
1

Class 9

• Review; questions
• Discussion of Semester Project
• Arbitrary interprocedural control flow
• Assign (see Schedule for links)

• Readings on pointer analysis
• Problem Set 5: due 9/22/09
• Project proposal

• Initial: due by e-mail 9/22/09
• Final: due (written, 2 pages) 9/29/09

Complicating Factors

A. Programs with more than one procedure
B. Recursion
C. Programs with arbitrary control flow
D. Programs with pointers
E. Programs with arrays

Review: Interprocedural Analysis

Approaches to performing analysis on programs
with more than one procedure (data-flow,
slicing, etc.) to preserve calling context

1. Compute summary information at the call sites
2. Keep the call stack information

Note: Analysis that preserve the calling context
are calling context-sensitive; those that don’t
preserve the calling context are calling context-
insensitive

Context-sensitive VS Context-insensitive

Which is Weiser’s slicing algorithm?
Which is the SDG?

Complicating Factors

A. Programs with more than one procedure
B. Programs with recursion
C. Programs with arbitrary control flow
D. Programs with pointers
E. Programs with complex data structures

Recursion

Programs containing recursion result in additional
complexity in the program-analysis algorithms. For
example

Recursion results in cycles in the interprocedural graph,
making it difficult to order the nodes in the graph for processing
Iterative algorithms may need significant processing when
these cycles are present
Etc.

To accommodate analysis of programs with recursion, we
can perform analysis on the interprocedural graph to
identify cycles—similar to analysis to identify loops.

Recursion

A call graph can be used to represent
the interactions among procedures
(or modules) in a system.

In a call graph, nodes represent
procedures and directed edges
represent the interaction between
procedures. An edge (M,N) in a
call graph means that M calls N. If
there is more than one call from M
to N in M, the one edge between M
and N represents all of them.

In the example, A calls B and E, B calls
C and D, D calls itself, E calls F, F
calls G, and G calls E.

A

B E

C D F

G

Recursion

Additional information about call graphs
The call graph defined here has
one edge between two nodes even
if there are multiple calls between
the procedures represented by the
nodes.
A graph that contains an edge for
every call between two nodes, and
that then can contain information
about parameters passed on each
edge, is called a call multi-graph.

A

B E

C D F

G

Recursion

A common way to analyze an
interprocedural graph is to first
perform analysis to identify the
strongly-connected components. A
strongly-connected component is a
set of nodes in the graph such that
any node in the set is reachable
from any other node. You can
easily develop or find an algorithm
to find strongly-connected
components.
In the call graph at right, the
strongly-connected components
are shown in red.

A

B E

C D F

G

Recursion

Given the interprocedural
component with strongly-
connected components
identified, the analysis can
proceed by

Ordering the traversal using the
strongly-connected components
Completing the analysis within a
strongly-connected component
until it stabilizes; then moving
onto the next node

A

B E

C D F

G

Complicating Factors

A. Programs with more than one procedure
B. Programs with recursion
C. Programs with arbitrary control flow
D. Programs with pointers
E. Programs with complex data structures

Semantic Dependence

Intuitively, n is semantic dependent on m if the
semantics of m may affect the execution
behavior of n

Important because semantic dependence is a
necessary condition for certain semantic relationships
between statements
However, no definitions of syntactic dependence are
a sufficient condition for semantic dependence

Justification for approximated algorithms based
on syntactic dependence

Control Dependence Revisited

Two definitions of control dependence
Strong—termination of loops, number of
times executed not considered (Ferrante,
Ottenstein, and Warren)
Weak—doesn’t assume termination of
loops, etc. (Podgurski and Clarke)

Arbitrary Interprocedural CF

Three ways in which intra-procedural control
dependences can be inaccurate

Entry-dependence effect
Multiple-context effect
Return-dependence effect

procedure M
1. begin M
2. read i, j
3. sum := 0
4. while i < 10 do
5. call B

endwhile
6. no-op
7. print sum
8. end M

procedure B
9. begin B
10. call C
11. if j >= 0 then
12. sum := sum + j
13. read j

endif
14. i := i + 1
15. end B

procedure C
16. begin C
17. if sum > 100 then
18. print(“error”)

endif
19. end C

What are intraprocedural control dependences?

