

4.3.1 DEM scenarios 

Six images from 2006 and four from 2009 totaling 14 combinations of stereopairs were used 

for DEM generation (see Table 4-2 and Table 4-3). It is common in classical photogrammetry 

to use only a generic triplet, consisting of a backward, a nadir and a forward looking-image. In 

this study additional images were included in the DEM generation process to address the 

following problems: 1) A consolidation of the data could improve the results of the image 

matching process on homogenous Ice Complex uplands with low contrast and low slope 

gradient that are expected to be insufficient; 2) Adding images with different viewing angles 

to the DEM extraction process could decrease the effect of occlusion that occurs especially at 

the bottom of steep valleys; 3) Adding Images of 2009 will decrease errors in the 

orthorectification process of GeoEye-1 and RapidEye images, because effects of coastal 

erosion on the eastern coast of the study area are considered in a combined DEM. 10 DEM 

scenarios with differing combinations of stereopairs were tested during the DEM generation 

process (Table 4-4).  

Table 4-2: Overview of the ALOS PRISM dataset 

Acquisition date Scene ID Mode Internal ID 

2
1

.0
9

.2
0

0
6

 

ALPSMB035022170-O1B1___B Backward 2006-2170-B 

ALPSMN035022115-O1B1___N Nadir 2006-2115-N 

ALPSMF035022060-O1B1___F Forward 2006-2060-F 

ALPSMB035022175-O1B1___B Backward 2006-2175-B 

ALPSMN035022120-O1B1___N Nadir 2006-2120-N 

ALPSMF035022055-O1B1___F Forward 2006-2055-F 

    

1
2

.0
9

.2
0

0
9

 ALPSMB193582170-O1B1___B Backward 2009-2170-B 

ALPSMW193582115-O1B1___W Wide 2009-2115-W 

ALPSMB193582175-O1B1___B Backward 2009-2175-B 

ALPSMW193582120-O1B1___W Wide 2009-2120-W 
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Table 4-3: Possible combinations of stereopairs for DEM extraction. Names correspond to the Internal ID field in 
table 4-2. Stereopairs with ID 1-12 are expected to have B/H ratios within the range 0f 0.5 to 1, while Stereopairs 
13 and 14 are to be expected to exceed a B/H ratio of 1. 

Stereopair ID Left Right 

1 2006-2170-B 2006-2115-N 

2 2006-2170-B 2006-2060-F 

3 2006-2115-N 2006-2060-F 

4 2006-2175-B 2006-2120-N 

5 2009-2170-B 2009-2115-W 

6 2009-2175-B 2009-2120-W 

7 2006-2170-B 2006-2120-N 

8 2006-2115-N 2006-2175-B 

9 2006-2115-N 2006-2055-F 

10 2006-2060-F 2006-2120-N 

11 2009-2170-B 2009-2120-W 

12 2009-2175-B 2009-2115-W 

13 2006-2170-B 2006-2055-F 

14 2006-2175-B 2006-2060-F 

Table 4-4: Overview of DEM generation scenarios that were processed and evaluated. Numbers in the second 
column correspond to the Stereopair ID in Table 4-3. 

Scenario ID Stereopairs 
Triplet 1 / 2 / 3 
Green06 1 / 2 / 3 / 4 
Green09 5 / 6 
Green0609 1 / 2 / 3 / 4 / 5 / 6 
Greenorange06 1 / 2 / 3 / 4 / 7 / 8 / 9 / 10 
Greenorange09 5 / 6 / 11 / 12 
Greenorange0609 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 11 / 12 
Greenred06 1 / 2 / 3 / 4 / 13 / 14 
Allc06 1 / 2 / 3 / 4 / 5 / 7 / 8 / 9 / 10 / 13 / 14 
Allc0609 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 11 / 12 / 13 / 14 

 

4.3.2 DEM extraction 

The process of generating a DEM consists of several steps: 1) converting the raw images into 

epipolar pairs; 2) extract DEMs from the overlap between the epipolar pairs; 3) geocode the 

epipolar DEMs on the basis of the geometric model and stitch them together to form one DEM 

and 4) edit poorly correlated areas in the DEM. 

During epipolar resampling stereo pairs are reprojected, so that they have a common 

orientation and the matching features appear on a common x-axis (Figure 4-4). This reduces 

computation time because a smaller search window is needed and the possibility of incorrect 

matches is reduced. 
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Figure 4-4: Epipolar 
resampling of raw images. 
PCI-Geomatics [2013], 
modified. 

 

In the process of DEM extraction the parallaxes that correspond to terrain heights are 

calculated for every selected stereopair and are stored in a raster file that is finally geocoded. 

Within the ortho engine software package the extraction parameters were set as described in 

table 4-5.  

Table 4-5: Selected parameters for the DEM extraction process within the ortho engine software package. 

Parameter Settings Remarks 

Minimum elevation -49 Negative values are included in the DEM extraction 
process first. 

Maximum elevation 80 Height values for the third terrace are reported not 
to exceed 80 MASL 

DEM detail Extra high Image matching (correlation) is performed on 
images at full resolution to achieve precise 
representation of the terrain in the DEM. 

Terrain type Flat This parameter is influencing the size of the image 
matching window. Since the study area is located 
in polar lowlands the terrain type can be regarded 
flat. 

Fill holes (smoothing filter) Low Not correlated areas will be interpolated. In this 
study smoothing was set to a minimum to preserve 
actual elevation values. 

Create score channel Yes The score channel gives information about the 
correlation of corresponding features in the 
stereopairs. It is a quality parameter of the image 
matching process and is stored in an additional 
image channel. 

Create geocoded DEM Yes Based on the GCPs in the geometric correction 
model the final DEM is geocoded to UTM Zone 52N 
in the WGS 84 datum. 

Resolution 20x20 / 5x5 To compare different DEM scenarios with different 
parameters and to reduce computation time the 
resolution was set to 20x20 meter. The final DEMs 
were resampled to 5x5 meter. 

Output option Average The output DEM is containing the average value of 
all stereopair DEMs in one scenario. 
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4.3.3 DEM editing 

The produced DEMs contain pixels with failed and incorrect values (artifacts). Therefore, the 

DEM from the scenario Triplet was edited to smooth out irregularities and create a more 

pleasing DEM that is suitable for presentational use and for orthorectification of the satellite 

images. The raw DEM from the scenario Green0609 was not edited because it showed the 

best results in the evaluation process and edited products had decreasing quality parameter 

values. 

Water bodies are a major source for artifacts. Here the image matching produces values 

that are far out of the general failure range. This is due to the very low contrast of water 

bodies and their constantly changing values in between the different images acquisitions. 

Therefore it is necessary to modify the areas of the DEM that represent lakes and the Lena 

River channels. Another observed artifact in the DEMs is a wavy like noise structure 

throughout the whole scene. This problem is addressed by smoothing approaches. 

The water bodies of Kurungnakh Island were automatically extracted using a grey-value 

thresholding on RapidEye’s infrared channel, which absorbs the light very strong in the 

infrared wavelength of the electromagnetic spectrum. A threshold value of 1 000 of the 

Digital Number (DN) of the band was used and the results were visually evaluated. The DN 

value in RapidEye datasets is radiometrically corrected on-ground and the original sensor bit 

depth of 12 bit is scaled to 16 bit dynamic range. Therefore, the resulting DN values are 

directly related to the absolute at sensor radiances [Blackbridge, 2013]. The produced raster 

dataset was converted to a vector shapefile and only water bodies with a size greater than 25 

000 square meters were used. The shapefile was then clipped to the extent of Kurungnakh 

Island. The DEM values under the resulting water mask were first set to “NoData” and then 

interpolated from the surrounding lake coasts. These areas show very good matching results, 

because the water-land transition zones have a high contrast along the shore. Following the 

interpolation the values under the mask were smoothed using a 3x3 window. Finally, the 

average value of each lake shape is calculated and assigned to the pixels beneath. 

The Lena River Delta channels were extracted using the same grey-value thresholding 

method described above. The produced shapefile was additionally adjusted using beach-

water transition lines digitized form an ALOS PRISM scene to get the same extent as the DEM. 

Values under the Lena Delta River channel mask were assigned to values of 1 that represent 

the expected water level of the Delta. 

