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Abstract—Service requests are the origin of every ser-

vice provisioning process and therefore the entities to be 

considered first. Similar to Physics and Engineering Sci-

ences, service requests as generic model variables are 2- 

tuples of {value} and [unit]. Complex service requests build 

hierarchies with control structures for the server stations. 

With respect to the abstractions of quantitative modeling, 

degrees of freedom within these control structures can be 

used to transform models into equivalent ones, which make 

it possible to simplify the evaluation process. Service re-

quest specific server stations can be mapped to common 

multiplexed server stations, thereby extending the applica-

tion domain to multiclass problems. 

The modeling and evaluation calculus FMC-QE uses a 

3-dimensional representation space, which makes it possi-

ble to integrate paradigms and results from Queueing Net-

works as well as those from Timed Petri Nets. Quantitative 

models are represented by one or more trees of parameter-

ized flow balance equations, being placed in a Tableau 

structure for evaluation. Due to hierarchical modeling and 

the simplicity of the corresponding formulas the computa-

tional complexity is minimal. This will be demonstrated by 

means of a well known problem. 

I.  INTRODUCTION 

Quantitative evaluation techniques of state discrete systems 

can be roughly divided into those based on Queueing Theory 

and those on Time augmented Petri Net Theory as illustrated 

by Fig. 1.  Models of the former class are represented by static 

networks of queueing server stations, whereas those of the 

latter use dynamic networks of places and transitions.  

 
 

Fig. 1: Classification of Quantitative Methods 

 

The new approach presented here tries to integrate the differ-

ent views of the classical disciplines within one model, that 

allows to extend the class of problems to be efficiently han-

dled, e.g. performance analysis of large software based sys-

tems.  

The models presented in the following are based on FMC- 

the Fundamental Modeling Concepts, developed and applied 

in teaching and research at HPI ([12], [16], www.f-m-c.org), in 

which three different structures are used (see Fig. ), namely: 

1. Static structures, which describe the composition of active 

and passive components  

2. Dynamic structures, which describe the causal ordering of 

the state transitions 

3. Value structures, which describe the contents with their 

value ranges and relations 

 

Fig. 2: The Three Plan Types Used in FMC 

Each structure corresponds to a bipartite graph (Agent 

Channel Net, Petri Net, Entity Relation Diagram), referring to 

each other. We consider these structures to be the dimensions 

of a 3-dimensional representation space. Successful modeling 

with FMC of SAP’s R/3 system in the 1990s has proven 

FMC’s usability even for large software systems. We therefore 

base our model on FMC. It is called FMC-QE (QE for quanti-

tative evaluation). 

Quantitative Modeling for practical applications has always 

to be considered under the aspect of cost efficiency. This re-

quires analyzing both the system and the kind of questions to 

be answered through modeling. 

For the class of performance related questions, if one asks 

for the system’s throughput and response times under specific 

load assumptions, there is a well known tradeoff between 

computational complexity and gain in accuracy of the meas-

ures to be evaluate (s. 2.)  

Fig. 3 illustrates the well-known fact that the performance 

measures, throughput, and response time over number of cus-

tomers for continuously working systems have a well defined 

asymptotic behavior, which is widely independent of the type 

of mathematical model applied. 

FMC-QE  

A New Approach in Quantitative Modeling 
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Fig. 3: Asymptotic Performance Behavior A,R over N 

The results of deterministic and stochastic analysis (here 

D/D/1, M/M/1 and M/M/1/K) for a single queueing station 

differ only for small numbers of customers. Assuming, that this 

station represents the bottleneck component of a larger system, 

then the asymptotic behavior of the total system is determined 

accordingly. 

Facing these facts the question is, whether and how the cost 

effectiveness of quantitative modeling can be increased, possi-

bly using additional degrees of freedom in the chosen 3-

dimensional modeling space. This goal should not exclude 

more detailed analysis down to the state space explorations at 

the Markov chain level, if the real problem requires that. 