Arbitrary Interprocedural Control Flow

18

12, 13

Intraprocedural CD

17

2, 3, 4, 6, 7

4, 5

10, 11, 14

CD onStatements

procedure M
1. begin M
2. read i, j
3. sum := 0
4. while i < 10 do
5. call B

endwhile
6. no-op
7. print sum
8. end M

procedure B
9. begin B
10. call C
11. if j >= 0 then
12. sum := sum + j
13. read j

endif
14. i := i + 1
15. end B

procedure C
16. begin C
17. if sum > 100 then
18. print(“error”)

endif
19. end C

Arbitrary Interprocedural Control Flow

Entry-dependence effect

Arbitrary Interprocedural Control Flow

10a

Entry-dependence effect

procedure M
1. begin M
2. read i, j
3. sum := 0
4. while i < 10 do
5. call B

endwhile
6. call B
7. print sum
8. end M

procedure B
9. begin B
10. call C
11. if j >= 0 then
12. sum := sum + j
13. read j

endif
14. i := i + 1
15. end B

procedure C
16. begin C
17. if sum > 100 then
18. print(“error”)

endif
19. end C

Arbitrary Interprocedural Control Flow

Multiple-context effect

Arbitrary Interprocedural Control Flow

10a

Are 10, 11, 14, and
17 still dependent
on 4?

Multiple-context effect

procedure M
1. begin M
2. read i, j
3. sum := 0
4. while i < 10 do
5. call B

endwhile
6. call B
7. print sum
8. end M

procedure B
9. begin B
10. call C
11. if j >= 0 then
12. sum := sum + j
13. read j

endif
14. i := i + 1
15. end B

procedure C
16. begin C
17. if sum > 100 then
18. halt

endif
19. end C

Arbitrary Interprocedural Control Flow

Return-dependence effect

Arbitrary Interprocedural Control Flow

10a10a

What about 10, 11,
14, and 17 now?

Return-dependence effect

procedure M
1. begin M
2. read i, j
3. sum := 0
4. while i < 10 do
5. call B

endwhile
6. no-op
7. print sum
8. end M

procedure B
9. begin B
10. call C
11. if j >= 0 then
12. sum := sum + j
13. read j

endif
14. i := i + 1
15. end B

procedure C
16. begin C
17. if sum > 100 then
18. halt

endif
19. end C

Arbitrary Interprocedural Control Flow

1718

1112, 13

Intraprocedural CD

Entry C17

Entry M2, 3, 4, 6, 7

44, 5

Entry B10, 11, 14

CD onStatements

Interprocedural CD

45, 6, 10, 17

Entry M2, 3, 4

1112, 13

174, 7, 11, 14, 18

CD onStatements

Exception-handling constructs
throw-catch construct in Java
raise-exception when construct in Ada

Halt statements
exit() call in C, C++
System.exit() call in Java

Interprocedural jump statements
setjmp()-longjmp() calls in C and C++

Instances of Arbitrary Interprocedural
Control Flow

Sinha, Harrold, Rothermel paper
Contributions

Ways that intraprocedural CD inaccurately model CDs in whole
programs
Precise definition of interprocedural CD
Approaches for computing interprocedural CD
Empirical results suggesting effectiveness and efficiency

Later work
Extensions to handle other types of interprocedural CD such as
longjumps, exception-handling constructs

Arbitrary Interprocedural Control Flow

First Approach: Interprocedural Inlined Flow
Graph (IIFG)

Each procedure inlined at each call site
Precise computation of dependences by
adapting approaches defined for the intra-
procedural case, but

Possibly infinite
Exponential in size in the worst case

Second approach (less precise)

Identify potentially non-returning call sites

Construct augmented control-flow graph

Compute partial control dependences
Construct augmented control-dependence graph

Construct interprocedural control-dependence graph
Propagate control dependences

Computation of Interprocedural CD

Identify potentially non-returning call sites

Construct augmented control-flow graph

Compute partial control dependences
Construct augmented control-dependence graph

Construct interprocedural control-dependence graph
Propagate control dependences

Computation of Interprocedural CD

PNRC Analysis

Step 1: Identifies three sets
DNRPList: Definitely non-returning procedures
UnreachList: Statically unreachable nodes
HNList: Halt statements reachable from entry

Method
Build ICFG
Depth first traversal along realizable paths marking
visited nodes

Unmarked nodes are unreachable
Unmarked exit nodes indicate DNRPs
Marked halt nodes indicate reachable halts

PNRC Analysis

Step 1: Identifies three sets
DNRPList: Definitely non-returning procedures
UnreachList: Statically unreachable nodes
HNList: Halt statements reachable from entry

Method
Build ICFG
Depth first traversal along realizable paths marking
visited nodes

Unmarked nodes are unreachable
Unmarked exit nodes indicate DNRPs
Marked halt nodes indicate reachable halts

What’s a
realizable path?

PNRC Analysis

10a10a

PNRC Analysis

10a10a

What if we
change program?

PNRC Analysis

Step 2: Compute partial CD
Identify PNRCList: Possibly non-returning
call-sites
Build ACFGs

Method
Backward traversal of ICFG starting from (1)
halt nodes and (2) calls to DNRPs

Ascending into callers, but not descending into
callees

Any call site reached is a PNRC

PNRC Analysis

10a10a

PNRC Analysis

10a10a