Noise related artifacts were partly removed using two 9x9 sized filters implemented in 

the ortho engine environment. The first filter excludes failed and background pixels based on 

calculated averages and variances of the eight elevation values immediately surrounding each 
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pixel; if the center pixel is more than two standard deviations away from the average it is 

replaced with the failed value. The second filter counts the number of failed values 

immediately surrounding each pixel. If five or more failed pixels border the center pixel, then 

the center pixel is also set to a failed value [PCI-Geomatics, 2013]. The identified failed pixels 

are then interpolated using an estimate weighted by distance calculated from the valid 

surrounding pixels. The DEM is then twice smoothed using a 3x3 sized Gaussian filter 

window that calculates the weighted sum within the window and assigns the value to the 

center pixel. 

4.4 DEM evaluation 

The quality of the produced DEMs was evaluated with a multilevel approach using the score 

channel that is produced during DEM extraction and 1 024 points from the RTK-GPS survey. 

For every extracted DEM a score channel was exported that gives information about the 

quality of the image matching process. In this raster channel values of 0 and 50-100 are 

stored that represent the correlation of two images. The score channel was clipped to the 

extent of Kurungnakh Island and the percentage of zero values, i.e. not correlated area were 

no heights could be extracted and the means of the remaining values were stored in a table.  

Elevations of the DEM were extracted at the position of the GPS points and subtracted 

from the GPS values. The resulting deviations were then classified according to their absolute 

relief height in two-meter steps from 0 to 58 MASL, resulting in 28 classes. This way, 

deviations of the DEMs can be visualized according to their absolute height. For every 

elevation class the median value of the deviations was calculated. The standard deviation of 

all medians for every elevation class was used as an internal quality parameter to compare 

the different DEM scenarios. A linear trend was calculated from the deviations and applied to 

the raw DEM on a pixel by pixel basis. The resulting trend surface was then subtracted from 

the raw DEM to achieve the corrected DEM. 

The overall relative root mean square error (RMSEr) of the vertical deviations was calcu-

lated using the following formula: 

𝑅𝑀𝑆𝐸𝑟 = √
1

𝑛
(𝛿ℎ1² +  𝛿ℎ2² + ⋯ + (𝛿ℎ𝑛

2), 

where 

n =  number of evaluation points, 

δh = Elevation difference of GPS and DEM  
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It represents the height deviations at the location of the GPS points. This value was then 

combined with the overall RMS of the DGPS points (RMSEd) using the following formula, 

𝑅𝑀𝑆𝐸𝑎 =  √(𝑅𝑀𝑆𝐸𝑟
2 +  𝑅𝑀𝑆𝐸𝑑²) 

to obtain the absolute vertical accuracy of the DEMs. The planimetric accuracy of the DEM is 

defined by the result of the geometric correction model shown in table 4-1, chapter 4.2. 

4.5 Mapping 

Thermo-erosional valleys, the upper margins of thermokarst basins, the Ice Complex extent 

and the shoreline of Kurungnakh Island were mapped on the basis of GeoEye-1, RapidEye and 

ALOS PRISM images in a GIS using a scale of 1:3 000. The main characteristics of the datasets 

are listed in table 4-6. 

Only thermo erosional features that are visible in the ALOS PRISM datasets were digitized 

to preserve a consistent dataset. The RapidEye scene was used with the near infrared and red 

edge channel displayed on the red channel. This combination of bands especially helps to 

identify wet areas and therefore makes the incised valleys with concentrated water from the 

surroundings visible when the path of the stream is not clearly visible in the ALOS PRISM 

dataset. 

Table 4-6: Overview of the datasets derived from the mapping process. A vertex (plural vertices) is a point that 
describes the corners of intersections of geometric shapes. 

Dataset Data 
Type 

Number of 
features 

comment purpose 

Streams Polyline 855 On the basis of GeoEye-1, 
RapidEye and ALOS PRISM 

Stream network 

Stream links Polyline 1 214 Streams split at the 
intersections of each stream 
feature 

Stream order and 
stream link orientation 

Stream points Point 17 823 Vertices of the digitizing 
process converted to point file 

Extraction of height 
information for 
longitudinal profile 
plots 

Basins Polygon 22 Modified after Morgenstern et 
al. [2011], on the basis of 
RapidEye 

Identify streams 
affected by thermo-
karst 

Shoreline 
Kurungnakh 

Polygon 1 On the basis of ALOS PRISM 
and RapidEye 

Clipping extent for 
DEM datasets 

Ice Complex 
extent 
Kurungnakh 

Polygon 1 Modified after Morgenstern et 
al. [2011], on the basis of 
GeoEye-1, RapidEye and ALOS 
PRISM 

Clipping extent for 
stream dataset 
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The thermo-erosional features were digitized, beginning with the highest point and ending at 

the shoreline of Kurungnakh Island. Because the focus is on thermo-erosional valleys in the 

Ice Complex, the dataset was clipped to the extent of the Ice Complex. The dataset was 

clipped at the interconnections of each stream. The vertices of each stream dataset were 

converted to a point dataset and elevations from the DEM were extracted to get a dataset of 

longitudinal profiles. 

The upper margins of the thermokarst basins were mapped on the basis of an existing 

shapefile produced by Morgenstern et al. [2011] and the RapidEye Scene. Because of a 

differing reference basis it was necessary to remap the features. 

Shoreline mapping of Kurungnakh Island was done using a nadir viewing ALOS PRISM 

scene of 2006. It covers the entire island and all parts of the DEMs are included. The dataset 

was checked against the RapidEye scene to diminish effects of different water levels. 

4.6 Morphometric analyses 

According to Evans and Minar [2011] morphometric variables are to be divided into field 

variables and object variables. When looking at the stream networks of the mapped thermo-

erosional features, object variables of linear nature are extracted, such as stream order, 

stream length, stream direction and drainage density. Analyses regarding the direct 

morphology of the valley profiles in this case are field variables specific to the gravity field, 

such as altitude, slope gradient, slope aspect and curvature.  

The stream order of a landscape is a dimensionless parameter that is referring to the 

interrelated drainage pattern that is formed by a set of streams in a certain area, from any 

number of sources down to the mouth, or root point, of the net [Ranalli and Scheidegger, 

1968]. In the Strahler method of stream ordering, first order streams represent anterior 

tributaries of a stream network. These streams then merge to form second order streams, 

which also converge to form third order streams and so on for larger orders [Strahler, 1957]. 

The Strahler method does take into account stream links, and the order of a stream can 

change along the same stream (Figure 4-5). All fingertip tributaries of a stream network are 

assigned a value of 1. It is a suitable method of stream ordering to detect the organizational 

complexity of a stream network. 
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Figure 4-5: Strahler stream orders. 
In: Ranalli and Scheidegger [1968]. 

 

The stream order of the identified features was assigned manually to the stream link 

dataset and stored in a feature class table. For every stream link the mean direction and mean 

length was extracted using the “Linear Directional Mean” tool of the spatial statistics toolbox 

in ArcGIS 10.2. The resulting values range from 1 to 360 representing the Compass Angle in° 

beginning clockwise from due north. 

The morphometric analyses of the transversal and longitudinal profiles are based on the 

field measurements and the raw DEM of scenario Green0609. Mean slopes were calculated 

for the right and left side of the transversal profiles where the point with the lowest elevation 

defines the center point of the profile and the first and the last point of the profile define the 

endpoints of the lines. Slopes were calculated from the RTK-GPS elevations and from the DEM 

elevations. Slopes were calculated between every RTK-GPS point of every profile and 

compared to the DEM values (Figure 4-6). Based on the stream dataset a shapefile containing 

all longitudinal profiles of Kurungnakh Island was created and the parameters, highest point, 

lowest point, height difference, length and slope were calculated. 

 

Figure 4-6: Scheme of a transversal 
profile and the extracted parameters 
slope and mean slope. 

