HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

Interprocedural Analysis

CS252r Fall 2015

Procedu

*So far looked at intraprocedural analysis: analyzing a
single procedure

e Interprocedural analysis uses calling relationships among
procedures

e Enables more precise analysis information

Stephen Chong, Harvard University 2

Call graph

e First problem: how do we know what procedures are
called from where?

e Especially difficult in higher-order languages, languages where
functions are values

*We’'ll ignore this for now, and return to it later in course...

e et’s assume we have a (static) call graph

*|ndicates which procedures can call which other procedures, and
from which program points.

Call grap

} [
10 1 .}

Stephen Chong, Harvard University 4

Interprocedural datatlow analysis

e How do we deal with procedure calls?

e Obvious idea: make one big CFG

main() {

X 1= /7;
p(Xx);

r

r
X
z

¥

p(int a) {
1f (a < 9)
y = 0;
else
y =15
return a,

¥

p(x + 10);

Enter main

Call p(x)

r:=Return p(x)

v

X =7r

v

Call p(x + 10)

|

z:=Return p(x+10)

v

Exit main

return a,

2
Exit p

Interprocedural CFG

* CFG may have
additional nodes to
handle call and
returns

* [reat arguments, return
values as assignments

* Note: a local program
variable represents
multiple locations

Enter main

Call p(x)

r:=Return p(x)

Call p(x + 10)

Set up environment for calling p

z:=Return p(x+10) \ J

v

Exit main

~ ~ Restore calling environment
z:=a

X=/

=Y, Xx=/

Enter main

v

X =7

> v

Call p(x)

r:=Return p(x)

> v

X =7r

=Y, Xx=4

> v

return a;

Call p(x + 10)

1 <

Exit p

z:=Return p(x+10)

i /

=Y, Xx=4

Stephen Chong, Harvard University

Exit main

a=41

Invali

e Problem: dataflow facts from one call site
“tainting” results at other call site

ep analyzed with merge of dataflow facts from all call
sites

e How to address?

Stephen Chong, Harvard University 8

Inlini

eInlining

e Use a new copy of a
procedure’s CFG at each call
site

e Problems? Concerns?

* May be expensive! Exponential
increase in size of CFG

Enter main

X =7

y :=0 y ;=1

\ 4
Call p(x)

return a;

v

r:=Return

ot

Exit p

X

*pO{q0;q0; 1 qO{r0; rQ} :
r() {...} Call p(x + 10) \/

z:=Return p(x+10)

<

e\What about recursive ¢ t¢ o
procedures? Exit nair Exit p

ep(intn) { ... p(n-T1); ... }
 More generally, cycles in the call
graph

Stephen Chong, Harvard University 9

Context sensitivity

e Solution: make a finite number of copies

e Use context information to determine when to
share a copy
eResults in a context-sensitive analysis

* Choice of what to use for context will produce

different tradeoffs between precision and
scalability

e Common choice: approximation of call stack

Context sensitivity example

main() {
1: pQ);
2: pQ),;

p() {
3: q0);

qO {

(Context: -

Enter main

\

1: Call p(O

1: Return p()](—

(Context: 1

Enter p

v

3: Call qO

3: Return qQ) h‘

)

v

2: Call pO

2: Return p(Q)

!

Exit main

-
| Exitp Context: 3
_) :3' Enter ¢
- \/
Context: 2
=—>»| Enter p v
7 Exit g

)

Exit p

N
SN
3: Call q() 4‘r—————”i////’
3: Return gqQ)
y

Context sensitivity example

(Camiede Jon) (Context: 3::1
Enter p ¥ Enter q
4)
Context: - v / L2
main() { 3: Call qO) |~
Enter main v
1 pC)’ v 3: Return qQ) Exit g
) 2: pQ; 1: Call pO) 1 \
Exit p
——
1: Return p()k—/\)
PO 1 7 - § p
£ e Context: 3::2
3: q0); 77 Call pO Context: 2:: E
} —>»| Enter p oy nter g
Y
2: Ret v
qO { eturn pQ) TR //
coe l +
} Exit main 3: Return qQO) Exit g
a ¢ N
_ J

Exit p

Fibonacci: conte

main() {
1: f1b(7);
ks

fib(int n) {
1f n <=1
X =0
else
2:y = fib(n-1);
3: z := fib(n-2);
Xi= Y+Z;
return Xx;

¥

Stephen Chong, Harvard University

Enter

v

1: call

1: return

v

Exit

13

Fibonacci: context sensitive,

stack depth 1

(Context Context 1 (Context: 2 h
Enter /’l Enter //I' Enter Q
main() { ¥ //,//' | =]
1: fib(7); 2 call
} 1: return \
o 1 N
fib(int n) { - TN
1f n <=1 -
X =0
else
2:y := fib(n-1);
3: z := fib(n-2);
X:i= y+Z;
return X,
ks
Exit é