The approaches pursued so far, make use of the following 

four techniques: 

1. reduction of the methodical complexity of open and 

closed systems by a common model 

2. reduction of state space complexity by distinction of con-

trol and operational states 

3. reduction of algorithmic complexity by transforming the 

model into an equivalent one 

4. reduction of computational complexity by approximating 

product form solutions  

II.  MODELING SERVICE REQUESTS 

As in the physical and engineering sciences, service requests 

are tuples of {value} and [unit]: 

Service Requests

SRqi
[bb]

  Service Request of type i at hierarchical level [bb]

Ni
e[bb] 

={Ni
e[bb]

} [Ni
e[bb]

] unified Service Request of type i at level [bb]

{Ni
e[bb]

} = 1  (by definition)

Ni
[bb] 

={Ni
[bb]

} [Ni
e[bb]

] as multiples of unified Service Request Ni
e[bb]

ni
[bb] 

= {Ni
[bb]

}   number of Service Requests of type i at level [bb]

Service Response

SRsi
[bb]

  Response to SRqi
[bb]

  (e.g. ACK, NAK(cause), unknown)

(only used in compositional structures (static plans))
 

The variables carry as attribute the hierarchical level [bb] 

with the values 1 for the root and 0 for the surrounding uni-

verse. The generative structure together with an example is 

shown in Fig. 4 and Fig. 5. 

When dealing with hierarchies, two kinds of relations be-

tween their elements have to be carefully distinguished: 

1. organizational hierarchies with super-/subordinate rela-

tions 

2. abstraction hierarchies with compose/decompose relations 

Complex service requests form hierarchies of kind 2), 

thereby decomposing into less complex ones (e.g., go shop-

ping: buy milk, fill up the car, cut your hair). The decomposi-

tion is done by control service requests, the final service by 

operational service requests.  

Hierarchical Traffic Transformation Flow Coefficients vi al-

low requests in each control node to be replicated. Degrees of 

freedom within the control structures allow transformations 

into equivalent networks.  

 

Fig. 4: Generative Structure for Hierarchical Service Request 

 

Fig. 5: Tree Structure of Hierarchical Service Requests 

III. MODELING SERVER STATIONS 

The structure of the server system is generated through a 1: 

1 mapping of the Service Request tree as shown by Fig. 5. 

Hierarchical Server Stations, hSSt, process control server 

requests. Basic Server Stations, BSSt, process the operational 

server requests. The latter are those, which need service times, 

whereas the former execute “timeless”. The sharing of the 

same servers as common resources by different BSSts is de-

scribed later. Each Server Station Subtree can be replicated by 

means of a Server Station Multiplexing Coefficient mi
[bb]

. The 

common model of a queueing server station, shown in Fig. 6a) 

is refined to the models in          Fig. 6 b) – d). 
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Fig. 6: modeling Server Stations 

 

         Fig. 7: Relation between Server Request’s and Server System’s Structure      

IV. MODELING TRANSITIONS 

It is a well known practice in design and implementation 

of IT systems to distinguish between control states and op-

erational states of a system [19]. While the control state 

space of a single server is typically very small, at least com-

prising the 2 states “Idle” and “Busy”, the operational state 

space is potentially infinite, either countable infinite for 

discrete operational items or uncountable infinite for con-

tinuous operational variables.  

This concept can easily be applied in systems modeling 

through distinguishing between “black” control tokens for 

marking the control states and “colored” operational tokens 

representing the customers, carrying the type and amount of 

service required as attached values. The corresponding 

structural dynamic elements are shown in Fig. . Considering 

a whole network, there are the following definitions: 

Control state: marking of places with control tokens 

M
c
 = (M

c
1, … M

c
i, … M

c
k) 

Operational state: number of customers 

N = (N1, … Ni, … Nk),  Ni = (Ni,s, Ni,q) 

with Ni,s and Ni,q as numbers in server resp. in queue. 

In a system with k queueing stations, the states are repre-

sented by values of variables to be found in the composi-

tional structure for the server agent.  

 

Fig. 8: Structure of Controlled Operational Transition T
co
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The T
co

 embedded into the control structure of a BSSt 

with its queueing place and dispatching transition is show 7. 

 

  
Fig. 9: Basic Server Station BSSt with Embedded T

co
 

The very common serial connection of server stations 

raises the questions of the appropriate interpretation of se-

rial transitions, when the service request flow contains ser-

vice responses after passing a T
co

. The easiest understanding 

is a simplified model for a control flow, where each service 

request is directed to the subsequent station through the 

hierarchical station, when the service response is fired by 

the predecessor transition. 