.   
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5 Results 

5.1 High-resolution DEMs 

The results of the ten DEM generation scenarios are shown in figure 5-1. The DEMs have 

differing extents that are defined by the boundaries of the input images. DEMs that combine 

images from 2006 and 2009 show a sharp step in height from northeast to southwest 

direction in the western part of Kurungnakh Island. All DEMs show underestimated areas 

below zero MASL, especially in the northern part of the image extents and on the Lena River 

Delta channels. The highest elevations are in the southwestern area where the Chekanovsky 

Ridge is located. Since the maximum height that is to be expected during DEM extraction was 

assigned to 80 MASL, the values for the Chekanovsky Ridge are not representing actual 

height. 

Table 5-1 shows the evaluation results of the DEM scenarios. Values of the mean score 

channel are ranging from minimum 70.87 for the Allc09 scenario to 77.42 in the Triplet 

scenario. The highest amount of non-correlated pixels (71.02 %) is observed in the scenario 

Green09 while the lowest amount of non-correlated pixels is found in scenario 

Greenorange0609 (42.83%). The quality parameter ranges from 2.11 in scenario Green0609 

to 3.35 in scenario Green09. The scenario Green0609 has the lowest relative and absolute 

vertical RMSE with 4.05 m and 4.41 m respectively, while scenario Green09 shows relative 

and absolute RMSE of 5.76 and 6.01 m respectively. The scenarios that use the 2009 images 

(scenario Green09 and scenario Allc09) have the lowest values in the score channel and show 

the most uncorrelated pixels. However, scenario Allc09 has the fifth lowest absolute RMSE of 

5.16 m. Scenarios Green0609, Triplet and Greenorange0609 show the highest number of 

correlated pixels and the lowest relative and absolute RMSE. 

Figure 5-2 shows the deviations of the ten DEM scenarios to the GPS points against the 

relief height. The different DEMs present a variety of deviations, but all DEMs show a step of 

elevation deviations at about 13 MASL. Scenario Green09 has the greatest deviations and is 

generally overestimating actual relief height up to 12 m. Scenario Triplet and Green0609 are 

showing similar and the lowest variations. They underestimate terrain heights below 10 

MASL, and above 10 MASL they slightly overestimate terrain heights. At terrain heights of 

about 35 MASL and towards 60 MASL median deviations exceed 4 m. 
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Figure 5-1: Results of the DEM generation scenarios. All DEMs are based on the same input parameters described 
in Table 4-5 and are resampled to 20x20 m ground resolution. Differences in the extent result from the differing 
input images with varying extents. 
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Figure 5-2: DEM error estimations and relief height: a) deviations of DEM scenarios with 20x20 meter ground 
sampling distance related to the terrain height. Positive and negative deviations occur when the DEM is under-
estimating and overestimating actual terrain height, respectively; b) every box-whisker plot represents one 
generated DEM. The color code in the legend corresponds to diagrams a) and b). 

Two final DEMs were generated with 5x5 m spatial resolution: 1) the raw DEM of 

scenario Green0609 that showed the best results in the evaluation process and 2) the edited 

DEM from scenario Triplet which is not affected by the height step artifact and therefore is 

more suitable for presentational use and the orthorectification of satellite images.  

Table 5-1: Evaluation results of the DEM generation process. The listed parameters are described in chapter 4.4. 

DEM scenario Mean 
score 

Non-correlated 
pixels [%] 

Quality 
parameter 

Relative 
RMSE [m] 

Absolute 
RMSE [m] 

Green0609 77.40 42.99 2.11 4.05 4.41 

Triplet 77.42 43.70 2.26 4.60 4.92 

Greenorange0609 77.40 42.83 2.76 4.69 5.00 

Allc0609 76.26 48.30 2.51 4.76 5.06 

Allc09 70.87 67.41 2.26 4.86 5.16 

Allc06 76.27 48.34 2.91 4.93 5.22 

Greenorange06 76.46 47.44 2.84 4.93 5.22 

Green06 77.42 43.16 2.55 5.08 5.36 

Greenred06 76.64 47.30 2.63 5.16 5.44 

Green09 71.06 71.02 3.35 5.76 6.01 
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Figure 5-3 shows the DEM from scenario Green0609, which is clipped to the extent of 

Kurungnakh Island. Its highest and lowest points are 79.3 MASL and 1.0 MASL respectively. 

The presented heights are decreasing from southeast towards northwest. In the central part 

of the island the wide alas valley cuts into the Ice Complex surface and has heights of 6 to 15 

MASL of elevation. It represents the lowest parts of Kurungnakh Island that do not belong to 

the first terrace of the Lena River Delta. The directly surrounding Ice Complex surface has 

heights up to 45 MASL that increase towards southeast to up to 70 MASL. Thermokarst lakes 

are deeply incised into the Ice Complex surface and connected to the Lena Delta River 

channels through thermo-erosional valleys. The highest steps in elevation can be seen mostly 

on the east facing slopes of thermokarst lakes or the cliffs to the Lena River Delta channel 

while slightly more gentle slopes are on the west facing slopes. Some alas depressions feature 

frost heave hill structures in their center that are referred to as “Pingos” in periglacial 

geomorphology. 

Some artifacts are visible in the DEM. The most prominent artifact is the already men-

tioned height step in the northwest of the scene that occurs in the DEMs with combined 2006 

and 2009 images. This effect can occur when the GCP network in the corners of an image is 

not consistent. As a result the geometric correction model calculates wrong image geometry. 

Since this artifact occurs outside of the Ice Complex extent it is not of relevance for the 

analysis in this study. Some flat areas in the wide alas valley and on the first terrace of 

Kurungnakh Island between 1 and 15 MASL show some small scale noise in a patchy 

structure that is expressed in the DEM as small peaks and holes. Finally, some clouds in the 

2006 input images lead to incorrect values in small parts in the northeast of the DEM. 

Figure 5-5 shows the edited DEM from scenario Triplet. Compared to the DEM from 

scenario Green0609 ( 

figure 5-3), it shows a smoothed surface and does not have the sharp height step in the 

northwestern part of the island. Water bodies on lakes have a constant elevation and no areas 

with elevations below 0 MASL are present. Alas areas show more even and higher elevations 

than the DEM from scenario Green0609, especially in the central alas valley. 
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Figure 5-3: Classified DEM from scenario Green0609 with 5x5 m ground resolution. A and B show the start and 
end point of the topographic profile shown in figure 5-4. 
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Of interest are also the areas that are not correlated during image matching and that are 

interpolated during DEM generation (Figure 5-6). These areas are especially on the 

undisturbed low-contrast Ice Complex surface or the gentle alas slopes and water bodies 

where only few distinct features occur that can be detected during image matching. Sharp 

high contrast boundaries like shorelines of lakes or the Lena River Delta channels as well as 

thermo-erosional valleys and snow covered patches show high correlation values. The wide 

alas valley in the center and the northern parts of Kurungnakh Island are areas with high 

correlation values. Adding more images to the DEM extraction process did not significantly 

improve the correlation values or the percentage of non-correlated pixels (Table 5-1). 

Kurungnakh Island has a decreasing height gradient that ranges from southeast to 

northwest with highest elevations around 70 MASL in the southeast near to the “Drained 

Lake Valley” site (Figure 5-4). The highly degraded alas valley in the central part of the island 

is in most parts only 11 MASL. The location with the highest elevations around 74 MASL is at 

the northeastern tip of the island and called “America Khaya”. 

 

 

Figure 5-4: SE-NW topographic profile of Kurungnakh Island based on the DEM scenario Green0609. The location 
of the profile line is shown in (Figure 5-3) 
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Figure 5-5: Classified DEM from scenario Triplet with 5x5 m ground resolution. Values below 1 m were assigned 
to a value of 1 m. The DEM was edited using the workflow described in chapter 0. 
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Figure 5-6: Score channel results for DEM scenario Green0609. White color indicates areas that could not be 
correlated during image matching and are interpolated in the DEM. 
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5.2 Stream network 

The stream network of Kurungnakh Island shows four levels of stream ordering (Figure 5-7). 

