PLANKALKÜL: NOT JUST A CHESS PLAYING PROGRAM

Carla Petrocelli University of Bari Aldo Moro, Italy

carla.petrocelli@uniba.it

October 1969

- □ A COMPUTER SEARCHES FOR DELINQUENTS.
- □ CYBERNETICS SOLVE THE GOVERNMENT'S PROBLEMS.
- COMPUTERS CONTROL A ROLLING MILL.
- □ A COMPUTER DOCTOR MAKES A DIAGNOSIS.

THE GREAT DOCUMENT HEADQUARTERS RELEASES INFORMATION.

- A GIANT TIME SHARING SYSTEM SERVES AN ENTIRE CITY.
- WILL A COMPUTER BEAT THE WORLD CHESS CHAMPION?
- Zuse, K.: Der Computer mein Lebenswerk, Moderne Industrie (1970).

The History of a Discovery

- 1930: Zuse began to study civil engineering at the Technische Universität Berlin-Charlottenburg
 - He imagined a "universal superformula", a kind of universal machine

Leibniz

- Zuse is expressly inspired by Leibniz
- He proposed a sort of "math logistics" that turned out to be equivalent to Boole's propositional calculus

Einführung in die allgemeine Dyadik of 1938

The Z1 Machine

In the humble living room of his Berlin house, Konrad Zuse devotes himself to the design and construction of a binary, programmable machine.

It was comparable to a large dining room table in size and was described by those who saw it as "something indefinable, composed of metal sheets, glass plates, cranks, gears and discs".

Z2, Z3 and Z4

The Relays

The Z3 was much more powerful than Z1 and Z2: Zuse had added 2,600 relays mounted on three racks, two for the memory and one for the arithmetic and control units

COMPUTER BEATS WORLD CHESS CHAMPION?

are less or equal than one (L), structural square indices written vertically

The Plan Calculus

"For a year and a half, I devoted myself to the progressive study of formal logic. I found within it many of my own thoughts [...]. Now, I aim to finalize the process of the plan calculus. To do this, I have to clarify a number of notions."

The first reference to *Plankalkül*, the German expression used to indicate "calculation projects for a computer" probably taken as an extension of Hilbert's "propositional calculus" (*Aussagenkalkül*) and "predicate calculus" (*Prädikatenkalkül*).

Technical Characteristics

- Assignment, subscripts, expressions
- Types: integer, reals, arrays
- In a Rechenplan an identifier was a letter
 - I V for variables
 - C for the constants
 - Z for the intermediate values
 - \square R for the results

1(16V × 5 + - + -) 7 1) / (417(2,1) 21) V RATY2(V 44 Edenburg des prister mertes - Paulillesvit typhe de arison timp. the time any proper and to shapell deeden hirry anyrefude time I'm an wine ting it appalately gelote (220) allege and dering had algore along 2 . then then grown down himing ! my medo

Arithmetic operations

 Addition, subtraction, multiplication and division, can be easily performed using the intermediate variables (identified with Z)

	1				
	v	+	V	>=	Ζ
V	1		2		1
K	1		3		1
S	5.8.o		5.8.o		5.8.o

Originally Zuse used the symbol $\langle \rangle = \gg$ to denote the assignment operator; the modern symbol $\langle \rightarrow \rangle$, was introduced later

Programs and suroutines

- Expressed in procedural form (Rechenpläne)
- They are prefaces by a specification part (Randauszug)
- Computational rules described in the body (Anweisungsteil)

- Special symbols for instructions, conditional branches and iterative cycles