V. FUNDAMENTAL LAWS 

The fundamental Laws applied are the so called: 

1. Little’s Law (LL) 

2. Forced Traffic Flow Law (FTFL) 

The former is the well known “black box” law from 

Queueing Theory to interrelate N, A and R for system in 

steady state. The FTFL however is a “shadow” law, mostly 

used, when visits of server stations are considered. 

In this hierarchical context, the two laws can be looked at 

as complementary laws, where LL describes dynamic proc-

esses on one hierarchical layer, and FTFL describes proc-

esses between two adjacent hierarchical layers. Both to-

gether are able to describe processes within hierarchical 

systems. It is important to emphasize the fundamental dif-

ference between the very similar appearing flow balance 

equation 

 λi = pj,i λj  (1) 

and the FTFL equation 

 λi = vi λ  (2) 
Little's Law (LL)

Ni
[bb]

 = Ai
[bb]

 Ri
[bb] 

Forced Traffic Flow Law (FTFL)

Ai
[bb]

 = 
 
vi,int

[bb]
 Ah

[bb-1]    
h = sup(i)

   Ai
[bb+1]

  = Ni
[bb+1]

/∆t 

   Aj
[bb]

  = Nj
[bb]

/∆t 

Traffic  Flow Transformation Coefficient

vi,int
[bb]

 = {vi,int
[bb]

}[vi,int
[bb]

] 

   {vi,int
[bb]

} = {Ai
[bb]

}/{Ah
[bb--1]

}

   [vi,int
[bb]

] = [Ni,int
e[bb]

]/[Nh
e[bb-1]

]  
These Traffic Flow Transformation coefficients are 

sometimes used to calculate number of visits from prob-

abilities. This can be visualized by means of diagrams as in 

Fig.: 

Fig. 10: Traffic Coefficient vi vs. Probability pi,j 

 

Two facts are evident from Fig. 10: 

1. Transformation (2) generates a different flow, which 

can only be done by some active component, repre-

sented in Fig. by a transition, whereas transformation 

(1) splits a flow into partial flows, where the joint flow 

always equals the unsplit one. 

2. The overall steady state condition always requires the 

reverse transformation of (2), which corresponds to 

nested operations between two adjacent hierarchical 

layers. 

Beside the two fundamental laws there are other rela-

tions, which form altogether the FMC-QE calculus (see An-

nex). 

VI. MODELING STATIONARY PROCESSES 

Open Queueing Networks (OQN) and Closed Queueing 

Networks (CQN), the latter being the class to which time 

augmented Petri Nets (Stochastic Petri Nets SPNs, General-

ized Stochastic Petri Nets GSPNs) belong, are considered 

and treated in a totally different way [15]. In OQN the arri-

val rate A is the independent parameter, where as in CQN 

the number N of customers is the independent parameter. 

The common abstraction however is the stationarity of 

processes, where each departing customer is replaced by an 

arriving one, either in a deterministic synchronized or a 

stochastic way. Both can be combined in a closed system, if 

the outside birth/death process is modeled by an external 

server with the two parameters A and N. 

Fig. 11 illustrates the property, that customers cycle with 

a mean interarrival time through the serving system as well 

as through the outside world. The more customers want 

service, the longer is the roundtrip time. The more the arri-

val rate approaches the maximum throughput of the serving 

system, the more customers queue up there. 

 

Fig. 11: Stationary Process with Parameters A and N 
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Fig. 11 shows the time Xext spent outside as function of 

the free parameters, arrival rate A and total number of cus-

tomers N. The external birth-death process is modeled as an 

infinite server, using the response time law for Xext. It thus 

resembles the model for a dialogue system.  

VII. THE FMC-QE TABLEAU 

The quantitative model of a server system is represented 

by a parameterized set of equations, which is tree struc-

tured. This tree of equations can be understood as the pro-

duction tree of some program, which can be evaluated bot-

tom up by a stack based interpreter. This tree can be stored 

in a table structure, called the FMC-QE Tableau. The inter-

preter used so far for the evaluation of the Tableau here was 

MS Excel. A more powerful interpreter is under develop-

ment (see Conclusion and Outlook). 

According to the 3-dimensional representation of models, 

the Tableau consists of: 

1.  Service Request Section 

2.  Server Section 

3.  Dynamic Evaluation Section 

together with 

4. Common Section 

5. Global Parameter Section. 

A description of the Tableau’s syntax and semantic is 

given in the “FMC-QE Calculus” (see Annex), and will be 

illustrated by a simple example in the following section. 