The majority of the stream links (71%) are of first order with a total length of 244 km (Table 

5-2). Of these streams 49 % are classified as thermokarst affected. Streams of first order 

occur all over the island, at slopes of thermokarst depressions or alasses, on Ice Complex 

surfaces and on the coastline to the Lena River Delta channels. About a fifth (18 %) of the 

stream links has a stream order class of 2 and a total length of 54 km. Of these 42 % are 

classified as thermokarst affected. They occur on various sites all over the island but tend to 

be located more on the lower slopes of thermokarst depressions and are often connected to 

thermokarst lakes or drained thermokarst lakes. In the northern part of the study area 

streams with an order of 2 can be observed that occur on the Ice Complex surface. Streams 

with a stream order of 3 make up 8% of all stream links and have a total length of 28 km. Of 

these 33 % are situated in thermokarst affected areas. Most of the streams with this stream 

order are connected to thermokarst lakes, but there are few stream links that occur without 

the presence of thermokarst lakes, for example in the northwestern part of the Ice Complex 

extent of Kurungnakh Island.  

Three stream systems with a stream order of 4 with a total length of 10 km are detected. 

Only 9 % of the stream links of this stream order are located in thermokarst affected terrain. 

Two stream systems of order 4 are connected to the main alas valley in the center of the 

island, while the third that develops over a short distance is located at the northern part of 

the island, where it cuts the Ice Complex extent before it enters the Lena River Delta channel. 

The total length of stream links decreases with increasing stream order, while the mean 

stream link length slightly increases, except stream order 2. The percentage of stream links in 

thermokarst-affected terrain decreases with increasing stream order. 

Table 5-2: Characteristics of the stream network of Kurungnakh Island. 

Stream 
order 

No. of 
stream links 

Percentage of 
stream links 

Cumulated 
stream length 

[km] 

Mean stream 
link length [m] 

Streams in 
thermokarst 

depressions [%] 
1 861 71 244 283 49 

2 222 18 54 241 41 

3 98 8 28 291 33 

4 33 3 10 317 9 
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Figure 5-7: Strahler stream order for the stream network of Kurungnakh Island within the Ice Complex extent. 
Background image: RapidEye, band combination 5, 5, 5; projection UTM Zone 52N within WGS 84 datum. 

The stream network can be divided in two main sections. Complex stream systems, as 

expressed through a higher stream order, are observed within the wide alas valley in the 

central part of Kurungnakh Island. Here streams of lower order, which have their origin on 

the Ice Complex surface, coalesce to higher order streams before they exit the Ice Complex. 
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Within the central alas valley the northern streams follow the general height gradient 

towards northwest, while the southern streams are draining in southeast direction.  

On the higher elevated Ice Complex surface that is not affected by thermokarst, fewer 

streams occur that are predominantly of first or second order. If the Ice Complex surface is 

degraded by thermokarst, streams of higher order occur that connect the thermokarst lakes 

with the Lena River Delta channels. 

5.3 Orientation of stream links 

Figure 5-9 shows the stream links that were used for orientation analysis. A differentiation of 

stream links within and outside of thermokarst depressions was performed since they have 

different characteristics, as figure 5-8 shows. While the majority of stream links in 

thermokarst depressions are mostly concentrated in the alas valley area and in the southeast 

of Kurungnakh Island, the stream links outside of thermokarst depressions are well 

distributed all around the study area and predominantly connect the study area with the 

Lena River Delta channels in the northeast, south and southwest, or with the first terrace in 

the east, and west to northwest (Figure 5-9). Exceptions are the stream links in the “Main 

Valley” area that are situated more inland. Figure 5-8 shows the frequency distribution of 

stream link lengths and the direction of stream links within thermokarst-affected terrain 

(blue) and outside of thermokarst-affected terrain (green). 

 

Figure 5-8: Directions of stream links: a) frequency distribution of stream link length in %; b) orientation of 
stream links [°] located outside of thermokarst depressions and stream link length [m]; c) orientation of stream 
links [°] within thermokarst depressions and stream link length [m]. Values in diagrams b and c were bundled to 
classes of 22.5 degrees. Consider the different scales in the radius axis. 
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Figure 5-9: Stream links of Kurungnakh Island within (blue) and outside (green) of thermokarst affected terrain. 

In total 1214 stream links were analyzed ranging from 4 to 3078 meter length and having 

a mean length of 277 meter. 63% of these stream links are shorter than 250 m. Stream links 

within thermokarst-affected terrain show a strong east-west distribution with a small 

tendency of stream links longer than 250 m towards the east and shorter stream links 

towards the west. While there is a small peak of 8% between 0° and 22.5°, the southern 

directions between 135° and 225° make up only minor portions. 
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Stream links outside of thermokarst depressions show a more consolidated distribution. 

Most of the stream links have direction towards east with a small peak of about 11% of all 

streams towards 45° to 76.5 °. Another portion of the streams shows northwestern directions 

between 270° and 337.5°. Smaller stream links tend to the eastern directions. 

5.4 Transversal profiles 

The profiles in the “Drained Lake Valley” are mostly v-shaped with a clear visible stream 

center, except profile TP 05 which has a u-shape and a wider floor (Figure 5-10). The slope of 

the valleys is decreasing with distance from the coastline. The deepest profile with 39 m 

incision is TP 02. TP 05 has the highest observed slope with 30.12° (Table 5-3). TP 04 shows 

two depressions because it ranges over two small gullies.  

Profiles extracted from the DEM do reflect the actual morphology, except at TP 03 and TP 

04. DEM values of TP 03 show an inverted shape compared to the field data and actual terrain 

is overestimated. TP 04 is u-shaped in DEM values while actual topography shows a v-shape. 

The DEM values of TP 02 and TP 05 are both overestimating heights on the terrain surface 

and underestimating the valley floor. Mean slopes extracted from the DEM show a mean 

difference of about 7° from the actual mean slope (Table 5-3).  

Table 5-3: Morphometric characteristics of transversal profiles in the "Drained Lake Valley". 

   Slope left 
[°] 

Slope right 
[°] 

Slope difference 
[°] 

Profile 
ID 

Length 
[m] 

Depth 
[m] 

Field 
data 

Raw 
DEM 

Field 
data 

Raw 
DEM 

left right 

TP 01 171 22 14.67 12.37 14.12 11.77 2.30 2.35 

TP 02 254 39 18.27 15.76 16.62 15.62 2.52 1.00 

TP 03 32 2 6.70 2.05 5.56 -0.51 4.66 6.07 

TP 04 73 6 13.26 4.19 7.96 3.48 9.08 4.48 

TP 05 125 31 30.12 21.65 25.61 21.82 8.47 3.78 

     Mean 7.04 6.43 

     SD 6.92 5.58 
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Figure 5-10: Map and plots of transversal profiles in the "Drained Lake Valley" study site. Positions of the profile 
lines in the graph correspond to the position in the map. Lines show the profiles from the RTK survey while the 
dashed lines show the values extracted from the raw DEM. Background image: GeoEye-1, band combination 3,3,3.  
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The transversal profiles of the “Lucky Lake Valley” shown in figure 5-11 can be divided in 

three sections: 1) the upper catchment with profiles TP 01 - TP 04 and TP 12; 2) the middle 

catchment with profiles TP 05 – TP 09; and 3) the lower catchment with profiles TP 10 and 

TP 11. There morphometric characteristics are shown in table 5-4. 

The profiles in the upper catchment of the “Lucky Lake Valley” have gentle slopes with 

convex character. TP 01, located near to the outflow of the “Lucky Lake”, has a wide and flat 

floor. TP 02 is located directly below a drained thermokarst lake in a small tributary of the 

“Lucky Lake Valley” and has gentle slopes and a flat bottom. TP 03 shows a very symmetrical 

profile and has a visible stream center, while TP 04 features a terrace in the valley floor and is 

asymmetrical shaped. It marks the transition from the upper catchment within the Ice 

Complex to the middle catchment that belongs to the first main geomorphological terrace of 

the Lena Delta. 

All profiles of the “Lucky Lake Valley” middle catchment show a u-shaped, terraced form 

with an incised stream center. TP 06 is most characteristic for this shape. Profiles TP 05 and 

TP 07 are located in bends of the stream, are narrower than TP 06 and have an asymmetric 

shape. In profiles TP 08 and TP 09 have the clearest asymmetry due to a terrace on the right 

side of the profile. 

TP 10 finally belongs to the lower catchment of the “Lucky Lake Valley” at the mouth of to 

the Lena River Delta channel and is v-shaped. TP 11 has a v-shaped and narrow geometry, 

characteristic for short gullies that deeply incise into the surface. 

