Physik der Teilchenbeschleuniger

Prof. Dr. Otmar Biebel

Inhalt der Vorlesung:

- Einführung in die Teilchenbeschleuniger
- Teilchenbeschleunigeroptik
- Teilchenablenkung durch Magnete
- Teilchenbewegung im Kreisbeschleuniger
- Betatron-Oszillationen
- starke und schwache Fokussierung, Phasenfokussierung

- Luminosität, Strahlemittanz
- Liouville Theorem
- Strahlkühlung
- Synchrotronstrahlung
- Linear- vs. Kreisbeschleuniger
- Supraleitende Beschleuniger
- Korrektur nicht-perfekter Strahloptik

(Folien) im WWW

http://www.physik.uni-muenchen.de/~biebel/beschleuniger

Termin der Vorlesung: Donnerstags 10 - 13 Uhr, Seminarraum: 4/16

Beginn: 23. Oktober 2003

Literatur zur Vorlesung

Eine kleine Auswahl:

- Wiedemann: Particle Accelerator Physics, Vol.1&2 (Springer),
- Conte, MacKay: Introduction to the Physics of Particle Accelerators (World Scientific),
- Wille: The Physics of Particle Accelerators (Oxford University Press),
- Hinterberger: Physik der Teilchenbeschleuniger (Springer),
- CERN Accelerator School: 5th General Accelerator Physics Course, CERN 94-01 Vol.1&2: http://preprints.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow_Report&id=94-01_v1, http://preprints.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow_Report&id=94-01_v2,
- [Wille: Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen (Teubner)]
- [Daniel: Beschleuniger (Teubner)]

Geplante Themen der Vorlesung

- 1. Einleitung, Motivation
 - (a) Historie
 - (b) Übersicht von Konzepten
 - (c) Anwendungen
 - (d) Prinzipielle Aufbau eines Beschleunigers
- 2. Lineare Beschleuniger
 - (a) Prinzipien
 - (b) HF-Beschleuniger
- 3. Zirkulare/Kreis-Beschleuniger
 - (a) Betatron
 - (b) Schwache Fokussierung, adiabatische Dämpfung
 - (c) Microtron, Synchro-/Isochron-Zyklotron
 - (d) Synchrotron

- 4. Geladene Teilchen in elektromagnetischen Feldern
 - (a) Lorentzkraft
 - (b) Grundlagen zur Optik von Strahlen geladener Teilchen
 - (c) Multipolfeld-Entwicklung für Magnete
 - (d) Bewegungsgleichung der Teilchenstrahldynamik
 - (e) Generelle Lösungen der Bewegungsgleichung
- 5. Lineare Strahldynamik
 - (a) Matrizen-Formalismus
 - (b) Fokussierung in Ablenkmagneten
 - (c) Teilchenstrahlen und Phasenraum: Emittanz und Liouville-Theorem
 - (d) Betatron Funktion und Strahleinhüllende
 - (e) Weglänge und "Momentum compaction"

1.3

- 6. Periodische Fokussierungssysteme
 - (a) "Combined function" vs. "separated function": FODO-Struktur
 - (b) Betatron-Bewegung in periodischen Strukturen
 - (c) Strahldynamik in geschlossenen periodischen Strukturen
 - (d) Dispersion in periodischen Strukturen
 - (e) Beispiel eines Speicherring-Beschleunigers
- 7. Störungen in der Strahldynamik
 - (a) Quadrupol-Feldstörungen, Resonanzen,Stoppbänder
 - (b) Chromatische Effekte in Kreisbeschleunigern
- 8. Beschleunigung geladener Teilchen
 - (a) Longitudinale Teilchenbewegung
 - (b) Longitudinaler Phasenraum
- 9. Synchrotron-Strahlung
 - (a) Physikalische Grundlagen

- (b) Kohärente Abstrahlung
- (c) Wiggler und Undulatoren
- 10. Teilchstrahlparameter
 - (a) Allgemeine Parameter (Energie, Zeitstruktur, Strom, Dimensionen)
 - (b) Dämpfung, Dämpfungspartitionen
 - (c) Teilchenverteilung im Phasenraum
 - (d) Strahlemittanz und Wiggler-Magnete
- 11. Strahllebensdauer
 - (a) Beträge zur Strahllebensdauer
- 12. Kollektive Phänomene
 - (a) Linear Raumladungseffekte
 - (b) Strahl-Strahl-Effekte
 - (c) Wake-Felder (Kielwasser-Effekte)
 - (d) Strahlinstabilitäten

- 13. Strahlemittanz
 - (a) Strahlemittanz in Speicherringen
 - (b) Optimale Emittanz
- 14. Strahlkühlung
 - (a) Strahltemperatur
 - (b) Stochastische Kühlung
 - (c) Elektronkühlung
 - (d) Ionisationskühlung
 - (e) Laserkühlung

- 15. Existierende, zukünftige und alternative Beschleunigerkonzepte
 - (a) LEP, Tevatron, PEP-II, KEKB
 - (b) LHC
 - (c) Linear-Collider: NLC, Tesla, Clic
 - (d) Myon-Beschleuniger
 - (e) Neutrino-"Beschleuniger"
 - (f) Free-Elektron-Laser
 - (g) Laser/Teilchenstrahl-Plasma-Beschleuniger

Einleitung, Motivation

- Untersuchung der Struktur der Materie: Auflösungsvermögen
- \Rightarrow Auflösungsvermögen $\Delta x \leftrightarrow$ Wellenlänge λ :
 - Materiewellenpostulat von de Broglie (1926):
- \Rightarrow höhere Impulse $p \rightarrow$ kleinere Strukturen
 - Teilchenbeschleuniger liefern Teilchen mit hohen Impulsen (i.A. Teilchenenergie; Nicht-relativistisch aber unterschiedlich)
 - Beschleunigergrundprinzip: Energiegewinn ΔE beim Durchlaufen eines elektrischen Potentials:
 - Höhere Spannungsdifferenz $\Delta U \rightarrow$ höhere Energie
 - Praktische Grenzen: z.B. elektr. Überschläge, Entladung
 - Prinzip anwendbar: elektr. geladene Teilchen mit genügend langer Lebensdauer (relativistische Effekte → Beschleunigung kurzlebiger Teilchen, z.B. Myonen)

 $\Delta x \sim \lambda/2$

$$\Delta E = e \cdot \Delta U$$

Zusammenhang mit anderen Fachgebieten

- Elektro- und Magnetostatik bzw. Elektro- und Magnetodynamik d.h. konkrete Lösungen der Maxwell Gleichungen),
- Supraleitung,
- Hochfrequenztechnik,
- (elektromagnetische) Matritzenoptik,
- Resonanztheorie,
- Hamiltonsche Theorie,
- Vielteilchentheorie,
- Chaostheorie.

Unzweifelhaft ist die Physik der Teilchenbeschleuniger vor allem

angewandte Elektro- und Magnetodynamik!

Einsatzgebiete für Beschleuniger

• Kernphysik

Elektron-/Proton-Beschleuniger Ionen-Beschleuniger/-Collider Gleichstrom-Teilchenstrahlen ("Stretcher")

• Hochenergiephysik

"Fixed target"-Beschleuniger Speicherring-Beschleuniger/-Collider Linear-Beschleuniger

- Energieerzeugung
 - Inertial Fusion Kernbrennstoffbrüten Fissionsreaktor
- Industrie
 - Radiographie mit Röntgenstrahlen Ionen-Implantation Isotopen-Herstellung/-Trennung Material-Untersuchungen Nahrungsmittel-Sterilisation Elektronen-/Röntgenstrahl-Lithographie

• Synchrotron-Strahlung

Grundlegende Atom- und Molekülphysik Festkörperphysik Geowissenschaften Materialwissenschaften Chemie Molekular- und Zell-Biologie Oberflächen-/Grenzflächenphysik

• Kohärente Strahlung

Freie-Elektronen-Laser (FEL) Mikroproben Holographie

• Medizin

Radiotherapie Digitale Subtraktions-Angiographie minimal invasive Behandlungen mit abstimmbaren FELs

Höchstenergie-Teilchenbeschleuniger

∃ **viele** Beschleuniger an Forschungslabors. Einige der höchstenergetischen sind:

momentan laufend: HERA, Tevatron

bis vor Kurzem genutzt: LEP, SLC

in Bau: LHC

in konkreter Planung: NLC, Tesla

Abbildung 2: Tevatron-Beschleuniger (Protonen auf Antiproton) am FNAL bei Chicago

Abbildung 4: LEP-Beschleuniger (Elektron auf Positron) am CERN bei Genf

Abbildung 5: LHC-Beschleuniger (Proton auf Proton) am CERN bei Genf

Abbildung 6: Tesla-Beschleuniger (Elektron auf Positron)

Historie

Die geschichtliche Entwicklung birgt drei Linien:

- 1. Gleichspannungsbeschleunigung
 - Entdeckung der Teilchenstrahlung: Kathodenstrahlen, d.h. Elektronenstrahlen (Plücker 1858)
 - ... und Kanalstrahlen (Goldstein 1886): positive Ionenstrahlen
 - atomphysikalische Untersuchungen:

Anregung von Luftmolekülen durch Kathodenstrahlen (Lenard 1894)

Anregung von Atomen durch Elektronbestrahlung: Franck-Hertz-Experiment (1913)

- Kernphysik: Spaltung von Lithium-Kernen durch Proton-Beschuss (Cockcroft und Walton 1932, u.a.)
- 2. Resonante Beschleunigung
- 3. Strahlungstransformatoren

Die erste Linie entsprang der "natürlichen Forschungsentwicklung":

- ◇ Bedarf höherer Teilchenenergien und -impulse zur Klärung der Kernstruktur der Materie,
- ◊ v.a.: höher, als aus natürlichen radioaktiven Quellen.

Die zweite & dritte Linie:

- ♦ anfangs eigenständige Beschleunigerentwicklungen,
- ◊ ersetzten erste Linie, nachdem dort praktikable Grenzen erreicht.

1.18

Tabelle 1: Hauptlinie der Beschleunigerentwicklung

1894	Lenard: Elektronstreuung an Gasmolekülen	Gasentladungsrohr <100 keV Elektro- nen
1913	Franck und Hertz: Anregung von Atomorbitalen durch Elektronenbeschuss	
1906	Rutherford: Streuung von $lpha$ -Teilchen an Folien	natürliche radioaktive Quellen
1919	Rutherford: Nuklearreaktion induziert mit α -Teilchen	MeV-Energien für Kernstruktur- Untersuchungen vermutet
1928	Gurney und Gamov sagen Tunneleffekt für Kernre- aktionen voraus	500 keV Energie könnten genügen
1928	Cockcroft&Walton entwerfen, ermutigt durch Rutherford, einen 800 kV Generator	
1932	Generator erreicht 700 kV, Cockcroft&Walton spalten Lithium-Kern mit 400 keV Protonen	

Cockcroft-Walton-Beschleuniger

Skizze der Originalapparatur von Cockcroft&Walton:

- ▷ Protonen aus Entladungsrohr (oberes Ende),
- ▷ Quelle auf 400 kV Potential,
- ▷ Protonen im Vakuumrohr beschleunigt ...
- ▷ ... auf Lithium-Target (Erdpotential, unteres Ende),
- \triangleright Szintiallationsschirm&Mikroskop: Beobachtung der Spaltprodukte auf ⁷Li + p \rightarrow 2 ⁴He

Cockcroft-Walton-Generator (auch: -Kaskade):

- ▷ Design für 800 kV
- \triangleright erreichte Maximalspannung \sim 700 kV (wg. HV-Entladungen)
- ▷ Heute als Eingangsbeschleuniger genutzt (hohe Strahlströme)

van de Graaff-Generator

- Van de Graaff: elektrostatischen Generator (um 1932),
- ▷ Spannung von 1.5 MV,
- ab 1932 in (kern-)physikalischen Untersuchungen,
- Höhere Spannungen: van de Graaff-Generator in einem Drucktank
 (Gas mit hoher Durchschlagsfeldstärke, z.B. Schwefelhexafluorid SF₆, bei Drücken von 9-10 bar)

Tandem-van de Graaff-Beschleuniger

Weiterentwicklung: Beschleuniger

- zunächst negativ geladene
 lonen beschleunigt,
- im Zentrum positiv umgeladen (z.B. durch dünne (Stripper-)Folie),
- erneut volles elektrostat.
 Potential zur Beschleunigung

Van de Graaff-Generatoren und Tandem-Beschleuniger:

Tandem-

- + Teilchenstrahlen mit sehr stabiler Energie,
- + sehr geringe Energiestreuung,
- jedoch geringere Strahlströme als Cockcroft-Walton-Kaskaden.

Prof. Dr. O. Biebel

Abbildung 8: 16 MV (= 32 MeV) Tandem-Beschleuniger am Maier-Leibnitz-Labor in Garching

Zweite Entwicklungslinie

- 1924 Ising schlägt zeitlich variierende Felder zwischen Driftröhren vor: Das Grundprinzip der *resonanten Beschleunigung*, mit dem Energien oberhalb der höchsten Spannung im System erreicht werden können.
- 1928 Wiederöe demonstriert Isings Prinzip mit einem 1 MHz und 25 kV Oszillator bei der Erzeugung von 50 keV Kaliumionen.
- 1928 Lawrence erfindet, inspiriert durch Wideröe und Ising, das Zyklotron.
- 1931 Livingston demonstriert das Zyklotron durch Beschleunigung von Wasserstoffionen auf 80 keV.
- 1932 Lawrence erzeugt mit seinem Zyklotron Protonen mit 1.25 MeV und spaltet damit Atome nur wenige Wochen nach Cockcroft und Walton.

Unterschied zwischen Gleichspannungs- und resonanten Beschleunigern:

- Felder statisch (d.h. konservativ) oder
- Felder zeitabhängig (d.h. nicht-konservativ)

Materiefreie Maxwell-Gleichung für elektrisches Feld:

$$\vec{E} = -\nabla\phi - \frac{\partial}{\partial t}\vec{A} \tag{(*)}$$

wobei

$$\vec{B} = \nabla \times \vec{A}$$

 $\nabla \phi$ $\hat{=}$ statische Felder in Cockcroft-Walton- und van de Graaff-Beschleunigern.

Teilchen gewinnt gemäß Potentialdifferenz Energie auf Weg von (1) nach (2).

Nach Rückkehr zu (1) aber zurück auf Anfangspotential, d.h. kein Energiegewinn auf geschlossenen Wegen!

(Mit Stokesschem Satz:

$$\oint_{s} \vec{E} \cdot d\vec{s} = \int_{a} \nabla \times \vec{E} \cdot d\vec{a} = \int_{a} \nabla \times (\nabla \phi) \cdot d\vec{a} = \int_{a} \operatorname{rot} \operatorname{grad} \phi \cdot d\vec{a} = 0$$

• Zeitabhängige Felder in (*):

$$\partial \vec{A} / \partial t$$

• mit $\vec{B} \rightarrow$ Faradaysches Gesetz:

$$\nabla\times\vec{E}=-\frac{\partial}{\partial t}\vec{B}$$

$$\Rightarrow$$
 Magnetfeldänderungen \leftrightarrow elektrisches Feld

$$\Rightarrow \begin{cases} \textbf{2. Linie: } \vec{B} = \text{const. \& } \vec{E}(t) \leftrightarrow \text{Beschleunigung (Ising)} \\ \textbf{3. Linie: } \partial \vec{B} / \partial t \equiv \dot{\vec{B}} = -\text{rot}\vec{E} \leftrightarrow \text{Beschleunigung (Betatron)} \end{cases}$$

Isings und Wideröes Linearbeschleuniger

▷ Hochfrequenz synchron zum Teilchenflug:

Teilchen zwischen Driftröhren, wenn beschleunigendes \vec{E} -Feld, sonst im feldfreien Raum einer Driftröhre

▷ Driftröhrenlänge wächst mit Teilchengeschwindigkeit

Wideröe hat 1928 den ersten funktionierende Beschleuniger nach Isings Vorschlag gebaut.

Offene Wideröe-Struktur:

- bei niedrigen Frequenzen \rightarrow unhandlichen Driftrohrlängen,
- bei hohen Frequenzen \rightarrow starke HF-Leistungsverlusten.
- \Rightarrow Alvarez-Struktur:
 - Driftröhren in einer Struktur eingeschlossen,
 - bilden Resonator für die eingekoppelte HF (Cavity).

Fig. 2.6. Alvarez linac structure (schematic)

 \rightarrow Heutige Hochenergiebeschleuniger (kreisförmig oder linear) nutzen dieses Prinzip!

(HF-Frequenzen bis in den GHz-Bereich)

Zyklotrons

Linearbeschleunigerstruktur (engl. Linear Accelerator, kurz Linac) technisch schwierig

 \rightarrow Entwicklung einfacher realisierbarer Zyklotrons mit konstanter Frequenz durch Lawrence 1929 :

- Livingston: 80 keV Wasserstofflonenstrahl-Zyklotron (1931)
- Lawrence: 1.25 MeV Protonen-Zyklotron (1932, s. Abb.)
- 1939: 20 MeV Protonen aus Ø 160 cm Zyklotron (Uni of California) $(\widehat{\approx} 2 \times \text{höchste Energie aus } \alpha\text{-Zerfall})$

- Relativistische Effekte limitierten maximale Energie,
- \Rightarrow Synchro- und Isochron-Zyklotrons (variable Frequenz bzw. Magnetfeld)
 - heutigen Kreisbeschleuniger: Synchrotron-Prinzip (s.u.)

Dritte Entwicklungslinie

- 1923 Wideröe entwirft & skizziert als Student in seinem Laborbuch das Betatron mit der "1:2"-Regel und fügt 2 Jahre später die radiale Stabilitätsbedingung hinzu (aber er veröffentlich nicht!),
- 1927 in Aachen baut Wideröe ein Betatronmodell, das nicht funktioniert; Er wendet sich daraufhin Linearbeschleunigern zu,
- 1940 Kerst erfindet das Betatron neu und baut ein lauffähiges 2.2 MeV Elektron-Betatron,
- 1950 Kerst baut das weltgrößte Elektron-Betatron (300 MeV).

Zwei Anwendungsmöglichkeiten des Faradayschen Gesetzes

$$\nabla \times \vec{E} = \operatorname{rot} \vec{E} = -\frac{\partial}{\partial t} \vec{B} = \dot{\vec{B}}$$

wurden angesprochen (s. Folie 1.27):

• Linearbeschleunigung in Cavities (Ising)

- zirkulares, zeitlich variierendes \vec{B} -Feld
- ightarrow axiales, beschleunigendes $ec{E}$ -Feld

Wideröes Vorschlag: Zirkulare Beschleunigung durch "Strahlungstransformator" bzw. Betatron

Betatron

Prinzip:

- Teilchenstrom \triangleq Sekundärspule in Transformator
- Stabiler Orbit des Teilchenstroms durch angepasste \vec{B} -Feldzunahme
 - \rightarrow 1:2-Bedingung

- ightarrow geeignet für Elektronenbeschleunigung
- + Einfaches, robustes, kostengünstiges Beschleunigungsprinzip
 - \rightarrow z.B. Einsatz in Krankenhäusern)

- + Fokussierung und Synchronisation der Strahlenergie allein durch Geometrie des Magneten bestimmt
- Betatron-Oszillationen der Teilchen um Soll-Orbit große Amplituden!

Synchrotron-Beschleuniger

Bis 1940 wurden drei Beschleunigungsmechanismen vorgeführt:

- HV-Überschläge&Entladungen DC-Beschleunigung
- Resonante Beschleunigung
- Betatron-Mechanismus

- Synchronität zwischen HF & relativist. Teilchen
- Betatron-Oszillationsamplitude

Alle besitzen bestimmte Vorzüge, aber auch Limitierungen in der erreichbaren Energie.

- 1944 McMillan und Veksler entdecken das Prinzip der Phasenstabilität zwischen Teilchen und HF
- **1944** Veksler erfindet das Synchrotron ($R = \text{const.}, \vec{B}(t)$) mit schwacher Fokussierung

(auch: "constant-gradient" Fokussierung)

1950 Christofilos schlägt die starke Fokussierung vor

(auch: "alternating-gradient" (AG) Fokussierung, 1952 von Courant, Livingston, Snyder erstmals veröffentlicht) Konzept:

- \triangleright fokussierende und defokussierende Linsen im Abstand d
- \triangleright Brennweiten $f \equiv f_F = -f_D$
- \Rightarrow Gesamtbrennweite F:

$$\frac{1}{F} = \frac{1}{f_F} + \frac{1}{f_D} - \frac{d}{f_F \cdot f_D} = \frac{d}{f^2} \quad \longrightarrow \quad F = f^2/d > 0!$$
- Beispiele für Synchrotrons mit schwacher Fokussierung
- 1952 Cosmotron 3 GeV Protonen
- 1949 Elektronen
- 1955 Bevatron \approx 6 GeV Protonen (\rightarrow Entdeckung des Antiprotons, ca. 10000 t Fe)
 - Beispiele für Synchrotrons mit starker Fokussierung
- 1954 Cornell 1.1 GeV Elektronen
- 1954 AG-Synchrotron 1.1 GeV Elektronen (Cornell Uni)
- 1959 CERN PS (Proton Synchrotron) 26 GeV Protonen (ca. 3600 t Fe)
- 1972 CERN ISR (Proton-Proton-Collider 2× 26 GeV)
- 1981 CERN SPS (Proton-Antiproton-Collider bis 2×450 GeV)
- 1987 FNAL Tevatron (Proton-Antiproton-Collider bis 2×900 GeV)
- 1989 CERN LEP (Elektron-Positron-Collider bis 2×104 GeV)
- 2002 FNAL Tevatron (Proton-Antiproton-Collider bis 2×1000 GeV)
- 2007 CERN LHC (Proton-Proton-Collider bis 2×7000 GeV)

4.9 Das Bevatron, ein 6 GeV-Beschleuniger, wurde 1954 am Lawrence Berkeley-Laboratorium in Betrieb genommen. Mit diesem Beschleuniger wurde 1955 das Antiproton entdeckt; er war 1989 immer noch in Betrieb.

1.38

weitere (wichtige) Entwicklungen:

- Klystron-HF-Leistungsquelle \rightarrow bis zu GHz, (Hansen und Gebrüder Varian, 1937)
- Stochastische Kühlung \rightarrow Akkumulation von Antiprotonen, (van de Meer, 1972)
- Supraleitung für Magnete \rightarrow höhere (Proton-)Strahlenergie, z.B. Tevatron, HERA
- Supraleitung für Cavities \rightarrow größere (Elektron-)Beschleunigungsgradienten, z.B. LEP
- "Geographical Transition" → Beschleuniger auch unter Grundbesitz, der nicht zum Labor gehört, z.B. HERA, LEP
- Radiofrequenz-Quadrupol-Beschleuniger (RFQ) (Kapchinsky und Teplyakov, 1970)

Livingston-Diagramm

- geht auf Livingston zurück,
- \approx exponentielle Zunahme der Beschleunigerenergie mit der Zeit,
- getrennte, aber \approx parallele Entwicklungslinien für Proton- und Elektron-Beschleuniger,
- belegt erfolgreichen und kontinuierlichen Fortschritt in der Beschleuniger-Technik,
- Energie-"Sättigung" für heutige Zeit angedeutet.
- \Rightarrow Neue Beschleunigertechniken harren ihrer Entwicklung!
 - Myon-Beschleuniger,
 - Plasma-Beschleuniger,
 - Laser-Beschleuniger,
 - "Drive-beam"-Beschleuniger,
 - . . .

(NB: Neue Techniken zielen meist auf Steigerung der Beschleunigungs-Gradienten)

1.40

Prof. Dr. O. Biebel

Abbildung 12: Livingston-Diagramm

Elemente eines Beschleunigers

Grob umfasst ein Beschleuniger folgende Komponenten:

- Teilchenquelle
- Vorbeschleunigerstufe (häufig mit Teilchenquelle kombiniert)
- Injektor in (nächste) (Vor-)Beschleunigerstufe
- Ejektor aus (Vor-)Beschleuniger (f
 ür fixedtarget Betrieb)

Höchstenergie-Beschleuniger benutzen meist mehrere (> 2) Vorbeschleunigerstufen, z.B. für LEP: 4 Vorbeschleuniger + Hauptbeschleuniger

Lineare Beschleuniger

Prinzip (elektrostatischer Beschleuniger):

Fig. 2.1. Principle of electrostatic accelerators

- \Rightarrow höhere Energie \leftrightarrow höhere Potentialdifferenzen
- \rightarrow Entwicklung von Hochspannungsquellen (HV-Quellen):

Greinacher-Kaskade, van de Graaff, Tesla-Transformator, Marx-Generator

 \rightarrow Limitierung durch HV-Überschläge und -Entladungen

- Teilchen mit Ladung Ze aus Quelle (hier: Kathode) . . .
- durchlaufen Potentialdifferenz $U \equiv \Delta \phi$ zu . . einer Lochelektrode (hier: Anode) ...
- erzielen Energiegewinn $\Delta E = Ze \cdot U$ (übliche Einheit: 1 eV $\hat{\approx}$ 1.602 \cdot 10⁻¹⁹J)

(Nach diesem Prinzip funktionieren auch (Fernseh-) Bildröhren)

HV-Quellen

Greinacher (1921):

 \triangleright Ausgangsspannung nach n Stufen:

 $U = 2nU_0 - \Delta U - \delta U$

▷ Spannungsabfall unter Laststrom *I*:

$$\Delta U = \frac{2\pi I}{\omega C} \cdot \left(\frac{2}{3}n^3 + \frac{1}{4}n^2 + \frac{1}{12}n\right)$$

▷ Brummspannung unter Laststrom *I*:

$$\delta U = \frac{2\pi I}{\omega C} \cdot \frac{n(n+1)}{2}$$

(Für Bildröhren typischerweise n=3 Stufen)

Typische Werte:

- C =1-10 nF $U_0 =$ 700-1500 kV
- $\omega = 2\pi \cdot 10 \text{ kHz}$

• $I_{\rm max} \approx$ 100 mA

 ⇒ Einsatz f
ür Vorbeschleuniger und Injektoren (zunehmend durch Quadrupol-Radiofrequenz-Beschleuniger (RFQ-Linacs) ersetzt) 2.2

van de Graaff:

- \triangleright elektrische Ladung δQ auf isoliertes Transportband aufgesprüht
- innerhalb Hohlraum-Kondensator abgegeben
- ▷ Kapazität eines Kugelkondensators:

 $C = 4\pi\varepsilon\varepsilon_0 R$

- $\triangleright \text{ Hochspannung für } Q = \sum \delta Q:$ U = Q/C
- ▷ Limit: i.W. durch Korona-Entladung
- → bis \sim 20 MV, wenn in Drucktank mit isolierendem Gas, z.B. SF₆, N₂, CO₂, gefüllt bei hohem Druck → Pascheneffekt (Isolationsvermögen $\propto 1$ /Druck)
 - doppelter Ladungstransports durch zusätzliche Influenz-Spannungsquellen

Ausführungen: Laddertron (Metallklammern auf Transportband), Pelletron (Metallkugeln)

WS 2003/04

Abbildung 13: 5 MV van de Graaff im Hahn-Meitner-Institut, Berlin

Tandem-Beschleuniger:

- zunächst negativ geladene
 lonen beschleunigt,
- im Zentrum positiv umgeladen (z.B. durch dünne (Stripper-)Folie),
- erneut volles elektrostat.
 Potential zur Beschleunigung

Marx-Generator:

- $\triangleright\,$ zunächst Aufladung parallel-geschalteter Kondensatoren aus HV-Quelle langsam über Widerstände R
- Reihenschaltung der Kondensatoren schlagartig über Funkenstrecken
- ightarrow kurze Spannungspulse (\ll 1 μ s) bis \sim 100 kV

 \Rightarrow Einsatz z.B. in gepulsten Quellen, Induktions-Linacs (Beschleunigung mit Induktionsspannung: $\partial B_{\phi}/\partial t = -E_z$)

Beschleunigung mit HF-Feldern

Beschleunigung erfordert:

- \triangleright *longitudinales* \vec{E} -Feld
- ▷ richtige Polarität (Synchronität)
- gebündelte Teilchen im Strahl
 ("bunched beam")
- ▷ Bunchlänge $l \ll \beta \lambda_{\rm RF}/2$ ($v = \beta c$)

- \Rightarrow Isings Idee (1924), Wideröes Realisierung (1928):

Lineare Kette von Beschleunigungstrecken mit HF-Generator verbunden

Figure. 9.7 A graphical demonstration of the phase-stability principle in a linac. The effective transition energy is always infinite, since $\eta_{tr} = 1/\gamma^2 > 0$.

 \triangleright Referenzphase $arphi_s < \pi/2$ und $\Delta E_{\rm kin} < eU_0 \Rightarrow$ Phasenstabilisierung

- ▷ Driftröhren mit HF verbunden
- \triangleright beschleunigendes \vec{E} -Feld \rightarrow Teilchen zwischen Driftröhren
- sonst im feldfreien Raum einer
 Driftröhre
- \Rightarrow Teilchen "surft" auf elektromagnetischer Welle (mit Phase φ_s)
- ▷ kinetischer Energiegewinn:

 $\Delta E_{\rm kin} = eU_0 \cdot \sin \varphi_s$

▷ Flugzeit von $i \rightarrow i + 1$: $\tau = l / m = \frac{1}{T} = 0$

$$\tau_i = l_i / v_i = \frac{1}{2} T_{\rm RF} = \lambda_{\rm RF} / 2c$$

 \triangleright kinet. Energie nach *i*:

$$E_{\mathrm{kin},i} = \frac{1}{2}mv_i^2$$

$$\Rightarrow \text{ für } v \ll c:$$

$$l_i = \frac{\lambda_{\text{RF}}}{c} \sqrt{i \cdot \frac{eU_0 \cdot \sin \varphi_s}{2m}} \propto \sqrt{i}$$

$$\Rightarrow$$
 für $v \sim c$: $l_i = \frac{\lambda_{\rm RF}}{2}$

 l_i und $\lambda_{\rm RF}$ bestimmen $\Delta E_{\rm kin} \Longrightarrow$ Beschleunigerenergie festgelegt !