VIII. EXAMPLE 

Given the following open queueing network [3]: 

 

Fig. 12: Open Queueing Network from [3], p. 76 ff 

Given:

λext = 4 [1/s]

µ = (25; 33,33; 16,67; 20) [1/s]

(<see QN drawing>)

Solution of the flow balance equation system
λ =  λ P

results in:

λ =  (20;10;10;4) [1/s]

ρ = (0,8; 0,3; 0,6; 0,2)

n = (4; 0,429; 1,5; 0,25)
R = (0,2; 0,043; 0,15; 0,0625) [s]

Nsys = 6,179; Rsys = 1,545 [s]
 

 

The following Figures 13 - 15 represent the FMC-QE 

model, which is the basis for the Evaluation shown in Ta-

bles 1 and 2. 

 

 
Fig. 13: Service Request structure for example of Fig. 13     Fig. 14: Server System structure for example of Fig. 1 

Global Parameter Section

Ntotal
[0]

7

Amax
[1]

 =min(Bi,max) 5,0

A
[1]

 = f*Amax = 4,0
1>f = 0,8

pret 0,8

vsys,intern = 1/(1-pret) 5
 

 Fig. 15: dynamic control structure for example of Fig. 13       Table 1a: FMC- QE Tableau (Part  I) 
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Common SectionService Request Section Server Section Dynamic Evaluation Section

level SRQ unit Server category H: Bi
[bb]

=min(Bmin(Bi/vi) =vi
[bb]

*A Ai/Bi mi*Ui Ui
2
/(1-Ui) ni,q+ni,s Ni,q/Ai Ni,s/Ai Ni/Ai

i [bb] [Ni
e
] pi vi,ext vi,int vi name kind Xi mi,ext mi,int mi B: Bi =mi/(Xi) Bmax = Ai

[bb]
= Ui= ni,s= ni,q = ni= W i= Xi= Ri=

Bottleneck M/M/1

2L 4 [IO1 loop] 0,5 5 0,5 2,5 Disk 1l B 0,03 1 1 1 33,3 13,3 10,0 0,30 0,30 0,13 0,43 0,01 0,030 0,043

2=2Ltrans 3 [IO 1] 0,5 5 1 5 Disk 1 sH 1 1 1 66,7 13,3 20,0 0,30 0,30 0,13 0,43 0,01 0,015 0,021

3L 4 [IO2 loop] 0,5 5 0,5 2,5 Disk 2l B 0,06 1 1 1 16,7 6,7 10,0 0,60 0,60 0,90 1,50 0,09 0,060 0,150

3=§Ltrans 3 [IO 2] 0,5 5 1 5 Disk 2 sH 1 1 1 33,3 6,7 20,0 0,60 0,60 0,90 1,50 0,05 0,030 0,075

1 3 [Compute] 1 5 1 5 CPU B 0,04 1 1 1 25,0 5,0 20,0 0,80 0,80 3,20 4,00 0,16 0,040 0,200

5L=1&2&32[Calculate loop] 1 1 5 5 Calculator l sH 1 1 1 25,0 5,0 20,0 0,80 1,70 4,23 5,93 0,21 0,085 0,296

5=5Ltrans 1 [Calculate] 1 1 1 1 Calculator sH 1 1 1 5,0 5,0 4,0 0,80 1,70 4,23 5,93 1,06 0,425 1,482

4 1 [init] 1 1 1 1 Initiator B 0,05 1 1 1 20,0 20,0 4,0 0,20 0,20 0,05 0,25 0,01 0,050 0,063

sys=4&5 1 [exec Job] 1 1 1 1 System aH 1 1 1 5,0 5,0 4,0 0,80 1,90 4,28 6,18 1,07 0,475 1,545

cust 1 [do Job] 1 1 1 1 Customer IS *) 0,21 1 ### 0,82 4,0 4,0 4,0 1,00 0,82 0,00 0,82 0,00 0,205 0,205

uni 0 [host] 1 1 1 1 Universe aH 1 1 1 4,0 4,0 4,0 1,00 2,72 4,28 7,00 1,07 0,680 1,750