Table 5-4: Morphometric characteristics of transversal profiles in the "Lucky Lake Valley". 

   Slope left 
[°] 

Slope right 
[°] 

Slope difference  
[°] 

Profile ID Length 
[m] 

Depth 
[m] 

Field  
data 

Raw  
DEM 

Field  
data 

Raw  
DEM 

left right 

LLV TP 01 319 19 6.26 5.85 7.28 6.23 0.41 1.04 

LLV TP 02 168 4 2.63 5.03 3.36 1.48 -2.40 1.88 

LLV TP 03 264 20 8.96 6.42 8.06 7.14 2.54 0.93 

LLV TP 04 267 21 9.69 9.42 8.10 9.06 0.26 -0.96 

LLV TP 05 36 5 16.84 -1.37 14.50 5.20 18.21 9.31 

LLV TP 06 43 6 16.51 2.85 15.62 5.62 13.66 10.00 

LLV TP 07 66 6 12.90 10.79 7.40 1.16 2.11 6.24 

LLV TP 08 70 8 8.77 1.79 20.39 12.94 6.98 7.44 

LLV TP 09 64 9 14.58 7.29 16.11 8.36 7.29 7.75 

LLV TP 10 67 9 14.75 -1.76 14.45 6.51 16.51 7.94 

LLV TP 11 25 6 24.05 -2.09 28.19 5.56 26.15 22.63 

LLV TP 12 162 7 4.56 4.58 5.16 4.20 -0.03 0.96 

     Mean 7.64 6.26 

     SD 9.01 6.42 
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Figure 5-11: Map and plots of transversal profiles in the "Lucky Lake Valley" study site. Positions of the profile 
lines in the graph correspond to the position in the map. Lines show the profiles from the RTK survey while the 
dashed lines show the values extracted from the raw DEM. Background image: GeoEye-1, band combination 3,3,3. 

The DEM derived profiles reflect the actual valley morphology in most cases, but the 

terrace form is not as clearly visible as it is in the field data. The DEM extracted profile TP 03 

is showing a slightly different shape than the field data, with a wide floor und concave slope 
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and DEM extracted TP 01 has an artificial peak on the left side of the profile. TP 02 has a 

gentle profile u-shape, while the DEM profile line is showing a more v-shaped valley with a 

high slope on the left side of the profile. Profile TP 11 is completely different in shape and 

height. TP 10 is wider and not as deeply incised as the actual profile line. TP 08 shows an 

inverted stream center. TP 09 is reflecting general morphology, but is missing the terrace and 

has a shift in y-direction of about 4 m. 

The morphometric properties of the profiles are basically reflected in the DEM, mean 

difference of slope is 7.64 for the left side of the profiles and 6.26 on the right side of the 

profiles. The transversal profiles TP 05, TP 06. TP 10 and TP 11 show the highest slope 

deviations compared to the field dataset (Table 5-4).  

The transversal profiles of the “Main Valley” (Figure 5-12) can be divided into three 

sections: 1) the main distributary (TP 03, TP 07 and TP 09); 2) the long tributaries (TP 01, TP 

02, TP 04 and TP 05); and 3) the short tributaries (TP 06, TP 08, TP 10 and TP 11). There 

morphometric characteristics are shown in table 5-5. 

Profiles TP 03, TP 07 and TP 09 are located in the main distributary that has very gentle 

slopes as observed through the lowest points of the previously mentioned profiles. TP 03 

shows an asymmetric shape and is S-N orientated with a terrace at about 5 MASL on the 

southern side. In TP 07 the terrace is not strongly developed and is symmetric. TP 09 shows a 

second terrace at about 15 MASL on the northeast facing side. The stream channel in the 

distributary is well developed and up to ten meters wide.  

Table 5-5: Morphometric characteristics of transversal profiles in the "Main Valley". 

    Slope left 
[°] 

Slope right 
[°] 

Slope 
 Difference [°] 

Profile ID Orientation 
[°] 

Length 
[m] 

Depth 
[m] 

Field 
data 

Raw 
DEM 

Field 
data 

Raw 
DEM 

left right 

MV TP 01 28 133 2 1.29 0.23 2.75 -1.75 1.06 4.49 

MV TP 02 46 80 3 4.10 0.93 4.95 3.12 3.18 1.84 

MV TP 03 6 146 11 8.43 4.51 8.15 4.46 3.92 3.69 

MV TP 04 35 99 10 15.31 9.75 7.84 3.27 5.56 4.56 

MV TP 05 98 69 10 16.65 4.89 17.87 -2.88 11.77 20.75 

MV TP 06 84 46 5 9.25 1.90 12.33 2.61 7.35 9.72 

MV TP 07 127 121 12 12.43 4.76 9.91 2.97 7.67 6.95 

MV TP 08 24 45 5 17.44 8.32 10.20 2.87 9.13 7.33 

MV TP 09 64 159 12 6.18 3.37 12.83 7.96 2.81 4.87 

MV TP 10 50 70 6 6.93 2.96 11.52 3.38 3.97 8.15 

MV TP 11 79 44 8 26.91 4.94 16.64 1.63 21.96 15.01 

      Mean 7.13 7.94 

      SD 5.93 5.76 
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Figure 5-12: Map and plots of transversal profiles in the "Main Valley" study site. Positions of the profile lines in 
the graph correspond to the position in the map. Lines show the profiles from the RTK survey while the dashed 
lines show the values extracted from the raw DEM. Background image: GeoEye-1, band combination 3,3,3. 

 

The profiles of the long tributaries feature diverse shapes. TP 01 is very flat and with 

gentle slopes and shows a flat bottom without a distinct stream center. TP 02 is incised 



Results 

45 

  

several meters in a v-shaped form but with a flat bottom and gentle slopes. TP 04 has a v-

shaped form with steep slopes in the bottom but with stilted more gentle slopes towards the 

surface. TP 05 is v-shaped with steep slopes and has a flat surface. TP 04 and 05 are incised to 

about 10 m; TP 02 is only incised to about 3 m. 

The profiles of the short tributaries are predominantly v-shaped, with a flat floor and 

gentle slopes on the terrain surface. TP 11, located nearly at the mouth to the Lena River 

Delta channel, has slightly higher slopes and is not showing a flat bottom. The terrain heights 

of the transversal profiles in the “Main Valley” study site do not exceed 15 MASL. 

The morphology of the transversal profiles is partly reflected by the DEM, but the ex-

tracted profiles in the “Main Valley” show a general underestimation of actual heights as well 

as planimetric shifts in some cases. In TP 03 and TP 09 the stream center of the DEM 

extracted profiles is inverted. In TP 07 the wavy noise of the DEM is visible on the left side of 

the profile.  The mean slope differences are 7.13° and 7.94° for the left and right transversal 

profiles side, respectively.TP 05 and TP 11 show the highest deviations compared to the field 

dataset (Table 5-5). 

5.5 Longitudinal profiles 

Figure 5-13 shows longitudinal profiles of the “Lucky Lake Valley” and “Drained Lake Valley”. 

The morphometric characteristics of the profiles are presented in table 5-6. The LLV LP 01 

has a length of 3 204 m and height decreases by 16.49 m from highest to the lowest point 

with a mean slope of 0.51°. The profile can be divided in two parts. At the beginning of the 

profile the line has a slightly higher slope than at its end. The break line of slope change is at 

743 m in x-direction. After this point the profile is slightly decreasing towards the mouth to 

the Olenyokskaya Channel.  

Table 5-6: Morphometric characteristics of longitudinal profiles in the three key sites. Profiles with the rDEM 
appendix are extracted from the raw DEM.  

Profile ID Highest point 
[MASL] 

Lowest point 
[MASL] 

Height 
difference [m] 

Length 
[m] 

Slope 
[°] 

LLV LP 01 16.25 -0.23 16.49 3204.09 0.29 

LLV LP 01 rDEM 18.65 -1.29 19.94 3204.09 0.36 

DLV LP 01 48.85 4.89 43.96 1059.27 2.38 

DLV LP 01 rDEM 51.91 2.89 49.02 1059.27 2.65 

MV LP 01 14.21 1.65 12.57 146.64 4.90 

MV LP 01 rDEM 13.27 -1.18 14.46 146.64 5.63 
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Figure 5-13: a) Longitudinal profiles of the b) "Lucky Lake Valley" and c) "Drained Lake Valley" study sites. Lines 
in a) show the profiles from the RTK survey while the dashed lines show the values extracted from the raw DEM. 