Einige Überlegungen zur offenen Struktur von Wideröes-Linearbeschleuniger:

- Länge der *i*ten Driftröhre: $L_i < l_i = \frac{1}{2} v_i / \nu_{\rm RF} \propto 1 / \nu_{\rm RF}$ z.B. $v_i \approx c/2$ und $\nu_{\rm RF} =$ 7 MHz $\rightarrow l_i \approx$ 10.7 m !
- \rightarrow sehr langer Beschleuniger für geringe Frequenzen
- ightarrow höhere Frequenzen $u_{\mathrm{RF}} \leftrightarrow$ kürzerer Beschleuniger
- mittlere Abstrahlleistung eines Dipols: $\overline{P} \propto
 u_{
 m RF}^4$
- ightarrow Abstrahlverluste steigen mit vierter Potenz der Frequenz
- ightarrow geringere Frequenzen $u_{
 m RF} \leftrightarrow$ geringere HF-Verluste
- \Rightarrow geschlossene HF-Struktur \rightarrow HF-Resonatoren (Cavities) in Alvarez-Struktur verhindern Abstrahlverluste

Einschub zu SI- vs. Gauss-Einheiten (aus F.K.Kneubühl: Repetitorium der Physik):

A 2.3.2 Elektromagnetische Gleichungen

Einheiten		SI	el. stat. CGS (esu)	el. magn. CGS (emu)	Gauß
el. Verschiebung	D =	$\epsilon \epsilon_0 \vec{E}$	εĒ	$\epsilon c^{-2} \vec{E}$	εĒ
magn. Induktion	B =	$\mu \mu_0 \vec{H}$	$\mu c^{-2} \vec{H}$	μĤ	μΗ̈́
Coulomb-Gesetz	F =	$\frac{Q_1 Q_2}{4\pi \ \epsilon \ \epsilon_0} \ r^{-3} \dot{r}$	$\frac{Q_1 Q_2}{\epsilon} r^{-3} \vec{r}$	$\frac{Q_1 Q_2}{\epsilon c^{-2}} r^{-3} \vec{r}$	$\frac{Q_1Q_2}{\epsilon} r^{-3} \dot{r}$
Lorentz-Kraft	F =	$Q[\vec{v} \times \vec{B}]$	$Q[\vec{v} \times \vec{B}]$	$Q[\vec{v} \times \vec{B}]$	$c^{-1}Q[\vec{v}\times\vec{B}]$
1. Maxwell-Gesetz	rot \vec{H} =	$\vec{j} + \frac{d\vec{D}}{dt}$	$4\pi \vec{j} + \frac{d\vec{D}}{dt}$	$4\pi\vec{j}+\frac{d\vec{D}}{dt}$	$c^{-1}\left(4\pi\vec{j}+\frac{d\vec{D}}{dt}\right)$
Biot-Savart	dH =	$-\frac{\mathrm{I}}{4\pi}\frac{\vec{\mathrm{r}}\times\mathrm{d}\vec{\mathrm{r}}}{\mathrm{r}^{3}}$	$-I\frac{\vec{r}\times d\vec{r}}{r^3}$	$-I\frac{\vec{r}\times d\vec{r}}{r^3}$	$-\frac{I}{c}\frac{\vec{r}\times d\vec{r}}{r^3}$
2. Maxwell-Gesetz	rot \vec{E} =	$-\frac{d\vec{B}}{dt}$	$-\frac{d\vec{B}}{dt}$	$-\frac{d\vec{B}}{dt}$	$-c^{-1}\frac{d\vec{B}}{dt}$
3. Maxwell-Gesetz	$\rho_e =$	div D	$\frac{1}{4\pi}$ div \vec{D}	$\frac{1}{4\pi} \operatorname{div} \vec{\mathrm{D}}$	$rac{1}{4\pi} \operatorname{div} \vec{D}$
Energiedichte	w =	$\frac{1}{2} \left(\vec{E} \ \vec{D} + \vec{B} \ \vec{H} \right)$	$\frac{1}{8\pi}(\vec{E}\vec{D}+\vec{B}\vec{H})$	$\frac{1}{8\pi}(\vec{E}\vec{D}+\vec{B}\vec{H})$	$\frac{1}{8\pi} \left(\vec{E} \ \vec{D} + \vec{B} \ \vec{H} \right)$
Poynting-Vektor	š =	Ē x Ħ	$\frac{1}{4\pi}$ [$\vec{E} \times \vec{H}$]	$\frac{1}{4\pi} \left[\vec{E} \times \vec{H} \right]$	$\frac{c}{4\pi}$ [$\vec{E} \times \vec{H}$]

Einheiten		SI	el. stat. CGS, Gauß
Diel. Verschiebung	D =	$\begin{bmatrix} \epsilon_0 \epsilon \vec{E} \\ \epsilon_0 \vec{E} + \vec{P} \end{bmatrix}$	$\begin{cases} \epsilon \vec{E} \\ \vec{E} + 4\pi \vec{P} \end{cases}$
Polarisation	P =	$\epsilon_0 \chi_e \vec{E}$	$\chi_e \vec{E}$
Suszeptibilität	χ _e =	$\epsilon - 1$	$rac{\epsilon-1}{4\pi}$

A 2.3.3 Beschreibung des elektrischen Verhaltens der Materie

A 2.3.4 Beschreibung des magnetischen Verhaltens der Materie

Einheiten		SI	Gauß	
Magn. Induktion	B =	$\begin{cases} \mu \mu_0 \vec{\mathrm{H}} \\ \mu_0 (\vec{\mathrm{H}} + \vec{\mathrm{M}}) \end{cases}$	$\begin{cases} \mu \vec{\mathrm{H}} \\ \vec{\mathrm{H}} + 4\pi \vec{\mathrm{M}} \end{cases}$	
Magnetisierung	M =	$\chi_m \vec{\rm H}$	$\chi_m \vec{H}$	
Suszeptibilität	χ _m =	$\mu - 1$	$\frac{\mu-1}{4\pi}$	
Bohrsches Magneton	μ _B =	$\frac{e\hbar}{2m_0} \\ 0,927 \cdot 10^{-23} \text{ Am}^2$	$\frac{e\hbar}{2m_0 c}$ 0,927 · 10 ⁻²⁰ erg/Gauß	

(kurze) Theorie der HF-Wellenleiter

Ausgangspunkt sind (auch hierfür) die Maxwellschen Gleichungen (in Gauss-Einheiten!):

$$\nabla(\varepsilon_r \vec{E}) = 4\pi\rho$$

$$\nabla \times \vec{E} = -\frac{1}{c}\frac{\partial}{\partial t}\vec{B}$$

$$\nabla \times \frac{\vec{B}}{\mu_r} = \frac{4\pi}{c}\rho\vec{v} + \frac{1}{c}\frac{\partial}{\partial t}\vec{E}$$

Im Folgenden: Materiefrei $\rightarrow \varepsilon_r = 1, \, \mu_r = 1$

Aus $\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \vec{E}) - \nabla^2 \vec{E}$ folgt damit die *Laplace-Gleichung* im Vakuum (d.h. $\rho = 0$): $\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$ mit der Lösung:

mit der Lösung:

$$\vec{E}(\vec{r},t) = \vec{E}_0 \cdot e^{i(\omega t - \vec{k}\vec{r})}$$

Vereinfachung: betrachte nur beschleunigende \vec{E} -Komponente:

$$E_s(s,t) = E_{0s} \cdot e^{i(\omega t - k_s s)} \quad \longrightarrow \quad \nabla^2 E_s + \frac{\omega^2}{c^2} E_s = 0.$$

fürs azimutale Feld $E_{\theta}(\theta, t) = E_{0\theta} \cdot \exp(i(\omega t - n\theta))$, mit Periodizität n

Trennung des Laplace-Operators $\Delta \equiv \nabla^2$ in longitudinalen ($\nabla_s^2 \equiv \partial^2 / \partial s^2$) und transversalen (∇_{\perp}^2) Anteil ergibt (mit $\nabla_s^2 E_s = -k_s^2 \cdot E_s$):

$$\nabla_{\perp}^2 E_s + \left(\frac{\omega^2}{c^2} - k_s^2\right) E_s = 0.$$

Im Folgenden: zylindersymmetrische Wellenleiter \longrightarrow Zylinderkoordinaten (r, θ, s) $\rightarrow \nabla_{\perp}^2 = \partial^2 / \partial r^2 + (1/r) \partial / \partial r + (1/r^2) \partial^2 / \partial \theta^2$. Mit $(1/r^2) \partial^2 / \partial \theta^2 E_{\theta} = -n^2 / r^2 E_{\theta}$ und mit *Grenzwellenzahl* $k_c^2 \equiv (\omega/c)^2 - k^2$:

$$\frac{\partial^2}{\partial r^2} E_s + \frac{1}{r} \frac{\partial}{\partial r} E_s + \left(k_c^2 - \frac{n^2}{r^2}\right) E_s = 0.$$

Lösung dieser DGL durch Bessel-Funktionen 1. (J_n) und 2. Art (Y_n) :

$$E_s = A_J J_n(k_c r) + A_Y Y_n(k_c r) \,,$$

dabei $A_Y = 0$, sonst Singularität: $Y_n(k_c r) \xrightarrow{r \to 0} -\infty$.

Diese Lösung repräsentiert viele mit den Randbedingungen verträgliche *Moden* n für die \vec{E} -Feldkomponente E_s . (Analog für B_s . Die transversalen Komponenten ($E_r, E_{\theta}, B_r, B_{\theta}$) folgen mit $\nabla \times \vec{E}$ und $\nabla \times \vec{B}$.)

Moden und deren Klassifikation:

TE-Moden: $E_s = 0$ und $B_s \neq 0$ (auch: *H*-Moden)

TM-Moden: $E_s \neq 0$ und $B_s = 0$ (auch: *E*-Moden)

NB: nur TM-Moden zur Teilchenbeschleunigung geeignet, da TE-Moden: $E_s = 0!$

Individuelle Moden charakterisiert als TM_{npq} nach Periodizität der Welle in : $\begin{cases} \theta : n \\ r : p \\ s : q \end{cases}$ z.B. **TM**₀₁₀:

- keine Periode in azimutaler Richtung (θ)
- einfache Periodizität in r, d.h. hat einen Knoten in radialer Richtung und zwar an der Wand, wo $\vec{E}(r, \theta, s) \xrightarrow{r \to \text{Wand}} 0$
- keine Periode in longitudinaler Richtung (*s*)

Die Lösung der Wellengleichung hängt nur von r ab: $E_s(r, \theta, s) = E_s(r)$.

TM₀₁₀-Welle für zylindersymmetrischen Wellenleiter:

- Wellenleiter mit Radius r = a
- $\rightarrow E_s(k_c r) \propto J_0(k_c r), H_\theta(k_c r) \propto J_1(k_c r)$ $\rightarrow E_s(k_c r) = A_J J_0(k_c r) \xrightarrow{r \rightarrow a} 0$ $\rightarrow k_c a \approx 2.405 \quad (1. \text{ Nullstelle von } J_0)$
- Grenzfrequenz im Wellenleiter:

 $\omega_c = c \, k_c = c \cdot \frac{2.405}{a}$ $(k_c^2 > 0 \rightarrow \text{keine Wellenausbreitung f. } \omega < \omega_c)$

$$\rightarrow \left[k_s^2 = \left(\frac{\omega}{c}\right)^2 - k_c^2 = \left(\frac{\omega}{c}\right)^2 \left(1 - \frac{\omega_c^2}{\omega^2}\right)^2 \right]$$
$$\rightarrow k_c a \approx 2.405 \text{ (1. Nullstelle von } J_0\text{)}$$

Phasen-/Gruppengeschwindigkeit $v_{
m ph}$ und $v_{
m g}$:

• Phase $\psi \equiv \omega t - k_s s = \text{const.}$ $\rightarrow \dot{\psi} = \omega - k_s v_{\text{ph}} = 0$ $\rightarrow v_{\text{ph}} = \frac{\omega}{k_s} = \frac{c}{\sqrt{1 - \omega_c^2/\omega^2}} > c$! • $v_{\text{g}} \equiv d\omega/dk = \frac{c^2 k_s}{\omega} = c \cdot \frac{c}{v_{\text{ph}}} < c$

2.15

Anmerkungen:

• \vec{E} -Feldkomponente in Teilchenrichtung erforderlich

(z.B. keine direkte Beschleunigung mit Laserlicht möglich, da nur TE-Mode))

• für Teilchenbeschleunigung erforderlich:

 $v_{\rm ph} = v_{\rm particle} \le c$

ightarrow z.B. Schikanen/Blenden im Wellenleiter/ Cavity, um $v_{\rm ph}$ zu verringern

Fig. 2.8. Disk loaded accelerating structure for an electron linear accelerator (schematic)

- detaillierte Betrachtung von Wellenleiter (mit/ohne Schikanen) aufwendig (Details z.B. in: J.C. Slater: Review of Modern Physics 20, 1948, S.473ff)
- Materialeffekte in Wellenleiter-Betrachtung vernachlässigt

z.B. Skin-Effekt, Oberflächenwiderstände, Impedanzen, Güte des Resonators, Signalreflektion, Anregung höherer Moden durch Rückwirkung von Teilchenstrahl auf Cavity (Higher Order Modes, HOM)

Beschleunigungsstrukturen

Komponenten:

- HF-Leistungsquelle (Klystron)
- Hohlleiter zum Beschleunigungsresonator (Cavity)
- Einkopplung von Hohlleiter in Cavity
- Resonator (ggf. mit Abstimm-Möglichkeit)
- Ersatzschaltbild mit Kapazität C, Induktivität L und Shuntimpedanz bei Resonanz R_s

typ. Daten einer 1-zelligen Cavity: (DORIS- e^+e^- -Beschleuniger, 2× 5 GeV, DESY)

- Resonanfrequenz $f_{\rm RF}$ = 500 MHz
- Shuntimpedanz $R_s = 3 M\Omega$
- Impedanz $Z = 80 \Omega$
- Güte
- Leistung $P_{\rm RF}$ =
- Scheitelspannung U_{crest} = 548 kV

0

 $= 38\,000$

50 kW

2.17

typ. mehrzellige Cavity: (PETRA- e^+e^- -Beschleuniger, 2× 23 GeV, DESY)

NB: \vec{E} -Felder parallel zu Metalloberflächen \longrightarrow ohmsche Verluste \longrightarrow Kühlung erforderlich

Reduktion ohmscher Verluste durch Speicher-Cavity: (LEP- e^+e^- -Beschleuniger, 2× 104 GeV, CERN)

Fig. 34 One unit of the LEP coupled-cavity accelerating structure

Fig. 26 Modulated RF waveforms for a) accelerating cavity, b) storage cavity

Betriebsmodi (mehrzelliger) Cavities:

Laufwellen-Resonator:

- HF-Welle läuft mit Teilchen durch Cavity
- \rightarrow Beschleunigung nur in Laufrichtung
- \rightarrow Einsatz in fixed-target-Beschleunigern
- Höhere Moden automatisch gedämpft

Stehwellen-Resonator:

- HF-Welle wird in Cavity reflektiert
- ightarrow Beschleunigung unterschiedlich geladener Teilchen in einer Cavity
- \rightarrow Einsatz in Collider/Speicherringen
 - Dämpfung höherer Moden notwendig

2.20

HF-Leistungsquelle

i.W.: Klystrons

- Gleichstrom-Elektronenstrahl
- ▷ Einkopplung von HF
- Bunching durch Geschwindigkeitsmodulation (s.u.)
- Magnete zur Strahlführung&-fokussierung
- Resonantoranregung durch Elektronenbunche
- Resonantoranregung durch Elektronenbunche
- Auskopplung der verstärkten HF
- ▷ meist >2 Cavities → höhere
 Verstärkung und größere Effizienz
- Betriebsmodi: Dauerstrich oder gepulst

Beispiele für Klystrons:	Daue	rstrich	gepulst	
typische Betriebsdaten	LEP: TH2089	LHC: Spezifika-	SLC: 5045	TESLA: TH1801
	(Thomson)	tion	(SLAC)	(Thomson)
Frequenz	352 MHz	400.8 MHz	2.87 GHz	1.3 GHz
Pulslänge	cw	cw	3.5 μ s	1.5 ms
Wiederholrate	cw	cw	120 Hz	5 Hz
Beschleunigungs-Spannung	87 kV	\leq 54 kV	350 kV	117 kV
Strahlstrom	17.1 A	9 A	450 A	131 A
HF-Leistung (Peak)	1 MW	300 kW	65 MW	10 MW
Effizienz	68%	\geq 62%	50%	65%
Verstärkung	40 dB	\geq 37 dB	52 dB	48 dB
Länge	4.75 m			2.5 m

(cw=continuous wave)

NB: Hohe Peak-Ausgangsleistung nur bei kurzer Pulslänge erreichbar

Bunching eines Strahl:

a.) DC-Strahl aus Quelle

b.) Sinusförmiger Energiegewinn in Resonator ($\beta \ll 1$): $\Delta E_{\text{kin}} = eU_0 \sin \varphi \approx mv \Delta v$ $\rightarrow \Delta v = \frac{eU_0 \sin \varphi}{mv}$

c.) Flugzeit
$$\Delta t: \Delta v \cdot \Delta t = \frac{\varphi}{2\pi} \lambda_{\rm RF}$$

→ Flugstrecke Δl für optimales Bunching (sin $\varphi \approx \varphi$):

$$\Delta l = v \Delta t \approx \frac{2D_{\rm kin}}{eU_0} \cdot \frac{\chi_{\rm RF}}{2\pi}$$

Quadrupol-Radiofrequenz-Beschleuniger (RFQ)

- ... alternativ zu den elektrostat. Linearbeschleunigern; detaillierte Behandlung aufwendig; Funktionsprinzip:
 - transversal: 4polige Struktur
- ightarrow erzeugt fokussierendes Feld
 - longitudinal: "wellenförmig" (genauer: hyperbelförmig)
- \rightarrow erzeugt beschleunigendes Feld

Feldstruktur in RFQ:

Fig. 11 TE_{210} mode in a four-vane cavity and in an empty cavity

Betriebsmode: TE_{210} durch Elektroden modifiziert.

Quadrupolfeld wirkt fokussierend: (analog FODO-Struktur, s.u.)

Eigenschaften von RFQs:

- linearer Ionen-Beschleuniger: \geq 20 keV bis 2 MeV
- geringe Injektionsenergie \rightarrow keine aufwendige Hochspannungsversorgung
- Bunching, Fokussierung, Beschleunigung durch HF
- typ. Länge 1-2 m
- Betriebsfrequenz \sim 50 bis 400 MHz
- Spannung zwischen Vanes \sim 100 kV
- Güte $\mathcal{Q} \sim$ 10000
- Impedanz $Z \equiv U^2/2P \sim 5 \cdot 10^5 \Omega$ (Leistung P, um Spannung U zu erreichen) NB: Faktor 1/2 in Impedanz-Definition Konvention für Linear-Beschleuniger

 \Rightarrow RFQ als Ersatz für elektrostat. (Ionen-)Beschleuniger

NB: weitere, kompliziertere Strukturen werden für Beschleunigung & Fokussierung benutzt

Zirkulare/Kreis-Beschleuniger

- ▷ Betatron
- ▷ Schwache Fokussierung, adiabatische Dämpfung
- ▷ Mikrotron, Synchro-/Isochron-Zyklotron
- ▷ Synchrotron
- Limitierte HF-Leistung stimulierte die Entwicklung von zirkularen/Kreis-Beschleuniger:
 - + geringste HF-Felder in Kreis-Beschleunigern effektiv nutzbar (Teilchen nutzen wiederholt gleiches HF-Feld)
 - + lokale und kompakte Beschleunigungsstruktur in Kreisbeschleunigern ↔ langgestreckte Resonatoren in Linearbeschleunigern
 - + in Betatron sogar intrinsische Beschleunigung $(U_{ind} \propto -\dot{\phi})$

Zentrale Relation für Kreisbeschleuniger (in Gauss-Einheiten!):

• Lorentzkraft:

$$\vec{F} = q\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right)$$

Für $\vec{E} = 0$, homogene \vec{B} -Feld und Ladung q = e gilt:

$$\vec{F} = \frac{e}{c}\vec{v} \times \vec{B} \stackrel{!}{=} \frac{d}{dt}(\gamma m\vec{v}) = m\left(\gamma \frac{d\vec{v}}{dt} + \frac{d\gamma}{dt}\vec{v}\right) = \gamma m \frac{d\vec{v}}{dt}$$
$$(\vec{E} = 0 \rightarrow \text{keine Beschleunigung} \rightarrow \beta = \text{const} \rightarrow \gamma = \text{const})$$

Mit Geschwindigkeit $\vec{v} = \vec{\omega} \times \vec{r}$ folgt:

$$\frac{e}{c}\vec{v}\times\vec{B} = \gamma m\vec{\omega}\times\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \gamma m\vec{\omega}\times\vec{v}$$
$$(\vec{E}=0 \rightarrow \text{keine Beschleunigung} \rightarrow |\vec{\omega}| = \omega = \text{const})$$

Damit gilt für ein Teilchen, das sich in einer zu \vec{B} senkrechten Ebene bewegt:

$$\frac{e}{c}vB = \gamma m\omega v = \gamma m \frac{v^2}{r}$$

$$p \equiv \beta \gamma mc = \frac{e}{c}Br$$

Betatron

Prinzip:

- Teilchenstrom \triangleq Sekundärspule in Transformator
- Schematischer Aufbau:

(magnet. Fluss ϕ_a durch vom Teilchenstrom umschlossene Fläche a)

• Wideröe: fester Orbitradius des Teilchenstroms $\longrightarrow \frac{1}{2}$ -Bedingung
Wideröesche $\frac{1}{2}$ -Bedingung:

- Es gilt :
- Beschleunigungskraft $\stackrel{!}{=}$ azimutales *E*-Feld

$$\longrightarrow F = \frac{\mathrm{d}p}{\mathrm{d}t} = \frac{e}{c} \left(\frac{\mathrm{d}r}{\mathrm{d}t} \cdot B + r \cdot \frac{\mathrm{d}B}{\mathrm{d}t} \right) \stackrel{!}{=} -eE_{\varphi}$$

- konstanter Orbitradius r = R: dr/dt = 0

$$\longrightarrow \frac{e}{c} \cdot R \frac{\mathrm{d}B}{\mathrm{d}t} \stackrel{!}{=} -eE_{\varphi}$$
$$\longrightarrow \oint \vec{E} \mathrm{d}\vec{s} = \int E_{\varphi} R \mathrm{d}\varphi = 2\pi R E_{\varphi}$$

|e|

 $p = \gamma mv = -\frac{e}{Br}$

B-Feld homogen innerhalb Sollbahnradius
$$R \longrightarrow \oint \vec{E} d\vec{s} = \int E_{\varphi} R d\varphi =$$

• mit Induktionsgesetz (
$$U_{\text{ind}} = -\mathrm{d}\phi/c\mathrm{d}t$$
)

Gesamter Fluss $\phi = \pi R^2 \overline{B}(R)$ mit mittlerer magn. Induktion \overline{B}

Vergleiche (*) und (**)

$$\rightarrow B(R) \stackrel{!}{=} \frac{1}{2}\overline{B}(R)$$
 (¹/₂-Bedingung)

Betatron-Prinzip:

- für alle geladenen Teilchen
- für alle Energien

denn $\frac{1}{2}$ -Bedingung unabhängig davon !

Größtes Betatron: (Kerst 1950)

- R = 1.23 m Orbitradius
- maximales $B\operatorname{-Feld}:B(R)=0.81\ \mathrm{T}$
- Magnet-Gesamtgewicht: 350 t
- Elektronenimpuls: p = 300 MeV/c

Betatron-Anwendung:

- typ. Beschleunigungszyklus
- kin. Energie (Impuls *p*, Teilchemasse *m*):

$$E_{\rm kin} = \sqrt{(cp)^2 + (mc^2)^2} - mc^2$$

- ▷ für Elektronen (typ. $m_{\rm e} c \ll p$): $E_{\rm kin, e} \approx cp$
- ▷ für Protonen (typ. $m_{\rm p}c \gg p$): $E_{\rm kin, p} \approx p^2/2m_{\rm p} \ll pc = E_{\rm kin, e}$
- \Rightarrow Elektronbeschleunigung bevorzugt

Schwache Fokussierung

- $\frac{1}{2}$ -Bedingung —> stabiler Orbitradius R
- \rightarrow keine Stabilität senkrecht zum Orbit
- \rightarrow Strahlfokussierung erforderlich!

Betrachte dazu bei Abweichungen vom idealen Orbit (Koordinaten: x in, $y \perp$ Orbitebene, s entlang Orbit) Zunächst in x (entspricht radialer Richtung):

Rückstellkraft
→

$$F_x = \gamma m \frac{v^2}{R} - \frac{e}{c} v B_y(R)$$

kleine Abweichung x vom Sollorbit
→ R → r = R + x = R (1 + $\frac{x}{R}$)

Taylorentwicklung bis 1. Ordnung
und
→ $\frac{1}{r} \approx \frac{1}{R} \left(1 - \frac{x}{R}\right)$

 $\longrightarrow B_y(r) \approx B_y(R) + \frac{\partial B_y(R)}{\partial x} \cdot x \equiv B_y(R) \cdot \left(1 - n \cdot \frac{x}{R}\right)$

mit *Feldindex*
→

$$n \equiv -\frac{R}{B_y(R)} \cdot \frac{\partial B_y(R)}{\partial x} \quad (\rightarrow \text{ Form der Magnetpole!})$$

• Rückstellkraft bei Abweichung *x*

$$\longrightarrow F_x \approx \gamma m \frac{v^2}{R} \left(1 - \frac{x}{R}\right) - \frac{e}{c} v B_y(R) \cdot \left(1 - n \cdot \frac{x}{R}\right)$$

• für Sollorbit:
$$\gamma m v^2 / R \stackrel{!}{=} ev B_y(R) / c$$

 \rightarrow Schwingungs-DGL ($\ddot{x} + \omega_x^2 x = 0$)

$$\rightarrow \boxed{\gamma m \ddot{x} - F_x = \gamma m \cdot \ddot{x} + \gamma m \frac{v^2}{R^2} (1 - n) \cdot x = 0}$$

• Teilchenorbit bei kleinen Störungen

$$\rightarrow$$
 Oszillation um Sollorbit: *horizontale Betatron-Schwingung*

- \rightarrow harmon. Schwingung mit Kreisfrequenz —
- $\implies Stabilitätsbedingung für Orbit$ (horizontaler Orbit in <math>x)

$$\rightarrow \boxed{\omega_x = \frac{v}{R}\sqrt{1-n} \equiv \omega_0\sqrt{1-n}}$$
horizontale Betatron-
Frequenz !
$$\rightarrow \boxed{n < 1}$$

Abweichungen vom idealen Orbit in y:

(mit Feldindex n)

• Bewegungs-DGL :
$$\gamma m \cdot \ddot{y} = \frac{e}{c} v B_x(R)$$

• aus
$$\nabla \times \vec{B} = -\partial \vec{E} / \partial t$$
 $\longrightarrow \frac{\partial B_x}{\partial y} - \frac{\partial B_y}{\partial x} = 0$

$$\longrightarrow B_x = \int \frac{\partial B_x}{\partial y} dy = -\int n \frac{B_y(R)}{R} dy = -n \frac{B_y(R)}{R} y$$
 (*)

$$\rightarrow \quad (\text{mit Sollorbit:} \ \gamma m v^2 / R \stackrel{!}{=} ev B_y(R) / c) \quad \longrightarrow \boxed{\gamma m \cdot \ddot{y} + \gamma m \frac{v^2}{R^2} n \cdot y = 0}$$

• Teilchenorbit bei kleinen Störungen
$$\longrightarrow$$
 Oszillation um Sollorbit: *vertikale Betatron-Schwingung*

Figure. 2.2 Forces for a positive particle coming out of the page: a) Radial defocusing force from radially opening poles. b) Radial focusing gradient from radially closing poles. c) Vertical defocusing forces from radially opening poles. d) Vertical focusing forces from radially closing poles.

Geometrische Fokussierung:

 $p = eBR/c \longrightarrow$ Alle Orbits mit Radius R:

(Sollorbit: durchgezogen; r > R (gestrichelt) und r < R (punktiert) \rightarrow auf Sollorbit abgelenkt)

⇒ Geometrische Fokussierung kompensiert (schwache) horizontale Defokussierung für vertikale Fokussierung

Tune der Betatron-Oszillationen:

entspricht Anzahl der Oszillationen je Umlauf

• horizontaler Tune :

$$Q_x \equiv \frac{\omega_x}{\omega_0} = \sqrt{1-n}$$

• vertikaler Tune :

$$Q_y \equiv \frac{\omega_y}{\omega_0} = \sqrt{n}$$

Betatron-Oszillationen und Tunes sind charakteristische Eigenschaften eines Kreisbeschleunigers ! (nicht nur für Betatrons)

adiabatische Dämpfung

In (vertikalen&horizontalen) Oszillationen vernachlässigt: Effekt der Beschleunigung Dazu nochmals:

- Bewegungs-DGL in $y \ (p = \gamma m v_y)$:
- $\label{eq:constraint} \begin{array}{l} \rightarrow \quad {\rm Beschleunigung} \ \widehat{=} \dot{\gamma} \neq 0 \\ (\omega_0 = v/R \ {\rm für \ Sollorbit}) \end{array}$
- $ightarrow \,$ mit B_x aus (*) (Folie 3.8) und Energiegewinn $\dot{E}\equiv mc^2\cdot\dot{\gamma}$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\gamma m \cdot \dot{y}) = \frac{e}{c}vB_x(R)$$

$$\longrightarrow \gamma mc^2 \cdot \ddot{y} + \dot{\gamma} \cdot mc^2 \dot{y} = ec\omega_0 RB_x(R)$$

$$\longrightarrow \left[\ddot{y} + \left(\frac{\dot{E}}{E}\right) \dot{y} + n\omega_0^2 \cdot y = 0 \right] \quad (**)$$

• (**) ist DGL eines gedämpften harmoni- $\longrightarrow y(t) = y_0 \cdot e^{-\alpha_y t} \cos \omega t$ mit $\omega \approx \omega_0 \sqrt{n}$ schen Oszillators

$$\rightarrow \alpha_y = \frac{1}{2} \left(\frac{\dot{E}}{E} \right) \hat{=} \frac{1}{2} \left(\frac{\dot{\gamma}}{\gamma} \right)$$

⇒ Beschleunigung führt zur Dämpfung der vertikalen Betatron-Oszillation!

Charakterisierung der Dämpfung:

- techn. erreichbar $\dot{E}/E \ll 1$
- \rightarrow Einhüllende der Oszillation: $y_{\max}(t) = y_0 \cdot e^{-\alpha_y t}$
- \rightarrow mit Startenergie E_0 , Endenergie E

$$\longrightarrow$$
 Dämpfungszeit $au_y = 1/a_y \gg 2\pi/\omega$ Oszillationsperiode

$$\rightarrow \mathrm{d}y_{\max} = -\frac{1}{2}\left(\frac{\dot{E}}{E}\right)y_{\max}\cdot\mathrm{d}t$$

$$\rightarrow \frac{y_{\max}}{y_{0,\max}} \equiv \frac{y_{\max}(E)}{y_{\max}(E_0)} = \sqrt{\frac{E_0}{E}}$$

adiabatische Dämpfung !

• analog auch für horizontale Oszillation !

Bedeutung der Dämpfung:

- reduziert Phasenraum des Strahls (so gen. *Emittanz*: $\epsilon_u \equiv u_{\max} \cdot u'_{\max}$ $\equiv u_{\max} \cdot \frac{du_{\max}}{ds}$) • $\epsilon_u \propto \frac{1}{E}$ mit u = x oder y und $s = v \cdot t$ entlang Orbit $\equiv u_{\max} \cdot \frac{du_{\max}}{ds}$)
- Effektivere Dämpfung durch → Synchrotronstrahlung (→ Abschnitt 9)
 (für Elektronenstrahlen)

Mikrotron

Prinzipielle Konzepte der Kreisbeschleuniger:

- 1. *Betatron*: Beschleunigung durch Induktionsspannung $U_{ind} = -d\phi/cdt$
- \rightarrow intrinsisch erzeugt durch veränderliche magnetische Induktion $B \equiv |\vec{B}(t)| \longrightarrow E_{\varphi} \propto R \cdot \dot{B}$
- 2. externe Beschleunigung durch HF-Feld
- \rightarrow *Mikrotron*: B = const.,
- \rightarrow *Zyklotron*: $B = \text{const. oder } B \propto p/R$,
- \rightarrow Synchrotron: $B \propto p/R$.

Mikrotron-Konzept:

- $B = \text{const} \rightarrow \text{Radius } r \propto \text{Impuls } p$
- Phasenverschiebung je Umlauf zwischen Teilchen und HF: $\Delta \phi = j \cdot 2\pi, j \in I\!\!N$
- Zeit für ersten Umlauf: $t_1 = \frac{2\pi r}{v} = \frac{2\pi \gamma mc}{qB} = \frac{2\pi E_1}{qBc} \stackrel{!}{=} k \cdot T_{\text{RF}}$
- Zunahme Umlaufzeit bei Energiegewinn ΔE : $\Delta t = \frac{2\pi\Delta E}{qBc} \stackrel{!}{=} j \cdot T_{\text{RF}}$
- \rightarrow Synchronitätsbedingung ($E_{inj} \equiv E_1 \Delta E$):

$$\Delta E = \frac{j}{k-j} \cdot E_{\rm inj}$$

• Erster Umlauf:

$$E_1 = E_{\text{inj}} + \Delta E > \Delta E \quad \rightarrow \quad k > j$$

• z.B.
$$\Delta E$$
 für $k = 2, j = 1$:

$$\Delta E = E_{\text{inj}} \longrightarrow \Delta \gamma = E_{\text{inj}}/mc^2 \approx 1$$
!

(bedeutet z.B. $\Delta E \approx 1$ GeV für Protonen)

1 Fig. 3.2. The principle of a microtron accelerator (schematic)

Umlenkmagnet

Rennbahn-Mikrotron: (engl. racetrack microtron)

Linearbeschleuniger

Prinzip des Rennbahn-Mikrotrons: Der Elektronenstrahl mit niedriger Energie (blau gezeichnet) tritt in den linken Umlenkmagneten (grün) ein, wird im homogenen Magnetfeld um 180° umgelenkt, läuft parallel zum Linearbeschleuniger (rot) und tritt in den rechten Ablenkmagneten ein. Nach nochmaliger Umlenkung um 180° läuft er durch den Beschleuniger, erfährt dort einen Energiegewinn und wird aufgrund seiner jetzt höheren Energie auf einer Bahn mit größerem Ablenkradius geführt. Das Spiel wiederholt sich x mal. Nach x Umläufen verlässt der Elektronenstrahl das Mikrotron mit dem x-fachen Energiegewinn.

- eingesetzt für Elektronen
- einfachere Synchronitätsbedingung (Länge $l, k \gg 2, j \in \mathbb{N}$): $t_1 = \frac{2\pi E_1}{qBc} + \frac{2l}{c} \stackrel{!}{=} k \cdot T_{\mathsf{RF}}$ $\Delta t = \frac{2\pi\Delta E}{qBc} \stackrel{!}{=} j \cdot T_{\mathsf{RF}}$ $\rightarrow \Delta E = j \cdot \frac{qBc}{2\pi} \cdot T_{\text{RF}}$ $\rightarrow \Delta E = \frac{E_{\text{inj}}}{\left(\frac{k-j}{i} - \frac{2l}{iT_{\text{prf}}}\right)}$ $\rightarrow \Delta E \ll E_{\mathrm{inj}}$ für $k \gg 2$ und z.B. j = 1

Daten zu MAMI:

- Injektionsenergie $E_{\rm inj} = 179.7~{\rm MeV}$
- Ejektionsenergie $E_{\rm ej}=855.0~{\rm MeV}$
- Magnetfeld 1.28 T
- Linac-Länge 8.87 m
- Energiegewinn/Umlauf $\Delta E = 7.5~{\rm MeV}$

Dritte Stufe von MAMI: Das weltweit größte Mikrotron. Das Gewicht der beiden Umlenkmagnete (grün) beträgt jeweils 450 Tonnen. Der Linearbeschleuniger (auf der rechten Seite) wird von den Elektronen 90 mal durchlaufen. Er besteht aus 5 Sektionen, die jeweils mit einer eigenen Hochfrequenzversorgung mit einer Leistung von 50000 Watt ausgestattet sind.

Zyklotron

• Mit
$$p = Ze/c \cdot B \cdot r$$

 \rightarrow Umlauf-/Zyklotron-/Lamorfrequenz:

$$p \equiv \gamma m v = \gamma m c \cdot \beta$$
$$\omega(\gamma) = \frac{v}{r} = \frac{Ze}{\gamma m c} \cdot B$$

NB:
$$\omega \propto Z/m \cdot B$$

$$\rightarrow$$
 Radius der Bahn:

$$r(\beta) = \frac{\gamma mc}{Ze} \cdot \frac{\beta}{B} = \frac{mc}{Ze \cdot B} \cdot \frac{\beta}{\sqrt{1 - \beta^2}}$$

und

• Für nicht-relativistische Teilchen (
$$\gamma \approx 1$$
 bzw. $\beta \ll 1$) gilt:

- $\triangleright B = \text{const.}$
- $\triangleright \omega = \text{const.}$

$$\triangleright \ E_{\rm kin} = \frac{1}{2}mv^2 = Z^2 e^2 B^2 R^2 / 2mc^2$$

- Für relativistische Teilchen $(\gamma\gg 1~{\rm bzw.}~\beta\approx 1)$ gilt:
 - $$\begin{split} \triangleright \ & \omega = \omega(\gamma) \propto B[r(t)]/\gamma(t) & \longrightarrow & \text{Syncho-Zyklotron} \\ \triangleright \ & \omega = \omega(\gamma) \propto B[r(t)]/\gamma(t) \equiv \text{const} & \longrightarrow & \text{Isochron-Zyklotron} \end{split}$$

orbits

 \circ

Synchro- und Isochron-Zyklotron

Zyklotron:

- beschränkt auf nicht-relativistische Energien, da $f_{\rm RF} = \omega/2\pi = {\rm const.}$
- \rightarrow variable HF \longrightarrow relativistische Energien
- \rightarrow kontinuierlicher Teilchenstrahl \rightarrow gebündelte Teilchen
- \rightarrow longitudinale *Phasenstabilität*: Teilchenbündel \leftrightarrow HF \rightarrow Phasenfokussierung (Veksler und McMillan)

\implies Synchro-Zyklotron:

- $f_{\mathsf{RF}} = f_{\mathsf{RF}}(\gamma) = ZeB/2\pi\gamma mc$
- B = const.
- ightarrow Synchronität durch $f_{\rm RF}(t) \propto 1/\gamma(t) \qquad \longrightarrow$ Syncho-Zyklotron
- mit $\gamma(t)$ aus $E_{kin} = (\gamma 1)mc^2$ und p = ZeBr/c: $ZeBrc = \sqrt{E_{kin} \cdot (E_{kin} + 2mc^2)}$
- hohe Endenergie \leftrightarrow viele Umläufe \rightarrow schwache Fokussierung erforderlich
- ightarrow effektive horizontale&vertikale Fokussierung (vgl. Folie 3.6): Feldindex $n=1/_2$ ightarrow $B_y(r) \propto 1/\sqrt{r}$

$$\rightarrow B \neq \text{const} \longrightarrow f_{\mathsf{RF}} \propto \frac{B[r(t)]}{\gamma(t)}$$

 $\frac{\partial B_y(r,\varphi)}{\partial \varphi} \neq 0$

Isochron-Zyklotron:

- Frequenzmodulation im Synchro-Zyklotron technisch aufwendig
- und unterschiedlich für verschiedene Teilchen $(f_{\rm RF} \propto B/\gamma m)$
- Vereinfachung durch (L.H.Thomas, 1938):

 $f_{\mathsf{RF}} \propto \frac{B(r(t))}{\gamma(t)} = \operatorname{const.} \longrightarrow \operatorname{Isochronit} \operatorname{at} \operatorname{von} B(t) \operatorname{und} \gamma(t)$

- Beibehaltung der Fokussierung erfordert:
- → damit *schwache* durch *starke Fokussierung* ersetzt (folgt später)
- \rightarrow Fokussierung entlang der Teilchentrajektorie
- ightarrow Synchronität nur noch im Mittel je Umlauf gewährleistet, sodass

Eigenschaften:

- starke Fokussierung erlaubt Rückkehr zu festem f_{RF}
- Isochron-Zyklotron liefert kontinuierlichen Strahl mit Mikrobunch-Struktur (gemäß RF)

$$\frac{1}{2\pi} \oint B_y(r(t),\varphi) \cdot \mathrm{d}\varphi \propto \gamma(t)$$

Synchrotron

liefert.