**) IS Server is never Bottleneck N=A*R = 7,0 Check

Table 1b: FMC- QE Tableau (Part  II) 
Common Section Service Request Section Server Section Dynamic Evaluation Section

level SRQ unit vi
[bb]

=vi,out
[bb]

*vi,int
[bb]

Server category mi
[bb]

=mi,out
[bb]

*mi,int
[bb]

Bi
[bb]

/vi
[bb]

vi
[bb]

*A Ai
[bb]

/Bi
[bb]

mi
[bb]

*Ui
[bb]

(ni,s
[bb]

)/(1-ni,s
[bb]

) ρi/(1-ρi) ni,q
[bb]

/Ai
[bb]

ni,s
[bb]

/Ai
[bb]

ni
[bb]

/Ai
[bb]

i [bb] [Ni
e
] pi vi,out vi,int vi name kind Xi mi,out

[bb]
 = mi,int

[bb]
mi

[bb]
= Bi

[bb]
Amax,i

[1]
 = Ai

[bb]
= Ui

[bb]
= ni,s

[bb]
= ni,q

[bb]
 = ni

[bb]
= W i

[bb]
= Xi

[bb]
= Ri

[bb]
= 

Bottleneck M/M/1

2L 4 [loop IO 1] 0,5 v2
[3]

0,5 v2L
[4]

= Disk 1l B 0,03 m2
[3]

1 m2L
[4]

= m2L
[4]

/X2L
[4]

B2L
[4]

/v2L
[4]

v2L
[4]

* A A2L
[4]

/B2L
[4]

m2L
[4]

*U2L
[4]

(n2L,s
[4]

)
2
/(1-n2L,s

[4]
) n2L,s

[4]
+n2L,q

[4]
n2L.q

[4]
/A2L

[4]
n2L,s

[4]
/A2L

[4]
n2L

[4]
/A2L

[4]

2=2L
trans

3 [IO 1'] 1 v5L
[2]

1 v2
[3]

= Disk 1 sH m5L
[2]

1 m2
[3]

= m2
[3]

*B2L
[4]

/v2L,int
[4]

B2
[3]

/v2
[3]

v2
[3]

* A A2
[3]

/B2
[3]

m2
[3]

*U2
[3]

(n2,s
[3]

)
2
/(1-n2,s

[3]
) n2,s

[3]
+n2,q

[3]
n2,q

[3]
/A2

[3]
n2,s

[3]
/A2

[3]
n2

[3]
/A2

[3]

3L 4 [loop IO 2] 0,5 v3
[3]

0,5 v3L
[4]

= Disk 2l B 0,06 m3
[3]

1 m3L
[4]

= m3L
[4]

/X3L
[4]

B3L
[4]

/v3L
[4]

v3L
[4]

* A A3L
[4]

/B3L
[4] m3L

[4]
*U3L

[4]
(n3L,s

[4]
)
2
/(1-n3L,s

[4]
) n3L,s

[4]
+n3L,q

[4]
n3L.q

[4]
/A3L

[4]
n3L,s

[4]
/A3L

[4]
n3L

[4]
/A3L

[4]

3=3L
trans

3 [IO 2'] 1 v5L
[2]

1 v3
[3]

= Disk 2 sH m5L
[2]

1 m3
[3]

= m3
[3]

*B3L
[4]

/v3L,int
[4]

B3
[3]

/v3
[3]

v3
[3]

* A A3
[3]

/B3
[3]

m3
[3]

*U3
[3]

(n3,s
[3]

)
2
/(1-n3,s

[3]
) n3,s

[3]
+n3,q

[3]
n3,q

[3]
/A3

[3]
n3,s

[3]
/A3

[3]
n3

[3]
/A3

[3]

1 3 [Compute] 1 v5L
[2]

1 v1
[3]

= CPU B 0,04 m5L
[2]

1 m1
[3]

= m1
[3]/X1

[3] B1
[3]/v1

[3] v1
[3]* A A1

[3]/B1
[3] m1

[3]
*U1

[3]
(n1,s

[3]
)/(1-n1,s

[3]
) n1,s

[3]
+n1,q

[3]
n1,q

[3]/A1
[3] n1,s

[3]/A1
[3] n1

[3]/A1
[3]

5L=1&2&3 2 [loop Calculate]1 v5
[1]

5 v5L
[2]

