DEFINITHEIT VON MATRIZEN – quadratische Formen

Sei A eine $n \times n$ Matrix.

• A definiert eine <u>lineare Abbildung</u> $f: \mathbb{R}^n \to \mathbb{R}^n$. Der n-Vektor x wird durch f übergeführt in den n-Vektor

$$f(oldsymbol{x}) = Aoldsymbol{x}$$

$$\mathsf{Matrix} \times \mathsf{Spaltenvektor} = \mathsf{Spaltenvektor}$$

• A definiert ebenfalls eine quadratische Abbildung $q: \mathbb{R}^n \to \mathbb{R}$. Der n-Vektor x wird durch q übergeführt in den Skalar (Zahl)

$$m{q}(m{x}) = m{x}' A m{x}$$
Zeilenvektor $imes$ Matrix $imes$ Spaltenvektor = Skalar

- Typeset by FoilT_EX -

Beispiel 1:

Wir beschränken uns hier auf symmetrische Matrizen A.

$$n=2$$
, also $A=\left(egin{array}{cc} a_{11} & a_{12} \ a_{12} & a_{22} \end{array}
ight)$, $q:\mathbb{R}^2 o\mathbb{R}$ mit

$$q(oldsymbol{x}) = oldsymbol{x}' A oldsymbol{x} = (x_1, x_2) \left(egin{array}{cc} a_{11} & a_{12} \ a_{12} & a_{22} \end{array}
ight) \left(egin{array}{cc} x_1 \ x_2 \end{array}
ight) = 0$$

Es gilt für beliebiges n: $q(\lambda {m x}) = \lambda^2 q({m x})$ und $q({m 0}) = 0$

$$q(\lambda x) = \lambda^2 q(x)$$

Beispiel 2:

Gegeben sei die quadratische Form

$$q(x_1, x_2, x_3) = 5x_1^2 - 4x_1x_2 + x_2^2 - 3x_1x_3 - 2x_3^2$$

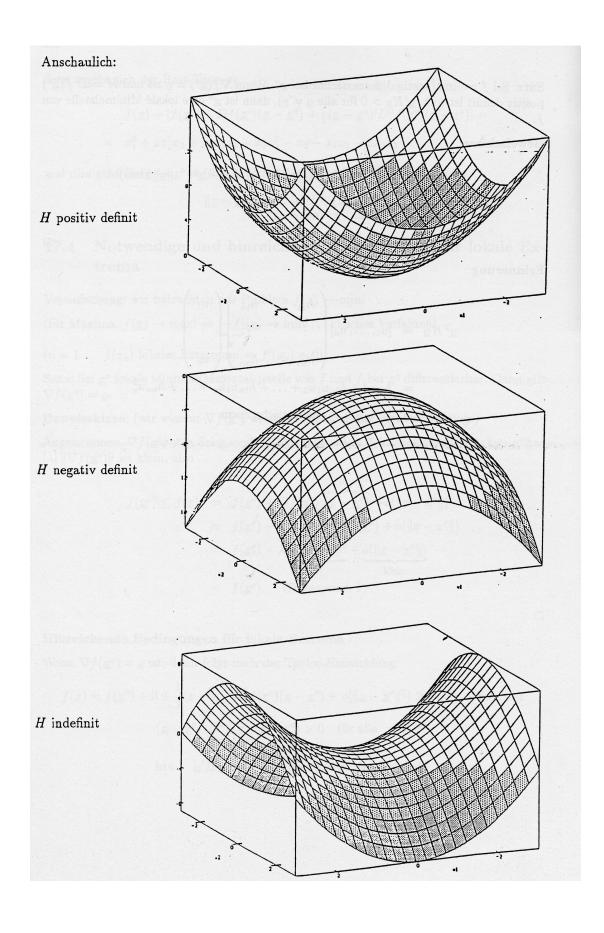
Gib die zu dieser quadratischen Form q gehörende symmetrische Matrix A an! Es gilt:

$$a_{ii} =$$
 $a_{ij} =$

Definitheit von quadratischen Formen

<u>Definition</u>: Eine quadratische Form $q(m{x}) = m{x}' A m{x}$, bzw die entspr. Matrix A ist