- Praktische Limitierung von Zyklotrons durch notwendigen Magnet-Ø
- höhere Energie möglich falls R = const.
- \rightarrow zentraler Magnetbereich nicht benötigt
- \rightarrow kleinere Magnete entlang des Orbits einsetzbar
- Designkriterium: $\frac{1}{R} = \frac{eB}{pc} = \text{const.}$ $\longrightarrow \quad B \propto p = \gamma m v$
- Synchronitätsbedingung: $f_{\rm RF} = \frac{ZeB}{2\pi\gamma mc}$
- $f_{\sf rev} \propto v/c \equiv \beta$ \rightarrow Umlauffrequenz:
- \triangleright relativistisch: $\beta \approx 1 \longrightarrow f_{rev}(t) \approx const.$
- \triangleright nicht-relativ.: $\beta < 1 \longrightarrow f_{rev}(t) \propto \beta(t)$
- Aufrechterhalten der Synchronität: (Umlauf \leftrightarrow HF)
- $f_{\sf BF} = h \cdot f_{\sf rev}$ mit harmonischer Zahl $h \in \mathbb{N}$ (engl.: harmonic number)

Zusammenfassung

- p = eBr/c (in Gauss-Einheiten!)
- $\frac{1}{2}$ -Bedingung für stabiles Orbit im Betatron
- Betatron-Schwingung, schwache Fokussierung und Steenbeck-Kriterium, adiabatische Dämpfung
- Grundlegende Prinzipien der Kreisbeschleuniger beschrieben durch nur zwei Relationen:

$$\frac{1}{r} = \frac{eB_y}{\gamma mc^2\beta} \qquad \text{und} \qquad f_{\mathsf{RF}} = \frac{eB_y}{2\pi\gamma mc} \cdot h$$

Übersicht der Kreisbeschleuniger:

Prinzip	Energie γ	Geschwindigkeit v	Orbit	Feld B	Frequenz <i>f</i> RF	Teilchen- fluss
Zyklotron	1	variabel	$\propto v$	const.	const.	const. ^a
Synchro-Zyklotron	var.	var.	$\propto p$	B(r)	$\propto rac{B(r)}{\gamma(t)}$	gepulst
Isochron-Zyklotron	var.	var.	r = f(p)	$B(r, \varphi)$	const.	const. ^a
Proton/Ion-Synchrotron	var.	var.	R	$\propto p(t)$	$\propto v(t)$	gepulst
Elektron-Synchrotron	var.	var.	R	$\propto p(t)$	const.	gepulst

^akontinuierlicher Strahl, jedoch HF moduliert

Geladene Teilchen in elektromagnetischen Feldern

- Geladene Teilchen in elektromagnetischen Feldern
 - 1. Lorentzkraft
 - 2. Grundlagen zur Optik von Strahlen geladener Teilchen
 - 3. Multipolfeld-Entwicklung für Magnete
 - 4. Bewegungsgleichung der Teilchenstrahldynamik
 - 5. Generelle Lösungen der Bewegungsgleichung

Kraft auf geladene Teilchen in elmagn. Felder: Lorentzkraft (in Gauss-Einheiten!)

$$\vec{F} = e\vec{E} + \frac{e}{c}\left[\vec{v}\times\vec{B}\right]$$

dabei gilt:

$$\vec{F} = \dot{\vec{p}} = \gamma m c \dot{\vec{\beta}} + \dot{\gamma} m c \vec{\beta} = \gamma m c \dot{\vec{\beta}} + \gamma^3 \beta \dot{\beta} \cdot m c \vec{\beta}$$

In diesem Abschnitt sei der Fall betrachtet, dass $\vec{F} \perp \vec{\beta} \rightarrow \dot{\beta} = |\dot{\vec{\beta}}| = 0$, also (Beschleunigung nur senkrecht): $\vec{F}_{\perp} = \dot{\vec{p}}_{\perp} = \gamma m c \dot{\vec{\beta}}_{\perp}$

Grundlagen zur Teilchstrahl-Optik

Teilchenablenkung in elektrischen und/oder magnetischen Feldern:

$$\vec{F}_{\perp} = \gamma m c \dot{\vec{\beta}}_{\perp} = e \vec{E}_{\perp} + \frac{e}{c} \left[\vec{v}_{\parallel} \times \vec{B}_{\perp} \right]$$

 $(\text{Lorentz-})\text{Kraft} \ \vec{F}_{\perp} \text{ muss Zentrifugalkraft} \ \vec{F}_{Z} = \gamma m v^{2} \frac{\vec{R}}{R^{2}} = p v \frac{\vec{R}}{R^{2}} \text{ kompensieren (Ablenkradius R, Impuls p):}$ $|\vec{F}_{\perp}| \stackrel{!}{=} |\vec{F}_{Z}| \longrightarrow \begin{cases} p v = eR|\vec{E}_{\perp}| \\ p c = eR|\vec{E}_{\perp}| \end{cases} \text{ mit elektrischer Steifheit: } R \cdot |\vec{E}_{\perp}| \\ \text{mit magnetischer Steifheit: } R \cdot |\vec{B}_{\perp}| \end{cases}$

Größenordnung der *Steifigkeit* im relativistischen Fall $v \approx c$ (in praktischen Einheiten):

$$\left. \begin{array}{ccc} \diamond & p \left[\operatorname{GeV}/c \right] \approx & E \left[\operatorname{GV/m} \right] \cdot R \left[\mathsf{m} \right] \\ \diamond & p \left[\operatorname{GeV}/c \right] \approx & 0.3 \cdot B \left[\mathsf{T} \right] \cdot R \left[\mathsf{m} \right] \end{array} \right\} \longrightarrow 1 \operatorname{Tm} \Leftrightarrow 300 \operatorname{MV!}$$

- ightarrow enorme elektrische Felder für Teilchenablenkung notwendig
- \rightarrow Anwendung nur nicht-relativistisch

oder in Spezialfällen (z.B. elektrostatische Separatoren z.B. in e^+e^- -Speicherringen)

ightarrow Teilchenablenkung in Beschleunigern zumeist durch Ablenkmagnete

Koordinatensystem zur Beschreibung der Teilchenbewegung in elektrischen und/oder magnetischen Feldern:

Fig. 4.1. Coordinate system

- Bewegung entlang Sollorbit: mitbewegtes rechtwinkliges Koordinatensystem (x, y, s) mit Zeit $t \equiv s/v_s$
- individueller Weg eines Teilchens: σ (statt s) mit Zeit $\tau \equiv \sigma/v_{\sigma}$
- Ursprungsvektor $\vec{S}(s) \Rightarrow$ Krümmungsvektor $\vec{\kappa} \equiv -\frac{\mathrm{d}^2 \vec{S}(s)}{\mathrm{d}s^2} \longrightarrow \vec{\kappa} = (\kappa_x, \kappa_y) = (-x'', -y'')$ (**) (Krümmungsradius $r \equiv 1/\kappa, x'' \equiv \mathrm{d}^2 x/\mathrm{d}s^2$, dito y'' und betrachte Kreisbahn z.B.: $S_x(s) = \sqrt{r^2 - s^2} \approx r - s^2/r$)

•
$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}\tau} = e\vec{v} \times \vec{B} \longrightarrow -ev_{\sigma}B_{y} = \frac{\mathrm{d}p_{x}}{\mathrm{d}\tau} \approx p\frac{\mathrm{d}x'}{\mathrm{d}\tau} \approx \beta cpx'' \quad \text{mit } p_{x} \approx px' \text{ und } \mathrm{d}s \approx \mathrm{d}\sigma = \beta c\mathrm{d}\tau.$$

(lineare Näherung: $p_{x} \equiv \gamma mv_{x} = \gamma m\mathrm{d}x/\mathrm{d}\tau \approx \gamma m\beta c \cdot x',$
 $\mathrm{da\ i.A.\ }x', y' \ll 1 \quad \longrightarrow \quad p_{s} = p\sqrt{1 - x'^{2} - y'^{2}} \approx p$)
 $\rightarrow x'' \approx -\frac{e}{p}\frac{v_{\sigma}}{\beta c}B_{y} \stackrel{v_{\sigma} \equiv \beta c}{=} -\frac{e}{p}B_{y}, \quad \text{analog:} \quad y'' \approx \frac{e}{p}B_{x}$

Fokussierung von Teilchenstrahlen

zur Erinnerung: Magnetfeldberechnung:

- elektr. Strom I in Spulen \rightarrow magn. Induktion \vec{B}
- magn. Fluss durch Spalt 2G und Rückflussjoch
- Maxwell Gleichung: $\nabla \times \frac{\vec{B}}{\mu_r} = \frac{4\pi}{c}\vec{j}$ (Permeabilität im Rückflussjoch μ_r , Stromdichte \vec{j})

$$\rightarrow$$
 mit Stokesschem Satz (*n* Windungen):

$$2GB_{\perp} + \int_{\mathsf{Joch}} \frac{B}{\mu_r} \,\mathrm{d}\vec{s} = \frac{4\pi}{c} nI$$

• für
$$\mu_r \gg 1
ightarrow \int_{\mathrm{Joch}} \vec{B}/\mu_r \ \mathrm{d}\vec{s} \ll 1$$

 $\rightarrow\,$ Näherungsformel für Spulenstrom: $nI[{\rm kA}]\approx 8\cdot B_{\perp}[{\rm T}]\cdot G[{\rm cm}]$ z.B.: $B_{\perp}=1$ T, $2G=10~{\rm cm}\rightarrow nI=40~{\rm kA}$

4.4

Fokussierung durch Magnetlinsen:

- analog zur geometrischen Optik, jedoch Magnetstatt Glaslinsen
- \rightarrow Sammel-, Zerstreuungslinse, Brennweite, -punkt, . . .
- Sammellinse: Ablenkwinkel \propto Abstand von optischer Achse: $\alpha = -r/f$
- magnetische Sammellinse ($f \gg \ell$):

$$\alpha = -\frac{\ell}{\rho - \delta\rho} \approx -\frac{\ell}{\rho} = -\frac{e}{\beta E} B_{\varphi} \ell$$

azimutales Magnetfeld B_{arphi} , Weglänge ℓ in B_{arphi} -Feld,

Teilchenenergie E=pc/eta, für $f\leq\ell:~B_{arphi}\ell
ightarrow\int B_{arphi}\mathrm{d}s$

- $\alpha \propto r \longrightarrow B_{\varphi} = gr$ mit Feldgradient $g = dB_{\varphi}/dr$ $\longrightarrow \alpha = -\frac{e}{\beta E}gr\ell$
- $\rightarrow \text{ Fokussierungsvermögen:} \qquad k = \frac{e}{cp}g = \frac{e}{\beta E}g$ (\triangleq Brechkraft)

 \Rightarrow Brennweite:

focal point

Strahlführungs- und Fokussierungsmagnete:

• Dipol (Spalthöhe 2G und nI Ampèrewindungen):

$$B = \frac{4\pi}{c} \frac{nI}{2G}$$

 \rightarrow homogenes Ablenkfeld zwischen Polschuhen

$$p = eBR/c$$

 $B_{\varphi} = 0 \rightarrow$ keine Fokussierung

 $\begin{array}{c}
\mathbf{Y} \\
\mathbf{Y} \\
\mathbf{F} \\
\mathbf{F} \\
\mathbf{H} \\
\mathbf$

Figure. 4.1 a) Pole profile for a "dipole" magnet.

a)

b) Dipole magnet with coils and dipole field.

 $\rightarrow X$

 $\rightarrow\,$ Fokussierung, aber nur in einer Ebene !

(z.B. für e^+ : Fokussierung in *x*, Defokussierung in *y*)

Fokussierung/Defokussierung mit Quadrupol

Figure 3.1. Fields and forces inside a quadrupole. (a) Focusing or F-type quadrupole, (b) defocusing or D-type quadrupole (drawn for positive particles entering the paper).

(Darstellung der Kräfte F für positiv geladenes Teilchen \otimes , das in Papierebene eintritt)

Multipolfeld-Entwicklung

Systematisierung der Magnetfeldformen:

In ladungsfreien Bereichen \rightarrow skalares Potential V(x, y, z) zur Magnetfeld-Beschreibung $\rightarrow \vec{B} = \nabla V$ Damit gilt:

• ladungsfreie Laplace-Gleichung:

in Zylinderkoordinaten explizit

- Lösung: Taylorreihe um Sollbahn r = 0(n > 0 sonst Singularität für $r \to 0$)
- … in Laplace-Gleichung (Vereinfachung: keine z-Abhängigkeit → 2-dim. transvers. Felder)
- elmagn. Felder aus Potentialen V_e bzw. V_m

$$0 = \nabla \vec{B} = \nabla^2 V \equiv \Delta V$$

$$\rightarrow \boxed{\nabla^2 V = \frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \varphi^2} + \frac{\partial^2 V}{\partial z^2} \equiv 0}$$

$$\boxed{V(r, \varphi, z) = -\frac{cp}{e} \sum_{n>0} \frac{1}{n!} \cdot A_n(z) r^n e^{in\varphi}} (\star)$$

$$\rightarrow \underbrace{\sum_n \left[\frac{n(n-1) + n - n^2}{r^2} \right] \cdot \frac{1}{n!} \cdot A_n(z) r^n e^{in\varphi} = 0}_{\text{für alle } \varphi, A_n \text{ und } r > 0, \text{ da } \forall n: n(n-1) + n - n^2 = 0}$$

$$\overrightarrow{R} = -\frac{cp}{e} \nabla V_e(r, \varphi)$$

$$\overrightarrow{B} = -\frac{cp}{e} \nabla V_m(r, \varphi)$$

Explizite Lösungen aus der allgemeinen Lösung (*) sind komplexwertig,

d.h. \exists zwei unabhängige Lösungen (Re V und Im V) zur gleichen Laplace-Gleichung.

Für die ersten drei Multipole sind die expliziten Lösungen (komplexwertig und als Re + Im):

usw. usf. Dabei sind κ_x , κ_y , \underline{k} , k, \underline{m} , m, etc. so gen. *Multipolstärken*. (n = 4: *Oktupol* mit \underline{r} , r [NB: r ist hier Multipolstärke, nicht Radius!]; n = 5: *Dekapol* mit \underline{d} , d, ...) Die **Magnetfelder** \vec{B} folgen aus $\nabla V = (\partial V / \partial x, \partial V / \partial y) = (B_x, B_y)$, wobei für Anwendungen unterschieden werden:

gegeben, also: $s_1 = \kappa_x \equiv 1/\rho, s_2 = k, s_3 = m, s_4 = r, s_5 = d$, usf. (Für gedrehte Multipole: $B_y \to B_x$ und $x \to y$ sowie $s_n \to -\underline{s}_n = \kappa_y, \underline{k}, \underline{m}, \underline{r}, \underline{d}$, usf.)

Realisierung reiner Multipolfelder:

Dipol

Zur Erinnerung:

 $\begin{array}{c} \bullet \ \vec{B} = \nabla V \to B_{\varphi} = (1/r) \cdot (\partial V/\partial \varphi) \\ \bullet \ V_n \propto r^n \mathrm{e}^{in\varphi} \\ \bullet \ I \propto B \end{array} \right\} \longrightarrow I_n(r,\varphi) \propto r^{n-1} \cos n\varphi$

Sextupol

Beispiel: supraleitender **HERA-Dipol**

Aufbau des supraleitenden Kabels

Figure 5B. Flux pattern in a twin-bore magnet.

Verteilung der Kabel approximiert $\cos \varphi$ -Verteilung für Gesamtstrom $I(\varphi)$

4.13

Prof. Dr. O. Biebel

WS 2003/04

Abbildung 17: LHC-Magnete (von I.o. nach r.u.): supraleitender Dipol, supraleitender Quadrupol, Sextupol, einzelner Oktupol

Kombination von Multipol-Magneten:

(so gen. "combined function"-Magnete)

Beispiel: Polschuhform für horizontal fokussie-

renden Ablenk-Magneten

... eingesetzt in "combined function"-Synchrotron:

Figure 11: Cross-section of a horizontally focusing synchrotron magnet (from K. Steffen, Orsay lectures [4]).

NB: Im Gegensatz zu "*combined function*"-Beschleuniger, bei denen in den Magneten fokussierende und ablenkende Wirkung vereint sind, gibt es "*separated function*"-Maschinen (FODO), wo Dipol-Ablenkmagnete und Quadrupol-Fokussierungsmagnete separiert sind.

Bewegungsgleichung für Teilchenstrahlen

Magnete und deren Felder:

- Dipole: : Teilchenführung entlang vorgegebenem Weg ---> Sollorbit oder Referenztrajektorie
- Quadrupole: : Fokussierung der Teilchen auf Sollorbit \longrightarrow geometrische Orbitkorrektur
- Sextupole: : Chromatizitätskorrektur \longrightarrow impulsabhängige Orbitkorrektur
- Oktupole u.a. : Korrekturen von Effekten höherer Ordnung \longrightarrow

Kombination aller Elemente \longrightarrow Bewegungsgleichung im *mitbewegten Koordinatensystem* (vgl. Folie 4.3) in linearer Näherung ($\rho \approx \rho_0 + u, d\varphi \approx d\varphi_0$):

• Weg bei Ablenkung auf Sollorbit, $\rightarrow ds = \rho_0 d\varphi_0$ individual particle trajectory d.h. Kreisbahn mit Radius $\rho_0 \equiv 1/\kappa_0$ $d\sigma$ • Web auf Istorbit, Radius $\rho \equiv 1/\kappa \longrightarrow d\sigma = \rho d\varphi \approx (\rho_0 + u) d\varphi_0$ reference u • mit Abstand *u* zwischen Ist-& Sollorbit $\longrightarrow d\sigma \approx (1 + \kappa_0 u) ds = \frac{1}{\kappa} d\varphi$ path ds • mit (**) von Folie 4.3 $\rightarrow u'' = -(\kappa - \kappa_0) = -(\frac{\mathrm{d}\varphi}{\mathrm{d}s} - \frac{\mathrm{d}\varphi_0}{\mathrm{d}s}) \quad \longrightarrow \quad u'' = -(1 + \kappa_0 u)\kappa + \kappa_0 \quad (*)^*$ P: (NB: Ableitung bzgl. s, da i.A. $u' \ll 1$ also Bewegungs-GI. für Sollimpuls dφ.paraxiale Strahlen !)

Berücksichtigung von Abweichungen vom Sollimpuls

Hierfür explizite Ablenkung in horizontaler Ebene, (De-)Fokussierung in horizontaler/vertikaler Ebene:

• Lorentzkraft = Zentrifugalkraft
$$\longrightarrow \kappa_x \equiv \frac{1}{\rho_x} = \frac{e}{cp}B_y, \quad \kappa_y \equiv \frac{1}{\rho_x} = -\frac{e}{cp}B_x$$

• mit Multipol-Entwicklung für $B_{x,y}$ (vgl. Folie 4.6) $\longrightarrow \begin{cases} \frac{e}{cp}B_y = \kappa_0 + kx + \frac{1}{2}m(x^2 - y^2) + \dots \\ \frac{e}{cp}B_x = -ky + mxy + \dots \end{cases}$
• Impulsabweichung $p = p_0(1 + \delta) \longrightarrow \frac{e}{cp} = \frac{e}{cp_0(1 + \delta)} \approx \frac{e}{cp_0}(1 - \delta + \dots)$
 \implies Bewegungs-Gl. in x, y aus $\binom{*}{}$ (Folie 4.16) \longrightarrow
mit $\kappa \equiv \kappa_x$
• $\delta = 0$
also keine Impulsabweichung $p = p_0$ \longrightarrow
 $mit \kappa \equiv mx$

 $\implies \kappa_0^2 \text{ in } (\ldots) \text{ wirkt fokussierend wie } k \text{ vom Quadrupol} \\ \text{ so gen. } schwache Fokussierung \text{ durch Dipol!} \end{cases}$
Generelle Lösung der Bewegungs-Gleichung

Struktur der homogenen Bewegungs-DGL:

$$u'' + Ku = 0$$
,
dabei ist $K \equiv k + \kappa_x^2$ bzw. $K \equiv -k + \kappa_y^2$.
Hauptlösungen sind:

$$\begin{aligned}
& \text{für } K > 0: \quad S(s) = \frac{1}{\sqrt{K}} \sin(\sqrt{K}s) & \text{und} \quad C(s) = \cos(\sqrt{K}s) \equiv S'(s) \\
& \text{für } K < 0: \quad S(s) = \frac{1}{\sqrt{|K|}} \sinh(\sqrt{|K|}s) & \text{und} \quad C(s) = \cosh(\sqrt{|K|}s) \equiv S'(s) \\
& \text{mit Anfangswerten:} & \begin{cases}
S(0) = 0, & C(0) = 1, \\
S'(0) = \frac{dS}{ds} = 1, & C'(0) = \frac{dC}{ds} = 0. \end{cases} \\
& \text{Sie werden auch als "sinus-" und "cosinus-artige"-Lösungen bezeichnet.} \\
& \text{Alle Linearkombinationen } u(s) (u'(s)) \text{ von } C(s) \text{ und } S(s) (C'(s) \text{ und } S'(s)) \text{ sind Lösungen der DGL }! \\
& \text{In Matrixschreibweise:} & \begin{pmatrix}
u(s) \\
u'(s)
\end{pmatrix} = \begin{bmatrix}
C(s) & S(s) \\
C'(s) & S'(s)
\end{bmatrix} \cdot \begin{pmatrix}
u(s_0) \\
u'(s_0)
\end{pmatrix} & \text{mit} \quad W(s) \equiv \begin{vmatrix}
C(s) & S(s) \\
C'(s) & S'(s)
\end{vmatrix} = 1 \end{aligned}$$

- [...] ist die *Transformationsmatrix* eines Strahltransportelements (feldfreies gerades Stück, Dipol, Quadrupol, ...)
- u(s) und u'(s): Ablage eines Teilchens vom Sollorbit und die Änderungsgeschwindigkeit (u = x, y).
- W(s) ist die Wronski-Determinante, W(s) = 1 für dissipationsfreie Systeme (d.h. kein Energiegewinn/-verlust)

Matrixoptik für Teilchenstrahlen ist weitestgehend analog zur paraxialen Lichtoptik:

- achsenparallele Trajektorien $(u'_0 = 0)$
- \rightarrow erhalten Steigung $u'(s) = C'(s)u_0$
- Brennweite: $f = -u_0/u'(s) = -1/C'(s)$
- Brennpunkt: $u(s_f) \stackrel{!}{=} 0$
- \rightarrow cos-artige Lösung: $C(s_f) = 0$
- principal plane

Fig. 4.14. Focusing in a quadrupole doublet

sin-artigen Lösung hat Nullpunkt: $S(s_0) = 0$

Objekt H_0 bei $s = s_0$

• Punkt-zu-Punkt-Abbildung ist möglich:

- \rightarrow abgebildet auf H_i mit Nullpunkt $S(s_0 + s_i) = 0$ bei $s = s_0 + s_i$
- Phasenvorschub durch solche Abbildung: $(\text{da}' u(s_0) = -u'(s_0 + s_i)$ $+180^{\circ}$ und $u(s_0) = -u(s_0 + s_i))$

Dispersion:

Die Bewegungs-DGL von 4.17 enthält Impulsabhängigkeiten von der allgemeinen Form $(K(s) = \pm 1/\rho_0^2(s) + k)$:

$$u'' + K(s)u = \frac{1}{\rho_0(s)}\delta$$

Man erhält als allgemeine Lösung

$$u(s) = aC(s) + bS(s) + \delta D(s)$$

$$u'(s) = aC'(s) + bS'(s) + \delta D'(s)$$

wobei für die Dispersionsfunktion D(s) gilt (Rechnung z.B. in H.Wiedermann: Particle Accelerator Physics I):

$$D(s) = \int_0^s \frac{1}{\rho_0(s)} [S(s)C(\tilde{s}) - C(s)S(\tilde{s})] \,\mathrm{d}\tilde{s}$$

Man kann die Matrizen nun leicht zur Berücksichtigung der Dispersion verallgemeinern:

$$\begin{pmatrix} u(s) \\ u'(s) \\ \delta \end{pmatrix} = \begin{bmatrix} C(s) & S(s) & D(s) \\ C'(s) & S'(s) & D'(s) \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} u(s_0) \\ u'(s_0) \\ \delta \end{pmatrix}$$

4.20

Dispersion: Korrektur durch Sextupol-Magnete:

Dispersion führt zu *Chromatizität*, d.h. die Fokussierung eines Quadrupols hängt vom Teilchenimpuls bzw. von der Abweichung δ vom Sollimpuls p_0 ab:

Korrektur der Chromatizität: Achromate (=achromatische Kombination von Quadrupolen) oder Sextupole

Funktionsprinzip:

Chromatizität der Strahloptik und ihre Kompensation

Gestrichelt: Teilchentrajektorie ohne Chromatizitätskorrektur **Durchgezogen:** dito mit Korrektur durch Sextupol (NB: $\Delta p/p$ in Abbildung entspricht δ in diesem Skript.)

duod. op o

Lineare Strahldynamik

- Lineare Strahldynamik
 - 1. Matrizen-Formalismus
 - 2. Teilchenstrahlen und Phasenraum: Emittanz und Liouville-Theorem
 - 3. Betatron Funktion und Strahleinhüllende
 - 4. Weglänge und "Momentum compaction"

Die vollständigen Bewegungsgleichungen haben die Form

$$u'' + K(s)u = c_0(s) + c_1(s)u + c_2(s)u^2 + \dots$$

sind also nicht-linear!

Hinzu kommt die *s*-Abhängigkeit der Koeffizienten K(s) und $c_i(s)$ (i=0,1, ...), wenn mehrere Strahlelemente (feldfreie Driftstrecken, Dipole, Quadrupole, etc.) hineinander aufgestellt werden.

Allgemeine Lösungen zu finden, führt schnell zu unüberwindbaren mathematischen Problemen.

- ightarrow Konstruktion eines Beschleunigers, sodass $c_i(s) \ll 1$ v.a. für $i \geq 1$
- \rightarrow nicht-lineare Terme nur kleine Störungen
- \rightarrow Störungstheoretische Behandlung

Matrizen-Formalismus

In linearer Näherung, d.h. u'' + K(s)u = 0, repräsentiert K(s) die Anordnung der Magnete im Beschleuniger, das so gen. Magnet-Gitter (engl.: "magnet lattice" oder kurz "lattice").

Man unterscheidet:

- *"separated funktion lattice"* bei getrennten Dipolen und Quadrupolen im Gitter
- "combined funktion lattice" bei in einem Magneten integrierten Dipolen und Quadrupolen

Zur weiteren Vereinfachung:

- Ablenkung nur in x-Ebene
- Ineare magnetische Felder:

Dipol (Feldstärke B_{0u}), Quadrupo

• Integration:

$$\begin{cases}
\int y'' \, ds = y' - y'_0 \equiv \alpha \\
\int k_0 y \, ds \approx k_0 y \Delta s
\end{cases} \to Brennweiten:$$

$$\begin{cases}
B_x = ky \\
B_y = B_{0y} + kx \\
x'' + \left(\frac{1}{\rho_0^2} + k_0\right)x = 0 \\
y'' - k_0 y = 0
\end{cases} (**)$$

$$\frac{1}{f_x} = k_0 \Delta s = \frac{e}{cp} \frac{\partial B_y}{\partial x} \Delta s \\
\frac{1}{f_y} = -k_0 \Delta s = -\frac{e}{cp} \frac{\partial B_x}{\partial y} \Delta s
\end{cases}$$

1

 \rightarrow Bewegungsgleichung der *lineare*

(Ablenkwinkel α)

Nomenklatur:

- Magnete repräsentiert durch Rechtecke entlang *s*-Achse
- Länge der Rechteck ≙
 geom. Länge der Magnete

- Dipole:
- horizon. fokus. Quadrupol:
- horizon. defokus. Quadrupol: negatives Rechteck
- vertikal fokus. Quadrupol: negatives Rechteck
- vertikal defokus. Quadrupol: positives Rechteck

wobei die Höhe der Rechtecke bei den Quadrupolen die (De-)Fokussierungsstärke bezeichnet.

positives Rechteck

Rechteck um s-Achse zentriert

z.B. typisches Magnet-Gitter:

NB: Diese Form entspricht dem *"hard edge"*-Modell von Magneten, bei dem Effekte am Rand eines Magneten vernachlässigt werden.

"Soft edge"-Effekte

field

(Gauss)

trapezoidal field

approximation

-15

-10

1200

1000

800

600 -

400-

200

-20

Randeffekte realer Magnete, so gen. "soft edge"-Effekte können mit dem "hard edge"-Modell approximiert werden:

10

measured field

effective magnetic length

length of iron core

-5

Dabei ist die effektive magnetische Länge ℓ_{eff} eines Quadrupols um etwa den Radius R der Apertur des Eisenkerns größer als die wirkliche Länge des Magneteisens ℓ_{Fe} , also

$$\ell_{\rm eff} \approx \ell_{\rm Fe} + R$$

Fig. 5.7. Decomposition of an actual quadrupole field profile into segments of hard edge quadrupoles

Der Randbereich eines realen Quadrupols wird durch viele Quadrupolscheiben mit angepasster Stärke approximiert. Die gesamte Transformationsmatrix ist dann das Produkt aller Einzelmatrizen M_i (*i* = $1, 2, \ldots$). Kleinere Korrekturen aufgrund der Diskretisierung im idealisierten "hard edge"-Modell können erforderlich sein.

Matrix-Formulierung in lineaere Strahl-Dynamik:

Zur Erinnerung: Die linearen Bewegungs-DGL (**) von 5.2 werden durch Linearkombinationen der "sinus-" $(S(s) = \sin(\sqrt{Ks})/\sqrt{|K|})$ und "cosinus-artigen"-Lösungen $(C(s) = \cos(\sqrt{Ks}))$ (s. 4.18) gelöst, die durch 2×2 -Matrizen beschrieben wurden:

$$\begin{pmatrix} u(s) \\ u'(s) \end{pmatrix} = \begin{bmatrix} C_x(s) & S_x(s) \\ C'_x(s) & S'_x(s) \end{bmatrix} \cdot \begin{pmatrix} y(s_0) \\ y'(s_0) \end{pmatrix}$$

Fasst man die Komponenten von x- und y-Ebene zusammen, kann man 4×4 -Matrizen benutzen:

$$\begin{pmatrix} x(s) \\ x'(s) \\ y(s) \\ y'(s) \end{pmatrix} = \begin{bmatrix} C_x(s) & S_x(s) & 0 & 0 \\ C'_x(s) & S'_x(s) & 0 & 0 \\ 0 & 0 & C_y(s) & S_y(s) \\ 0 & 0 & C'_y(s) & S'_y(s) \end{bmatrix} \cdot \begin{pmatrix} x(s_0) \\ x'(s_0) \\ y(s_0) \\ y'(s_0) \end{pmatrix}$$

Prinzipiell möglich sind auch Kopplungen zwischen x, x' und y, y', also Kopplungen zwischen Bewegungen in horizontaler und vertikaler Ebene. Solche Kopplungen treten in realen Beschleunigern tatsächlich auf, sollen aber zur Vereinfachung im Folgenden vernachlässigt werden.