The profile line from the DEM is generally reflecting the shape of the profile from the RTK 

GPS survey. In the upper part of the profile some parts are overestimated and in the lower 

part the actual profile line is underestimated. The mean slope of 0.36° is just slightly differing 

from the RTK profile value of 0.29° (Table 5-6). 

Profile DLV LP 01 can be divided in four parts. In the beginning the slope is relatively 

gentle up to circa 400 m before the profile line gets steeper. At about 600 m a small plateau is 

visible after which the profile shows the steepest part up to about 700 m. The last part of the 

profile shows a gentler slope. 

The values of the DEM are reflecting the actual morphology of the profile. In the first part 

of the profile the heights are overestimated by the DEM, while in lower part the dotted line 
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shows a notable underestimation of actual terrain height. The mean slope of the DEM profile 

line of 2.65° is just slightly higher than the actual slope of 2.38° (Table 5-6). 

Table 5-7: shows statistical parameters of the comparison of slopes from the RTK survey 

to the DEM scenario Green0609 for 833 values. These values were calculated on the basis of 

the RTK GPS points that were taken in the field at significant changes of topography (Figure 

4-6 in chapter 4.6). Mean deviation of slope is 11.9° with a standard deviation of 14.85°. 

Table 5-7: Evaluation results of slope accuracies for scenario Green0609. Values of the RTK measurements were 
compared to the values extracted from the DEM. Values with slopes over 90° were excluded from the calculation, 
because they were observed at points with very short distance and resulted in unrealistc values. 

 

  

Parameter Value 

Number of records 833 

Mean deviation 11.90 

Median of deviations 6.03 

Standard Deviation 14.85 

Minimum 0.00 

Maximum 90.52 
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6 Discussion 

6.1 DEM accuracy and valley morphometry 

The results in chapter 5.1 show that the use of more images than the generic triplet within 

the DEM generation process can improve the vertical accuracies of the resulting DEM. But 

this is just valid for scenario Green0609. Scenario allc0609 for instance, which used the most 

stereopairs showed only the fifth highest accuracies. Scenarios that include stereopairs with a 

B/H ratio that possibly exceeds a value of 1 (scenario Greenred06) showed a low DEM 

accuracy, therefore these scenarios are not recommended for DEM extraction. Similar effects 

are also reported by Hasegawa et al. [2000] and Raggam [2006]. A significant increase of the 

mean score channel value or the percentage of correlated pixels could not be observed when 

consolidating the data by adding more images to the DEM generation process (Table 5-1). 

The vertical accuracies of 4.41and 4.92 MASL for the final DEM scenarios Green0609 and 

Triplet, respectively, are in the range of other reports that evaluated PRISM derived DEMs 

[Bignone and Umakawa, 2008; Gruen and Wolff, 2007]. Depending on the planned application 

of the DEM, one could avoid the time exposure of processing additional images, including GPC 

search and computation time, if a slightly improved vertical accuracy of 0.5 m is not 

necessarily needed. 

Two different editing approaches were applied to the final DEMs (Figure 6-1). Associated 

with the editing process some compromises had to be made regarding the accuracy. 

 

Figure 6-1: DEM error estimations and relief height before and after editing: a) deviations of scenario Green0609 
and scenario triplet with 5x5 meter ground sampling distance related to the terrain height. b) solid filled and 
forward-slashed filled box-whisker plot represents the raw and the edited DEM respectively. The color code 
corresponds to diagrams a) and b). 
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The use of a linear trend surface on the scenario Green0609 DEM based on the mean 

classified deviations to the RTK GPS values results in a positive shift of mean deviations of 

about 2 MASL without a significant change in the variance of the deviations (Figure 6-1 b) 

and Table 6-1). Consequently the DEM is predominantly underestimating actual terrain 

heights (Figure 6-1 b). This effect increases with increasing absolute terrain height. The 

editing of scenario Triplet is decreasing the mean deviations from 0.27 MASL to -1.17 MASL 

whereas the variance is increasing from 5.30 to 7.50 MASL. This effect can be observed at the 

upper and lower ends of the absolute height range of Kurungnakh Island where the edited 

DEM overestimates the actual terrain heights. For the low lying areas, this is mainly due to 

the filling of sinks in the DEM that occur especially in the “Main Valley” site with low absolute 

relief heights. Concluded, the editing process may lead to a smoothed surface that contains 

less noise, but vertical accuracies in low and high laying areas decrease.  

In all DEM scenarios large percentages of non-correlated pixels could be observed with 

values ranging from 42.83% to 71.02%. As shown in figure 5-6, the areas that could not be 

correlated during image matching are predominantly located on undisturbed and flat Ice 

Complex surfaces. Interpolation is used to attain elevation values for these areas. This is 

sufficient when there are no great height differences and some small features are present that 

could be matched and deliver spot-like height information. But on the large west to 

southwest facing slopes from the Ice Complex surface towards the central alas valley where 

in some regions no matching features occur, the results of the interpolation are uncertain and 

should be dealt with carefully when using the produced DEM. Using tachymetry or RTK GPS, 

small-scale and high-resolution DEMs should be created for these low contrast slope areas to 

evaluate the quality of the DEMs. Therefore, further survey campaigns should be conducted 

to validate these areas and to consolidate the existing GCP network that now span to the 

three key sites of this work. These surveys should be connected to the existing GCP network 

that is used for DEM generation, so that a comparison of absolute heights is possible. 

Table 6-1: Statistical characteristics of height deviations compared to the RTK GPS measurements for scenarios 
Green0609 and Triplet before and after using two editing approaches. Values are given in MASL. 

 GREEN0609 
Raw 

GREEN0609 
trend corrected 

Triplet 
raw 

Triplet 
edited 

Standard deviation 1.82 1.92 2.30 2.74 

Mean -0.40 2.48 0.27 -1.17 

Median -0.52 2.39 0.19 -1.36 

Minimum -4.02 -0.80 -5.99 -9.79 

Maximum 3.42 6.06 3.96 3.56 

Variance 3.31 3.68 5.30 7.50 
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The sharp height deviation step at about 12 to 14 MASL that occurred in all DEM scenarios 

during evaluation is a striking feature that needs explanation. The RTK GPS measurements 

itself that were used for evaluation could be the reason for some irregularities in the 

evaluation process. The three study sites were too far away from each other to use only one 

base station for all measurements. Thus three base stations had to be set up. The relative 

accuracies of the RTK-GPS measurements of one survey may be in centimeter level, but the 

absolute height can vary in a range of 1 to 2 MASL for the same base station between different 

days of observation and to a maximum of about 3 MASL between different base stations and 

survey days (Table 6-2). These differences in between different observation days could have 

an impact on the evaluation, but do not fully explain the deviation step that is in a range of up 

to 8 MASL.  

The shape of transversal and longitudinal profiles is reflected by the produced DEM in 

most cases. Extracted profiles from areas outside of the three study sites could be used to 

further analyze the stream network. Still some differences have to be taken into account 

when analyzing profiles that were extracted from the DEM. The raw DEM tends to over-

estimate or underestimate actual terrain heights below 15 MASL and over 20 MASL, respec-

tively. Therefore, the valley shape may be drawn correctly but absolute heights can vary in 

both directions of the y-axis. As clearly visible for TP 03 within the “Drained Lake Valley”, 

short transversal profiles on Ice Complex surfaces are susceptible for errors, because the 

resolution of the DEM is not sufficient to describe small scale features with only few meters of 

incision. Extracted transversal profiles in “Main Valley” showed inverted shapes in the stream 

center (Figure 5-12) because of matching difficulties of the PRISM dataset in low lying areas. 

While the terraces in the “Drained Lake Valley” are only rudimentary expressed in the DEM 

extracted profiles, the wider terraces in the “Main Valley” are well represented in the DEM 

derived profiles. V-shaped ravines or valleys are well reflected by the DEM.  