Fibonacci: context sensitive,

stack depth 2
(Context: - o 2‘/>

Enter
-)
maln() { 1: call (Context: 1::- h g
1: fib(7); ~

} . 1: return \\5‘ -
\ 2 Context: 3::2
Exit
fibCint n) { ° 7N \ .552%2
1f n <=1 \,
X = 0 Context: 2;
else
2: y := fib(n-1); Context 2: 3
3: z := fib(n-2); N
X:= Yy+Z; g
return Xx; Context: 3::1
¥ Context 3: 3

Other contexts

e Context sensitivity distinguishes between different calls of
the same procedure

e Choice of contexts determines which calls are differentiated

e Other choices of context are possible

e(Ca

ler stack

_ess precise than call-site stack

F.g., context “2::2” and “2::3” would both be “fib::fib”

e Object sensitivity: which object is the target of the method call?

* For OO languages.

* Maintains precision for some common OO patterns

* Requires pointer analysis to determine which objects are possible targets

« Can use a stack (i.e., target of methods on call stack)

Other

e More choices

* Assumption sets
» What state (i.e., dataflow facts) hold at the call site?
» Used in ESP paper

e Combinations of contexts, e.g., Assumption set and
object

Stephen Chong, Harvard University 17

Procedure summaries

e|n practice, often don’t construct single CFG and perform
dataflow

e |nstead, store procedure summaries and use those

*When call p is encountered in context C, with input D, check
if procedure summary for p in context C exists.

*If not, process p in context C with input D
e|lf yes, with input D" and output F’
*if D’ C D, then use E’
if D’ Z D, then process p in context C with input D'nD

e|f output of p in context C changes then may need to reprocess anything
that called it

e Need to take care with recursive calls

Flow-sensitivity

eRecall: in a flow insensitive analysis, order of
statements Is not important

ee.g., analysis of c1;c2 will be the same as c2;c1

e Flow insensitive analyses typically cheaper than
flow sensitive analyses

e Can have both flow-sensitive interprocedural
analyses and flow-insensitive interprocedural
analyses

* Flow-insensitivity can reduce the cost of
interprocedural analyses

Infeasibl

e Context sensitivity increases precision by analyzing the

same procedure i

e But still have pro

n possibly many contexts

olem of infeasible paths

e Paths in control flow graph that do not correspond to actual

executions

Stephen Chong, Harvard University

20

Infeasible paths example

main() {

h

1: p(7);

2: x:=p(42);

p(int n) {

h

3: q(n);

q(int k) {

h

return k;

-
Context: -

Enter main

\

1: Call p(7)

1: Return p(?)](—

-
Context: 1

Enter p

v

3: Call g(n)

3: Return q(n)hg

)

v

2: Call p(42)

2. Return p(42)

!

Exit main

3: Return q(n)

)

Exit p

§
N
J
_J

-
] Exitp Context: 3
\) :3' Enter g
. v
Context: 2 return k
=>»| Enter p - +
X1t
¥ p
3: Call g(n)

Realizable paths

e|dea: restrict attention to realizable paths: paths that have proper nesting of
procedure calls and exits

*For each call site i, let’s label the call edge “(” and the return edge “);"

e Define a grammar that represents balanced paren strings

matched ::= € empty string
e anything not containing parens
matched matched
(i matched);

e Corresponds to matching procedure returns with procedure calls

e Define grammar of partially balanced parens (calls that have not yet returned)
realizable ::= €
| (i realizable
| matched realizable

main() {
1: p(7);

2: x:=p(42);

h

pC(int n) {
3: q(n);
}

q(int k) {
return k;
¥

Stephen Chong, Harvard University

Enterinain

1

1: Call bg

1: Return p(7)

fop

2: Call
2. Return p(42)

!

Exit main

23

Meet over Realizable Paths

*Previously we wanted to calculate the dataflow facts

that hold at a no
all paths (MOP)

de in the CFG by taking the meet over

e But this may include infeasible paths

* Meet over all realizable paths (MRP) is more precise

eFor a given node
from the start of t

* May have paths t

n, we want the meet of all realizable paths
ne CFG to n

nat don’t correspond to any execution, but

every execution will correspond to a realizable path

erealizable paths are a subset of all paths
e = MRP sound but more precise: MRP £ MOP

Program analysis as CFL reachability

e Can phrase many program analyses as context-
free language reachability problems in directed
graphs
e “Program Analysis via Graph Reachability” by Thomas

Reps, 1998

» Summarizes a sequence of papers developing this idea

CFL Reachability

*|et L be a context-free language over alphabet 2

et G be graph with edges labeled from 2

*Each path in G defines word over 2
e A path in G is an L-path if its word is in L
e CFL reachability problems:

e All-pairs L-path problem: all pairs of nodes n1, n2 such that there is an L-path
from n1 to n2

*Single-source L-path problem: all nodes n2 such that there is an L-path from
given node n1 to n2

Single-target L-path problem: all nodes n1 such that there is an L-path from n1
to given node n2

Single-source single-target L-path problem: is there an L-path from given node
n1 to given node n2

Why bother?