Transportmatrizen von Strahltrans	sportelementen:	Mit $\Omega\equiv \sqrt{ }$	$\overline{ K }s$ und für $ec{U}=$	$=\begin{pmatrix} x\\ x'\\ y\\ y' \end{pmatrix}$ gilt:
 Feldfreie Driftstrecke (K=0) 		$M_{Drift} = \begin{bmatrix} 1 & s \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$egin{array}{ccc} 0 & 0 \ 0 & 0 \ 1 & s \ 0 & 1 \ \end{array}$	(0)
• Dipol (<i>K</i> =0, <i>ρ</i> >0)	M_{Dij}	$pol = \begin{bmatrix} \cos\frac{s}{\rho} & \rho \\ -\frac{1}{\rho}\sin\frac{s}{\rho} & 0 \\ 0 & 0 \end{bmatrix}$	$ \begin{array}{cccc} o\sin\frac{s}{\rho} & 0 & 0\\ \cos\frac{s}{\rho} & 0 & 0\\ 0 & 1 & s\\ 0 & 0 & 1 \end{array} $	
 horizontal fokus. Quadrupol (K<0) 	$M_{QF} = \begin{bmatrix} \cos \Omega \\ -\sqrt{ K } \sin \theta \\ 0 \\ 0 \end{bmatrix}$	$ \frac{1}{\sqrt{ K }} \sin \Omega $ $ \frac{1}{\sqrt{ K }} \sin \Omega $ $ 0 $ $ 0 $	$\begin{array}{c} 0 \\ 0 \\ \cosh \Omega \\ \sqrt{ K } \sinh \Omega \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{ K }} \sinh \Omega \\ \cosh \Omega \end{bmatrix}$
 vertikal fokus. Quadrupol (K>0) 	$M_{\text{QD}} = \begin{bmatrix} \cosh \Omega \\ \sqrt{ K } \sin \Omega \\ 0 \\ 0 \end{bmatrix}$	$ \frac{1}{\sqrt{ K }} \sinh \Omega $ $ h \Omega \cosh \Omega $ $ 0 $ $ 0 $	$\begin{array}{c} 0\\ 0\\ \cos\Omega\\ -\sqrt{ K }\sin\Omega \end{array}$	$\begin{array}{c} 0\\ 0\\ \frac{1}{\sqrt{ K }}\sin\Omega\\ \cos\Omega \end{array} \right]$

6×6 -Repräsentation:

Die vollständige Beschreibung der Strahldynamik erfordert neben den transversalen Komponenten x und y auch die Dispersion. Die Matrix-Formulierung kann leicht dafür erweitert werden:

(NB: Dispersion nur in horizontaler Ebene)

• Z.B. für feldfreie Driftstrecke der Länge *L*:

$$\begin{pmatrix} x(s)\\ x'(s)\\ y(s)\\ y(s)\\ y(s)\\ s\\ \delta(s) \end{pmatrix} = \begin{bmatrix} C_x(s) & S_x(s) & 0 & 0 & 0 & D_x(s)\\ C'_x(s) & S'_x(s) & 0 & 0 & 0 & D'_x(s)\\ 0 & 0 & C_y(s) & S_y(s) & 0 & 0\\ 0 & 0 & 0 & C'_y(s) & S'_y(s) & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & D_s(s)\\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} x(s_0)\\ y'(s_0)\\ s_0\\ \delta(s_0) \end{pmatrix}$$
$$: \begin{pmatrix} x(s)\\ x'(s)\\ y(s)\\ y(s)\\ y(s)\\ s\\ \delta(s) \end{pmatrix} = \begin{bmatrix} 1 & L & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & L & 0 & 0\\ 0 & 0 & 0 & 1 & L/\gamma^2\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} x(s_0)\\ x'(s_0)\\ y(s_0)\\ y(s_0)\\ y(s_0)\\ y'(s_0)\\ s_0\\ \delta(s_0) \end{pmatrix}$$

 $D_s(s)$ folgt mit $\Delta v/v_0=\Delta\beta/\beta=(\partial\beta/\partial p)\Delta p/\beta$ aus:

$$s - s_0 = (v - v_0) \cdot t = (v - v_0) \cdot \frac{L}{v_0} = \frac{\Delta v}{v_0} L = \frac{\Delta p}{\beta \cdot (\partial p/\partial \beta)} L = \frac{1}{\gamma^2} \frac{\Delta p}{p} L = \frac{L}{\gamma^2} \delta$$

"Dünne Linsen"-Näherung

- Matrizen-Formalismus ermöglicht einfache Berechnung von Sollorbits
- ... ist bei komplexen System jedoch mühsam zu berechnen (viele Matrixmultiplikationen)
- ightarrow wird daher meist auf Computer ausgeführt
- für grobe analytische Abschätzungen:

Näherung mit *dünnen Linsen*, d.h. Brennweite $f \gg \ell$ Länge des Quadrupols:

 $\ell \to 0$, sodass $f^{-1} = +k_0\ell = \text{const.} \to \Omega = \sqrt{Ks} = \sqrt{k_0}\ell \xrightarrow{\ell \to 0} 0$

ightarrow Abbildungsmatrix des Quadrupols in fokussierender Ebene:

 $\begin{bmatrix} \cos \Omega & \frac{1}{\sqrt{K}} \sin \Omega \\ -\sqrt{K} \sin \Omega & \cos \Omega \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix}, \quad \text{wobei } f^{-1} = k_0 \ell \leq 0 \text{ in de-/fokussierender Ebene}$ $\text{Anwendungsbeispiel Quadrupol-Dublett:} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_2} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_1} & 1 \end{bmatrix} = \begin{bmatrix} 1 - L/f_1 & L \\ -1/f^* & 1 - L/f_2 \end{bmatrix}$ $\begin{array}{c} \mathbf{k}(S) & \mathbf{f}_1 & \mathbf{f}_2 \\ -\mathbf{k}(S) & \mathbf{f}_1 & \mathbf{f}_2 \\ -\mathbf{k}(S) & \mathbf{k}(S) & \mathbf{f}_1 & \mathbf{f}_2 \\ -\mathbf{k}(S) & \mathbf{k}(S) & \mathbf{f}_1 & \mathbf{f}_2 \\ -\mathbf{k}(S) & \mathbf{k}(S) & \mathbf{k}(S) & \mathbf{k}(S) \\ -\mathbf{k}(S) \\ -\mathbf{k}(S) & \mathbf{$

Symmetrisches und umgekehrtes Magnet-Gitter

- Für fokus.+defokus. Quadrupol-Dublett mit $f_1 = -f_2 \equiv f \text{ gilt:}$ $\frac{1}{f^*} = +\frac{L}{f^2} > 0 \ !$
- ▷ Fokussierung in horiz.&vert. Ebene
- nur in "Dünne Linsen"-Näherung horiz. & vert.
 Brennweiten gleich (allg. keine Kommutativität der Matrixmultiplikation).
- Für symmetrische Magnet-Gitter (wie abgebildet) findet man einfache Relationen zwischen den Transformationsmatrizen M und M_r für die umgekehrte Quadrupol-Anordnung

• Für symmetrische Quadrupol-Tripletts (s.o.) ergibt sich mit $f_1 = -f_2 \equiv f$ die Transformationsmatrix:

$$M_{tr} = M_r \cdot M = \begin{bmatrix} 1 - 2L^2/f^2 & 2L(1 + L/f) \\ -2(1 - L/f)L/f^2 & 1 - 2L^2/f^2 \end{bmatrix}$$

- Solche symmetrische Tripletts fokussieren in horiz. &vert. Ebene, falls f>L
- Solche Tripletts sind grundlegende Designelemente u.a. in Kreisbeschleunigern (FODO-Zelle)

Sektormagnet vs. Rechtecktmagnet

Dipolmagnete im Kreisbeschleuniger sollten eigentlich so gen. Sektormagnete sein.

• Für Sektormagnete (Länge ℓ) gilt die Abbildungsmatrix:

$$M_{\text{Sektor}} = \begin{bmatrix} \cos\frac{\ell}{\rho} & \rho\sin\frac{\ell}{\rho} & 0 & 0\\ -\frac{1}{\rho}\sin\frac{\ell}{\rho} & \cos\frac{\ell}{\rho} & 0 & 0\\ 0 & 0 & 1 & \ell\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\triangleright -(1/
ho)\sin(\ell/
ho)$ entspricht einer Brennweite -1/f

- \rightarrow Fokussierung in horizontaler Ebene (geometr. Fokussierung)
- \triangleright untere, rechte 2 \times 2-Blockmatrix entspricht einfachem Strahltransport in vertikaler Ebene
- Für Rechteckmagnete gilt die Abbildungsmatrix:

$$M_{\text{Rechteck}} = \begin{bmatrix} 1 & \rho \sin \frac{\ell}{\rho} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 - \frac{\ell}{f} & \ell \\ 0 & 0 & \frac{\ell}{f^2} - \frac{1}{f} & 1 - \frac{\ell}{f} \end{bmatrix}$$

mit $\psi = \phi/2 = \frac{1}{2}(\ell/\rho)$

 $\triangleright -1/(\ell/f^2 - 2/f)$ entspricht einer Brennweite

- ightarrow Fokussierung in vertikaler Ebene
- $\,\triangleright\,$ obere, linke $2 \times 2\text{-Blockmatrix}$ entspricht einfachem Strahl-

Emittanz und Liouville-Theorem

Jedes Teilchen im Beschleuniger wird durch 6 Größen charakterisiert:

Mit Sollimpuls p_0 sind: $p_x \approx x' \cdot p_0$, $p_y \approx y' \cdot p_0$ die transversalen Impulskomponenten, σ die Koordinate entlang der Teilchentrajektorie, E die Teilchenenergie (alternativ auch Gesamtimpuls oder Abweichung von Sollenergie).

Werden viele Teilchen betrachtet, die ein Ensemble, Teilchenpaket oder Teilchen*bunch* darstellen, wird jedes einzelne der Teilchen durch ein 6-Tupel charakterisiert.

Statt die Bewegung einzelner Teilchen, betrachtet man die Bewegung des Ensembles. Alle Teilchen des Ensembles weisen ungefähr gleiche Werte der Größen im 6-Tupel auf, besetzen also ähnliche Zustände im 6dimensionalen Phasenraum.

In linearer Strahloptik, mit entkoppelter horizontaler und vertikaler Ebene, genügt es, nur den 2dimensionalen Phasenraum zu betrachten.

Prof. Dr. O. Biebel

 $(x, p_x, y, p_y, \sigma, E)$

Figure 32: A particle beam is often reasonably well described by a two dimensional Gaussian distribution in phase space. The lines of constant phasespace density are then ellipses. Since the phase-space density decreases only slowly with amplitude, the phase-space area containing *all* particles might be hard to determine (experimentally as well as theoretically). Also, it is not the quantity relevant for most of the applications. Therefore, the emittance is defined as $1/\pi$ times the phase-space area containing a certain fraction of the particles (e.g. 90 %).

Beschreibung des Ensembles durch statistische Größen: Mittelwert, Streuung (Varianz)

Die Linie konstanter Phasenraumdichte ist eine Ellipse mit minimaler und maximaler Varianz als Halbachsen.

Bedeutung des Phasenraums und der Emittanz

- Teilchen aus einer diffusen Quelle der Größe 2w besitzen
- $\rightarrow\,$ beliebige x zwischen -w und +w
- \rightarrow beliebige x' zwischen $-\infty$ und $+\infty$
- \triangleright Phasenraum: in x' unendliches Rechteck mit Breite 2w
- ightarrow alle Teilchen innerhalb des Rechtecks
- ightarrow Fläche des erlaubten Phasenraums: ∞
- ullet . . . diffuse Quelle mit Blende der Größe 2w besitzen
- $\rightarrow\,$ beliebige x zwischen -w und +w
- ightarrow beliebige x' zwischen -2w/d und +2w/d
- Phasenraum: Parallelogramm
- ightarrow alle Teilchen innerhalb des Parallelogramms
- \rightarrow Fläche des erlaubten Phasenraums:

 $2 \cdot \frac{1}{2} (2w \cdot 2\frac{w}{d}) = 4w^2/d$

• Fläche im Phasenraum \propto (Strahl-)*Emittanz* der Quelle

Phasenraum-Ellipse, Emittanz und Twiss-Parameter

Teilchenensemble (in einer Ebene) i.A. durch 2-dimensionale Gausskurve beschreibbar $V(x,x') \propto \exp\left\{-\frac{1}{2(1-cor)}\left[\frac{x^2}{\overline{x^2}} - 2cor \cdot \frac{x \cdot x'}{\sqrt{x^2}\sqrt{x'^2}} + \frac{x'^2}{\overline{x'^2}}\right]\right\}$ mit Korrelationskoeffizient $cor \equiv \overline{xx'}/\sqrt{\overline{x^2} \cdot \overline{x'^2}}$, wobei $\overline{x^2} \equiv \frac{1}{N} \sum_{i=1}^{N} x_i^2$ für alle Teilchen i und $\overline{x} = 0, \overline{x'} = 0$ (d.h. Mittelwerte = 0).

Die Phasenraum-Ellipse ist damit durch die so gen. *Twiss*-Parameter α , β , γ gegeben:

- $\sqrt{\beta}$ ist die r.m.s.-Streuung der Strahleinhüllenden (pro Einheit der Emittanz)
- $\sqrt{\gamma}$ ist die r.m.s.-Streuung der Strahldivergenz (pro Einheit der Emittanz)
- α ist proportional zur Korrelation zwischen x und x'
- Außerdem: $\beta\gamma \alpha^2 = 1$, da neben ε zwei weitere Parameter zur Beschreibung der Ellipse genügen

Das Liouville Theorem besagt:

"Unter Einwirkung konservativer Kräfte bleibt die Teilchendichte im Phasenraum konstant."

Die Konsequenz ist: Strahlelemente (feldfreie Driftstrecken, Quadrupole, etc.) deformieren zwar die Phasenraum-Ellipse, ändern aber die Fläche der Ellipse nicht.

Insbesondere ist damit ε unabhängig von s:

$$\varepsilon = \gamma x^{2} + 2\alpha x x' + \beta x'^{2}$$

$$= \gamma_{0} x_{0}^{2} + 2\alpha_{0} x_{0} x_{0}' + \beta_{0} x_{0}'^{2}$$

$$\text{wobei} \begin{bmatrix} x \\ x' \end{bmatrix} = \begin{bmatrix} C(s) & S(s) \\ C'(s) & S'(s) \end{bmatrix} \cdot \begin{bmatrix} x_{0} \\ x'_{0} \end{bmatrix}$$

$$\Rightarrow \text{Transformationsmatrix}:$$

$$\begin{bmatrix} \beta \\ \alpha \\ \gamma \end{bmatrix} = \begin{bmatrix} C^{2} & -2SC & S^{2} \\ -CC' & (S'C + SC') & -SS' \\ C'^{2} & -2S'C' & S'^{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \alpha_{0} \\ \gamma_{0} \end{bmatrix}$$

$$\frac{\beta_{0}}{\text{turr Twiss-Parameter } \alpha, \beta, \gamma.$$

$$Fig. 5.24. \text{Transformation of a phase is shown at different locations and is shown at d$$

X $x = x'_{1} s_{2}$ $\mathbf{x} = \mathbf{x}_0' \mathbf{s}_1$ - Xo $s = s_2$ S_1

ase space ellipse at different locations along a drift section

"Beam waist":

Es gilt allgemein die Twiss-Parameter-Transformationsmatrix für eine Driftstrecke der Länge ℓ (d.h. $C = 1, C' = 0, S = \ell, S' = 1$):

Da α die Korrelation zwischen x und x' angibt, also die Neigung der Phasenraumellipse, folgt als Bedingung für den Ort s_w der Strahltaille (engl.: "beam waist"):

Damit folgt aus obiger Transformationsmatrix die Relation für den Ort der Strahltaille:

Für negatives bzw. positives Vorzeichen von α_0 liegt die Strahltaille vor (d.h. $s_0 < s_w$) bzw. hinter s_w

Mit Kenntnis der Transformationen der Phasenraum-Ellipse kann die Emittanz eines Strahls bestimmt werden:

- Strahlquerschnitt $\sigma_x = \sqrt{x^2}$: direkter Messung zugänglich (z.B. mit Fluoreszenzschirm)
- Strahldivergenz $\sigma_{x'} = \sqrt{x'^2}$: keiner direkten Messung zugänglich
- → Messung des Strahlquerschnitts an drei verschiedenen Stellen und bei unterschiedlicher Fokussierung
- Twiss-Parameter-Transformationsmatrix liefert Relationen für Strahlquerschnitte an allen drei Stellen
- \rightarrow Berechnung der Strahlparameter (Querschnitt $\sqrt{x^2}$, Divergenz $\sqrt{x'^2}$, Korrelation $\sqrt{xx'}$) am Referenzpunkt
- \rightarrow Berechnung der Strahlemittanz aus ($\sigma_{xx'}^2 \equiv cor \cdot \sigma_x \sigma_{x'}$):

$$\det \begin{bmatrix} \sigma_x^2 & \sigma_{xx'}^2 \\ \sigma_{xx'}^2 & \sigma_{x'}^2 \end{bmatrix} = \varepsilon \cdot \det \begin{bmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{bmatrix} = \varepsilon \implies \varepsilon = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^4}$$

$$\begin{bmatrix} \beta \\ \alpha \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 & -2\ell & \ell^2 \\ 0 & 1 & -\ell \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0 \end{bmatrix}$$

Um genauere Einsicht in die charakteristischen Eigenschaften der Teilchentrajektorien zu gewinnen, wird im Folgenden eine analytische Lösung der Bewegungsgleichung

$$\frac{u'' + K(s)u = 0}{u'' + K(s)u = 0}$$

diskutiert. u ist die horizontale (x) oder vertikale (y) Koordinate, K(s) die Magnetanordnung im Beschleuniger.

Lösungsansatz:

$$u(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos[\psi(s) - \psi_0]$$

wobei arepsilon und ψ_0 Integrationskonstanten sind.

Einsetzen in die Bewegungsgleichung liefert zwei Bedingungen, damit die Lösung für alle $\psi \equiv \psi(s)$ gilt ($\beta \equiv \beta(s)$):

$$\frac{1}{2}(\beta\beta'' - \frac{1}{2}\beta'^2) - \beta^2\psi'^2 + \beta^2 K = 0$$

Zweite Bedingung: mit Normierung $\beta \psi' = 1$ folgt die *Phasenfunktion*:

Eingesetzt in die erste Bedingungsgleichung folgt:

und mit
$$\alpha \equiv -\frac{1}{2}\beta'$$
 und $\gamma \equiv (1+\alpha^2)/\beta$:

$$\beta'\psi' + \beta\psi'' = (\beta\psi')' = 0$$
$$\psi(s) = \int_0^s \frac{\mathrm{d}\tilde{s}}{\beta(\tilde{s})} + \psi_0$$
$$\frac{1}{2}\beta\beta'' - \frac{1}{4}\beta'^2 + \beta^2 K = 1$$
$$\beta'' + 2K\beta - 2\gamma = 0$$

Courant-Synder-Invariante:

Eliminiert man $\psi - \psi_0$ aus $u(s) = \sqrt{\varepsilon}\sqrt{\beta}\cos(\psi - \psi_0)$ und $u'(s) = -\sqrt{\varepsilon/\beta} \cdot \alpha\cos(\psi - \psi_0) - \sqrt{\varepsilon/\beta} \cdot \sin(\psi - \psi_0)$ so ergibt sich die so gen. *Courant-Synder-Invariante*: $\boxed{\gamma u^2 + 2\alpha u u' + \beta u'^2 = \varepsilon}$ oder $\boxed{\frac{1}{\beta} \left(u^2 + (\alpha u + \beta u')^2\right) = \varepsilon}$,

wobei $lpha \equiv - \frac{1}{2} \beta'$ und $\gamma \equiv (1 + \alpha^2) / \beta$.

Dies ist die Gleichung der Phasenraum-Ellipse, womit die Bedeutung der Parameter β , α , γ und ε festgelegt ist.

Man nennt β , α , γ und die Phasenfunktion ψ auch *Betatron-Funktionen* oder *Gitter-Funktionen*.

Der Term $\cos[\psi(s) - \psi_0]$ aus dem Lösungsansatz beschreibt (quasi-periodische) Oszillationen (mit veränderlicher Amplitude und Frequenz), die *Betatron-Oszillationen* genannt werden.

NB:

Die Strahlemittanz ε taucht im Amplitudenfaktor der Lösung für ein einzelnes Teilchen auf. D.h., ein Teilchen, welches mit Amplitude $\sqrt{\varepsilon}$ entlang der Ellipse läuft, definiert die Emittanz für den Teil des gesamten Strahls, der von dieser Ellipse umschlossen wird, also für alle Teilchen, deren Trajektorien die Bedingung

$$\gamma u^2 + 2\alpha u u' + \beta u'^2 \leq \varepsilon$$

erfüllen.

Strahleinhüllende:

Um den Teilchenstrahl als Ganzes zu beschreiben, wird durch den Amplitudenfaktor in der allg. Lösung die *Strahleinhüllende* definiert:

$$E(s) = \pm \sqrt{\varepsilon} \sqrt{\beta(s)}$$

Die Strahleinhüllende gibt die maximale/minimale Amplitude an, die ein Teilchen annehmen kann, welches im Phasenraum auf der Strahlellipse läuft.

Die Strahleinhüllende ist durch Strahlemittanz ε und Betatron-Funktion $\beta(s)$ bestimmt.

Die Strahlemittanz ist eine Konstante der Bewegung (wg. Liouville-Theorem). Man kann sie als transversale "Temperatur" des Strahls auffassen.

Die Betatron-Funktion reflektiert die externen Kräfte durch die fokussierenden Magnete. Durch das Arrangement der Quadrupolmagnete können spezifische Strahleigenschaften, wie geringer oder großer Strahlquerschnitt an bestimmten Punkten, erzielt werden.

Betatron-Funktion in Driftstrecke:

Experimente in Kollidern stehen typischerweise in geraden Driftstrecken. Genau am Wechselwirkungspunkt im Experiment soll der Strahlquerschnitt am kleinsten werden, also die Strahltaille auftreten.

Mit der Twiss-Parameter-Transformationsmatrix (vgl. Folie 5.15) kann der Verlauf der Betatron-Funktion um den Wechselwirkungspunkt bestimmt werden.

$$\begin{bmatrix} \beta \\ \alpha \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 & -2\ell & \ell^2 \\ 0 & 1 & -\ell \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0 \end{bmatrix}$$

Aus der obigen Transformationsmatrix folgt:

• $\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$

•
$$\alpha(s) = \alpha_0 - \gamma_0 s$$

 $\rightarrow \beta(\pm L) = 2\beta_{w,opt} = 2L$

• Für Strahltaille (beam waist):
$$lpha(s_w)=0$$

$$\rightarrow \left| \beta(s - s_w) = \beta_w + \frac{(s - s_w)^2}{\beta_w} \right|$$

• Optimales $\beta_{w,opt}$ für Driftstrecke der Länge $\pm L$:

•
$$d\beta/d\beta_w = 0 \rightarrow \beta_{w,opt} = L = \beta(0)$$

NB: Üblicherweise bezeichnet man die Betatron-Funktion am Wechselwirkungspunkt eines Experiments mit β^* .

Die bisherige Betrachtung hat wiederum dispersive Effekte vernachlässigt. Tatsächlich wirkt sich, in linearer Strahldynamik, Dispersion D(s) auf die Weglänge L eines Teilchens durch einen Ablenkdipol ($\kappa = 1/\rho$) aus: $L = \int (1 + \kappa x) \mathrm{d}s.$

Dabei ist $x = D(s)\delta$ die horizontale Abweichung von der Sollbahn bei relativer Impulsabweichung $\delta = \Delta p/p$.

 $\Delta L = \delta \cdot \int \frac{D(s)}{\rho(s)} \mathrm{d}s$ Die Abweichung ΔL von der Soll-Weglänge $L_0 = \int \mathrm{d}s$ ist und wird beschrieben durch den "momentum compaction"-Faktor:

$$\alpha_c \equiv \frac{\Delta L/L_0}{\Delta p/p} = \frac{\Delta L/L_0}{\delta} \qquad \rightarrow \qquad \alpha_c = \frac{1}{L_0} \int_0^{L_0} \frac{D(s)}{\rho(s)} \mathrm{d}s = \left\langle \frac{D(s)}{\rho(s)} \right\rangle$$

 $\rightarrow \qquad \frac{\Delta \tau}{\tau} = \frac{\Delta L}{L} -$ Die Flugzeit eines Teilchens der Geschwindigkeit v für die Strecke L ist: $\tau = L/v$

 ω_r

 τ_r

$$\begin{array}{l} \operatorname{Mit} \Delta L/L = \alpha_c \delta \ \mathrm{und} \ p = \gamma m v \\ \rightarrow \ \mathrm{d} v/v = 1/\gamma^2 \mathrm{d} p/p \ \text{folgt} \ (\mathrm{NB}: \gamma = 1/\sqrt{1 - v^2/c^2}): \end{array} \right\} \qquad \left[\frac{\Delta \tau}{\tau} = -\left(\frac{1}{\gamma^2} - \alpha_c\right) \frac{\mathrm{d} p}{p} \equiv -\eta_c \frac{\mathrm{d} p}{p} \right],$$

mit "Momentum compaction":
$$\left[\eta_c = \gamma^{-2} - \alpha_c \right] \qquad \rightarrow \text{Kreisbeschleuniger: geänderte Umlauffrequenz} \\ \operatorname{und} \ddot{\mathrm{U}} \text{bergangsenergie bei} \ \eta_c = 0: \qquad \left[\gamma_t = \frac{1}{\sqrt{\alpha_t}} \right] \qquad \rightarrow \text{Kreisbeschleuniger: geänderte Umlauffrequenz} \\ \end{array} \right]$$

 $\sqrt{\alpha_c}$

Prof. Dr. O. Biebel

(engl. transition energy)

 ω_r :

Periodische Fokussierungssysteme

- Periodische Fokussierungssysteme
 - 1. FODO-Struktur
 - 2. Betatron-Bewegung in periodischen Strukturen
 - 3. Strahldynamik in geschlossenen periodischen Strukturen
 - 4. Dispersion in periodischen Strukturen
 - 5. Beispiel eines Speicherring-Beschleunigers

6.1

FODO**-Struktur**

Zur Erinnerung: In Betatron schwache Fokussierung durch B-Feldgradient mit Feldindex n

Problem: geringe rücktreibende Kraft \rightarrow große Betatron-Oszillationsamplitude \rightarrow große Apertur

Lösung: *starke Fokussierung* oder *alternierende Gradienten-Fokussierung* (kurz: AG-Fokussierung)

Analogon aus der Optik:

Figure. 5.1 System made of a pair of converging-diverging lenses (doublet).

Abwechselnde Abfolge von Sammel- und Zerstreuungslinsen mit gleichen $|f| \rightarrow$ Fokussierung!

Für Teilchenstrahlen entspricht dies (QF=horiz. fok. Quadrupol, QD=horiz. defok. Quadrupol):

6.2

FODO-Parameter:

Betrachte Magnetabfolge: $\frac{1}{2}$ QF + Driftstrecke $L + 2 \cdot \frac{1}{2}$ QD + Driftstrecke $L + \frac{1}{2}$ QF FODO Cell betatron functions ~1/2QF 1/2QF QD Fig. 6.2. Periodic betatron functions in a FODO channel $\begin{vmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & L \\ 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ -\frac{2}{f} & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & L \\ 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & L \\ 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{vmatrix} = \begin{vmatrix} 1 - 2L^2/f^2 & 2L \cdot (1 + L/f) \\ -1/f^* & 1 - 2L^2/f^2 \end{vmatrix} = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix}$ wobei $f_F = -f_D \equiv f$ und $1/f^* = 2 \cdot (1 - L/f) \cdot (L/f^2)$ $\text{Mit der Transformationsmatrix für die Twiss-Parameter (s. Folie 5.14} \begin{vmatrix} \beta \\ \alpha \\ \gamma \end{vmatrix} = \begin{vmatrix} C^2 & -2SC & S^2 \\ -CC' & (S'C+SC') & -SS' \\ C'^2 & -2S'C' & S'^2 \end{vmatrix} \begin{vmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0 \end{vmatrix} \text{) folgt}$ $\operatorname{für}\beta_0 = \beta, \, \alpha_0 = 0 \text{ und } \gamma_0 = (1 + \alpha_0^2)/\beta_0 = 1/\beta \, \rightarrow \, \left| \beta = \left(1 - 2 \cdot \frac{L^2}{f^2} \right)^2 \cdot \beta + 4L^2 \cdot \left(1 + \frac{L}{f} \right)^2 \cdot \frac{1}{\beta} \right|$ (\ddagger)

Dabei ist f > 0 und β der Wert der Betatron-Funktion im Zentrum des QF-Quadrupols.

FODO-Parameter (fortgesetzt):

Lösungen gelten für horizontale & vertikale Ebene der jeweils fokussierenden bzw. defokussierenden Quadrupole:

$$\mathsf{QF} \ (f>0): \beta_x=\beta^+, \ \beta_y=\beta^-; \quad \ \mathsf{QD} \ (f<0): \beta_x=\beta^-, \ \beta_y=\beta^+$$

Für periodische Systeme wichtig: Anschlussbedingung für Betatron-Fkt. von FODO- zu FODO-Zelle ! $\rightarrow \beta^+$ und β^- -Formeln beschreiben jedes periodische Gitter, wenn Anschlussbedingung am Anfang & Ende erfüllt

Apertur: für runden Strahl durch $\beta_x + \beta_y$ bestimmt für flachen Strahl durch $\beta_x + \beta_y$ bestimmt

• optimaler FODO-Parameter: $d(\beta_x + \beta_y)/d\kappa = 0$

für flachen Strahl (z.B.
$$eta_x \gg eta_y)$$

$$d\kappa = 0$$
 • optimaler FODO-Parameter: $d\beta_x/d\kappa = 0$

$$\rightarrow \kappa_{\text{opt}} = \frac{1}{2} + \frac{\sqrt{5}}{2} \approx 1.618$$

NB: $\beta^{\pm} \propto L \rightarrow \text{max. Strahldurchmesser in FODO} \propto \sqrt{L}$

 $\rightarrow \kappa_{\rm opt} = \sqrt{2}$

Betatron-Phase in FODO-Zelle:

Der Strahltransport wurde durch (vgl. 5.14, 5.16) $\begin{bmatrix} u \\ u' \end{bmatrix} = \begin{bmatrix} C(s) & S(s) \\ C'(s) & S'(s) \end{bmatrix} \cdot \begin{bmatrix} u_0 \\ u'_0 \end{bmatrix}$ beschrieben. Mit der allgemeinen Lösung der Bewegungsgleichung erhält u(s) für $\alpha = \alpha_0 = 0$ und $\beta = \beta_0$ die Form $u(s) = u_0 \cos \Phi(s) + u'_0 \beta \sin \Phi(s)$ $\stackrel{\Phi = \int ds/\beta}{\longrightarrow}$ $u'(s) = -u_0 \frac{1}{\beta} \sin \Phi(s) + u'_0 \cos \Phi(s)$ Also ist $\begin{bmatrix} C(s) & S(s) \\ C'(s) & S'(s) \end{bmatrix} = \begin{bmatrix} \cos \Phi & \beta \sin \Phi \\ -\frac{1}{\beta} \sin \Phi & \cos \Phi \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} 1 - 2L^2/f^2 & 2L \cdot (1 + L/f) \\ -1/f^* & 1 - 2L^2/f^2 \end{bmatrix}$ $\rightarrow \quad \cos \Phi = 1 - 2L^2/f^2 = 1 - \frac{2}{\kappa^2} \quad \rightarrow \quad \sin \frac{\Phi}{2} = \frac{1}{\kappa}$ $\rightarrow \quad \kappa = f/L > 1 \quad \rightarrow \quad f > L$

d.h. Brennweite eines halben Quadrupols muss größer als der Abstand zum nächsten Quadrupol sein!

Apertur: für runden Strahl durch $\beta_x + \beta_y$ bestimmt

• optimaler FODO-Parameter: $d(\beta_x + \beta_y)/d\kappa = 0$

$$ightarrow \kappa_{\rm opt} = \sqrt{2} \quad
ightarrow \Phi_{\rm opt} = 90^{\circ}$$

für flachen Strahl (z.B. $eta_x \gg eta_y)$

• optimaler FODO-Parameter: $d\beta_x/d\kappa = 0$

$$\rightarrow \kappa_{\text{opt}} = \frac{1+\sqrt{5}}{2} \approx 1.618 \quad \rightarrow \quad \Phi_{\text{opt}} \approx 76.345^{\circ}$$

ightarrow Phasenvorschub Φ_{opt} je FODO-Zelle erlaubt kleinste Apertur

6.5

Betatron-Bewegung in periodischen Strukturen

Wenn der Teilchenstrahl in einem kreisförmigen Beschleuniger eine periodische Magnetstruktur immer wieder durchläuft, wird die Frage der Langzeitstabilität bedeutsam.

Eine Strahltransportmatrix
$$M = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix}$$
 ergibt mit $\det(M - \lambda \operatorname{Id}) = 0$ die Eigenwerte
 $\lambda_{1,2} = \frac{1}{2}(C + S') \pm \sqrt{\frac{1}{4}(C + S')^2 - 1} \rightarrow \frac{1}{4}(C + S')^2 \leq 1 \rightarrow \operatorname{Tr}(M) = |C + S'| \leq 2$

Für ein Quadrupoltriplett (vgl. Folie 5.9) gilt die Transportmatrix:

Fur ein Quadrupoltriplett (vgl. Folie 5.9) gilt die Transportmatrix:

$$M_{tr} = M_r \cdot M = \begin{bmatrix} 1 - 2L/f^* & 2L(1 - L/f_2) \\ -2/f^* \cdot (1 - L/f_1) & 1 - 2L/f^* \end{bmatrix}$$
Dabei beschreibt $M = \begin{bmatrix} 1 - L/f_1 & L \\ -1/f^* & 1 - L/f_2 \end{bmatrix}$ das Quadrupol-Dublett
(vgl. 5.8) mit $\frac{1}{f^*} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{L}{f_1 f_2}$.

$$\Rightarrow$$
 Stabilitätskriterium:

$$Tr(M_{tr}) = \begin{vmatrix} 2 - \frac{4L}{t} \end{vmatrix} < 2 \qquad \rightarrow \qquad 0 < \frac{L}{t} < 1$$

 \Rightarrow Stabilitätskriterium:

$$(M_{tr}) = \left|2 - \frac{4L}{f^*}\right| \le 2 \qquad \rightarrow \qquad 0 \le \frac{L}{f^*} \le 1$$

Stabilitäts- bzw. "Necktie"-Diagramm

Stabilitätskriterium:

$$\text{Mit } u \equiv L/f_1, v \equiv L/f_2 \text{ und } \frac{1}{f^*} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{L}{f_1 f_2} \quad \to \quad \boxed{0 \le u + v - uv \le 1}$$

Daraus ergibt sich das Stabilitätsdiagramm: $(|u| \le 1 \text{ und } |v| \le 1 \text{ und } |v| \le |u|/(|u| - 1) \text{ und}$ (mit $u \leftrightarrow v$) $|v| \ge |u|/(|u| + 1)$

Aufgrund der Form:

"Necktie"- oder "Krawatten"-Diagramm

Fig. 6.5. Necktie diagram in thin lens approximation

Diese Form gilt für die "Dünne Linsen"-Approximation, also $f \gg \ell$.

Betrachtung der ungenäherten Transportmatrixen zeigt i.W. das gleiche Bild,

Begrenzungen des Stabilitätsdiagramms sind jedoch leicht gekrümmt.