Table 6-2: Height differences of RTK GPS base stations. Reported heights origin from device records and field book 
entries from different observation dates 

 KURBASE1  
(LLV) 

KURBASE2 
 (MV) 

KURBASE3  
(DLV) 

Reported height [MASL] 27.46 6.38 46.19 

Reported height [MASL] 29.33 7.56 45.90 

Reported height [MASL] 29.32 6.99 45.90 

Reported height [MASL] 29.46  46.97 

Standard deviation 0.95 0.58 0.50 

Variance 0.91 0.34 0.25 

Range 1.99 1.17 1.07 
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The DEM derivate slope showed different results for different scales. The comparison of small 

scale slope values from the RTK GPS and the DEM showed a mean deviation of 11° for all 

investigated profiles. When using the mean slope of a profile, based on its highest and lowest 

point, the mean deviation for the profiles in the three study sites ranged only between 6.9 to 

7.9°. The three analyzed longitudinal profiles showed an even lower deviation of below 1°. 

The use of PRISM derived DEMs for analysis of first order morphometric derivate slope is 

sufficient when using the mean value of a profile. Longitudinal profiles are possibly better 

reflected by the DEM as transversal profiles but should further be evaluated. 

6.2 Stream network evolution 

The stream network within the Ice Complex of Kurungnakh Island can be divided in two main 

parts. These are the ones that are situated within and outside of thermokarst affected areas 

respectively. More complex structures occur mostly on alas floors, where also meandering 

stream links can be observed, while the transition zone from the Ice Complex surface to the 

alas bottom is characterized by the presence of lower order streams with short and straight 

character. The stream network shows a stage of high organization in three spots around the 

study area. Two of them are situated in thermokarst depressions with low elevations where 

flowing water from adjacent surfaces concentrates and consequently forms advanced 

networks.  

Of particularly interest in this context is the stream on the northern edge of Kurungnakh 

Island that has a stream order of 4. It is neither situated in an alas depression nor connected 

to a big thermokarst lake but nevertheless incised into otherwise undisturbed Ice Complex 

deposits. On relatively short distance a high degree of organization is developed in this 

stream that expresses itself through an early stage of dendritic form. The Lena River Delta 

channel that erodes the cliff is probably the main driver for the occurrence of this feature, 

because the base level of erosion is constantly changing. 

Furthermore streams can be distinguished between those that are located on the outer 

extent of Kurungnakh Island and the ones in the inland. In the first case the Lena River Delta 

channel is an important thermo-erosional factor that again has a substantial influence on the 

development of thermo-erosional valleys on land. Thermo-erosional riverbank erosion, alters 

the base level of erosion and promotes a faster development of thermo-erosional valleys with 

high erosional activity due to constant high slope gradients. Accompanying with the height 

gradient of Kurungnakh Island, the most prominent representatives of this valley type occur 

at the eastern shoreline of Kurungnakh Island in the area of the “Drained Lake Valley”. With 

the exception of the southwestern shoreline around the “Main Valley”, these streams occur all 
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around the margins of the study area. This is also expressed through the orientation analysis 

in figure 5-8. 

The intense thermokarst activity that lead to the formation of the wide alas valley is an 

important factor in the evolution of the stream network of Kurungnakh Island. The obvious 

coalescence of several thermokarst depressions that form the valley corresponds to stage 4a 

of the alas relief development by Soloviev [1973] (Figure 2-9).and represents a late stage of 

permafrost degradation. Today the alas valley is divided into two parts that drain in opposing 

directions. The northern part is following the general height gradient and drains towards 

northeast. The southern part is first draining in southeast direction, before it takes a nearly 

rectangular turn within Ice Complex deposits and enters the delta channel in southwestern 

direction. The neo-tectonic activity in the Lena River Delta that changed flow directions of the 

major delta channels in the past could also have had an impact on the smaller scale stream 

network on Kurungnakh Island. 

The general height gradient of Kurungnakh Island towards northwest is also a main 

driving factor for the direction of detected streams and was identified in the mean directions 

of stream links. The influence of thermokarst features is superimposing this signal due to 

partly radially structured short and straight streams that occur on the slopes of the 

thermokarst depressions. Also the streams at the margins of Kurungnakh Island show a very 

heterogeneous orientation. In the “Main Valley” that is N-S orientated the resulting short and 

straight gullies are consequently perpendicular orientated in East and West directions.  

Polygon nets in the ground can vary in their structure and not necessarily have a 

hexagonal structure with angles of 60°. The identified peaks of directions of the stream links 

could therefore follow the polygonal net structure, but are more likely influenced by the main 

topographic properties of the study area. This is because the stream link dataset is not 

necessarily representing every bend of a stream. Future works should identify stream 

segments between every bend of a stream and analyze the directions of these segments to 

verify the hypothesis that stream segments are orientated according to the polygonal net. 

6.3 Valley morphometry 

The three observed study sites show different valley geometries and characteristics. While 

the “Drained Lake Valley” features predominantly sharp v-shaped valleys that are incised up 

to 40 m into the Ice Complex, the main characteristics of the “Lucky Lake” are a u-shaped 

form of the profiles with a terraced valley bottom (Figure 6-2). The transversal profiles of the 

“Main Valley” finally show wider and gentler slopes and incorporate two terraces in some 

profiles. 
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Figure 6-2: Comparison of transversal profiles from the three key sites. 

Particularly the morphometry of the longitudinal and transversal profiles within the 

“Drained Lake Valley” is worth to be emphasized because it results from the combination of 

three different processes: 1) vertical thermal erosion that follows the high height gradient 

from the surface to the coastline; 2) lateral thermal erosion at the base level from the Lena 

River Delta channel; and 3) a draining event of a thermokarst lake. Draining events of 

thermokarst lakes occur throughout the Arctic as a result of mainly lateral drainage due to 

bank overflow, ice wedge degradation and development of a drainage network, headward 

stream erosion, lake tapping, coastal erosion, as well as expansion of a lake toward a drainage 

gradient [Jones et al., 2011]. In the case of the “Drained Lake Valley” it is very likely that the 

combination of retrogressive erosion of the thermo-erosional valley that followed the lateral 

thermal-erosion by the Lena River Delta channel and bank overflow of the lake in seasons 

with high water availability triggered the drainage of the thermokarst lake [Morgenstern, 

2012]. This event happened after 1964 as Corona satellite images show. 

The transversal profiles in the “Lucky Lake Valley” reflect the transition from the Ice 

Complex of the third terrace to the active floodplain system of the first terrace. Especially the 

detected terraces are a striking feature. These are mostly located on the southern side of the 

profiles and lead to more gentle slopes, while steeper slopes occur on the southwest facing 

side of the profiles. Snow is mainly accumulated on the southern side because it is protected 

from the prevailing wind direction from south [Morgenstern et al., 2011]. As mentioned, snow 

patches could have a substantial impact on the valley evolution since they are eroding the 



Discussion 

54 

  

underlain surface when melting in summer and accumulation of fine material from eolian 

input remains. Most likely the terraces are composed of a mixture from these materials as 

well as from the fine-grained sediments from the eroded Ice Complex deposits transported 

downstream and from fine material transported upstream by the Lena River during flooding 

events.  

Because of its constant low heights, the “Main Valley” is as well very likely influenced by 

major flooding events of the Lena River that can occur every year in spring during ice break 

up. They can reach high levels, as drift wood findings during the field campaign in the “Main 

Valley” area at 11 MASL indicated (Figure 6-3). 

 

Figure 6-3: Historical drift wood in the “Main 
Valley” transported by the Lena river during 
a flood. The position of the stem in the 
foreground of the image was measured with 
RTK GPS and had a height of 11 MASL. The 
location of the photograph is in about 30 m 
distance to TP 03 in the “Main Valley”. 

 

The influence of the warmer Lena water could be a reason for increased thawing of 

permafrost and thus the development of the extensive terrace structure in the “Main Valley” 

below 10 MASL. Flooding is not the main reason for their existence but could intensify their 

shape. The second identified terrace structure at about 10 MASL in profile TP 09 is an 

indicator of changing conditions during the evolution of the “Main Valley”. The terrain surface 

in all observed profiles is at about 13 MASL and probably reflects the lower boundary of the 

Ice Complex deposits that formerly covered the area. Schirrmeister et al. [2011] detected the 

lower Ice Complex boundary between 15 and 20 MASL at the eastern coast of Kurungnakh 

Island, but the deposits could have been shifted in height due to tectonic uplift and the lower 

Ice Complex boundary could as well follow the general height gradient of Kurungnakh Island. 