= Calculator l sH m5
[1]

1 m5L
[2]

= m5L
[2]

*min(Bj
[3]

/vj,int
[3]

) B5L
[2]

/v5L
[2]

v5L
[2]

* A A5L
[2]

/B5L
[2]

n5L,s
[2]

=Σni,s
[3]

n5L,q
[2]

=Σni,q
[3]

n5L,s
[2]

+n5L,q
[2]

n5L,q
[2]

/A5L
[2]

n5L,s
[2]

/A5L
[2]

n5L
[2]

/A5L
[2]

5=5L
trans

1 [Calculate] 1 vsys
[1]

1 v5
[1]

= Calculator sH msys
[1]

1 m5
[1]

= m5
[1]

*B5L
[2]

/v5L,int
[2]

B5
[1]

/v5
[1]

v2
[1]

* A A5
[1]

/B5
[1]

m5
[1]

*U5
[1]

(n5,s
[1]

)
2
/(1-n5,s

[1]
) n5,s

[1]
+n5,q

[1]
n5,q

[1]
/A2

[1]
n5,s

[1]
/A5

[1]
n2

[2]
/A2

[2]

4 1 [Initialize] 1 vsys
[1]

1 v4
[1]

= Initiator B 0,05 msys
[1]

1 m4
[1]

= m4
[1]

/X4
[1]

B4
[1]

/v4
[1]

v4
[1]

* A A4
[1]

/B4
[1] m4

[1]
*U4

[1]
(n4,s

[1]
)
2
/(1-n4,s

[1]
) n4,s

[1]
+n4,q

[1]
n4,q

[1]
/A4

[1]
n4,s

[1]
/A4

[1]
n4

[1]
/A4

[1]

sys=4&5 1 [exec Job] 1 1 1 vsys
[1]

= System aH 1 1 msys
[1]

= msys
[1]

*min(Bj
[1]

/vj,int
[1]

) Bsys
[1]

/vsys
[1]

vsys
[1]

* A Asys
[1]

/Bsys
[1]

msys
[1]

*Usys
[1]

(nsys,s
[1]

)
2
/(1-nsys,s

[1]
) nsys,s

[1]
+next,q

[1]
nsys,q

[1]
/Asys

[1]
nsys,s

[1]
/Asys

[1]
nsys

[1]
/Asys

[1]

cust 1 [do Job] 1 1 1 vext
[1]

Customer IS *) Xext 1 n
[0]

-nsys
[1]

next
[1]

mext
[1]/Xext

[1]
 --- **) vext

[1]* A Aext
[1]/Bext

[1] mext
[1]

*Uext
[1]

0 next,s
[1]

+next,q
[1]

next,q
[1]/Aext

[1] next,s
[1]/Aext

[1] next
[1]/Aext

[1]

uni 0 [let do] 1 1 1 1 Universe aH 1 1 1 Bext
[1]

=Bsys
[1]

Buni
[0]

/vsys
[0]

vuni
[1]

* A Auni
[ß]

/Buni
[0]

nsys,s
[1]

+next,s
[1]

nsys,q
[1]

+next,q
[1]

nuni,s
[1]

+nuni,q
[1]

nuni,q
[0]

/A
[1]

nuni,s
[0]

/A
[1]

nuni
[0]

/A
[1]

Xext
[1]

=N
[0]

/A
[1]

-Rsys
[1]

 Table 2: formulas from FMC.QE calculus used in Evaluation of Table 1 

 

Fig. 13 shows the service request tree for the QN of Fig. 12 

with service times from the corresponding server system tree 

(Fig. 14). shows the corresponding serialized dynamic control 

structure. The parameters of these three different models are 

mapped to the Tableau (see Table 1b) with one hierarchical 

equation (row) for each entity. The set of rules applied are 

named the FMC-QE Calculus (see Annex), which delivers the 

variables of interest within the Dynamic Evaluation Section. 

The solution delivered by the Tableau of Table 1b calculus 

is equivalent to solving the flow balance equation system. 

While the equation system has to be solved for each set of pa-

rameter values, the Tableau has to be set up only once, pro-

vided tree structured service requests are modeled. Modeling 

Multiplexer Server Station 

IX. MODELING MULTIPLEXER SERVER STATION 

Modeling Multiplex/Demultiplex (Mpx/Dpx) server stations 

is of particular importance in every modeling approach. 