Reale Beispiele für Beschleuniger mit periodischen Magnetstrukturen:

Table 6.1. FODO cell parameters

example	# 1	# 2	# 3	# 4
energy, $E(\text{GeV})$	10	50	4	20,000
half cell length, $L(m)$	6.0	2.6	3.6	114.25
quadrupole length, $\ell_{q}(m)$	0.705	1.243	0.15	3.64
bending radius, $\rho(m)$	27.12	279.38	152.8	10,087
bending magnet length, $\ell_{\rm b}({\rm m})$	3.550	2.486	2.50	99.24
phase advance per cell, ψ quadrupole strength [†] , $k(m^{-2})$	$\begin{array}{c} 101.4\\ 0.183\end{array}$	$\begin{array}{c} 108.0\\ 0.250\end{array}$	$\begin{array}{c} 135.0\\ 1.711 \end{array}$	90.0 0.002
lattice type* (FODO)	\mathbf{sf}	\mathbf{cf}	\mathbf{sf}	\mathbf{sf}

[†] these parameters will be determined in problem 6.1

* sf: separated function; cf: combined function lattice.

Fig. 6.6. FODO lattice for one octant of a synchrotron [6.2,3] (example #1 in Table 6.1)

$$\dagger k = 1/f\ell_q, f = L\kappa, 1/\kappa = \sin(\Psi/2) \to k = \sin(\Psi/2)/L\ell_q$$

#1 DORIS-Synchrotron (e⁺e⁻)

- Unteres Bild: FODO-Struktur und Betatron-Funktionen β_x und β_y
- NB: Kleine Abweichungen von regelmäßiger FODO-Struktur
- \rightarrow Platz für andere Strahlkomponenten (z.B. Sextupole, etc.)
- $\rightarrow\,$ nur kleine Störungen in periodischer Betatron-Funktion
- #2 Strahltransport mit geringer Krümmung vom SLC-Linearbeschleuniger (e⁺e⁻) zur Kollisionszone
- #3 FODO-Struktur mit sehr geringer Emittanz für theoretische Studien der Strahlstabilität

Strahldynamik in geschlossenen periodischen Strukturen

Nochmals sei die Bewegungs-DGL betrachtet (s. Folie 5.16) und die Periodizität mit Länge L_p der Magnetstrukturen beachtet:

Wg. der Periodizität von K(s) heisst diese Bewegungs-DGL: Hillsche Bewegungs-Differentialgleichung (Hill war Astronom im 19. Jahrhundert und hat die Bewegung von Teilchen in periodischen Feldern untersucht.)

Lösungen der Hillschen-DGL haben Eigenschaften, die durch die Floquet-Theoreme beschrieben werden:

- Lösungen sind quasiperiodisch
- zwei unabhängige Lösungen:
 - $u_1(s) = w(s) \cdot \exp(i\mu s/L_p),$ $u_2(s) = w^*(s) \cdot \exp(-i\mu s/L_p),$
- $w^*(s)$ ist komplex-konjugiert zu w(s). Strahldynamik: Nur reelle w(s), d.h. $w^*(s) = w(s)$
- w ist eindeutig und periodisch: $w(s + L_p) = w(s)$

- μ ist ein charakteristischer Koeffizient: $\cos \mu \equiv \frac{1}{2} \operatorname{Tr}(M_{s \to s+L_p})$
- Spur der Transportmatrix unabhängig von s: Tr $(M_{s \to s+L_p}) \neq f(s)$
- $\det(M_{s \to s+L_p}) = 1$
- Stabilitätskriterium ist erfüllt: $\frac{1}{2} \mathrm{Tr}(M_{s \to s+L_p}) < 1$

Vergleich mit Lösung $u(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos[\psi(s) - \psi_0]$ (s. Folie 5.16) $\rightarrow \mu = \psi, w(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$

$$u'' + K(s) \cdot u = 0$$
$$K(s) = K(s + L_p)$$

Transportmatrix für vollständigen Umlauf:

Aug. Losung Tur Hillsche Bewegungs-DGL: Aus Startwerte bei s = 0: $\begin{pmatrix} \psi = 0, & \beta = \beta_0, & \alpha = \alpha_0, \\ u(0) = u_0, & u'(0) = u'_0 \end{pmatrix}$ $u(s) = a\sqrt{\beta}\cos\psi + b\sqrt{\beta}\sin\psi$ $\rightarrow a = \frac{u_0}{\sqrt{\beta_0}} \text{ und } b = \sqrt{\beta_0}u'_0 + \frac{\alpha_0}{\sqrt{\beta_0}}u_0$ $\operatorname{Mit} \begin{pmatrix} u(s) \\ u'(s) \end{pmatrix} = \begin{bmatrix} C(s) & S(s) \\ C'(s) & S'(s) \end{bmatrix} \cdot \begin{pmatrix} u_0 \\ u'_0 \end{pmatrix} \quad \text{und} \quad \alpha = -\beta'/2, \ \psi' = 1/\beta \text{ folgt:}$ $\begin{bmatrix} C(s) & S(s) \\ C'(s) & S'(s) \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{\beta}{\beta_0}}(\cos\psi + \alpha_0\sin\psi) & \sqrt{\beta\beta_0}\sin\psi \\ \frac{\alpha_0 - \alpha}{\sqrt{\beta\beta_0}}\cos\psi - \frac{1 + \alpha\alpha_0}{\sqrt{\beta\beta_0}}\sin\psi & \sqrt{\frac{\beta}{\beta_0}}(\cos\psi - \alpha\sin\psi) \end{bmatrix}$ Bedeutuna: Von $Q_{x,y} \equiv \frac{\psi(\text{Umlauf})}{2\pi} = \frac{1}{2\pi} \oint \frac{\mathrm{d}s}{\beta_{\text{Tab}}(s)}$ nicht-integer Anteil Betatron-Tune: Ausserdem \rightarrow Resonanzen

 \Rightarrow Vollständiger Umlauf (zur Vereinfachung: $\beta'_0 = -2\alpha_0 = 0$) $\rightarrow \psi = 2\pi \cdot Q$, $\beta = \beta_0$

$$M_{\text{Umlauf}} = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix} = \begin{bmatrix} \cos 2\pi Q & \beta_0 \sin 2\pi Q \\ -\frac{1}{\beta_0} \sin 2\pi Q & \cos 2\pi Q \end{bmatrix}$$

mit det $M_{\text{Umlauf}} = 1$ und Tr $M_{\text{Umlauf}} = 2\cos 2\pi Q$.

Dispersion in periodischen Strukturen

Bisher:

ullet nur Teilchenstrahlen mit Sollenergie/-impuls \longrightarrow keine chromatischen Effekte

Chromatische Effekte:

- Berücksichtigung der Dipole (zur Vereinfachung bleiben Dipol-Endfeldeffekte unberücksichtigt)
- Dispersion \propto Energie-/Impulsstreuung im Strahl (in linearer Näherung)
- Beschreibung der Dispersion durch Matrixformalismus:

Abweichung u_{δ} , u'_{δ} vom Sollorbit durch Impulsabweichung δ aus Transformationsmatrix

$$\rightarrow \qquad \begin{bmatrix} u(s) \\ u'(s) \\ \delta \end{bmatrix} = M \cdot \begin{bmatrix} u(s_0) \\ u'(s_0) \\ \delta \end{bmatrix} = \begin{bmatrix} C & S & D \\ C' & S' & D' \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u(s_0) \\ u'(s_0) \\ \delta \end{bmatrix} \qquad \begin{bmatrix} u(s_0) \\ \vdots \\ u'(s_0) \\ \delta \end{bmatrix} \qquad \begin{cases} u_{\delta}(s) = D(s) \cdot \delta \\ u'_{\delta}(s) = D'(s) \cdot \delta \end{cases}$$

$$\rightarrow$$
 Mit Betatron-Oszillationsamplituden $u(s_0), u'(s_0) = 0$ und $\delta = 1 \rightarrow 0$

$$\begin{bmatrix} D(s) \\ D'(s) \\ 1 \end{bmatrix} = M \cdot \begin{bmatrix} D(s_0) \\ D'(s_0) \\ 1 \end{bmatrix}$$

Dispersion-Transformationsmatrizen:

• Z.B. für Sektormagnet der Länge
$$L: M_{\text{Sektor}} = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix} = \begin{bmatrix} \cos \frac{L}{\rho} & \rho \sin \frac{L}{\rho} \\ -\frac{1}{\rho} \sin \frac{L}{\rho} & \cos \frac{L}{\rho} \end{bmatrix}$$

• Dispersions relation (vgl. Folie 4.20): $D(s) = \int_0^s \frac{1}{\rho(s)} [S(s)C(\tilde{s}) - C(s)S(\tilde{s})] d\tilde{s}$ und $\rho(L) = \rho_0 = \text{const.}$

• mit Näherung $L \ll
ho_0$ (nur Terme linear in $1/
ho_0$)

$$\rightarrow M_{\mathsf{Sektor}} = \begin{bmatrix} C & S & D \\ C' & S' & D' \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\frac{L}{\rho_0} & \rho_0 \sin\frac{L}{\rho_0} & \rho_0 (1 - \cos\frac{L}{\rho_0}) \\ -\frac{1}{\rho_0} \sin\frac{L}{\rho_0} & \cos\frac{L}{\rho_0} & \sin\frac{L}{\rho_0} \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{L \ll \rho_0} \begin{bmatrix} 1 & L & L^2/2\rho_0 \\ 0 & 1 & L/\rho_0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \frac{\text{Dispersionsfkt. } \eta^+ \text{ bei}}{\frac{1}{2} \text{QF und } \eta^- \text{ bei } \frac{1}{2} \text{QD:}} \begin{cases} \eta^- = \frac{1}{\rho_0} \left(1 + \frac{1}{2f}\right) = \frac{1}{2\rho_0} \kappa(2\kappa + 1) & \text{mit FODO-Para} \\ \eta^- = \frac{f^2}{\rho_0} \left(1 - \frac{L}{2f}\right) = \frac{L^2}{2\rho_0} \kappa(2\kappa - 1) & \text{meter } \kappa = f/L \end{cases}$$

Beispiel für Dispersionsfunktion:

Fig. 6.9. Dispersion function in FODO cells (example #1 in Tab. 6.1)

Ähnlich wie bei hochwertigen Kameraobjektiven kann durch geschickte Anordnung von Ablenk-, Fokus.- und Defokus.-Magneten eine dispersions-freie Strahlablenkung erreicht werden. (NB: Innerhalb der Anordnung kann Dispersion auftreten, außerhalb verschwindet η)

Dispersion bei vollständigem Umlauf:

Transformation der Dispersionsfunktion bei vollständigem Umlauf bedeutet:

$$\begin{pmatrix} \eta \\ \eta' \\ 1 \end{pmatrix} \stackrel{!}{=} M_{\text{Umlauf}} \cdot \begin{pmatrix} \eta \\ \eta' \\ 1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M_{\text{Umlauf}}^{2 \times 2} & D \\ D' \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} \eta \\ \eta' \\ 1 \end{pmatrix} = \begin{bmatrix} C & S & D \\ C' & S' & D' \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} \eta \\ \eta' \\ 1 \end{pmatrix}$$

und

Mit det $M_{\text{Umlauf}}^{2 \times 2} = CS' - C'S = 1$ und $\text{Tr}M_{\text{Umlauf}}^{2 \times 2} = C + S' = 2\cos 2\pi Q$ (vgl. Folie 6.10)

$$\Rightarrow$$

$$\eta = \frac{(1-S)D + SD'}{2 - (C+S')} = \frac{(1-S)D + SD'}{4\sin^2 \pi Q}$$

$$\eta' = \frac{C'D + (1-C)D'}{4\sin^2 \pi Q}$$

Beachte: Integerwerte für Tune Q vermeiden!

Transformation der Dispersionsfunktion:

Kenntnis von η_0 und η_0' an einem Punkt s_0 im Beschleunigerring

$$\rightarrow \qquad \left(\begin{array}{c} \eta(s) \\ \eta'(s) \\ 1 \end{array} \right) \stackrel{!}{=} M_{s_0 \to s} \cdot \begin{pmatrix} \eta_0 \\ \eta'_0 \\ 1 \end{pmatrix}$$

für beliebigen Ort s

Beispiel eines Speicherring-Beschleunigers

Drei unterschiedliche Grundstrukturen:

- 7 FODO-Halbzellen
- 2 Halbzellen (ohne Dipole) zur Anpassung der Dispersionsfunktion η
- 1 Halbzelle f
 ür die Installation weitere Beschleunigerelementen
- Gesamte Struktur benutzt gleichartige
 FODO-Zellen mit nur QF und QD Quadrupolen
- Betatron-Funktionen insensitiv auf Vorhandensein oder Fehlen von Dipol-Magneten
- ▷ Auslassen von Dipol-Magneten → gerade Stücke (z.B. für Strahldiagnostik, Injektion-/Extraktionsmagnete, Experimente)

Für die Konstruktion eines Beschleunigers aus FODO-Strukturen ist zu beachten:

• Anpassung zwischen FODO-Strukturen erfordert:

```
(\beta_x, \beta'_x, \beta_y, \beta'_y, \eta, \eta')_1 = (\beta_x, \beta'_x, \beta_y, \beta'_y, \eta, \eta')_2
```

 $\triangleright Phasenraumellipse am Ende von Struktur_1 \longleftrightarrow Akzeptanz-Phasenraumellipse am Anfang von Struktur_2$ (bei gegenläufigen Teilchenstrahlen gleiche Bedingung für beide Richtungen)

- Protonen&Ionen benötigen perfekte Anpassung (Teilbild b)
- Elektronen&Positronen: volle Akzeptanz der Emittanz, neue Phasenraumellipse schnell durch Synchrotronstrahlungs-Dämpfung erreicht (Teilbild c)
- aber Randbedingungen durch:
 - Strahlkollisionsorte mit kleinem β^* (\rightarrow Strahlgröße) und verschwindender Dispersion η (\rightarrow Energiestreuung)
 - gerade Stücke für Hochfrequenz-Resonatoren, Injektions-/Extraktions-Magnete, Strahl-Diagnostik (z.B.
 Strahlpositionsmonitore, etc.)

- Anpassungs- wie Randbedingungen erfordern gezielte Beeinflussung der Strahlparameter
- \triangleright z.B. Dispersions-Anpassung in einem Emittanz-Dämpfungsring, mit Zielvorgabe $\eta, \eta' = 0$

Fig. 6.13. Lattice for a 1.2 GeV low emittance damping ring

- ightarrow gleichförmige Oszillation der Dispersion η in FODO-Strukturen aufgrund perfekter Dispersions-Anpassung
- \triangleright Dispersions-Anpassung beeinflusst Betatron-Funktionen (v.a. β_y)
- \rightarrow Besondere Anpassung für Betatron-Funktion erforderlich
- \triangleright Dispersionsfreier Abschnitt mit $\eta=0, \eta'=0$ durch *QDM* und *QFM*
- \rightarrow Betatron-Funktionen in dispersionsfreiem Abschnitt durch separate Quadrupole (Q_1, Q_2) anpassen
- \rightarrow Minimierung der vertikalen Betatron-Funktion β_y am Kollisionspunkt (s = 0)

6.19

"Insertions":

Für Kollisionspunkte werden gerade Stücke benötigt:

- "Magnet Free Insertion" durch Auslassen von Dipol-Magneten
- "Low Beta Insertion" an Collider
- lange gerade Stücke (meist > Dipollänge)
 für Experimente erforderlich
- \rightarrow zusätzliche Quadrupole zur Minimierung von β^* und η am Kollisionspunkt
- \rightarrow große Werte der Betatron-Funktion in geraden Stücken (Aperturgröße)

(gerades Stück: $\beta(s) = \beta^* + L_{\rm ins}^2/\beta^*$)

 $eta^{+}=$ 0.35 m; $eta_{\mathsf{max}}=$ 1254 m; Betatrontunes $Q_{x,y}=$.585, .575

Figure 6.14. Lattice functions at B0 and D0 for the Dispersionless IR Solution a) with out the low beta squeeze (lattice JJ01) and b) with the low beta squeeze (lattice JJ15C.)

Magnetstruktur im PEP-Beschleuniger:

Fig. 6.19. Lattice functions in the PEP storage ring for one half of six symmetric superperiods. The collision point and low beta section is at s = 0 and the arc sections consist of FODO cells.

Table 6.2. PEP lattice parameters

energy, $E(\text{GeV})$	15.0	beam current, I(mA)	100
circumference, $C(m)$	2200	superperiodicity,	6
beam emittance, ϵ_{x} (mm mrad)	0.125	energy spread, σ_E/E_o	0.0010
tunes, ν_x/ν_y 21.	25/18.19	beta function at IP, $\beta^*_{x,y}(m)$	3.00/0.11
nat. chromaticity, Ear /Eav -36.21/-99.47		momentum compaction factor, 0.0025	
energy loss/turn, $U_{o}(MeV)$	26.98	radiation power, $P_{s}(MW)$	2.698
accelerating voltage, $V_{\rm rf}(MV)$	39.43	synchrotron tune, $\nu_{\rm s}$	0.0451
FODO parameters:			
cell length, $L(m)$	14.4	phase/cell, $\psi_x/\psi_y(\text{deg})$ 56.	.016/31.925
bending radius, $\rho(m)$	165.5	acceptance, A_x/A_y (mm-mrad)	29.88/11.01

- PEP=Positron Electron Project (am SLAC)
- Hälfte einer von 6 symmetrischen Struktur-Superperioden dargestellt
- Magnetfreier Bereich von 20 m
- Betatron-Funktion-Designwert am Kollisionspunkt: $\beta_u^* \approx 5 \text{ cm}$
- Kollisionsbereich → Übergangsbereich zur Betatronund Dispersions-Anpassung
- Am Symmetriepunkt im Bogen: kurzes magnetfreies Stück für Strahldiagnostik und -manipulation
- FODO-Gitter wurde aus Kostengründen nicht perfekt angepasst (Zahl der unabhängigen Stromversorgungen)

Addendum zu: Periodische Fokussierungssysteme

Die Begriffe *Betatron-Funktion*, *Dispersion* und *Emittanz* spielen in der Beschleunigerpraxis eine wichtige Rolle. Letztlich geht aus den transversalen Betatron-Funktionen und den zugehörigen Emittanzen eine für die Experimente am Beschleuniger unverzichtbare Größe hervor: *Luminosität*.

Die Luminosität (sinngemäß etwa: Leuchtstärke) ist die Proportionalitätskonstante, die den (theoretisch berechneten) Wirkungsquerschnitt σ einer Reaktion mit der im Experiment beobachtbaren Reaktionsrate \dot{N} verknüpft.

Im Vorgriff auf Abschnitt 10 soll im Folgenden kurz der Begriff der Luminosität und die Messung von Luminosität durch Bestimmung der Betatron-Funktion und der Emittanz am Beispiel des Proton-Antiproton-Beschleunigers Tevatron wie auch des Proton-Proton-Beschleunigers LHC vorgestellt werden:

- 1. Luminosität
- 2. Messung der Luminosität am Beschleuniger

Neben diesen Methoden, die Luminosität aus den Beschleuniger-Parametern zu bestimmen, werden zusätzlich spezielle Detektoren in den großen Experimenten eingesetzt. Diese Detektoren messen die Reaktionsrate von besonders gut bekannten oder berechenbaren Reaktionen, sodass aus Rate und Wirkungsquerschnitt die Luminosität auf alternative Weise mitunter wesentlich genauer als aus den Beschleuniger-Parametern ermittelt werden kann.

Luminosität

 σ : Wirkungsquerschnitt

 \mathcal{L} : Luminosität

• Ereignisrate: $\dot{N} = \mathcal{L} \cdot \sigma$

tät[.]

$$\mathcal{L} = f \frac{n_1 n_2}{4\pi \sigma_x \sigma_y}$$

• Luminosität:

- $\sigma_u = \sqrt{\varepsilon_u \beta_u^* / \pi}$
- $f: \text{Kollisionsfrequenz} \qquad \pi \sigma_x \sigma_y$ $n_i: \text{Teilchenzahl in kollidierenden Paketen}$ $\sigma_u: \text{ horiz./vert. Strahlgröße (Ellipsenhauptachse } u = x, y)$ $\varepsilon = \pi u u': \text{ Emittanz (Fläche der Phasenraumellipse)}$ $\beta_u^* = u/u': \text{ Betatronamplitude am Ww-Punkt}$ (u': Winkel bzgl. Strahlachse)

• Phasenraumellipse:

Gaussprofil der Teilchenstrahls

(hier um Winkel φ gedreht dargestellt, wobei $\tan 2\varphi = 2\alpha/(\gamma - \beta)$).

Figure 32: A particle beam is often reasonably well described by a two dimensional Gaussian distribution in phase space. The lines of constant phasespace density are then ellipses. Since the phase-space density decreases only slowly with amplitude, the phase-space area containing *all* particles might be hard to determine (experimentally as well as theoretically). Also, it is not the quantity relevant for most of the applications. Therefore, the emittance is defined as $1/\pi$ times the phase-space area containing a certain fraction of the particles (e.g. 90 %).

Luminosität an (Anti-)Protonbeschleunigern:

$$\mathcal{L} = f \frac{n_1 n_2}{4\sqrt{\beta_x^* \varepsilon_x \beta_y^* \varepsilon_y}}$$

Vereinfachung: runde Teilchenstrahlen, d.h. $\beta^* \equiv \beta_x^* = \beta_y^*$, $\varepsilon \equiv \varepsilon_x = \varepsilon_y \longrightarrow \sigma_x \sigma_y = \beta^* \varepsilon$ Jedoch: Unterscheidung für Protonen (p) und Antiprotonen (\overline{p}) $\rightarrow \varepsilon = \frac{1}{2}(\varepsilon_p + \varepsilon_{\overline{p}})$

$$\Rightarrow \qquad \mathcal{L} = f \frac{n_{\mathsf{p}} n_{\overline{\mathsf{p}}}}{2\beta^* \cdot (\varepsilon_{\mathsf{p}} + \varepsilon_{\overline{\mathsf{p}}})} \cdot H(\sigma_l / \beta^*)$$

"Hourglass"-Faktor $H(\sigma_l/eta^*)$ trägt Bunchlänge (Gaussprofil mit σ_l) Rechnung

Weitere Ersetzungen für praktische Berechnung:

- $f \cdot n_p n_{\overline{p}} = f_{rev} B \cdot N_p N_{\overline{p}}$ mit Umlauffrequenz f_{rev} , Anzahl der Bunche B und Zahl der Teilchen je Bunch N_i
- $\varepsilon_{i,N95} = (6\beta_r\gamma_r) \cdot \varepsilon_i$ mit relativitischem Lorentz- β und - γ als so gen. 95% normierte Emittanz für $i = p, \overline{p}$

$$\Rightarrow \qquad \mathcal{L} = f_{\rm rev} B \cdot \frac{N_{\rm p} N_{\overline{\rm p}} \cdot (6\beta_r \gamma_r)}{2\beta^* \cdot (\varepsilon_{\rm p,N95} + \varepsilon_{\overline{\rm p},N95})} \cdot H(\sigma_l/\beta^*) \cdot 10^{25} / {\rm cm}^2 {\rm s}$$

mit $f_{
m rev}$ in kHz, eta^* in cm, $N_{{f p},\overline{{f p}}}$ in 10^9 und $arepsilon_{i,N95}$ in mm·mrad

	Luminosität		6.25
	Parameter	Wert	Einheiten
Beispiel Tevatron: Zielwerte im Run II für 2003:	Umlauffrequenz $f_{\rm rev}$	47.7	kHz
	Bunchanzahl $B imes B$	36×36	
	Protonen/Bunch	240	10^{9}
	Antiprotonen/Bunch	31	10^{9}
	Strahlenergie	980	GeV
	$ ightarrow \beta_r \gamma_r pprox 980/m_{ m Proton}$	1045	
	eta^* am WwPunkt	35	cm
	Proton-Emittanz ε_{N95}	20π	mm∙mrad
	Antiproton-Emittanz $arepsilon_{N95}$	15π	mm∙mrad
	Bunchlänge σ_l	0.54	m
	ightarrow "Hourglass"-Faktor H	$0.6 \dots 0.7$	7
$\mathcal{L} = f_{\text{rev}} B \cdot \frac{N_{\text{p}} N_{\overline{\text{p}}} \cdot (6\beta_r \gamma_r)}{2\beta^* \cdot (\varepsilon_{\text{p},N95} + \varepsilon_{\overline{\text{p}},N95})} \cdot H(\sigma_l/\beta^*) \cdot 10^{25} / \text{cm}^2 \text{s}$	\Rightarrow Typ. Luminosität ${\cal L}$	$6.6\cdot 10^{32}$	1 cm $^{-2}$ s $^{-1}$
	Integrierte Luminosität (ca. 33% Effizienz wg. Füll- &Beschleunigungszeiten, Inten-	12	pb ⁻¹ /Woche
	sitätsabnahme $\propto { m e}^{-t/15{ m h}}$, etc.)		

Die genaue Messung der Luminosität bzw. der zur Berechnung erforderlichen Parameter ist in der Praxis schwierig! Insbesondere weil die Luminosität für die Kollisionen am Wechselwirkungspunkt, wo neben dem Detektor kein Platz für Strahlmessgeräte bleibt, gesucht ist.

Typische Methode für Beschleuniger $i = p, \overline{p}$:

- Messung von Strahlströmen $I_i = N_i \cdot e \cdot f_{rev}$ (Elementarladung e)
- Messung der Strahlgrößen $\sigma_{x,y,l}$

$$ightarrow$$
 am Ort der Messung (i.A. eq Ww.-Punkt!) gilt: $\mathcal{L} = rac{I_{
m p}\cdot I_{\overline{
m p}}}{4\pi f_{
m rev}Be^2\sigma_x\sigma_y}$

- \rightarrow Berechnung von β und $\varepsilon_{i,N95}$ am Ort der Messung
- Umrechnung von β auf β^* (am Ww.-Pkt.) mithilfe der Abbildungmatrizen für Ablenk- und Fokussierungsmagnete
- \rightarrow am Ww.-Punkt:

$$\mathcal{L} = \frac{I_{\mathbf{p}} \cdot I_{\overline{\mathbf{p}}} \cdot (6\beta_r \gamma_r)}{2f_{\mathrm{rev}} Be^2 \cdot \beta^* \cdot (\varepsilon_{\mathbf{p},N95} + \varepsilon_{\overline{\mathbf{p}},N95})} \cdot H(\sigma_l/\beta^*)$$

• Überwachung der Frontalkollision der Strahlen durch Strahlpositionsmonitore (BPM) nahe den Experimenten Erreichbare Genauigkeit: ca. 5-10%

Illustration der Luminotitätsbestimmung am Tevatron:

1. Strahlstrom-Messung

Sample Bunch Display (SBD) misst für jeden Bunch den Spiegelstrom, den der Bunch induziert (Spiegelstrom \propto Strom im Bunch), hohe Zeitauflösung \rightarrow Bunchlänge σ_l

DC-Strahlstromtrafo (DCCT) bestimmt die gesamte Intensität aller Bunche

 $(\sum Bunchströme)$

2. Messung der Strahlgrößen $\sigma_{x,y}$:

Flying Wires 33μ m Kohlefasern horizontal/vertikal durch Strahl (mit 5 m/s) bewegt + Nachweis von Pionen aus Wechselwirkungen **Synchrotronlicht** mit 400 nm aus (Anti-)Proton-Ablenkung in supraleitenden Dipolen (≈ 4 T) mittels Teleskop, Microchannel-Verstärker und CID-Kamera (Charge-Injection-Device)

Protonen

Antiprotonen

3. Transfer der berechneten β mittels Abbildungsmatrizen für Ablenk- und Fokussierungsmagnete

Figure 6.14. Lattice functions at B0 and D0 for the Dispersionless IR Solution a) with out the low beta squeeze (lattice JJ01) and b) with the low beta squeeze (lattice JJ15C.)

Resultate der Luminositätsbestimmung am Tevatron:

Figure: Operation of Luminometer. The upper traces are those calculated by the on-line program "Luminometer". The lower trace is the D0 Detector Luminosity . See text

(große Unsicherheiten aus Abbildungsmatrizen der Magnete)

Luminositätsmessung bei LHC

• Strahlstrom-Messung:

Fast Beam Transformers (FBCT) Messung der Protonenzahl in jedem der 2835 Bunche (1% Genauigkeit) DC Current Transformers (BCTDC) gesamter Strahlstrom von ≈ 0.5 A (Genauigkeit: 1μ A \triangleq 5 \cdot 10⁸ Protonen)

• transversale Strahlgröße (σ_x, σ_y) :

Wire Scanners analog "Flying Wire", Genauigkeit 4μ m, limitiert auf < 200 Bunche (wg. Belastung durch Strahl) \rightarrow für absolute Kalibration folgender Methoden:

Restgas in Vakuumröhre, durch Protonen zur Luminiszenz angeregt \rightarrow Leuchtspur des Strahl \rightarrow transversale Strahldimensionen

Synchrotronlicht aus supraleitenden Dipolen neben Ww.-Punkten (noch optional)

• longitudinales Strahlprofil (σ_l):

Synchrotronlicht mit zeitaufgelöster (< $50~{\rm ps}$) Messung des Photonenflusses \rightarrow long. Strahlprofil

- Luminositätsmonitore um Wechselwirkungspunkten
 - in $\pm 141~\mathrm{m}$ Abstand vom Ww.-Punkt
 - Detektoren f
 ür neutrale Teilchen (i.W. Neutronen, Photonen)
 hinter ca. 30 cm Kupferabschirmung wg. 170 MGy/Jahr
 - Teilchenflussmessung \leftrightarrow Reaktionsrate \leftrightarrow Luminosität
 - Messung des Strahlkreuzungswinkels 2Θ auf $< 10\mu {\rm rad}.$

 $(\mathcal{L} = I^2/4\pi f_{\rm rev} B e^2 \sigma_x \sigma_y \tan \Theta)$

Störungen in der Strahldynamik

- Störungen in der Strahldynamik
 - 1. Dipol-Feldstörungen
 - 2. Quadrupol-Feldstörungen, Resonanzen, Stoppbänder
 - 3. Chromatizität

Feldstörungen

Bisher Idealisierung durch

- perfekte Magnete,
- perfekt ausgerichtet (aligniert),
- perfekt senkrechte Ausrichtung von Quadrupolen,
- keine Feldabweichungen,
- keine Erdbewegungen.

Reale Situation durch

- Magnete mit (kleinen) Abweichungen vom Ideal,
- Ausrichtung bestenfalls auf \sim 100 μ m genau,
- geringfügige Verdrehung der Quadrupole,
- Feldabweichungen & -fehler (Stromversorgung, etc.),
- Erdbewegung (Drift, Zivilisation, Gezeiten, Jahreszeiten, etc.).

