Lösungen zu Übungszettel 2 – Mengenlehre

- 2.1 (a) Geben Sie folgende Mengen in aufzählender Darstellung an.
 - (i) $\{x \in \mathbb{N} \mid 2 \le x \le 5\} = \{2, 3, 4, 5\}$
 - (ii) $\{x \in \mathbb{N} \mid x^2 = 1\} = \{1\}$
 - (iii) $\{x \in \mathbb{Z} \mid x^2 = -1\} = \{\}$
 - (b) Geben Sie folgende Mengen in definierender Darstellung an.
 - (i) $\{1, 3, 5, 7, 9\} = \{x \in \mathbb{Z} \mid 1 \le x \le 9 \land x \text{ ungerade}\}$
 - (ii) $\{-2, -1, 0, 1, 2\} = \{x \in \mathbb{Z} \mid 0 \le x^2 \le 4\}$
 - (iii) $\{-2,2\} = \{x \in \mathbb{Z} \mid x^2 = 4\}$
- **2.2** Überführen Sie die folgenden Aussagen in Quantorenschreibweise:
 - (a) Es existiert ein x in den natürlichen Zahlen womit 5 + x = 2 lösbar ist.

Lösung: $\exists x \in \mathbb{N} : 5 + x = 2$

(b) Zu jeder natürlichen Zahl existiert eine natürliche Zahl, die grösser ist.

Lösung: $\forall x \in \mathbb{N} \ \exists y \in \mathbb{N} : y > x$

- **2.3** Gegeben sei die Menge $\Omega = \{5, \{Mo, Di\}, \emptyset\}$. Sind die folgenden Aussagen wahr oder falsch?
 - (a) Mo $\in \Omega$ falsch
- (b) $\{Mo, Di\} \subset \Omega$ falsch
- (c) $\{5\} \in \Omega$ falsch

- (d) $\{5\} \subset \Omega$ richtig
- (e) $\{Mo\} \subset \Omega$
- $\emptyset \subset \Omega$ richtig

- (g) $\{\emptyset\} \subset \Omega$ richtig
- (h) $\emptyset \in \Omega$
- richtig

falsch

- (i) $\{\emptyset\} \in \Omega$ falsch
- **2.4** Welche der Mengen A_1, \ldots, A_6 ist identisch mit einer der Mengen B_1, \ldots, B_6 (und mit welcher)?

$$A_1 = \{ x \mid x \in \mathbb{N}, \ x \cdot x = 4 \}$$

$$B_1 = \{-2, 2\}$$

$$A_2 = \{\}$$

$$B_2 = \{0\}$$

$$A_3 = \{2x \mid x \in \mathbb{Z}, -1 \le x \le 1\}$$

$$B_3 = \{2\}$$

$$A_4 = \{x \mid x \in \mathbb{Z}, \ x \cdot x = 4\}$$

$$B_4 = \{0, 2\}$$

$$A_5 = \{x \mid x \in \mathbb{N}, \ x + x = 0\}$$

$$B_5 = \{-2, 0, 2\}$$

$$A_6 = \{2x \mid x \in \mathbb{N}, -1 < x < 2\}$$

$$B_6 = \emptyset$$

Lösung: $A_1 = B_3$, $A_2 = B_6$, $A_3 = B_5$, $A_4 = B_1$, $A_5 = B_2$, $A_6 \neq B_4$

2.5 Gegeben seien die Mengen $A = \{1, 3, 5, 7, 9\}, B = \{2, 4, 6, 8, 10\}$ und $C = \{5, 6, 7, 8, 9, 10\}$ in der Grundmenge $\Omega = \{ n \in \mathbb{N} \mid 1 \le n \le 10 \}.$

(a) Geben Sie folgende Mengen an:

$$A \cup B = \Omega$$

$$A \cap B = \emptyset$$

$$A \cap \overline{B} = A$$

$$A \cap \overline{C} = \{1, 3\}$$

$$B \cap \overline{B} = \emptyset$$

$$A \cap (B \cup C) = A \cap \{2, 4, 5, 6, 7, 8, 9, 10\} = \{5, 7, 9\}$$

- (b) Bestimmen Sie die Menge derjenigen Elemente, die
 - (i) in genau einer
- $\begin{array}{cc} \text{(ii)} & \text{in genau zwei} \\ & \Omega \backslash M \end{array}$
- (iii) in höchstens zwei Ω

 $M:=\{1,\;2,\;3,\;4\}$ der Mengen $A,\,B$ und C liegen.

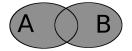
(c) Wie muss die Grundmenge Ω sein, damit gilt $\overline{A \cup B \cup C} = \{11, 12\}$?

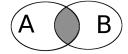
Lösung:
$$\Omega = \{n \in \mathbb{N} \mid 1 \le n \le 12\}$$

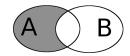
2.6 Bestimmen Sie alle Teilmengen von $\{1, 2, 3, 4\}$. Wie viele Teilmengen gibt es?

2.7 Seien A,B,C Teilmengen einer Grundmenge Ω . Stellen Sie die folgenden Mengen im Venn-Diagramm dar.

 $A \cup B$: $A \cap \overline{B}$:







 $A\cap B\cap C:$ $A\cap (\overline{B}\cup \overline{C}):$ $A\cap (B\cup C):$