Possibly several draining events of thermokarst lakes in the inland of Kurungnakh Island 

have initially led to the deep thermo-erosional incision in the “Main Valley” and the erosion of 

the Ice Complex in the area. Under the influence of floods by the Lena River the profiles were 

then smoothed and the extensive terrace structure formed.  

The tributary with the profiles TP 01 and TP 02 shows an early stage of valley evolution 

in the transition of a diffuse surface channel to a v-shaped valley on a relatively short 
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distance. The other tributary described by the profiles TP 04 and TP 05 has a bigger 

catchment and is influenced by draining events more inland, connection to big alas north of 

the Lucky Lake. Their profiles are well developed and v-shaped and therefore show a high 

degree of erosional activity in the past.  

In all of the observed valleys vegetation in the thalweg areas is much stronger and more 

active as in the adjacent not incised area, revealing increased water availability due to 

concentration of interflow from the terrain surface. Vegetation activity can be estimated 

through the strong signal of the near infrared channel of GeoEye-1 and RapidEye scenes 

(Figure 3-4). The valleys are therefore important spots for vegetation development and can 

feature very high growing vegetation compared to the usual Ice Complex surface. Arp et al. 

[2014] report that another form of combined thermokarst and thermal-erosion feature, 

called beaded river systems, which also occur in the study area play an important role in 

ecosystem functioning as summer feeding habitats and hydrologic connectivity for migrating 

fish. 

6.4 Relevance of thermo-erosional features for arctic ecosystems 

Three processes for future development of thermo-erosional features on Kurungnakh Island 

can be distinguished: 1) warming ice-rich permafrost is more sensible to degradation by 

thermo-erosional activity; 2) Lena River Delta channels will further erode the coasts of 

Kurungnakh Island with increasing intensity 3) and lateral expansion of thermokarst lakes 

and alasses due to thermo-erosional activity will take place (Figure 6-4). 

Today’s hydrological situation in the study area is particularly determined by the pres-

ence of ice-rich permafrost. Substantial changes of frozen ground and the cryosphere are 

reported in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC) by Vaughan et al. [2013], including decreasing snow cover extent, increasing 

permafrost temperatures, significant permafrost degradation and increased active layer 

thicknesses. These changes will consequently affect arctic stream networks. Warmer air 

temperatures and increased infiltration of precipitation leads to a deepening of the active 

layer and therefore the infiltration capacity of the soil is further increased [Schuur et al., 

2008]. This would consequently result in reduced surface runoff and decrease thermo-

erosional activity. Rowland et al. [2010] again conclude that thermal erosion accompanied 

with permafrost thawing and the melting of ground ice will outweigh the storage effects of a 

deepened active layer. As McNamara et al. [1999] state, arctic drainage networks on hill 

slopes only have a rudimentary character, expressed as water tracks, and potential erosion is 

limited due to the presence of permafrost. 
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Figure 6-4: Scheme of main thermo-erosional processes on Kurungnakh and their future development. Red arrows 
show exterior thermo-erosional (TE) activity due to Lena River Delta channels, green arrows show interior 
thermo-erosional activity due to decreased stability of permafrost, blue arrows indicate lateral expansion of lakes 
and alasses due to combined thermo-erosional and thermokarst (TK) activity. 

Under influence of rising temperatures in flowing surface water, permafrost is more 

sensible to degradation through thermo-erosion as laboratory experiments show [Costard et 

al., 2007]. When the poorly developed stream networks on the Ice Complex can incise deeper 

into the permafrost it will form new and advanced networks. Increased draining of the 

adjacent surfaces will decrease their soil moisture contents, and therefore affecting land-
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atmosphere moisture and energy fluxes, such as evaporative heat flux, and phase change in 

freezing or thawing of wet soil [White et al., 2007]. 

While the formation of these new networks can occur in very short time [Fortier et al., 

2007], the resulting features are long lasting in periglacial landscapes and have a great 

impact on local hydrology, water availability for vegetation and therefore plant distribution 

as well as altering the sedimentary balance of river systems downstream due to ground loss 

following permafrost erosion [Godin et al., 2014]. Accompanying with that carbon and 

nutrients from the organic-rich Ice Complex deposits will be mobilized and released to the 

Lena River Delta channels and to the Laptev Sea system, if they are not deposited in the 

watershed’s floodplains or the wide alas valley floors. The amount of stream discharge 

following precipitation, snow melt or permafrost thawing is mainly regulating the intensity of 

the transport. 

Concluding, the presence and future development of thermo-erosional valleys is of major 

importance for arctic ecosystems in the context of a warming climate. When accelerated 

degradation of permafrost and the accompanied reactivation of fossil organic carbon take 

place, thermo-erosional networks are the most important factor of transportation from the 

terrestrial place of degradation to the hydrosphere where exchange to the atmosphere or 

deposition in the near shore zone takes place. Future investigations about permafrost 

degradation and related sediment, nutrient and carbon fluxes should therefore incorporate 

thermokarst and thermal erosional processes, as well as their complex interrelationship. 
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7 Conclusions 

The aim of this study was to morphometrically analyze thermo-erosional valleys in order to 

understand their distribution and dynamics within an arctic ice-rich permafrost site and to 

identify the main driving factors in the context of a warming arctic. 

Photogrammetrically derived DEMs from high-resolution ALOS PRISM satellite images 

were successfully proven to be a valuable tool in lowland tundra landscapes, although low 

contrast and low height gradient limits the usability at wide and gentle alas slopes. The 

highest vertical accuracy of 4.41 MASL was achieved when using a combination of 6 stere-

opairs from 2006 and 2009. The DEM derived transversal and longitudinal profiles reflect the 

actual shape compared to the field data and mean slope values show mean deviations of 6.8° 

for 28 transversal and 0.5° for 3 longitudinal profiles. 

Stream network analysis revealed that the majority (71%) of the detected stream links 

have a Strahler order of 1. These mostly short and straight streams are distributed hetero-

geneous in the study area and connect the Ice Complex surface with either the wide alas 

depressions inland or with the Lena River Delta channels. In the mostly poor developed 

stream network, the highest observed stream order of 4 was detected in three spots, of which 

2 are located in a wide alas valley in the central part of the study area. The general 

orientation of the stream links follows the observed height gradient of the study area towards 

the northwest, but radially arranged short and straight streams at the slopes of thermokarst 

depressions superimpose the signal with directions towards east and west. Streams that are 

located outside of thermokarst basins showed two main directions towards northeast and 

northwest that could partly reflect the structure of polygonal nets in the ground. 

Valley morphometries of three study sites were compared and differing driving factors 

for their evolution could be detected: V-shaped valleys incise deep into the Ice Complex and 

are driven by exterior thermal erosion due to the Lena Delta channels and or draining events 

within the study area or gullying due to rapid melting of ice wedges; U-shaped valleys with 

steep slopes and north to northwest facing terraces are influenced by snow patches, outflow 

of thermokarst lakes and in low areas by flooding of the delta channels; U-shaped and wide 

meandering valleys with gentle slopes and terraces that are also influenced by Lena River 

floods represent the most progressed state of valley evolution.  

The lower barrier of the Ice Complex deposits possibly follows the height gradient of the 

study area. In contrast to the 15 to 20 MASL reported in the literature, a constant terrain 

surface height of 13 MASL in the westernmost highly degraded study site was observed. 

Based on this study, the development of semi-automated DEM classification approaches using 

morphometric parameters could help to identify the lower boundary of the Ice Complex 
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sequence when looking at characteristic slope changes in longitudinal and transversal cross 

profiles. 

The results of this work show that thermo-erosional valley networks in Ice Complex 

landscapes of the Lena Delta are strongly connected to thermokarst activity. Changing 

permafrost conditions due to climate change will lead to an expansion of the thermo-

erosional network and the close interaction of thermokarst and thermal erosion will increase 

the carbon, nutrient and sediment fluxes from the Ice Complex to the Laptev Sea system. 
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