Konsequenzen aus Abweichungen bei Ausrichtung

Z.B.: für Teilchen auf Sollorbit, d.h. Betatron-Oszillationen um x = 0,

- perfekter Quadrupol: V(x, y) = gxy
- \rightarrow reines Quadrupolfeld
- horizontale Verschiebung des Quadrupols um δx :

 $V(x,y) \to V(x+\delta x,y) = g \cdot (x+\delta x) \cdot y = V(x,y) + (\delta xg) \cdot y$

ightarrow Dipolfeldkomponente $(\delta xg)\cdot y$ zusätzlich zu Quadrupolfeld

 \Rightarrow Ausrichtungsfehler \rightarrow Multipol-Feldfehler

WS 2003/04

Dipol-Feldstörungen und "Closed Orbit"

Zur Erinnerung: Bewegungs-DGL für Teilchen mit relativer Impulsabweichung δ : $u'' + K(s) \cdot u = \delta / \rho_0(s)$

Dipol-Feldfehler $\Delta B/B \Leftrightarrow \Delta p/p \equiv \delta$ Impulsabweichung ($pc = eB\rho$) \rightarrow Bewegungs-DGL unter Dipol-Feldfehler F(s):

$$u'' + K(s) \cdot u = F(s)$$

F(s) unabhängig von Koordinaten (x, y) und Impulsfehler δ F(s) periodisch, jedoch nicht mit Periode der Magnetzelle F(s): max. Periode = ein Umlauf C (\triangleq 1 Dipol-Feldfehler)

Allg. Lösung: $u(s) = u_0 C(s) + u'_0 S(s) + \mathcal{F}(s)$ und $\mathcal{F}(s) = \int_0^s F(\sigma) \left[S(s)C(\sigma) - S(\sigma)C(s) \right] d\sigma$ (vgl. Dispersionsrelation Folie 4.20)

u(s) erfüllen Periodizitätsbedingung für vollständigen Umlauf C:

$$\Rightarrow \begin{cases} \text{Bestimmungsbedingungen} \\ \text{für } u_0, u_0': \end{cases}$$

Wähle Startbedingungen für s_0 , z.B.:

$$u_0 C(s_0 + \mathcal{C}) + u'_0 S(s_0 + \mathcal{C}) + \mathcal{F}(s_0 + \mathcal{C}) = u_0 C(s_0) + u'_0 S(s_0) + \mathcal{F}(s_0)$$

 $u(s_0 + C) = u(s_0)$ und $u'(s_0 + C) = u'(s_0)$

$$u_0 C'(s_0 + \mathcal{C}) + u'_0 S'(s_0 + \mathcal{C}) + \mathcal{F}'(s_0 + \mathcal{C}) = u_0 C'(s_0) + u'_0 S'(s_0) + \mathcal{F}'(s_0)$$

$$S'(s_0) = C(s_0) = 1, S(s_0) = C'(s_0) = 0, \mathcal{F}(s_0) = 0, \mathcal{F}'(s_0) = 0$$

nach einiger Rechnung und mit
$$C_1 \equiv C(s_0 + \mathcal{C}),$$

 $S_1 \equiv S(s_0 + \mathcal{C}), \mathcal{F}_1 \equiv \mathcal{F}(s_0 + \mathcal{C})$
 $\rightarrow u_0 = \frac{S_1 \cdot \mathcal{F}'_1 - (S'_1 - 1) \cdot \mathcal{F}_1}{(C_1 - 1) \cdot (S'_1 - 1) - C'_1 \cdot S_1}$

Lösung der Bewegungs-DGL mit Dipol-Feldstörungen (fortgesetzt):

Betrachte Nenner von $u_0 = \frac{S_1 \cdot \mathcal{F}'_1 - (S'_1 - 1) \cdot \mathcal{F}_1}{(C_1 - 1) \cdot (S'_1 - 1) - C'_1 \cdot S_1}$ mit Transportmatrix M_{Umlauf} für vollständigen Umlauf (s. 6.10)

Nenner:
$$1 + (C_1 S'_1 - S_1 C'_1) - (C_1 + S'_1) = 1 + \underbrace{\det M_{\text{Umlauf}}}_{=1} - \underbrace{\operatorname{Tr} M_{\text{Umlauf}}}_{=2\cos(2\pi Q)} = 4\sin^2(\pi Q)$$

Zähler: mit $\mathcal{F}(s) = \int_0^s F(\sigma) \left[S(s)C(\sigma) - S(\sigma)C(s) \right] d\sigma$ und $C_1 \equiv C(s_0 + \mathcal{C}) = \cos 2\pi Q + \alpha_0 \sin 2\pi Q$ und $S_1 \equiv S(s_0 + \mathcal{C}) = \beta_0 \sin 2\pi Q$ folgt nach längerer Rechnung ($\psi(s) = Q\varphi(s)$ und Betatronphase φ)

$$S_1 \cdot \mathcal{F}_1' - (S_1' - 1) \cdot \mathcal{F}_1 = 2\sqrt{\beta_0} \sin \pi Q \int_{s_0}^{s_0 + \mathcal{C}} \sqrt{\beta(\sigma)} F(\sigma) \cos(\psi(\sigma) - \psi_0 - \pi Q) d\sigma$$

 $(\overline{NB}: in dieser Darstellung unabhängig vom Startpunkt s der Integration$

$$\text{Mit } F(\sigma) = \frac{1}{\rho(\sigma)} \cdot \delta \text{ (NB: } u(s) = D(s)\delta \text{) folgt die "Closed Orbit"-Dispersion: } \\ \\ \boxed{D(s) \equiv \eta(s) = \frac{\sqrt{\beta(s)}}{2\sin\pi Q} \oint \frac{\sqrt{\beta(\sigma)}}{\rho(\sigma)} \cos\left(|\psi(\sigma) - \psi(s)| - \pi Q\right) \, \mathrm{d}\sigma }$$

Effekte durch Dipol-Feldstörung:

Vereinfachung: Nur ein Feldfehler bei s_k im gesamten Magnetgitter, d.h. $F(\sigma) = \theta_k \delta(\sigma - s_k)$

- \to Kick (Winkelablenkung) im Orbit: $\theta_k=\oint_s^{s+\mathcal{C}}F(\sigma)\mathrm{d}\sigma$
- \rightarrow Referenzorbit für :

$$s < s_k \to s + \mathcal{C}$$
: Kick bei $\varphi(s_k)$ $s > s_k \to s + \mathcal{C}$: Kick bei $2\pi - \varphi(s_k)$

$$u_0(s) = \frac{1}{2}\sqrt{\beta(s)\beta(s_k)}\theta_k \frac{\cos Q\left[\pi - \varphi(s_k) + \varphi(s)\right]}{\sin \pi Q} \qquad u_0(s) = \frac{1}{2}\sqrt{\beta(s)\beta(s_k)}\theta_k \frac{\cos Q\left[\pi - \varphi(s) + \varphi(s_k)\right]}{\sin \pi Q}$$

 \rightarrow Symmetrie um Ort des Feldfehlers bei s_k mit Orbit: $u_0(s_k) = \frac{1}{2}\beta(s_k)\theta_k \cot \pi Q$

Orbitstörung und -korrektur

- gezielte Orbitstörung durch kurzen Dipol
- + Messung des Strahlposition am Ort der Störung: $u_0(s_k)$
- + Bestimmung des Tunes Q
- (Fourieranalyse der Strahloszillationen, gemessen mit Elektrode nahe Strahl)
- \rightarrow Betatron-Amplitude $\beta(s_k)$ aus: $u_0(s_k) = \frac{1}{2}\beta(s_k)\theta_k \cot \pi Q$
- Beispiel: PEP-Beschleuniger mit Streuung der Magnetausrichtung von 0.05 mm in x und y (Fig. 7.2)
- Korrektur von Orbitstörungen durch drei bis vier Korrekturdipole
- \rightarrow erzeugen Strahlstörung entgegengesetzt zur Orbitstörung im Bereich der Korrekturmagnete
- \rightarrow Reduktion der Orbitstörungen
- \rightarrow starke harmonische Oszillation nahe der

Fig. 7.2. Closed orbit distortion of Fig. 7.1 in normalized coordinates as a function of the betatron phase φ

Dipol-Feldstörungen und Betatron-Tune

- Betatron-Tune halbzahlig
- \rightarrow Orbit nach Umlauf um Referenzorbit ge-
- \rightarrow erneute Störung kompensiert vorausgegangene

- Betatron-Tune ganzzahlig
- ightarrow Orbit nach Umlauf in gleicher Phase
- \rightarrow erneute Störung addiert sich zu vorausgegangener

Quadrupol-Feldstörungen, Resonanzen, Stoppbänden

Feldstörungen und Resonanzen

Generell gilt:	Resonanztyp	treibender Multipol	
	Ganzzahlige (integer) Resonanz:	Q = n	Dipol-Feldfehler
	Halbzahlige Resonanz:	$2 \cdot Q = n$	Quadrupol-Feldfehler
	Drittelzahlige Resonanz:	$3 \cdot Q = n$	Sextupol-Feldfehler
	1/k-zahlige Resonanz:	$k \cdot Q = n$	2k-pol-Feldfehler

 \rightarrow Betatron-Tunes, die zu Resonanzen führen, müssen (in x und y) vermieden werden !

- Kopplung der Betatron-Oszillationen in *x* und *y*-Ebene
- \rightarrow Resonanzkriterium:

$$c \cdot Q_x + l \cdot Q_y = i \cdot N$$

•
$$|k| + |l|$$
 ist Ordnung der Resonanz

- Resonanzdiagramm mit Linien für alle $k, l, i \in \mathbb{Z}$
- N ist Superperiode des Magnetgitters (d.i. Anzahl gleichartiger Zellen im Magnetgitter)
- Diagramm (N = 1): Resonanzlinien $|k| + |l| \le 4$
- Punkt: Tune für Beschleunigungsphase

(Diagramm für ELSA-Beschleuniger, 3.5 GeV e⁻⁻, Uni Bonn)

${\rm Superperiode}\;N$

Fig. 7.5. Resonance diagram for a ring with superperiodicity one, N = 1

Stoppbänder:

Magnetfehler haben unterschiedliche Auswirkungen:

- Resonanz für ganz-, halb-, drittel-, \ldots -zahlige Betatron-Tunes Q
- \rightarrow i.A. Strahlverlust (Strahlgröße > Apertur)
- \rightarrow Resonanzen = Stopplinien
- in Umgebungsnähe von ganz-, halb-, drittel-, \ldots -zahlige Betatron-Tunes Q
- \rightarrow i.A. Strahlverlust (mathematisch: keine Lösung für $\cos 2\pi (Q + \Delta Q)$ in $(^{**}_{**})$ falls $\cos(2\pi Q) + \int d\chi > 1$) intuitiv: $u_0, \Delta\beta, \ldots$ werden groß bereits nahe der Resonanz
- \rightarrow *Stopp<u>bänder</u>* um Resonanzlinien !

Chromatizität

- Quadrupole fokussieren Teilchen mit $\delta \equiv \Delta p/p \neq 0$ unterschiedlich
- \rightarrow Betatron-Tune-Verschiebung: so gen. *Chromatizität* ξ

natürliche Chromatizität des Beschleunigers: Quadrupolstärke
$$k$$
 skaliert mit Impuls:

 \rightarrow Tune-Verschiebung (wie für Quadrupol-Feldfehler):

$$\Delta Q_{x,y} = \frac{1}{4\pi} \oint \beta_{x,y}(s) \Delta k(s) ds = \underbrace{-\frac{1}{4\pi} \int \beta_{x,y}(s) k_{x,y}(s) ds}_{p_0} \cdot \frac{\Delta p}{p_0}$$

$$\xi_{x,y} = \overbrace{-\frac{1}{4\pi} \int \beta_{x,y}(s) k_{x,y}(s) \mathrm{d}s}^{}$$

 $\Delta Q_{x,y} = \xi_{x,y} \cdot \frac{\Delta P}{m}$

- \rightarrow natürliche Chromatizität:
- ▷ ξ ist immer negativ für lineare Magnetgitter (linear \triangleq nur Dipole&Quadrupole), da Fokussierung für höher energetische Teilchen ($\delta > 0$) geringer
- $\triangleright \xi$ ist i.A. groß, z.B. für HERA-ep-Beschleuniger: $\xi \approx -60$

 $\Delta k = -k \frac{\Delta p}{-k}$

Chromatizität (fortgesetzt):

Beispiel: natürliche Chromatizität einer FODO-Zelle: $\xi_x = -\frac{1}{4\pi} \oint \beta_x k ds$ In der Näherung dünner Linsen:

 $\rhd~\beta=\beta^+$ bzw. β^- im Zentrum des fokus. bzw. defokus. Quadrupols

 $\triangleright \ k = k^+$ bzw. $-k = k^-$ als Quadrupolstärke

$$\beta^{\pm} = L\kappa(\kappa \pm 1)/\sqrt{\kappa^2 - 1} \text{ mit } \kappa \equiv f/L \text{ (vgl. 6.4)}$$

$$\beta \int k \mathrm{d}s = f^{-1} = 1/(\kappa L)$$

$$\,\triangleright\,\sin(\Psi/2)=1/\kappa$$
 (vgl. Folie 6.5)

$$\rightarrow \quad \left\{ \xi_x = -\frac{1}{2\pi} \frac{1}{\sqrt{\kappa^2 - 1}} = -\frac{1}{2\pi} \tan(\Psi_x/2) \right\}$$

 \rightarrow Natürl. Chromatizität je 90°-FODO-Zelle: $-1/2\pi$ ($1/2\pi$ je Zelle wenig, aber Σ über viele Zellen wird groß)

Messung der natürl. Chromatizität:

Fig.7.9. Experimental determination of the natural chromaticity in a storage ring by measuring the tunes as a function of the excitation current $I = I_0 + \Delta I$ in the bending magnets.

$$(\nu_{x,y} \text{ in Abb.} \cong \text{Betatron-Tune } Q_{x,y},$$

Steigung der Geraden \cong natürl. Chromatizität $\xi_{x,y}$)

Chromatizität (fortgesetzt):

- $\xi \gg 1$: d.h. selbst für $\delta \approx 10^{-3} \rightarrow \Delta Q \approx 1$
- ightarrow Tune-Streuung erreicht Stoppband ightarrow Strahlverlust
- + so gen. "head-tail"-Instabilität (wg. Nichtlinearität)
- Korrektur der natürlichen Chromatizität: Sextupole
- Chromatizität durch Sextupole:

Teilchenstrahl auf Dispersionsorbit in Sextupol

$$\frac{e}{pc}\vec{B} = mxy\vec{e}_x + \frac{1}{2}m(x^2 - y^2)\vec{e}_y$$
 (nicht-linear!)

- \rightarrow horizontale Verschiebung $x = D \cdot \delta = D \cdot \frac{\Delta p}{p_0}$
- \rightarrow Dispersionsabhängigkeit:

$$k_{x} = \frac{e}{pc} \cdot \frac{\partial B_{y}}{\partial x} = m \cdot x = m \cdot D \cdot \frac{\Delta p}{p_{0}}$$

$$k_{y} = \frac{e}{pc} \cdot \frac{\partial B_{x}}{\partial y} = m \cdot y = m \cdot D \cdot \frac{\Delta p}{p_{0}}$$
P Chromatizität (= Σ natürliche+Sextupol-Chromatizität):

$$\xi_{x,y} = -\frac{1}{4\pi} \int \left[k_{x,y}(s) - m(s)D(s) \right] \cdot \beta_{x,y}(s) \mathrm{d}s$$

- ▷ Orte für Chromatizitätskorrektur (vgl. Fig.35):
- $\diamond\,$ nahe Quadrupole, damit $\Delta Q \ll 1$ bleibt
- $\diamond\,$ wo Referenzorbit-Dispersion $D(s) \neq 0$

Prof. Dr. O. Biebel

Chromatizität und dynamische Apertur:

Problem der Chromatizitätskorrektur durch Sextupole:

- Nicht-Linearitäten, da $\frac{e}{pc}\vec{B}=mxy\vec{e}_x+\frac{1}{2}m(x^2-y^2)\vec{e}_y$
- → Chromatizitätskorrektur beeinflusst Strahlstabilität und maximale erforderliche Apertur (dynamische Apertur)

- \rightarrow Sextupole erzeugen nicht-lineare Resonanzen mit
- ▷ wachsenden Oszillationsamplituden
- Detuning mit Amplitudenzunahme

- Untersuchung der Langzeitstabilität: Kombination von
- ♦ klassische Mechanik
- ♦ Chaostheorie
- ⇒ Behandlung nicht-linearer Beschleuniger mittels Computer-Modell

Modell eines nicht-linearen Beschleunigers: (Hamilton Funktion: Bewegung der Teilchen im Beschleuniger)

Beschleunigung geladener Teilchen

- Beschleunigung geladener Teilchen
 - 1. Longitudinale Teilchenbewegung und Phasenraum

Longitudinale Teilchenbewegung und Phasenraum

- Geladene Teilchen in einem (Kreis-)Beschleuniger
- Beschleunigt beim wiederholten Durchlaufen eines Hochfrequenz-Resonators (Cavity)
- \rightarrow Teilchen müssen beschleunigendes Feld zur festen *Synchronphase* $\psi_s = \omega t - ks = \text{const. erreichen}$ (Resonator-Kreisfrequenz ω)
- \rightarrow Synchronitätsbedingung $\dot{\psi}_s = \omega k\beta c = 0$ (Teilchengeschwindigkeit $ds/dt = \beta c$)

Figure. 9.7 A graphical demonstration of the phase-stability principle in a linac. The effective transition energy is always infinite, since $\eta_{tr} = 1/\gamma^2 > 0$.

 $\rightarrow \omega_1 = k_1 \beta c$ erfüllt Synchronitätsbedingung (erste harmonische)

ebenso $\omega_h = h\omega_1$ und $k_h = hk_1$ mit ganzzahliger harmonischer Zahl h

Allgemeiner:

• Viele Teilchen mit ggf. unterschiedlichen Energien \rightarrow Dispersion \rightarrow Wellenzahl k nicht für alle Teilchen gleich

$$\rightarrow \left[\dot{\Delta\psi} = -\Delta(k\beta c) = -ck\Delta\beta - \beta c \frac{\partial k}{\partial p} \frac{\partial p}{\partial t} \Delta t \right]$$
(#)
$$\frac{\Delta\psi \equiv \psi - \psi_s, k = k_h = h \frac{2\pi}{L_0}, \text{ Abstand } L_0 \text{ zw. Resonatoren,} \\ \text{bzw. } k \triangleq h \cdot \omega_r / \beta c \text{ mit Umlauffreq. } \omega_r \text{ im Kreisbeschleuniger} \\ \Rightarrow \left. \frac{\partial k}{\partial p} \right|_{s_0} = \frac{\partial k}{\partial L} \frac{\partial L}{\partial p} \right|_{s_0} = -\frac{k_h}{L_0} \frac{\partial L}{\partial p} \right|_{s_0} = -\frac{k_h}{p_0} \alpha_c \quad \text{und "Momentum compaction"-Faktor} \quad \alpha_c \equiv \frac{\Delta L / L_0}{\Delta p / p_0}$$

WS 2003/04
(Einschub von Folie 5.20)

Weglänge und "Momentum compaction":

In linearer Betrachtung der transversalen Strahldynamik wirkt sich Dispersion D(s) auf die Weglänge L eines Teilchens (z.B. durch einen Ablenkdipol, $\kappa = 1/\rho$) aus:

(vgl. Folie 4.16)
$$\mathrm{d}\sigma \approx (1 + \kappa_0 u)\mathrm{d}s \rightarrow L = \int (1 + \kappa x)\mathrm{d}s.$$

Dabei ist $x = D(s)\delta$ die horizontale Abweichung von der Sollbahn bei relativer Impulsabweichung $\delta = \Delta p/p$.

Die Abweichung ΔL von der Soll-Weglänge $L_0 = \int ds$ ist $\Delta L = \delta \cdot \int \frac{D(s)}{\rho(s)} ds$ und wird beschrieben durch den "momentum compaction"-Faktor:

$$\alpha_c \equiv \frac{\Delta L/L_0}{\Delta p/p} = \frac{\Delta L/L_0}{\delta} \rightarrow \qquad \alpha_c = \frac{1}{L_0} \int_0^{L_0} \frac{D(s)}{\rho(s)} ds = \left\langle \frac{D(s)}{\rho(s)} \right\rangle$$

NB: "momentum compaction"-Faktor α_c nimmt nur in Ablenkabschnitten zu, d.h. $\rho \neq 0 \rightarrow \text{Linearbeschleuniger: } \alpha_c = 0!$ Die Flugzeit eines Teilchens der Geschwindigkeit v für die Strecke L ist: $\tau = L/v \rightarrow \frac{\Delta \tau}{\tau} = \frac{\Delta L}{L} - \frac{\Delta v}{v}$

$$\begin{array}{l} \operatorname{Mit} \Delta L/L = \alpha_c \delta \ \mathrm{und} \ p = \gamma m v \\ \rightarrow \ \mathrm{d} v/v = 1/\gamma^2 \mathrm{d} p/p \ \mathrm{folgt} \ (\mathrm{NB}: \gamma = 1/\sqrt{1 - v^2/c^2}): \end{array} \right\} \qquad \left[\frac{\Delta \tau}{\tau} = -\left(\frac{1}{\gamma^2} - \alpha_c\right) \frac{\mathrm{d} p}{p} \equiv -\eta_c \frac{\mathrm{d} p}{p} \right], \\ \mathrm{mit} \ "Momentum \ compaction": \qquad \left[\eta_c = \gamma^{-2} - \alpha_c \right] \end{array} \right] \rightarrow \mathrm{Kreisbeschleuniger: geänderte \ Umlauffreq. } \omega_r = \frac{2\pi}{\tau_r}: \\ \mathrm{und} \ \mathrm{\ddot{U}bergangsenergie \ bei} \ \eta_c = 0: \qquad \left[\gamma_t = \frac{1}{\sqrt{\alpha_c}} \right] \end{array} \right] \rightarrow \mathrm{Kreisbeschleuniger: \ geänderte \ Umlauffreq. } \omega_r = \frac{2\pi}{\tau_r}: \\ \left[\frac{\mathrm{d} \omega_r}{\omega_r} = -\frac{\mathrm{d} \tau_r}{\tau_r} = \eta_c \frac{\mathrm{d} p}{p} \right] \end{array}$$

Longitudinale Bewegungs-Differentialgleichung

Aus
$$\dot{\Delta\psi}$$
 (s. Folie 8.2) folgt
mit $(\partial p/\partial t)\Delta t = \Delta p$ und $mc\gamma^3\Delta\beta = \Delta p$
 $\dot{\Delta\psi} = -\beta ck_h \left(\gamma^{-2} - \alpha_c\right) \frac{\Delta pc}{pc} = -\beta ck_h \eta_c \frac{\Delta pc}{pc}$

NB: γ^{-2} beschreibt die Energieabhängigkeit der Flugzeit zwischen Beschleunigungsstrukturen; auch in Linearbeschleunigern

Differentiation von $\dot{\psi}$ liefert die longitudinale Bewegungs-DGL im Potential der Hochfrequenzfelder:

$$\ddot{\Delta \psi} + \frac{\beta c k_h \eta_c}{p_0 c} \frac{\partial}{\partial t} \Delta p c = 0$$

wobei β , k_h , η_c langsam variieren, daher als konstant betrachtet werden können.

(Langsame $\hat{=}$ adiabatische Änderung externer Parameter \rightarrow *Ehrenfest-Theorem* erlaubt Bestimmung der Wirkung auf Strahl) Energiegewinne/-verluste sind z.B. bei einem Umlauf:

$$(\Delta E)_{\rm rev} = e \cdot U(\psi) - W(E) = eU_0 \sin \psi - W(E)$$

wobei $U_0 \sin \psi$ die Beschleunigungsspannung bei Phase ψ und W(E) Strahlungsverluste durch Synchrotronstrahlung (s. Abschnitt 9) bezeichnen.

Nach einem Umlauf ist $\frac{\partial}{\partial t}\Delta pc = \beta \frac{\partial}{\partial t}\Delta E = \beta (\Delta E)_{rev}/T_0$ mit und $pc = \beta E$, Umlaufzeit T_0 und die longitudinale Bewegungs-DGL um $\Delta \psi = \psi - \psi_s$ lautet:

$$\frac{\mathrm{d}^2 \Delta \psi}{\mathrm{d}t^2} + \frac{\beta c k_h \eta_c}{E_0} \frac{\mathrm{d}}{\mathrm{d}t} \Delta E = 0 \quad \stackrel{\text{Umlauf}}{\longrightarrow} \quad \frac{\mathrm{d}^2 \Delta \psi}{\mathrm{d}t} + \frac{\beta c k_h \eta_c}{T_0 E_0} \cdot \left[e U_0 \sin(\psi_s + \Delta \psi) - W(E) \right] = 0 \quad (\#)$$

Lösungen der longitudinalen Bewegungs-DGL mit kleiner Amplitude

Im Falle kleiner Oszillationen kann ΔE (s. Folie 8.4) in einer Taylorreihe (mit $\sin\psi \approx \psi$) entwickelt werden

$$\frac{\mathrm{d}}{\mathrm{d}t}\Delta E = \frac{\Delta E}{T_0} \approx \frac{1}{T_0} \left\{ eU(\psi_s) + e \left. \frac{\mathrm{d}U}{\mathrm{d}\psi} \right|_{\psi_s} \cdot \Delta \psi - W(E) - \left. \frac{\mathrm{d}W}{\mathrm{d}E} \right|_{E_0} \cdot \Delta E \right\},\,$$

wobei $\Delta E/E_0 = -\dot{\Delta \psi}/eta c k_h \eta_c$ gilt (vgl. Folie 8.4).

Eingesetzt in die longitudinale Bewegungs-DGL folgt mit der Gleichgewichtsbedingung $eU(\psi_s) = W(E)$:

$$\frac{\mathrm{d}^{2}\Delta\psi}{\mathrm{d}t^{2}} + 2 \cdot \underbrace{\left(\frac{1}{2T_{0}}\frac{\mathrm{d}W(E_{0})}{\mathrm{d}E}\right)}_{\equiv \alpha_{S}} \cdot \frac{\mathrm{d}\Delta\psi}{\mathrm{d}t} + \underbrace{\left(\frac{\beta ck_{h}\eta_{c}}{T_{0}E_{0}} \cdot eU_{0}\cos\psi_{s}\right)}_{\equiv \Omega_{S}^{2}} \cdot \Delta\psi = 0$$

$$\stackrel{\tilde{}}{\Rightarrow} \Omega_{S}^{2}$$

$$\stackrel{\tilde{}}{\Rightarrow} \tilde{}$$

$$\stackrel{\tilde{}}{\Rightarrow} \tilde{}$$

$$\stackrel{\tilde{}}{\Rightarrow} \tilde{}$$

$$\stackrel{\tilde{}}{\Rightarrow} \tilde{}$$

$$\stackrel{\tilde{}}{\Rightarrow} \tilde{}$$

wobei α_S eine Dämpfung (z.B. durch Synchrotronstrahlung) beschreibt und Ω_S die *Synchrotron-Frequenz* ist.

- Teilchen führen eine *longitudinale Oszillation* mit Frequenz Ω_S um Sollphase aus.
- Diese Schwingung wird gedämpft ($\alpha_S > 0$) oder verstärkt ($\alpha_S < 0$).

,

Synchrotron-Oszillationen kleiner Amplitude

Fig. 8.3. Synchrotron oscillations in phase space for stable motion $\Omega^2 > 0$ and small amplitudes $\widehat{\varphi} \ll 1$

Ohne Dämpfung gilt: (mit $\varphi \equiv \Delta \psi, k_h = 2\pi h/L_0 = h\omega_r/\beta c, \omega_r = 2\pi/T_0$) $\ddot{\varphi} + \Omega_S^2 \varphi = 0$ mit $\Omega_S^2 = \omega_r^2 \frac{h\eta_c e U_0 \cos \psi_s}{2\pi \beta^2 E_0}$. \rightarrow Synchrotron-Tune

$$ightarrow$$
 Synchrotron-Tune $Q_S\equiv rac{\Omega_S}{\omega_{
m r}}$ (NB: i.A. $Q_S\ll Q_{x,y}$)

Fig. 8.4. Synchrotron oscillation in phase space for unstable motion $\Omega^2 < 0$

- Schwingung um Sollphase ψ_s :
- ▷ in Phasenabweichung:

(Startphase χ_i für Teilchen i)

$$\varphi \equiv \Delta \psi = \hat{\varphi} \cos(\Omega_S t + \chi_i)$$

▷ und in Impulsabweichung:

(s. Folie 8.4 mit
$$\beta ck_h = h\omega_r$$
)
 $\delta = \frac{\Delta pc}{p_0 c} = \frac{-\dot{\varphi}}{h\omega_r \eta_c} \propto \sin(\Omega_S t + \chi_i)$

- \rightarrow Stabile Synchrotron-Oszill. f. $\Omega_S^2 > 0$: Ellipsen (Fig. 8.3)
- $\rightarrow\,$ Instabile Bewegung für $\Omega_S^2 < 0$: Hyperbeln (Fig. 8.4)
- NB: $\Omega_S^2 \propto \eta_c \cos \psi_s \gtrsim 0$, $\eta_c = \gamma^{-2} \alpha_c$
- \rightarrow Übergangsenergie $\gamma_t = \frac{1}{\sqrt{\alpha_c}}$, vgl. 5.20
 - Stabile Oszill.: $\eta_c \cos \psi_s > 0$
- $hinspace 0 < \psi_s < rac{\pi}{2}$ für $\gamma < \gamma_t$
- $arphi rac{\pi}{2} < \psi_s < \pi$ für $\gamma > \gamma_t$
- \Rightarrow *Phasensprung* bei $\gamma = \gamma_t$!

 $_{Prof. Dr. O. Biebel}$ Inkohärente Phasenoszillation um Referenzphase \rightarrow longitudinale Teilchenanhäufung, *Teilchen-Bunch* ws 2003/04

Synchrotron-Oszillationen großer Amplitude

Separatizes

Die Hamilton-Funktion der Teilchenbewegung $\hat{=}$ harmonischem Pendel. \Rightarrow Struktur der Trajektorien im $\dot{\psi}$ - ψ -Phasenraum für $\psi_s = \pi$: (NB: $\dot{\psi} \propto \Delta p/p \equiv \delta$)

Fig. 8.5. Phase space diagrams for a synchronous phase $\psi_{\rm s}=\pi$

- $\psi_s = \pi: U(\psi) \propto \sin \psi_s = 0 \rightarrow$ keine Beschleunigung.
- $\psi_s < \pi$: geänderte Trajektorien (Fig. 8.7: $\eta_c < 0, \gamma > \gamma_t$).
- Insbesondere: kleinere stabile Bereiche für kleinere ψ_s (\Leftrightarrow wachsende Beschleunigung $\Delta E = eU_0 \sin(\psi_s)$).
- Außerhalb Stabilitätsbereiche instabile Trajektorien: kontinuierl. Energieverlust/-gewinn, abhängig von $\eta_c \gtrsim 0$.

Fig.8.7. Phase space diagrams for different values of the synchronous phase and above transition energy $\gamma > \gamma_{tr}$

Separatrix (fortgesetzt)

Die Bestimmungsgleichung der Separatrix folgt aus $\mathcal{H}(\psi) = \mathcal{H}(\psi_1^{\max})$ (vgl. Folie 8.7 und mit $\varphi = \psi - \psi_s$): $\frac{1}{2}\dot{\varphi}^2 - \frac{\Omega_S^2}{\cos\psi_s} \left[\cos\psi + (\psi - \psi_s)\sin\psi_s\right] = -\frac{\Omega_S^2}{\cos\psi_s} \left[\cos(\pi - \psi_s) + (\pi - 2\psi_s)\sin\psi_s\right] (\#)$

Fig.8.9. Phase space focusing for moving rf bucket displaying the phase relationship of accelerating field, potential, and rf bucket

An beiden Punkte maximaler Auslenkung ist $\dot{\varphi} = \dot{\psi} = 0$ (da pot. Energie $V = \max. \rightarrow \text{kinet. Energie=0}$):

• Punkt 1:
$$\psi_1^{\max} = \pi - \psi_s$$
 (vgl. Folie 8.7)

• Punkt 2 folgt aus
$$\binom{\#\#}{\#}$$
:
 $\cos(\psi_2^{\max}) + \psi_2^{\max} \sin \psi_s =$
 $\cos(\pi - \psi_s) + (\pi - \psi_s) \sin \psi_s$
• maximales $\dot{\psi}$ für $\ddot{\psi} = 0$, d.h. bei $\psi = \psi_s$
 $\overset{\#\#}{\#} \rightarrow \dot{\psi}_{\max}^2 = 2\Omega_S^2 \left[2 - (\pi - 2\psi_s) \cdot \tan \psi_s\right]$
 $\rightarrow RF$ -Akzeptanz (aus $\frac{\Delta E}{E_0} = \frac{-\dot{\psi}}{\beta c k_h \eta_c}, k_h = h \frac{2\pi}{\beta c T_0}$):

$$\frac{\Delta E}{E_0}\Big)_{\max} = \pm \sqrt{\frac{eU_0}{\pi h \eta_c E_0}} \left[2\cos\psi_s - (\pi - 2\psi_s)\sin\psi_s\right]$$

pos.
$$[\cdots]: 0 < \psi_s < \frac{\pi}{2}, 6.064 < \psi_s$$
, aber auch $\eta_c \leq 0$

$$\mathsf{NB:} \quad \left[\left(\frac{\Delta E}{E_0} \right)_{\max} \propto \frac{1}{\sqrt{\omega_{\mathsf{RF}}}} \right] \quad \left[\left(\frac{\Delta E}{E_0} \right)_{\max} \gamma \gg 1 \atop \propto \frac{1}{\sqrt{\alpha_c}} \right] \quad \left[\left(\frac{\Delta E}{E_0} \right)_{\max} \propto \sqrt{\frac{eU_0 \sin \psi_s}{E_0}} \right] \quad \mathsf{Mit} \ \omega_{\mathsf{RF}} \equiv \omega_h \\ \mathsf{und} \ \omega_h = k_h \beta c$$

Separatrix (fortgesetzt)

- Phasen ψ_s und $\pi \psi_s$ ergeben den gewünschten Energiegewinn (da $\Delta E \propto \sin(\psi_s)$)
- nur eine Phase gibt stabile Phasenoszillationen
- $\rightarrow\,$ stabile Phase aus Forderung: $\Omega_S^2>0 \Leftrightarrow \eta_c \cos\psi_s>0$
- \triangleright Orientierung des RF-Buckets hängt von Wahl für η_c , γ_t und Beschleunigung/Abbremsung ab

Fig. 8.10. Relationship between rf phase and orientation of moving rf buckets for accelerating as well as decelerating fields Synchrotron-Strahlung

- Synchrotron-Strahlung
 - 1. Physikalische Grundlagen
 - 2. Kohärente Abstrahlung
 - 3. Wiggler und Undulatoren

Physikalische Grundlagen

- Beschleunigte elektrische Ladungen strahlen elektromagnetische Wellen ab;
- Phänomenologische Ursache: Endlichkeit der Lichtgeschwindigkeit;
- 1898-1900 A.Liénard & E.Wiechert: Mathematische Behandlung durch *retardierte* Potentiale (Liénard-Wiechert-Potentiale);
- Retardierte Potentiale Φ_{ret} und \vec{A}_{ret} verknüpfen Felder am Beobachtungspunkt mit Ladungen & Strömen zum Zeitpunkt der Emission;
- 1907 G.A.Schott: Klassische Theorie der Strahlung eines im homogenen Magnetfeld umlaufenden Elektrons;
- 1946 J.P.Blewett: Berechnung & Beobachtung der Abnahme des Elektronorbits in einem 100 MeV Betatron (General Electric);
- 1947 F.R.Elder: Erstmalige Beobachtung sichtbarer Strahlung an 70 MeV Synchrotron (General Electric);
- \rightarrow Strahlung wird als *Synchrotron-Strahlung* bezeichnet.

Mathematische Herleitung der Synchrotron-Strahlung aus den Maxwell-Gleichungen ist zwar geradlinig aber sehr umfangreich. Daher im Folgenden: nur intuitive Diskussion zur Physik der Synchrotron-Strahlung.