* All CFL-reachability problems can be solved in
time cubic in nodes of the graph

e Automatically get a faster, approximate solution:
graph reachability

* On demand analysis algorithm for free

* Gives insight into program analysis complexity
Issues

Encoding 1: IFDS problems

e Interprocedural finite distributive subset problems
(IFDS problems)

e Interprocedural dataflow analysis with

 Finite set of ©

 Distributive ©

ata flow facts
ataflow functions (f(arnb) = f(a) n f(b))

e Can convert any IFDS problem as a CFL-graph
reachability problem, and find the MRP solution
with no loss of precision

* May be some

loss of precision phrasing problem as IFDS

Encoding distributive

*Key insight: distributive function f:22D— 2D can be encoded
as graph with 2D+2 nodes

e W.L.O.G. assume 1 =u

Represents inputs
°k.g., suppose D = {x, g} g X o gD P p
Represents empty set
“o .o gD Represents outputs

*Edge A—d means def(S) for all S
*Edge d1—=d2 means d2¢f(@) and d2€f(S) if d1€S

*Edge A—A always in graph (allows composition)

Stephen Chong, Harvard University 29

Encoding distri

*AS. {x,g]

A X g
A
A X g
*AS. S-{x}
A X g
L.
A x O g

Stephen Chong, Harvard University 30

Encoding distr

*AS. S-{x} o AS. {x,g}

Stephen Chong, Harvard University 31

Exploded supergraph G#

et G* be supergraph (i.e., interprocedural CFP)
* For each node neG*, there is node <n,A\)eG#

e For each node neG*, and deD there is node
(n,d)eG#

For function f associated with edge a—=beG
*Edge (a,A) = <b,d) for every def(©)
*Edge <a, d1) = (b,d2) for every d2ef({d2}) - f(©D)
*Edge <a,\) = <b, \)

Possibly uninitialized
variable example

start

: Aa g
main
ENTER main i ENTER P
v v
J/ ' a g

READ(x) i IFa>0

>
O >
O o0

® > =

Y

READ(g)

ﬁ
> @ >
(¢
> s
-t -
-
0
~ .
0 = -
()]

) ‘ Y
........... . né A

V a=a-g ® '/I
Ax g n3
RETURN \ .
FROM P Y
I | | CALL P KQJJ
08 | o ",
: 1 RETURN
FROMP
el
n9 Aa g
e Closed circles represent nodes)1 - PRINT(a’g)/Z
reachable along realizable paths from L 7

(startmain, N\)

Program Analysis via Graph Reachability by Reps, Information and Software Technology 40(11-12) 1998

http://www.cs.wisc.edu/wpis/papers/tr1386.pdf

Encoding 2: IDE problems

e Interprocedural Distributive Environment
problems (IDE problems)

e |Interprocedural dataflow analysis with

* Dataflow info at program point represented as a finite
environment (i.e., mapping from variables/locations to
finite height domain of values)

» Transfer function distributive “environment transformer”
°E.g., copy constant propagation

* interprets assignment statements such as x=7 and y=x
°E.g. linear constant propagation

- also interprets assignment statements such asy = 5*z + 9

Encoding distributive environment-transformers

e Similar trick to encoding distributive functions in
IFDS

* Represent environment-transformer function as
graph with each edge labeled with micro-
function

Solvin

e Requirements for class F of micro functions

e Must be closed under meet and composition

e must have finite height (under pointwise ordering)
f(l) can be computed in constant time

e Representation of f is of bounded size

e Given representation of f1, f2 € F

* can compute representation of f1 o f2 € F in constant time
* can compute representation of f1 n f2 € F in constant time

e can compute f1 =12 in constant time

Stephen Chong, Harvard University 36

Solving

* First pass computes jump functions and summary
functions

e Summaries of paths within a procedure and of
procedure calls, respectively

e Second pass uses these functions to computer
environments at program points

e More details in “Precise Interprocedural Dataflow
Analysis with Applications to Constant Propagation” by
Sagiv, Reps, and Horwitz, 1996.