- 1) positiv definit, falls $q({m x})={m x}'A{m x}>0$ für alle ${m x}\in {\mathbb R}^n, {m x}
 eq {m 0}$
- 2) positiv semi-definit, falls $q(\boldsymbol{x}) = \boldsymbol{x}' A \boldsymbol{x} \geq 0$ für alle $\boldsymbol{x} \in \mathbb{R}^n$.
- 3) negativ definit, falls $q(\boldsymbol{x}) = \left| \; \boldsymbol{x}' A \boldsymbol{x} < 0 \; \right|$ für alle $\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{x} \neq \boldsymbol{0}$.
- 4) negativ semi-definit, falls $q(\boldsymbol{x}) = \boldsymbol{x}' A \boldsymbol{x} \leq 0$ für alle $\boldsymbol{x} \in \mathbb{R}^n$.
- 5) indefinit, falls es ein $\boldsymbol{x} \in \mathbb{R}^n$ gibt mit $q(\boldsymbol{x}) = \begin{bmatrix} \boldsymbol{x}'A\boldsymbol{x} < 0 \end{bmatrix}$ und ein $\boldsymbol{y} \in \mathbb{R}^n$ mit $q(\boldsymbol{y}) = \begin{bmatrix} \boldsymbol{y}'A\boldsymbol{y} > 0 \end{bmatrix}$.



Hauptminoren

Der *i*-te Hauptminor α_i einer $n \times n$ Matrix A ist definiert als

$$\alpha_i = \begin{vmatrix} a_{11} & \dots & a_{1i} \\ a_{21} & \dots & a_{2i} \\ \vdots & & \vdots \\ a_{i1} & \dots & a_{ii} \end{vmatrix}, \text{ wobei } A = \begin{pmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & \dots & a_{2i} & \dots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ii} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{ni} & \dots & a_{nn} \end{pmatrix}$$

Die Matrix
$$A=\begin{pmatrix}1&-2&0\\-2&1&1\\0&1&1\end{pmatrix}$$
 hat Hauptminoren

Definitheit und Hauptminoren

- (a) Eine $n \times n$ Matrix A ist positiv definit \iff alle n Hauptminoren erfüllen $\alpha_i > 0$
- (b) Eine $n\times n$ Matrix A ist negative definit \iff alle n Hauptminoren erfüllen $\alpha_i\cdot (-1)^i>0$ D.h.: $\alpha_1<0$ $\alpha_2>0$ $\alpha_3<0$

 $\alpha_4 > 0$

Alle geraden Hauptminoren $(\alpha_2, \alpha_4, \alpha_6, \dots)$ sind positiv und alle ungeraden Hauptminoren $(\alpha_1, \alpha_3, \alpha_5, \dots)$ sind negativ.

(c) $\det A \neq 0$ und weder (a) noch (b) treffen $zu \Rightarrow A$ ist indefinit. (Nicht umgekehrt!!)

Wichtig: Semidefinite Matrizen können mit der Methode der Hauptminoren nicht klassifiziert werden, indefinite Matrizen nur teilweise!

Beispiele:

Bestimme die Defnitheit der folgenden quadratischen Formen:

1)
$$q(x_1, x_2, x_3) = \boldsymbol{x}^t \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 5 \\ 0 & 5 & 1 \end{pmatrix} \boldsymbol{x}$$

2)
$$q(m{x}) = m{x}^t A m{x}$$
, mit $m{x} \in \mathbb{R}^2$ und $A = \begin{pmatrix} -4 & 3 \\ 3 & -5 \end{pmatrix}$

3)
$$q(x_1, x_2, x_3) = 4x_1 x_3 - x_1^2 - x_2^2 + 2x_2 x_3 - 5x_3^2$$

Definitheit und Eigenwerte

Für jede (symmetrische) $n \times n$ Matrix A mit Eigenwerten $\lambda_1, \ldots, \lambda_n$ gilt:

- 1) Sind alle $\lambda_i > 0$, dann ist A positiv definit.
- 2) Sind alle $\lambda_i \geq 0$, dann ist A positiv semi-definit.
- 3) Sind alle $\lambda_i < 0$, dann ist A negativ definit.
- 4) Sind alle $\lambda_i \leq 0$, dann ist A negativ semi-definit.
- 5) Ist $|\sin \lambda_i < 0 \text{ und } \sin \lambda_j > 0$, dann ist A indefinit.

Beispiel:

Bestimme die Definitheit der folgenden Matrix:

$$A = \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & 1 \\ 2 & 1 & -5 \end{pmatrix}$$