Abstrahlung von beschleunigten Ladungen

Fig.9.1. Distortion of electrostatic fields by longitudinal particle acceleration and creation of synchrotron radiation

- $\vec{E}\text{-}\mathsf{Feldst\"örung} \propto \mathsf{Ladung} \, q$ und Beschleunigung a^*
- nicht-radiale Feldkomponente $\propto \sin heta^*$
- θ^* ist \angle (Beobachtungs-, Beschleunigungsrichtung)
- Feldstärke nimmt radial mit 1/R ab
- $\rightarrow \vec{E}$ -Feldstörung (\perp Beobachtungsrichtung):

$$\vec{E}_{\perp}^*| = \frac{qa^*}{c^2R}\sin\theta^*$$

Zwei Fälle von Beschleunigung bezüg-

lich der Bewegungsrichtung der Ladung: longitudinal, transversal

Wirkung einer longitudinalen Beschleunigung auf elektr. Feldlinien:

- vor Beschleunigung: Feldlinien radial von Ladung nach aussen
- Beschleunigung während ΔT : von Ladung ausgehende Feldlinien müssen sich mit ursprünglichen radialen bei $r=c\Delta T$ verbinden
- $\triangleright \vec{E}^*$ -Feld erhält während Beschleunigung nicht-radiale Komponeten (* bezeichnet das anfängliche Lorentzsystem der Ladung)
- \triangleright bewegte Ladung erzeugt azimutales Magnetfeld $ec{B}^*_{arphi}$
- \rightarrow Poynting-Vektor $\vec{S} = \frac{c}{4\pi} [\vec{E}^* \times \vec{B}^*] \neq 0$ (\triangleq Energiestrom), elektromagnetische Energie wird in Richtung von \vec{S} abgestrahlt
 - $\bullet \ |\vec{B}|\text{-Feld} \propto |\vec{E}|\text{-Feld}$

(da durch Verschiebungsstrom hervorgerufen)

ightarrow Poynting-Vektor $\vec{S} \propto$ Quadrat des $|\vec{E}|$ -Feldes

 $\vec{S} = \frac{c}{4\pi} |\vec{E^*}|^2 \vec{n^*}$

(NB: Gauss-Einheiten)

mit Einheitsvektor \vec{n}^* von Beobachter zur Ladung

NB: $\vec{S} \xrightarrow{a^* \to 0} 0$, keine Abstrahlung ohne Beschleunigung

(NB: mit * bezeichnete Größen sind im bewegten System der Ladung gemessen)

Abstrahlung transversal beschleunigter Ladungen

Fig.9.1. Distortion of electrostatic fields by transverse particle acceleration and creation of synchrotron radiation

- transversale Beschleunigung erzeugt transversale \vec{E} -Feldkomponenten
- maximale Störung in Vorwärtsrichtung ist $\perp \vec{a}^*$
- Mit θ^* als \angle (Beobachtungs-, Beschleunigungsrichtung)
- $\rightarrow \vec{E}$ -Feldstörung (\perp Beobachtungsrichtung):

$$|\vec{E}_{\perp}^*| = \frac{qa^*}{c^2R}\cos\theta^*$$

- ▷ transversale Beschleunigung
- Strahlung wird hauptsächlich in Vorwärtsrichtung tangential zur Teilchenbewegung emittiert
- \rightarrow analog zur longitudinalen Beschleunigung:

Poynting-Vektor
$$\vec{S} \propto (\vec{E}$$
-Feldes)^2 $\vec{S} = \frac{c}{4\pi} |\vec{E}^*|^2 \vec{n}^*$

9.4

Synchrotron-Strahlungsleistung

- $P = \int \vec{S} d\vec{A}^*$ $\diamond \min \vec{n}^* d\vec{A}^* = R^2 \sin \theta^* d\theta^* d\psi^*$ $\diamond \text{ und } \vec{S} = \frac{c}{4\pi} |\vec{E}^*|^2 \vec{n}^*$ $\diamond \min |\vec{E}^*| \propto a^* \sin \theta^* \text{ oder } \propto a^* \cos \theta^*$ $\diamond \text{ und } a^* = c \dot{\beta}^*$
- \rightarrow Lamorsche Formel: (Herleitung vereinfacht)

$$P = \frac{2q^2}{3c} \left| \dot{\vec{\beta^*}} \right|^2$$

• In lorentzinvarianter Form mit Viererimpuls p^{μ}/mc und Eigenzeitelement $\mathrm{d} au=\mathrm{d}t/\gamma$

$$P = -\frac{2}{3} \frac{q^2}{m^2 c^3} \left(\frac{\mathrm{d} p_\mu^*}{\mathrm{d} \tau} \frac{\mathrm{d} p^{*\mu}}{\mathrm{d} \tau} \right)$$

$$\diamond \text{ dabei ist mit } \vec{p} = \gamma m c \vec{\beta} \text{ und } E = \gamma m c^2 \\ \left(\frac{\mathrm{d} p_{\mu}^*}{\mathrm{d} \tau} \frac{\mathrm{d} p^{*\mu}}{\mathrm{d} \tau} \right) = \gamma^2 m^2 c^2 \left[\left(\frac{\mathrm{d} \gamma}{\mathrm{d} t} \right)^2 - \left(\frac{\mathrm{d} \gamma \vec{\beta}}{\mathrm{d} t} \right)^2 \right]$$

$$\Rightarrow \text{ Der Ausdruck } [\cdots] \text{ ergibt mit Hilfe der Relationen} \\ \vec{\beta}^2 \vec{\beta}^2 - (\vec{\beta}\vec{\beta})^2 = [\vec{\beta} \times \vec{\beta}]^2 \quad \text{und} \quad \dot{\gamma} = (\vec{\beta}\vec{\beta})\gamma^3 \\ \Rightarrow \qquad \left[P = \frac{2}{3} \frac{q^2}{c} \gamma^6 \left(\dot{\vec{\beta}}^2 - \left[\vec{\beta} \times \dot{\vec{\beta}} \right]^2 \right) \right]$$

• Für longitudinale & transversale Beschleunigung mit $\vec{\beta}=\vec{\beta}_{||}+\vec{\beta}_{\perp} \text{ folgt}$

$$\rightarrow \begin{cases} P_{\parallel} = \frac{2}{3} \frac{q^2}{c} \gamma^6 \dot{\beta}_{\parallel}^2 = \frac{2}{3} \frac{q^2}{m^2 c^3} \left(\frac{\mathrm{d}\vec{p}_{\parallel}}{\mathrm{d}t}\right)^2 \\ P_{\perp} = \frac{2}{3} \frac{q^2}{c} \gamma^4 \dot{\beta}_{\perp}^2 = \frac{2}{3} \frac{q^2}{m^2 c^3} \gamma^2 \left(\frac{\mathrm{d}\vec{p}_{\perp}}{\mathrm{d}t}\right)^2 \end{cases}$$

$$\circ \operatorname{mit} E = \gamma mc^2 \operatorname{und} p = \gamma mc\beta \operatorname{und}$$
$$\circ \gamma mc \dot{\vec{\beta}}_{||} = \frac{1}{\gamma^2} (\mathrm{d}\vec{p}_{||}/\mathrm{d}t)$$
$$\circ \gamma mc \dot{\vec{\beta}}_{\perp} = (\mathrm{d}\vec{p}_{\perp}/\mathrm{d}t)$$
$$\bullet \operatorname{NB}: P_{\perp} \propto \gamma^2 \to P_{\perp} \gg P_{||} \operatorname{für} \dot{p}_{||} \sim \dot{p}_{\perp}$$

Synchrotron-Strahlungsleistung (fortgesetzt)

Charakteristische Eigenschaften (für einfach geladene Teilchen q = e):

•
$$\begin{cases} P_{\parallel} = \frac{2}{3} \frac{e^2}{c} \gamma^6 \dot{\beta}_{\parallel}^2 = \frac{2}{3} \frac{e^2}{m^2 c^3} \left(\frac{\mathrm{d}\vec{p}_{\parallel}}{\mathrm{d}t}\right)^2 = \frac{2}{3} \frac{e^2}{m^2 c^3} \beta^2 \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^2 \\ P_{\perp} = \frac{2}{3} \frac{e^2}{c} \gamma^4 \dot{\beta}_{\perp}^2 = \frac{2}{3} \frac{e^2}{m^2 c^3} \gamma^2 \left(\frac{\mathrm{d}\vec{p}_{\perp}}{\mathrm{d}t}\right)^2 = \frac{2}{3} e^2 c \beta^4 \frac{1}{\rho^2} \left(\frac{E}{mc^2}\right)^4 \end{cases} \\ \text{wobei} \quad (\mathrm{d}\vec{p}_{\parallel}/\mathrm{d}t) \xrightarrow{\mathrm{d}p_{\parallel}/\mathrm{d}t}_{\beta(\mathrm{d}E/\mathrm{d}x)} \quad \beta \cdot (\mathrm{d}E/\mathrm{d}x) \quad \text{und} \quad (\mathrm{d}\vec{p}_{\perp}/\mathrm{d}t) = \frac{e}{c} \left[\vec{v} \times \vec{B}\right] \xrightarrow{pc = eB\rho}_{p = \gamma mc\beta} \gamma m c \frac{c\beta^2}{\rho} \\ \text{• Beispiel Elektron-Linearbeschleuniger (Tesla): } \mathrm{d}E/\mathrm{d}x \approx 40 \text{ MeV/m} \rightarrow \frac{P}{\beta(\mathrm{d}E/\mathrm{d}x)} \sim 10^{-16} \\ \text{(NB: Gauss-} \rightarrow \text{SI-Einheiten: } e^2 \rightarrow e^2/4\pi\varepsilon_0) \end{cases}$$

• Beispiel Elektron/Proton-Kreisbeschleuniger: $\frac{P_{\perp,e}}{P_{\perp,p}} = \left(\frac{m_p}{m_e}\right)^4 \sim 10^{13}$!

• Synchrontron-Strahlungsleistung pro Umlauf: $\Delta E = \oint P_{\perp} dt \stackrel{ds=c\beta dt}{=} \frac{2}{3}e^2\beta^3\gamma^4 \oint \frac{ds}{\rho^2}$

Im isomagnetischem Gitter:
$$\rho = \text{const.} \rightarrow \oint ds = 2\pi\rho \rightarrow \Delta E = \frac{4\pi}{3}e^2\beta^3\frac{\gamma^4}{\rho}$$

 \rightarrow in praktischen Einheiten für Elektron/Positron: $\Delta E[\text{keV}] \approx 88.5 \cdot \frac{(E[\text{GeV}])^4}{\rho[\text{m}]}$

Synchrotron-Strahlungsleistung (fortgesetzt)

1

Beispiele:

Beschleuniger	Umfang [m]	Energie [GeV]	Radius [m]	$B\operatorname{-Feld}\left[\mathrm{T}\right]$	ΔE [MeV]
BESSY I (Berlin)	62.4	0.8	1.78	1.50	0.02
DORIS II (DESY)	288	5.0	12.2	1.37	4.53
ESRF (Grenoble)	844	6.0	23.4	0.855	4.90
PETRA (DESY)	2304	23.5	195	0.40	138
LEP II (CERN)	27 000	104	3000	0.116	3450

BESSY, DORIS II, ESRF sind so gen. *Synchrotron-Strahlungsquellen*, d.h. auf Erzeugung von Synchrotron-Strahlung spezialisiert, PETRA wird demnächst dazu umgebaut.

Synchrotron-Strahlungsquellen nutzen besondere Eigenschaften der Synchrontron-Strahlung ... (\rightarrow nächste Folie)

Eigenschaften der Synchrotron-Strahlung

(NB: In diesem Abschnitt werden vielfach nur Resulta-

te angegeben, da Rechnungen i.A. umfangreich!)

• Winkelverteilung:

Hertzscher Dipol im mitbewegten Bezugssy- $\xrightarrow{\text{Lorentz-}}$ Photon-Abstrahlwinkel im Lastem transform. $\tan \theta = \frac{p_y}{2} \approx 1$

borsystem

 \rightarrow schmales Strahlbündel bei großem γ

Zeitstruktur

Öffnungskegel der Abstrahlung \propto $2/\gamma$ überstreicht Beobachtungsrichtung Pulslänge: Laufzeitdifferenz von $P_0 \rightarrow P_1$ Teilchen – von: Licht $\frac{2\rho}{m}\sin\frac{1}{\gamma}\approx$ $\delta t =$

 \rightarrow sehr kurzer Puls bei großem γ

Eigenschaften der Synchrotron-Strahlung (fortgesetzt)

• Spektrum

Pulslänge $\propto \frac{1}{\gamma^3} \rightarrow$ beschränktes Fourierspektrum

kritische Frequenz: $\fbox{} \omega_c \equiv \frac{3c\gamma^3}{2\rho} = 2/\delta t$

- ▷ Photonfluss in Ablenkebene (Winkel ψ): $\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}\psi} = \frac{4\alpha}{9emc^2} EI \frac{\Delta\omega}{\omega} S\left(\frac{\omega}{\omega_c}\right)$
- ♦ Strahlstrom *I*, Photonenergie *E*, Frequenzintervall $\Delta \omega$ (Feinstrukturkonstante α , Elektronenmasse & -ladung *m*, *e*)
- \diamond universelle Synchrotronstrahlungsfkt. $S(\omega/\omega_c)$ (Fig.9.5)
- Polarisation
- ▷ in Ablenkebene: vollständig linear
- außerhalb Ablenkebene: schwach elliptisch

Fig. 9.5. Universal function of the synchrotron radiation spectrum $S(\omega/\omega_c)$

Kohärente Abstrahlung

- Synchrotronstrahlung hat breites Spektrum (von Umlauffrequenz bis wenig über kritische Frequenz)
- \triangleright Abstrahlintensität \propto Strahlstrom,
- ightarrow Abstrahlintensität \propto Teilchenzahl N_e
- bei geringen Photonenenergien: erhöhte Abstrahlung möglich
- $\triangleright\,\, {\rm Poynting-Vektor}\,\, |\vec{S}| \propto |\vec{E}^*|^2 \propto q^2$
- ▷ Photon-Wellenlänge $\lambda \geq$ Bunch-Länge (d.h. λ zu groß, um Bunch-Struktur aufzulösen)
- \rightarrow alle Teilchen eines Bunch strahlen kohärent
- \rightarrow Intensität \propto (Teilchenzahl im Bunch, N_e)² !
- \Rightarrow Freie-Elektronen-Laser (FEL)

(nutzen spezielle Magnetstrukturen, z.B. Undulatoren:

Magnete mit periodisch wechselnde Feldrichtung)

Freie-Elektronen-Laser Konzept:

Wiggler und Undulatoren

Fig. 9.14. Electromagnetic wiggler magnet with a maximum field strength of 18 kG and eight poles [9.32]

• *Wiggler-/Undulator*-Magnet: alternierende Folge auf-/abwärts gerichteter Magnetfelder, Periode λ_p

$$\diamond B_y(x, y=0, z) = B_0 \sin(2\pi z/\lambda_p)$$

♦ Ablenkwinkel je Halbpol:

$$\vartheta = \frac{B_0}{B\rho} \int_0^{\lambda_p/4} \sin(2\pi z/\lambda_p) dz = \frac{B_0}{B\rho} \frac{\lambda_p}{2\pi}$$

- \diamond Wiggler-Stärkeparameter: $K \equiv \beta \gamma \vartheta$
- Unterscheidung: Wiggler \leftrightarrow Undulator $K \gg 1 \leftrightarrow K \leq 1$

Fig. 9.15. Row of 54 wiggler poles based on permanent magnet technology [9.33]

- Wiggler: Erzeugung von intensiver Synchrotron-Strahlung im Röntgen-Bereich
- Undulatoren: Kohärente Synchrotron-Strahlung Photonenergie: $\epsilon_{\gamma}[eV] = 950 \frac{E^2[GeV^2]}{\lambda_p[cm](1+1/2K^2)}$

Prof. Dr. O. Biebel Genehmigt: TESLA-FEL am DESY, Hamburg, ca. 3 km lang, höchste Brillianz, extremer Röntgenbereich Selbstanregendes SASE-(self amplificied spontaneous emission)-Prinzip, keine externe Photonenquelle

WS 2003/04

Vorteile/Nachteile der Synchrotron-Strahlung

- \ominus Energieverlust insbesondere für Elektronen/Positronen $\Delta E \propto \frac{1}{
 ho} \left(\frac{E}{mc^2} \right)^4$
- \ominus Synchrotron-Strahlungsleistung $P_{\perp} \propto rac{1}{
 ho^2} \left(rac{E}{mc^2}
 ight)^4$
- \ominus Hochenergetische Elektron-Kreisbeschleuniger erfordern großen Radius ho
- \oplus hochintensive Lichtquelle
- \oplus sehr kurze Lichtpulse
- \oplus stark gebündelt bei hoher Strahlenergie
- \oplus breites Frequenzspektrum, bis in den Röntgenbereich
- Phasenraumdämpfung (d.h. Verkleinerung der Emittanz)
- ← Aufbau transversaler Polarisation der Elektronen/Positronen im Strahl (Sokolov-Ternov-Effekt: Energieunterschied für Elektronenspin $\uparrow\uparrow/\uparrow\downarrow$ zu Magnetfeld $\longrightarrow E^4$ -Term: Spineinstellung mit kleinerer Energie bevorzugt)

Teilchenstrahlparameter

- Teilchstrahlparameter
 - 1. Allgemeine Parameter (Energie, Zeitstruktur, Strom, Dimensionen)
 - 2. Dämpfung, Dämpfungspartitionen
 - 3. Teilchenverteilung im Phasenraum
 - 4. Strahlemittanz und Wiggler-Magnete

Strahlparameter

- Strahlenergie:
 - Teilchenimpuls (für transversale Strahldynamik)
 - kinetische Energie (für Beschleunigung)
- Zeitstruktur:
 - Unterteilung des Strahls in Bunche,
 - ggf. diese noch in Mikro-Bunche;
 - auch Zusammenfassung mehrere Mikro-Bunche zu einem "bunch train" mit Lücken zwischen den Trains
- Strahlstrom:
 - mittlerer Strom im Bunch (d.h. zeitgemittelt über Zeitdauer des Bunches)
 - mittlerer Strom im gesamten Beschleuniger (≙ Summe alles Bunch-Ströme)
- Strahldimension:
 - Strahlgröße durch $\sqrt{\text{Emittanz} \cdot \beta}$ -Funktion
 - normierte Emittanz: $\varepsilon_n \equiv \beta_r \gamma_r \epsilon$, bleibt konstant gemäß Liouville-Theorem (NB: β_r , γ_r Lorentzfaktoren)
 - normierte 95%-Emittanz: $\varepsilon_{N95} \equiv 6\beta_r \gamma_r \epsilon$, wenn Strahl nicht gaußförmig oder "ausgefranst"

Strahlparameter

• Luminosität:

 $\begin{array}{ll} - \ \mathsf{Z\"ahlrate} \ \dot{N} = \mathcal{L}\sigma & \\ - \ \mathcal{L} = fB \frac{n_1 n_2}{4\pi \sigma_x \sigma_y} & \\ = fB \frac{n_1 n_2}{4\sqrt{\beta_x^* \varepsilon_x \beta_y^* \varepsilon_y}} & \\ \end{array} & \text{ mit Teilchenzahlen } n_{1,2} \text{ in } B \text{ kollidierenden Bunchen, Kollisionsfrequenz } f, \\ \\ = fB \frac{n_1 n_2}{4\sqrt{\beta_x^* \varepsilon_x \beta_y^* \varepsilon_y}} & \\ \end{array} & \\ \text{ Strahlgröße } \sigma_{x,y}, \text{ Emittanz } \varepsilon_{x,y}, \beta \text{-Funktion am Kollisionsort } \beta_{x,y}^* \\ \\ \rightarrow \ \mathcal{L} \propto I^2 & \\ \end{array} & \\ \begin{array}{l} \text{ bei Strom } I \text{ je Strahl} \\ (\text{NB: nicht-lineare Strahl-Strahl-Effekte} \rightarrow \mathcal{L} \propto I^1 \text{ bei hohem Strahlstrom}) \end{array}$

Dämpfung

- Synchrotron-Strahlung $\propto E^4$
- geringe Energiestreuung im e^{-}/e^{+} -Strahl \rightarrow starke Streuung in Synchrotron-Strahlungsverlust
- ightarrow Reduktion der Energiestreuung im Strahl durch Synchrotron-Strahlung
- Betatron-Oszillation \leftrightarrow Transversalimplus, trägt zu Synchrotron-Strahlungsverlust bei
- Beschleunigungsresonatoren führen Strahl nur Longitudinalimpuls zu
- ightarrow Reduktion der Transversalimpulse im Strahl durch Synchrotron-Strahlung
- Dämpfung: Partionszahl $J_{x,y,s}$, Dekrement $\alpha_{x,y,s} = -\frac{1}{2} \frac{\langle P_{\gamma} \rangle}{E_0} J_{x,y,s}$, Robinsonkriterium $J_x + J_y + J_s = 4$

mittlere Synchrotron-Strahlungsleistung $\langle P_{\gamma} \rangle$ (longitudinal: $\langle P_{\gamma} \rangle$ = Beschleunigungsenergie ΔE /Umlaufzeit T_0), Teilchenenergie E_0 , für "separated function"-Beschleuniger $J_x \approx 1$, $J_y \approx 1$, $J_s \approx 2$, d.h. Dämpfung in allen 3 Dim.

Teilchenverteilung im Phasenraum

- relativistische Elektronen/Positronen erzeugen Synchrotron-Strahlung in Ablenkmagneten
- Quantenanregungs- und Dämpfungseffekte
- \rightarrow Gleichgewichtswerte von Strahlparametern:
- $\diamond \text{ Energiestreuung: } \frac{\sigma_{\varepsilon}^2}{E^2} \approx 3.84 \times 10^{-13} \text{m} \cdot \frac{\gamma^2}{J_s} \frac{\langle 1/\rho^3 \rangle_s}{\langle 1/\rho^2 \rangle_s} \quad \text{mit Photonenergie } \varepsilon \text{ und } \langle 1/\rho^n \rangle_s = \int_0^\infty \varepsilon^2/\rho(\varepsilon)^n \mathrm{d}\varepsilon$
- \diamond Bunch-Länge: $\sigma_\ell \propto 1/\sqrt{U_0}$
- $\diamond \text{ transversale Strahl-Emittanz: } \varepsilon_{x,y} \approx 3.84 \times 10^{-13} \text{m} \cdot \frac{\gamma^2}{J_{x,y}} \frac{\langle 1/\rho^3 \mathcal{H} \rangle_s}{\langle 1/\rho^2 \rangle_s}$ Ablenkung nur in horizontaler Ebene $\rightarrow \varepsilon_y/\varepsilon_x = 1/\gamma^2 \ll 1$
- \diamond transversale Strahlgröße: $\sigma_{x,y} = \sqrt{\varepsilon_{x,y}\beta_{x,y}(s) + \eta^2(s)\sigma_{\delta}^2}$

mit Beschleunigungsspannung U_0

mit
$$\mathcal{H}(s) = \beta \eta'^2 + 2\alpha \eta \eta' + \gamma \eta^2$$

grob genähert

mit
$$\sigma_{\delta}\equiv\sigma_{\varepsilon}/p_{0}c$$
, Dispersion $\eta(s)$

Fig. 10.3. Distribution of beam ellipses for a beam with finite emittance and momentum spread (schematic). The variation in the shape of the phase ellipses for different energies reflects the effect of chromatic aberrations

Strahlemittanz und Wiggler-Magnete

- Elektron/Positron-Kreisbeschleuniger: Strahl-Emittanz durch Synchrotron-Strahlung bestimmt
- Emittanzvergrößerung durch Quantenanregung bei Photon-Emission

(bei Dispersion $\eta \neq 0$ führt Synchrotron-Strahlungsemission zu plötzlichem Energieverlust

- \rightarrow Änderung der Gleichgewichtstrajektorie
- \rightarrow i.A. größere Betatron-Oszillationsamplitude um neues Gleichgewichtsorbit)
- ▷ Emittanzverkleinerung durch Dämpfung
- \rightarrow Emittanz-Manipulation durch gezielten Einsatz von Synchrotron-Strahlung !
- so gen. *Dämpfungs-Wiggler-Magnete* mit $B(z) = B_w \cos(2\pi z/\lambda_p)$ (vgl. Folie 9.11)
- hinspace in Abschnitten mit $\eta=0~
 ightarrow$ minimale Quantenanregung durch Synchrotron-Strahlung
- $\triangleright \text{ für Zahl der Wiggler-Pole} \rightarrow \infty \text{ gilt:} \qquad \frac{\varepsilon_{x,w}}{\varepsilon_{x,0}} \rightarrow \frac{4}{30\pi} \frac{C_Q}{J_x} \frac{\beta_x}{\varepsilon_x \rho_w} \gamma^2 \Theta_w^2 \qquad \text{mit } C_Q \equiv 2.06 \times 10^{-11} \frac{\text{m}^2}{\text{GeV}^2},$

 $\Theta_w = \lambda_p/2\pi\rho_w$, Bahnkrümmung im Wiggler $\rho_w = p_0c/eB_w$, Betatron-Fkt. β_x und Emittanz ε_x in horizontaler Ebene

- \rightarrow mit Wiggler: <u>Emittanz nimmt ab</u>, wenn $\frac{4}{30\pi} \frac{C_Q}{J_x} \frac{\beta_x}{\varepsilon_x \rho_w} \gamma^2 \Theta_w^2 < 1$
- $\diamond \ \underline{\text{Energiestreuung}} \quad \frac{\sigma_{\varepsilon,w}^2}{\sigma_{\varepsilon,0}^2} \to \frac{\rho_0}{\rho_w} = \frac{B_w}{B_0} \quad \underline{\text{wächst}},$

wenn Wiggler-Magnetfeld $B_w > B_0$ Magnetfeld in Ablenkdipolen ($B_w > B_0$ trifft für fast alle Anwendungen zu)

Strahllebensdauer

8

Strahllebensdauer: Stromabnahme $I(t) = I_0 \cdot \exp(-t/\tau)$

Zur endlichen Strahllebensdauer trägt bei:

- <u>Vakuum</u>: Teilchenverlust durch Streuung an Restgas in Strahlröhre, wenn Streuwinkel > Akzeptanz der Apertur
 - $\diamond \frac{\text{Vielfach-Streuung}}{(\text{Coulomb-Streuung})} \rightarrow \text{Winkeländerung}$

$$ightarrow$$
 Emittanz $arepsilon_{x,y} \propto rac{Z^2}{(eta cp)^2} rac{L^2}{X_0}$

(Kernladung Z, Weglänge im Restgas L, Strahlungslänge des Restgases X_0)

♦ elastische Streuung
 (Rutherford-Streuung)

$$\tau^{-1} \propto P \cdot \left(\frac{zZ}{\beta cp}\right)^2 \frac{1}{\tan^2(\hat{\theta}/2)}$$

Teilchenladung z, Restgasdruck P,max. zulässiger Streuwinkel $\hat{\theta}$

- ◊ inelastische Streuung
 - z.B. Bremsstrahlung

Fig. 11.2. Measurement of beam lifetime in an electron storage ring with a movable scraper. The curve on the left shows the Coulomb scattering halo for amplitudes larger than 6 σ indicating a strong deviation from a gaussian particle distribution. The curve on the right shows the beam lifetime as a function of scraper position.

11.1

Strahllebensdauer (fortgesetzt)

• thermische Photonen:

durch inverse Compton-Streuung der Teilchen im Strahl an thermischen Photonen im Strahlrohr

- Synchrotron-Strahlungsphotonen: inverse Compton-Streuung
- <u>Kollision zwischen Teilchenstrahlen</u>: hierzu tragen insbesondere Strahl-Strahl-Wechselwirkungen (nicht-lineare Effekte) bei

Beispiele:

- ◇ LEP-Beschleuniger (e⁺e⁻) Tab. typ. Strahllebensdauer bei Kollisionen: 6-12 Stunden
- Tevatron-Beschleuniger (pp)
 typ. Strahllebensdauer bei Kollisionen:
 15-25 Stunden
- ♦ Hera-Beschleuniger (e⁻p) typ. p-Strahllebensdauer bei Kollisionen:
 ~ 100 Stunden

Beam Gas 10 ⁻¹⁰ Torr	$\tau_{g} =$	200 hours
Beam thermal photons	$\tau_{tp} =$	80 hours
Beam synchrotron photons	$\tau_{sp} =$	134 hours
Total	$ au_{tot} =$	40 hours

Kollektive Phänomene

- Kollektive Phänomene
- Bisher vereinfachte Betrachtung: Einzelteilchen-Effekte bestimmen transversale und longitudinale Strahldynamik
- Aber: Kollektive Phänome \rightarrow Störungen der Strahlstabilität, z.B.
 - Lineare Raumladungseffekte
 - Strahl-Strahl-Effekte
 - Wake-Felder (Kielwasser-Effekte)
 - . . .
- Kollektive Phänomene i.A. \neq kleine Störungen
- Kollektive Phänomene hängen von Strahlintensität ab
- \triangleright Reduktion des Strahlstroms \rightarrow geringer Auswirkungen von kollektiven Phänomenen
- \triangleright Korrektur der Auswirkungen \rightarrow erhöhter Strahlstrom möglich

Lineare Raumladungseffekte

• Eigenfelder des Teilchenstrahls sind gegeben durch die Strahlgröße und lineare Ladungsdichte λ :

$$E_x \propto \frac{\lambda}{\sigma_x \cdot (\sigma_x + \sigma_y)} x \qquad E_y \propto \frac{\lambda}{\sigma_y \cdot (\sigma_x + \sigma_y)} y$$
$$B_x \propto -\frac{\lambda}{\sigma_y \cdot (\sigma_x + \sigma_y)} y \qquad B_y \propto +\frac{\lambda}{\sigma_x \cdot (\sigma_x + \sigma_y)} x$$

- \diamond flacher Strahlquerschnitt vorteilhaft, da entweder σ_x oder σ_y groß
- $ightarrow E_{x,y} \propto 1/(\sigma_x+\sigma_y)$ und $B_{x,y} \propto 1/(\sigma_x+\sigma_y)$ klein
- $\diamond~$ Elektron/Positron-Teilchenstrahlen in Kreisbeschleunigern meist $\sigma_y \ll \sigma_x$
- \rightarrow horizontale Felder $E_x \ll E_y$ vertikale Felder

Strahl-Strahl-Effekte

- Collider: gegenläufig umlaufende Teilchenstrahlen + Strahlkreuzung in Zentren der Teilchendetektoren
- \rightarrow Kräfte zwischen Teilchenstrahlen, z.B. vertikale Kraft zwischen Teilchen- und Antiteilchen-Strahl

$$F_y \propto -\frac{\lambda}{\sigma_y(\sigma_x + \sigma_y)}y$$

- $\rightarrow F_y$ hat fokussierende Wirkung \rightarrow Quadrupolwirkung
- $\rightarrow \text{ Verschiebung des vertikalen Betatron-Tunes ($ *betatron tune shift* $): } \qquad \delta Q_y \propto \frac{\lambda \ell \beta_y}{\sigma_y (\sigma_x + \sigma_y)} = \frac{eN\beta_y}{B\sigma_y (\sigma_x + \sigma_y)}$ für *B* Bunche der Länge ℓ , insgesamt *N* Teilchen, lineare Ladungsdichte $\lambda = eN/B\ell$
- \diamond max. zulässige Tune-Shifts $\delta Q_y \approx 0.04$ -0.06 (Elektronen, Protonen weniger (NB: Protonstrahl i.A. rund))

Wake-Felder

Insbesondere in Elektron/Positron-Beschleunigern:

- hohe Ladungsdichte in kurzem Teilchen-Bunch,
 d.h. hoher instantaner Strom beim Durchlauf der Teilchen
- Anregung hoher (bis 20.ter) Oberwellen der Umlauffrequenz
- > Wechselwirkung zwischen Teilchen-Bunch und Umgebung
- elmagn. Resonanzen in Vakuumröhre und Cavities angeregt
- z.B. Anregung h

 öhere Schwingungsmoden in Beschleunigungsresonatoren (engl.: higher order modes, HOM)
- ◇ Erwärmung von Beschleunigerstrukturen durch Absorption der angeregten Oberwellen (↔ Supraleitung)
- Rückwirkung auf (ersten und nachfolgende) Teilchen-Bunche
- longitudinale&transversale Deformationen&Oszillationen
 einzelner Bunche (d.h. Abweichung von gaußschem Profil)
- longitudinale&transversale Verschiebung der Bunche vom
 & Oszillationen um Sollorbit

Fig.12.1 Parasitic mode fields

Wake-Felder (fortgesetzt)

Beispiele für longitudinale & transversale parasitäre Schwingungsmoden in Beschleunigerstrukturen (z.B. Cavities, Balgverbindungen zwischen Strahlrohren, Strahlinjektions-/-extraktionsbereiche, etc.)

S

Fig. 12.2. Longitudinal parasitic mode

magnetic field electric field E beam pulse cavity wall b.) r-z plane r-\ plane a.)

Fig. 12.3. Transverse parasitic mode

Wake-Feldeffekte auf einzelne Bunche:

у

Prof. Dr. O. Biebel

• transversale Deformation & Oszillationen

• ebenso auch longitudinal (Head-Tail-Instabilität)

Wake-Feldeffekte auf Multibunch-Teilchenstrahlen:

transversale Verschiebung der Bunche

• longitudinale Verschiebung der Bunche

Strahlemittanz

Bedeutung der Strahlemittanz ε in Speicherringen

- Strahlquerschnitt $\sigma \propto \sqrt{\beta \varepsilon}$
- Luminosität $\mathcal{L} \propto 1/\sqrt{eta_x arepsilon_x eta_y arepsilon_y}$
- Liouville-Theorem: Strahlmittanz ist Erhaltungsgröße im Beschleuniger
- Synchrotronstrahlung vergrößert/verkleinert Emittanz durch Quantenanregung/Dämpfung
- \rightarrow Minimierung durch Optimierung der Magnetgitter und Magnetstärken
- ▷ optimale Parameter im *isomagnetischen Beschleunigerring* (alle Magnete haben gleiche Stärke und Länge) am Eintrittspunkt der Ablenkmagnete (Index 0) bei verschwindender Dispersion ($\eta_0, \eta'_0 = 0$):

$$\alpha_{0,\text{opt}} \approx 15 \,, \quad \beta_{0,\text{opt}} \approx \sqrt{\frac{12}{5}} \ell_b \,, \quad \langle \mathcal{H} \rangle_{\min} \approx \frac{\Theta^3 \rho}{4\sqrt{15}} \,, \quad \varepsilon_{0,\text{opt}} \approx 3.84 \times 10^{-13} \text{m} \cdot \frac{\gamma_r^2 \Theta^3}{4\sqrt{15}} \quad (\text{vgl. Folie 10.4})$$

Twiss-Parameter α, β , Phasenraumellipse durch Dispersion \mathcal{H} , Gleichgewichtsemittanz ε , Dipollänge ℓ_b , Ablenkradius ρ , Ablenkwinkel $\Theta \equiv \ell_b / \rho$ im Dipol, Lorentzfaktor γ_r

weitere Verringerung der Emittanz durch Dispersion $\eta, \eta' < 0$: $\langle \mathcal{H} \rangle_{\eta,\min} \approx \langle \mathcal{H} \rangle_{\min} + \frac{1}{\sqrt{5}} (\frac{5}{3} \eta_0 + 6 \eta'_0 \ell_b) \Theta$

- NB: Emittanz \propto (Teilchenenergie) 2 und \propto (Ablenkwinkel $\Theta=\ell_b/\rho)^3$
- \rightarrow Niedrig-Emittanzringe: viele kurze Magnete mit großem Ablenkradius, geringe Teilchenenergie

Optimale Emittanz in Collider-Speicherring

• Luminosität

 $\mathcal{L} = f \frac{N_1}{AB} N_2 = f \frac{N_1}{4\pi\sigma_x \sigma_y B} N_2 \qquad (\text{Strahlquerschnitts } A = 4\pi\sigma_x \sigma_y, \text{ Umlauffrequenz } f, \text{ Teil-cherry} here are a constrained on the strahler of the strahler o$

• Betatron-Tune-Verschiebung für B Bunche und insgesamt N Teilchen:

$$\delta Q_y \propto \frac{N\beta_y}{B\sigma_y(\sigma_x + \sigma_y)} \longrightarrow N_{1,2} \propto \left(\frac{\delta Q_y}{\beta_y}\right) B\sigma_y(\sigma_x + \sigma_y) \approx \left(\frac{\delta Q_y}{\beta_y}\right) B\sigma_y\sigma_x \quad \text{i.}$$

 \rightarrow Luminosität am Kollisionspunkt ($\beta \rightarrow \beta^*$): hängt von Betatron-Tune-Verschiebung ab

$$\mathcal{L} \propto f \cdot \left(\frac{\delta Q_y}{\beta_y^*}\right)^2 \sigma_x \sigma_y B$$

(Elektronenstrahlen wg. Synchrotronstrahlung .A. flach: $\sigma_u \ll \sigma_x$)

- Bei Betatron-Tune-Verschiebung $\delta Q_y \leq \delta Q_{max} = \text{const.}$ (Limitierung durch Stabilität)
- \triangleright Maximierung der Luminosität \mathcal{L} am Kollisionsort:
 - $\beta_y^* \rightarrow$ min. durch *Low Beta Insertions*

(auch gen. *Minibeta-Quadrupole* $\stackrel{\frown}{=}$ Fokussierungsmagnete nahe Kollisionsort)

- große Strahlemittanz $\varepsilon \rightarrow \sigma_{x,y} \propto \sqrt{\varepsilon_{x,y} \beta_{x,y}}$ groß
- viele Bunche B
- hohe Kollisionsfrequenz f

- Strahlkühlung
 - 1. Strahltemperatur
 - 2. Stochastische Kühlung
 - 3. Elektronkühlung
 - 4. Ionisationskühlung
 - 5. Laserkühlung
- Liouville-Theorem: Fläche der Phasenraumellipse (Emittanz) in nicht-dissipativen Systemen ist invariant
- Reduktion des 3-dim-Phasenraumvolumens eines Teilchenstrahls häufig erforderlich, um Strahlgröße (transversal und longitudinal) zu verringern (z.B. $\sigma_{x,y} \propto \sqrt{\varepsilon_{x,y}}$)
- bei Elektron/Positron-Strahlen: Synchrotron-Strahlung als dissipativer Effekt (Wiggler/Undulatoren zur Reduktion der Emittanz)
- ◇ bei schwereren Teilchen (Protonen, Ionen, etc.) ist Synchrotron-Strahlung stark unterdrückt,
- $\rightarrow\,$ andere dissipative Effekte notwendig

Strahltemperatur

Begriffe *Strahltemperatur*, *Strahlkühlung* analog zur kinetischen Gastheorie Temperatur eines Teilchenstrahls \iff kinetische Energie der Teilchen im Strahl: Unterschieden werden *transversale Temperatur* T_{\perp} und *longitudinale Temperatur* $T_{||}$:

$$\frac{3}{2}k_BT = \frac{1}{2}m\langle v^2 \rangle$$

• transversale Temperatur:

$$\models \text{ Es gilt } (* \triangleq \text{ Schwerpunktsystem}): \qquad k_B T_{\perp} = \left\langle \frac{1}{2}mc^2 \beta_{\perp}^{*2} \right\rangle = \left\langle \frac{1}{2}mc^2 \gamma_r^2 \beta_{\perp}^2 \right\rangle$$

$$\Rightarrow \text{ mit } \beta_{\perp} \approx \beta_r p_{\perp} / p \quad \text{und } \langle p_{\perp}^2 \rangle = \langle p_x^2 + p_y^2 \rangle = p^2 \left(\sigma_{x'}^2 + \sigma_{y'}^2 \right) \rightarrow k_B T_{\perp} \approx \frac{1}{2}mc^2 \gamma_r^2 \beta_r^2 \left(\sigma_{x'}^2 + \sigma_{y'}^2 \right)$$

$$\Rightarrow \text{ Strahldivergenz } \sigma_{u'} = \sqrt{\varepsilon_u \gamma_u} \text{ (vgl. Folie 10.4) und } \gamma_u = (1 + \alpha_u^2) / \beta_u \xrightarrow{\alpha_u \text{klein}} 1 / \beta_u \text{ (vgl. Folie 5.13)}$$

$$\Rightarrow \text{ transversale Temperatur:} \qquad k_B T_{\perp} \approx \frac{1}{2}mc^2 (\gamma_r \beta_r)^2 \left(\frac{\varepsilon_x}{\beta_x} + \frac{\varepsilon_y}{\beta_y} \right)$$

$$= \text{ longitudinale Temperatur:} \qquad k_B T_{\parallel} \approx \left(\frac{1}{2}mc^2 \beta_{\parallel}^{*2} \right) = \frac{\beta_{\parallel}^* = \frac{\beta_{\parallel} - \beta_r}{1 - \beta_{\parallel} \beta_r} = \frac{\Delta \beta}{\gamma_r^{-2} - \gamma_r^{-2} \Delta \gamma} \approx \gamma_0^2 \Delta \beta}{d\gamma_r / d\beta_r = \beta_r \gamma_r^* \equiv \Delta \gamma / \Delta \beta \text{ mit } \Delta \gamma = \gamma - \gamma_r} = \frac{1}{2}mc^2 \beta_r^2 \left\langle \frac{\Delta p}{p} \right\rangle^2$$

$$\Rightarrow \text{ longitudinale Temperatur:} \qquad \left[\frac{1}{2}k_B T_{\parallel} \approx \frac{1}{2}mc^2 \beta_r^2 \left(\frac{\sigma_p}{p} \right)^2 \right]$$

$$\Rightarrow \text{ Gesamt-Temperatur:} \qquad \left[\frac{3}{2}k_B T = k_B T_{\perp} + \frac{1}{2}k_B T_{\parallel} \approx \frac{1}{2}mc^2 (\gamma_r \beta_r)^2 \left(\frac{\varepsilon_x}{\beta_x} + \frac{\varepsilon_y}{\beta_y} + \frac{1}{\gamma_r^2} \left(\frac{\sigma_p}{p} \right)^2 \right)$$

Prof. Dr. O. Biebel Beachte Emittanzdefinition: Hier 47%-Emittanz, d.h. Strahlgröße 1σ ; bei 90%-Emittanz, d.h. 2σ : $\beta_{x,y} \rightarrow 4\beta_{x,y}$ ws 2003/04

Stochastische Kühlung

- 1968 erfunden von S. van der Meer (Nobelpreis 1984)
- 1983 genutzt zur Antiproton-Kühlung bei Entdeckung der intermediären Vektorbosonen W $^{\pm}$ und Z 0
- Konzept: \diamond Teilchendichte entlang Trajektorie ist Zufallsgröße, d.h. Teilchen sind *stochastisch* verteilt
 - ◇ Pick-Up-Elektrode registriert momentanen Schwerpunkt der Ladungsverteilung im Strahl (Fig.1)
 - \diamond verstärktes, δ -förmiges Signal re-zentriert Schwerpunkt der Ladungsverteilung
 - \rightarrow Reduktion von $\beta_{\perp} \leftrightarrow$ Temperaturreduktion $T_{\perp} \leftrightarrow$ Kühlung
 - \diamond Idealisiert: Pick-Up misst jedes Teilchen & Kicker korrigiert es \Longrightarrow Emittanz $\rightarrow 0$
 - ◇ Realität: Endliche Bandbreite in Signalverarbeitung
 - \triangleright Pick-up: $\langle u \rangle$ von Teilchenensemble
 - \triangleright Kicker an Maximum der β -Funktion: korrigiert $\langle u'
 angle$

Elektronenkühlung

- 1966 von G. Budker vorgeschlagen
- Konzept: \diamond "heißer" lonenstrahl $\langle v_{l}^{2} \rangle > \langle v_{e}^{2} \rangle$ mit "kaltem" Elektronenstrahl $\langle v_{e}^{2} \rangle$ "mischen" (Fig.3)
 - ◇ Ionenstrahl kühlt ab, Elektronenstrahl aufgeheizt (Fig.4(b): Situation im Teilchensystem)
 - ◊ ersetze aufgeheizten Elektronenstrahl durch neuen kalten

$$\diamond$$
 lonenstrahltemperatur $T_{\rm I} = \frac{1}{2}M\langle v_{\rm I}^2 \rangle \rightarrow T_{\rm e} = \frac{1}{2}m_{\rm e}\langle v_{\rm e}^2 \rangle$ (im Grenzwert

$$\rightarrow v_{\rm I}^{\rm rms} \equiv \sqrt{\langle v_{\rm I}^2 \rangle} = \sqrt{\frac{m_{\rm e}}{M}} v_{\rm e}^{\rm rms} \sim \frac{1}{43} \sqrt{\frac{1}{A}} v_{\rm e}^{\rm rms}$$
 (Atomgewicht A)

14.5

Beispiel: Low Energy Antiproton Ring LEAR, CERN

5 Central drift tube

lonisationskühlung

(Fast) ausschließlich nur für Myonen nutzbar:

- \diamond Myonen verlieren Energie $\frac{dE}{ds}\Delta s$ beim Durchqueren von Absorber (unabhängig von Impulsrichtung)
- ◇ longitudinale Beschleunigung ersetzt Energieverlust nur in longitudinaler Richtung
- ightarrow transversale Kühlung des Myonstrahls
- ◊ vielfach zu wiederholen f
 ür signifikaten K
 ühlung

SKETCH OF TRANSVERSE "IONIZATION COOLING" PRINCIPLE

Figure 3. Schematic view of transverse "ionization cooling." Energy loss in an absorber occurs parallel to the motion; therefore transverse momentum is lost with the longitudinal energy loss. Energy gain is longitudinal only; the net result is a decrease in transverse phase-space area.

Laserkühlung

- zur Kühlung von Atomen & Ionen in elmagn. Fallen, auch für Ionenstrahlen in Speicherringen
- Konzept: \diamond partiell ionisierte Ionen haben diskrete Absorptionslinien
 - ♦ Ionenbewegung: Dopplerverschiebung der Absorption
 - ♦ Frequenz $\omega' = \gamma_r \omega (1 \beta_r \cos \theta)$ gerichtet eingestrahlt, sodass schnellste lonen absorbieren
 - ♦ Emission von angeregten Ionen erfolgt ungerichtet (isotrop)

Vo+Vr

- \rightarrow Impulsübertrag von Licht auf Ionen
- \diamond Variation der eingestrahlten Frequenz \rightarrow Reduktion der Geschwindigkeitsstreuung der Ionen

Fig. 10 Change in ion-velocity distribution caused by the laser during the laser-cooling process

Vergleich: Strahlkühlung

	stochastisch	Elektronen	Ionisation	Laser	Synchrotron- Strahlung
für Teilchenart	alle	lonen	Myonen	einige Ionen	e ⁻ , e ⁺
bevorzugte Teilchen- geschwindigkeit	hoch	mittel $(\beta < 1/\sqrt{2})$	gering $(eta\gamma\ll4)$	beliebig (NB: Dopplereffekt)	sehr hoch $(\gamma \ge 100)$
Strahlintensität	niedrig	beliebig	beliebig	beliebig	beliebig
Kühlzeit	$N\cdot 10^{-8}~{ m s}$	$1\cdot 10^{-2}~{ m s}$	$\sim 10^{-2}{\rm s}$	$\sim 10^{-4} \text{-} 10^{-5}~{\rm s}$	$\sim 10^{-3}{\rm s}$
bevorzugte Strahl- temperatur	hoch	niedrig	niedrig	niedrig	beliebig

I

Existierende, zukünftige und alternative Beschleunigerkonzepte

- Existierende, zukünftige und alternative Beschleunigerkonzepte
 - 1. LEP, SLC
 - 2. Tevatron, PEP-II, KEK-B, HERA, RHIC, CESR, DA Φ NE
 - 3. LHC
 - 4. Linear-Collider: NLC, TESLA, CLIC
 - 5. Neutrino-"Beschleuniger"
 - 6. Myon-Beschleuniger
 - 7. Free-Elektron-Laser
 - 8. Laser/Teilchenstrahl-Plasma-Beschleuniger

Übersicht der Beschleuniger-Projekte

Tab. 3.3 Liste einiger im Betrieb oder im Bau befindlicher Teilchenbeschleuniger und Sp cherringe.

Name	Ort		Max. Strahl- energie/GeV	Fertig- stellung
Protonen-Synchrotrons				
CERN PS	Genf, Schweiz		28	1960
BNL AGS	Brookhaven, USA		32	1960
KEK	Tsukuba, Japan		12	1976
Serpukhov	Serpukhov, UdSSR		76	1967
CERN SPS	Genf, Schweiz		450	1976
Fermilab Tevatron	Batavia, USA		900	
Elektronenbeschleuniger				
SLAC Linearbeschleuniger	Stanford, USA		20	1966
DESY-Synchrotron	Hamburg, BRD	7		1964
Speicherringe				
SPEAR	Stanford, USA	e+e-	4.2 + 4.2	1972
DORIS II	DESY, Hamburg	e+e-	5.6 + 5.6	1974/82
PETRA	DESY, Hamburg	e+e-	23 + 23	1978
PEP	Stanford, USA	e+e-	15 + 15	1980
CESR	Cornell, USA	e+e-	8 + 8	1979
TRISTAN	Tsukuba, Japan	e⁺e	30 + 30	1986
LÉP	CERN, Schweiz	e+e-	100 50 + 50 100	1989
SppS	CERN, Schweiz	pp	310 + 310	1982
Tevatron	Fermilab, USA	pp	900 + 900	1987
HERA	Hamburg, BRD	ep	30e + 820p	1990
Linearbeschleuniger mit koll.	idierenden Strahlen			
SLC	Stanford, USA	e ⁺ e ⁻	50 + 50	1988

Davon noch in Betrieb, u.a.:			
CERN PS :	p, e [±] , Ionen (Teststrahlen, Vorbeschl. SPS)		
CERN SPS :	p, e [±] , Ionen (Teststrahlen, Vorbeschl. LHC)		
KEK :	e ⁺ →← e ⁻ (für b-Quark-Fabrik KEK-B)		
DORIS II :	e ⁻ (Synchrotron-Strahlungsquelle)		
PETRA :	p, e^+ (Vorbeschl. HERA)		
PEP :	e ⁺ →←e ⁻ (für b-Quark-Fabrik PEP-II)		
CESR :	e ⁺ →←e ⁻ (für CLEO-Exp.)		
Tevatron :	$p \rightarrow \leftarrow \overline{p}$ (für DØ-& CDF-Exp., 2×1000 GeV)		
HERA :	p→← e ⁺ (für H1-& ZEUS-Exp.)		
RHIC :	197 Au $\rightarrow \leftarrow ^{197}$ Au (100 GeV/Nukleon)		

Large Hadron Collider

Im Tunnel des LEP- e^+e^- -Beschleunigers:

- LHC: größter & höchstenergetischster Beschleuniger weltweit
- Proton→←Proton
- zwei separate Ringe
- 2×7 TeV Energie
- 4 Experimente:
 - ♦ ATLAS, CMS (Vielzweck-Experimente)
 - ♦ LHC-b (CP-Verletzung bei b-Quarks)
 - ♦ ALICE (Quark-Gluon-Plasma)

Chronologie von LHC:

- $\diamond \sim$ 1984 erstes Konzept
- ♦ 1991 konkrete Design-Studie
- ♦ Dez. 1994 Zustimmung des CERN Councils
- ♦ 1999 Beginn der Erdarbeiten
- ♦ 2000/1 Demontage von LEP & Experimenten

- ♦ 2004-6 Installation Beschleuniger&Experimente
- ◊ 2004 LHC-Sektor- & Injektionstest
- ♦ Herbst 2006 Testlauf Beschleuniger
- ◊ Frühjahr 2007 Beginn des regulären Messprogramms
- $\diamond \gtrsim$ 15 Jahre Laufzeit des Messprogramms

LHC-Parameter:			1
		Injektion	Kollision
Ringumfang	[m]	26658.883	
Ringabstand	[mm]	194	
Anzahl Ablenkmagnete)	1232	
Länge je Magnet	[m]	14.3	
B-Ablenkfeldstärke	[T]	0.535	8.33
Protonenergie	[GeV]	450	7000
Protonen/Bunch		1.15×10 ¹¹	
Bunchanzahl		2808	
Strahlstrom	[A]	0.584	
Energie im Strahl	[MJ]	23.3	362
Synchrotron- Strahlungsleistung	[W]	0.06	3600
Energieverlust/Umlauf	[eV]	0.12	6710
RF-Frequenz	[MHz]	400.8	
ges. RF-Spannung	[MV]	8	16

		Injektion	Kollision	
Energiestreuung δ	$[10^{-4}]$	3.06	1.11	
(RMS)				
eta^* in IP1&5	[m]	18	0.55	
transv. Emittanz $arepsilon_{x,y}$	[μ m rad]	3.5	3.75	
Bunchlänge (RMS)	[cm]	17.5	7.7	
Strahldurchmesser	[μ m]	375.2	16.7	
an IP1&5 (RMS)				
Betatron-Tunes $Q_{x,y}$ (hori, vert)		64.28, 59.31	64.31, 59.32	
Synchrotron-Tune Q_s		5.5×10^{-3}	1.9×10^{-3}	
Übergangsenergie γ_t		55.68		
Spitzenluminosität	$[cm^{-2}s^{-1}]$		1.0×10 ³⁴	
Strahllebensdauer	[h]	—	14.9	

Figure 3.2: Schematic layout of the LHC. The blue line indicates Beam1 and the red line Beam 2. Beam 1 circulates clockwise and Beam 2 counter clockwise.

- Ring besteht aus 8 Oktanden
- 4 Wechselwirkungszonen: IP1, IP2, IP5, IP8
- Strahlinjektion in IP2 und IP8
- Strahlextraktion (Dump) in IP6
- RF-Beschleunigungsstrukturen in IP4
- Reduktion der Impulsstreuung in IP3 (große Dispersionsfunktion D(s): Teilchen mit großer Impulsstreuung $\delta \rightarrow$ Kollimator)
- Reduktion der Betatron-Amplitude in IP7 (kleine Dispersionsfunktion D(s): Teilchen mit großer Betatron-Ampl. $\beta_{x,y} \rightarrow$ Kollimator)

Strahloptik in Kollisionspunkten IP1&5:

(a) Beam 1, injection optics

IP5B2

β.

ß

6400.

350.

315.

280.

245.

210.

175.

140.

105.

70.

35.

 $\begin{array}{c} 0.0 + \\ 6100. \end{array}$

 β_{k} (m), β_{j} (m)

 D_x

6700.

MAD-X 1.12 18/06/03 15.21.32

7000.

2.2

2.0

1.8

1.5

1.2

1.0

0.8

0.5

0.2

0.0 -0.2 7300.

s (m)

D (m)

(c) Beam 1, collision optics

(d) Beam 2, collision optics

Figure 4.3: Injection (top) and collision (bottom) optics of the high-luminosity insertions at IP1 and IP5 for a β^* of 18 m and 0.55 m.

Strahlinjektionsprinzip IP2&8:

- Strahl läuft von unten auf LHC-Sollorbit zu (1.24 mrad Winkel)
- Quadrupol Q5 reduziert Annäherungswinkel (um 0.39 mrad)
- Kickermagnet bringt zu injizierenden Strahl auf LHC-Sollorbit (0.85 mrad Kickwinkel)
- Kickermagnet: Anstiegszeit des *B*-Feldes < 1 μ s, Plateaulänge 8 μ s, Abfallzeit des *B*-Feldes < 3 μ s (Abfallszeit = Länge der Zeitlücke für Strahldump-Kicker)

15.8

LHC Bunch-Struktur des Strahls:

Figure 4: Kicker magnet cross section.

- (Lambertson)-Septummagnet:
 - ♦ Dipolfeld f
 ür Injektionsstrahl
 - \diamond Strahl auf Sollorbit verläuft in B-feldfreien Raum
 - (B-Feldabschirmung durch Mu-Metall)
 - Septummagnetlänge: 4 m
 - ◇ Anzahl Septummagnete: 5/Injektionszone
- Kickermagnet:
 - $\diamond\,$ kurzzeitiges Dipolfeld $\rightarrow\,$ Kick (=kleine Ablenkung) des Injektionsstrahls
 - ◊ Konzept: Kondensator (54 kV) über Stromschiene entladen

 - HV-Versorgung, Pulsformung, HV-Schalter:
 außerhalb des LHC-Tunnels
 - Zuleitung über 35 m lange Koaxialkabel (10 Stück parallel)
 - ♦ Kickermagnetlänge: 2.65 m
 - ♦ Anzahl Kickermagnete: 4/Injektionszone

Strahldump in IP6:

Strahldump: 7 TeV Strahlen in einem Umlauf (88 μ s) aus LHC extrahieren & absorbieren

- 15 Kickermagnete $(t_{\text{Anstieg}} < 3 \,\mu\text{s}, t_{\text{Plateau}} > 90 \,\mu\text{s})$
- 15 Septummagneten

(vergleichbar zu Injektionsseptum)

- 10 Dilution-Kickermagnete
 - (verteilen Strahlintensität auf Absorber)

0.33 mrad Septum (V) 2.4 mrad Require:

 $<3 \ \mu s$ extraction kicker rise time (abort gap),

>89 µs extraction kicker flat-top length (full LHC turn)

- Absorberblock je: \diamond 7.7 m langer, segmentierter Kohlenstoff-Zylinder mit Ø0.7m \diamond muss 428 MJ absorbieren
 - ◊ in Stahlmantel eingeschlossen
 - ◊ rund 6 t Eigengewicht
 - \diamond umgeben von \sim 900 t Eisen-Stahl-Strahlungsschilde
- ♦ max. Temperatur 1050-1250 °C

0.06 mrad

- ◊ wassergekühlt
- ♦ muss 20 Jahre halten

Н

The extraction process

Linea-Collider: NLC, TESLA, CLIC

- Elektron-Positron-Collider limitiert durch Synchrotron-Strahlung (Energieverlust $\propto E^4/R$)
- größter e^+e^- -Beschleuniger: LEP (27 km Umfang, 2×104 GeV, ~ 10 MW Synchrotron-Strahlungsverluste)
- höhere Teilchenenergie \longrightarrow Lineare Collider (LC)
 - Unterscheidung i.W. durch Beschleunigungs-System:
 - ▷ <u>normalleitende</u> Beschl.resonatoren (=Cavities)
 - ◊ (nahezu) beliebig hohe Beschleunigungsgradienten
 - hohe thermische Verluste in Cavities
 - ◊ nur sehr kurze Strahlpulse möglich
 - ightarrow Strahllagekorrektur für aktuellen Strahl nicht möglich
 - ◊ i.A. starke "Beam-Strahlung" (longit. Synch.-Strahlung)
 - supraleitende Beschleunigungsresonatoren (TESLA)
 - \diamond Beschl.gradienten theor. auf \sim 55 MV/m beschränkt
 - \diamond praktisch erreicht \sim 35-40 MV/m

- ♦ geringste Verluste in Cavities
- ◇ lange Strahlpulse möglich
- ightarrow Strahllagekorrektur für aktuellen Strahl möglich
- ◊ nur geringe "Beam-Strahlung"
- ▷ "Drive-beam"-Beschleunigung (CLIC)
 - intensiver, niederenergetischer Strahl parallel zu Linear-Collider erzeugt HF in Resonatoren im Multi-GHz-Bereich

(entspricht langgestrecktem Klystron)

- HF-Leistung beschleunigt Teilchen im Haupt-Beschleuniger
- (nahezu) beliebig hohe Beschleunigungsgradienten
 (> 60 MV/m)
- \diamond Multi-GHz-Bereich führt zu starken Wake-Feldern (Effekte wachsen \propto Frequenz^3)
- \rightarrow derzeit noch Research&Development (R&D)

TESLA: Supraleitender Linearer e⁺e⁻ Collider

		TESLA-500
Accelerating gradient	$E_{acc} [MV/m]$	23.4
RF-frequency	f_{RF} [GHz]	1.3
Fill factor		0.747
Total site length	L_{tot} [km]	33
Active length	[km]	21.8
No. of accelerator structures		21024
No. of klystrons		584
Klystron peak power	[MW]	9.5
Repetition rate	f_{rep} [Hz]	5
Beam pulse length	$T_P \ [\mu \mathrm{s}]$	950
RF-pulse length	T_{RF} [μs]	1370
No. of bunches per pulse	n_b	2820
Bunch spacing	$\Delta t_b \; [\mathrm{ns}]$	337
Charge per bunch	$N_e [10^{10}]$	2
Emittance at IP	$\gamma \varepsilon_{x,y} \ [10^{-6} \mathrm{m}]$	10, 0.03
Beta at IP	$\beta_{x,y}^*$ [mm]	15, 0.4
Beam size at IP	$\sigma_{x,y}^*$ [nm]	553, 5
Bunch length at IP	σ_{z} [mm]	0.3
Beamstrahlung	$\delta_E ~[\%]$	3.2
Luminosity	$L_{e+e-} [10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	3.4
Power per beam	$P_b/2 \; [\mathrm{MW}]$	11.3
Two-linac primary electric power	P_{AC} [MW]	97
(main linac RF and cryogenic systems)		
e^-e^- collision mode:		
Beamstrahlung	$\delta_{E,e-e-} \ [\%]$	2.0
Luminosity	$L_{e-e-} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	0.47

Table 1.3.1: TESLA parameters for the $E_{cm} = 500 \text{ GeV}$ baseline design. The machine length includes a 2% overhead for energy management. The klystron power and primary electric power quoted include a 10% regulation reserve.

TESLA: Optik

- vor Wechselwirkungspunkt: Ablenkung des Strahls aus Beschleunigungsstrecke, damit so gen. "Beam-Strahlung" (
 Iongitudinale Synchrotron-Strahlung) nicht in Wechselwirkungszone gelangt
- Magnetgitter mit Dipolen & fokus./defokus.
 Quardrupolen
- Fig.7.2.1: Betatron-Funktion, Dispersionsfunktion, Magnetgitter auf einer Seite des Wechselwirkungspunkts (engl. Interaction Point, IP)
- "Final Focus" ist spezielle Anordnung von Fokussierungsmagneten (im Bild nicht detailliert)
- \rightarrow am IP Strahlgröße: 533 nm \times 5 nm ! (horizontal \times vertikal, notwendig für Luminosität)

beamline axis (meter)

TESLA: einige weitere Beschleuniger-Elemente

- Positron-Quelle:
 - $\diamond~$ Undulator-Magnet erzeugt intensive $\gamma\text{-}\mathsf{Strahlung}$

(γ -Energie mehrere MeV)

- $\diamond \gamma$ -Photonen auf Absorber-Target
- $\rightarrow e^+e^-$ -Paarbildung (im Feld der Atomkerne)
- ♦ Einfangen der Positronen durch Solenoid-Magnet
- ♦ und Beschleunigung der Positronen
- ♦ Speicherung im Emittanz-Dämpfungsring
- Emittanz-Dämpfungsring:
 - ◇ "hundknochen-förmiger" Ring
 - ◇ ca. 17 km Umfang, 5 GeV Strahlenergie, bis zu 160 mA
 Strahlstrom
 - \diamond Emittanz $\gamma \varepsilon$: Dämpfung durch Wiggler-Magnete
 - \diamond Injektion: $\gamma \varepsilon \approx$ 0.01 m/10 \times 10⁻⁵ m (e⁺/e⁻)
 - ♦ Extraktion: $\gamma \varepsilon_x / \gamma \varepsilon_y \approx 8 \times 10^{-6}$ m / 0.02×10⁻⁶ m
 - ♦ Dämpfungszeit 28 ms/50 ms für e⁺/e⁻

Figure 4.3.1: Sketch of the positron source layout.

Figure 5.1.1: Conceptual layout of the positron damping ring. The electron ring is similar with the exception that the injection point is located close to the indicated ejection position at the beginning of the linac.

Neutrino-"Beschleuniger"

- Höchstintensiver Protonenstrahl
 - $(>10^{13}$ Protonen/ Schuss, 10-20 GeV)
- * auf Target (muss \gtrsim MW absorbieren, z.Zt. Quecksilber)
- produzierte Pion-Teilchen einfangen \rightarrow Pion-Zerfall in langem Flugtunnel \rightarrow Myonen
- * Kühlung des Myonstrahls (v.a. transversal)
- Phasenrotation des Myonstrahls (große Energiestreuung dE, kurze Pulsdauer $dt \longrightarrow$ geringes dE, großes dt + Bunchstruktur)
- speichern der Myonen in Kreisbeschleuniger mit langen geraden Abschnitten
- Myonzerfall \rightarrow Neutrinos, starke Bündelung in geradem Abschnitt, wg. Lorentzfaktor $\gamma \gg 1$
- \triangleright große technologische Herausforderungen in *
- \rightarrow Neuentwicklungen erforderlich:

Myon-Beschleuniger

- Myon: ~ 200 -fach höhere Masse gegenüber Elektron
- \rightarrow Synchrotron-Strahlung $200^4 \approx 2 \times 10^9$ -fach geringer
- ♦ höhere Strahlenergie in Beschleuniger mit geringem Radius möglich
- ♦ Kollisionen: punktförmige Myonen ↔ Protonen mit komplizierter Struktur
- \diamond hohe Myon-Masse \rightarrow stärke Kopplung ans Higgs-Boson
 - \rightarrow direkte Erzeugung und Präzisionsuntersuchung des Higgs-Bosons
- ▷ Myon-Collider benötigt μ^+ und μ^- -Strahlen
- Neutrino-Fabrik ist erster Schritt zu Myon-Collider
- neue technologische Probleme bei Myon-Strahlenergie \gtrsim TeV, u.a.:
- \diamond Neutrinos aus Myon-Zerfall mit Energie $E_{\nu} \sim$ TeV
- \diamond Wirkungsquerschnitt Neutrino-Nukleon wächst $\propto E_{
 u}$
- signifikante Strahlungsbelastung durch Neutrinos
- \rightarrow Myon-Collider z.B. tief unterirdisch

Free-Elektron-Laser (FEL)

- Elektronenstrahl durchläuft Undulator
- Spontane Emission von Synchrotron-Strahlungsphotonen
- Elektronenstrahl wechselwirkt mit Synchrotron-Strahlungsphotonen
- Bunch wird durch Wechselwirkung in Mikro-Bunche aufgeteilt
- Mikro-Bunche emittieren kohärent Synchrotron-Strahlungsphotonen
- \rightarrow *SASE*-Prinzip:

Self-Amplified-Spontaneaous-Emission

- Intensität der Synchrotron-Strahlung \propto (Teilchenzahl im Bunch)²
- FEL-Parameter:
 - ♦ Photon-Energiebereich: 0.2-12.4 keV
 - ♦ Photonstrahl-Leistung: 20-100 GW

Figure 9.1.1: Schematic Diagram of a Single-Pass Free Electron Laser (FEL) operating in the Self-Amplified-Spontaneous-Emission (SASE) mode. The bunch density modulation ("micro-bunching"), growing up in parallel to the radiation power, is schematically shown in the lower part of the figure. Note that in reality the number of slices is much larger.

- ♦ Zahl der Photonen/Bunch: $(1-20) \times 10^{12}$
- \diamond typ. Photonstrahl-Divergenz: 1 μ rad
- \diamond typ. Photonstrahl-Durchmesser: 20 μ m

Figure 9.1.2: Spectral peak brilliance of X-ray Free Electron Lasers (XFEL) and undulators for spontaneous radiation at TESLA, in comparison with third-generation synchrotron radiation sources. For comparison, also the spontaneous spectrum of an XFEL undulator is shown. The label TTF-FEL indicates design values for the FEL at the TESLA Test Facility, with (M) for the planned seeded version. First lasing was demonstrated at TTF FEL in the year 2000 at 11 eV photon energy, and a peak brilliance of $(6 \pm 4) \cdot 10^{25}$ in the above units has been achieved up to now.

Variable	Unit	Value
Linac Parameters		
optimised gradient for XFEL operation	MV/m	18
linac repetition rate f_{rep} for XFEL	Hz	5
bunch length (rms)	$_{\mathrm{fs}}$	80
bunch spacing	ns	93
number of bunches per train		11500
bunch train length	$\mu { m s}$	1070
bunch charge	nC	1
normalised emittance at undulator entrance	$\operatorname{mrad}\operatorname{mm}$	1.6
uncorrelated rms energy spread	MeV	5.1
RF duty cycle	%	0.5
average electron beam power (27 GeV branch)	MW	≤ 0.8
average electron beam power (50 GeV branch)	MW	≤ 1.4
over-all power efficiency AC to electron beam	%	28
FEL Parameters		
typical saturation length	m	100 - 220
photon energy range	keV	0.2 - 12.4
photon beam power range	GW	20 - 100
number of photons per bunch	10^{12}	1 - 20
typical photon beam divergence (rms)	$\mu \mathrm{rad}$	1
typical photon beam diameter (rms)	$\mu { m m}$	20

Table 9.1.1: Key parameters for XFEL operation with TESLA. More detailed tables on XFEL operation are given in part V.

Laser/Teilchenstrahl-Plasma-Beschleuniger

- Limitierung der Beschleunigungsgradienten in herkömmlichen Resonatoren auf typ. < 100 MV/m (höhere Gradienten → stärkere HF-Felder → Feldemission aus Resonatorwänden → Oberflächenbeschädigung)
- alternative Beschleunigungsmethoden gesucht, z.B. mittels Plasma:
 - ♦ Plasma: Elektronen e^- & Ionen I^+ , im Mittel neutral
 - ◇ Plasma: e⁻ sehr beweglich, I⁺ "träge"
 - ◊ durchlaufender Teilchen- (a)/ Laserpuls (b)
 - ightarrow transv. Verschiebung der e $^-$ bzgl. I $^+$
 - $\hat{=}$ transversale Wake-Felder
 - verschobene e⁻ oszillieren transversal durch pos.
 I⁺-Kanal
 - ightarrow Wake-Felder laufen durch Plasma
 - > zu beschleunigender Elektronenbunch "surft" auf beschleunigendem Wake-Feld
 - $\diamond~$ (theor.) Beschleunigungsgradienten: bis zu \sim 100 GV/m !

Fig. 12.3. Transverse parasitic mode

transv. Wake-Felder durch nicht-zentrierten Teilchenstrahl

Zusammenfassung

- Physik der Beschleuniger: angewandte Elektrodynamik mit Berührungspunkten zu vielen weiteren Gebieten:
 - ♦ Hochfrequenztechnik
 - ♦ Magnettechnik
 - ♦ Supraleitung f
 ür Magnete & Hochfrequenz-Resonatoren
 - ♦ Nicht-lineare Theorie
 - \diamond Chaos
 - ♦ Laser
 - ♦ Plasma
 - $\diamond \cdots$
- Prinzipien werden bis zur technologischen Grenze ausgereizt
- neue Prinzipien werden gesucht/untersucht, um zu höheren Strahlenergien & -intensitäten zu gelangen
- Teilchenführung basiert meist noch auf Magnete (abgesehen von "Channeling" von Teilchen entlang Kristallebenen für Spezialanwendungen)
- Physik der Beschleunigung: immer noch weites Feld für neue Ideen & Konzepte !