Fehler! Verweisquelle konnte nicht gefunden werden. shows 

the typical representation of the multiplexer service for three 

requesting systems over time. 

There are three parameters to consider for each requesting 

basic server station:  

1. Arrival Rates A
z
i
[1]

, possibly from different sources z 

2. Service Request specific Service Times X
z
i
[bb]

 

3. Service Request specific Traffic Flow Transformation 

coefficients v
z
i
[bb]

 

The basic idea is to partition the common resource multi-

plexer into parallel servers and to allocate each of these paral-

lel servers to each of the requesting server stations. The pa-

rameter used for this partial allocation is the multiplexing coef-

ficient mi, int which was already introduced for modeling real 

Parallel Servers (PS).  

The corresponding dynamic structures are shown in Fig. 16: 

 

Fig. 16: Requesting Basic Server Station’s View 

Evaluation of m
z
i,int

[bb(i,z)] 

m
z
i,int

[bb(i,z)+1]
 = m

z
mpx',i

[2]

 = v
z
mpx',i

[3] 
/vmpx

[4] 

 = Π v
z
mpx',i 

[b]  
/vmpx

[4]      
for b = 1,2,3

 = ΠΣv
z
mpx',i

[3]
 /Σv

s
mpx',j

[3]  
for all  rSSt

s
j
[bb(j,s)]      

with

Ampx'
[1] 

= ΣA
s
j
[bb(j,s)-1]   

      for all rSSt
s
j
[bb(j,s)]      

v
s
mpx'j

[3] 
= (A

s[1]
/Ampx'

[1]
) * {v

s
j
[bb(j,s)]

} * (X
s
j
[bb(j,s)]

/Xmpx
e[3]

)   for all (s,j)

v
z
mpx'i

[3] 
= (A

z[1]
/Ampx'

[1]
) * {v

z
i
[bb(i,z)]

} * (X
z
i
[bb(i,z)]

/Xmpx
e[3]

)   for all (s)

and

vmpx
[4] 

= vmpx'
[3]

 = Σv
s
mpx',j

[3]           
for all  rSSt

s
j
[bb(j,s)]      

 

mmpx,i is simply exported back from the multiplexer’s dis-

patcher back into the Tableaux of the requesting stations. 
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X. CONCLUSION AND OUTLOOK 

The introduction of service requests as variables with values 

and units allows distinguishing among the different traffic 

flows and thereby modeling complex server systems hierarchi-

cally. Horizontally, Little’s Law (LL) is applied to evaluate the 

equilibrium state for every single station within the hierarchy, 

whereas, vertically, the Forced Traffic Flow Law (FTFL) is 

applied to describe the transformation of service request flows 

between adjacent hierarchical levels along the paths from the 

root to the leaves. A set of service invariant transformation 

rules is given to transform an initial service request processing 

model into a tree structured one, which complies with the 

specification and evaluation scheme of the FMC-QE calculus.  

For each class of external service requests the tree of param-

eterized flow balance equations is represented within a Tab-

leau, where the three main sections correspond to the three 

dimensional description space of FMC [12],[16]. Service re-

quest and server station sections – together with the global 

section for the external source/sink – contain the structural and 

quantitative model parameters, whereas the dynamic evalua-

tion section contains the well known formulas to evaluate the 

steady state variables together with performance measures of 

interest. Due to the interdependences within the hierarchical 

flow balance sheet, these redundancies can be used to check 

the model’s correctness. 

When stationary flows are modeled by means of mandatory 

external source/sinks, server systems are not classified into 

OPEN and CLOSED, but into those with unlimited and limited 

buffer resources. Solutions of the latter class are approximated 

by applying the well known type M/M/m/K formulas in the 

Tableau independently for each server station together with an 

estimate for the approximation error. Since basic server sta-

tions in FMC-QE models generally make use of shared multi-

plexer server stations, single class and multiclass problems are 

treated with the same methodology. 

Once the model is set up and represented by the Tableau(x), 

the evaluation, due to the high level of abstraction of equilib-

rium and the simplicity of the corresponding formulas, re-

quires only a minimum of time. The same holds for variations 

of quantitative model parameters, being computable with the 

same Tableau(x).  

Many problems from literature ([3], [6] [8], [10], [17] a.o.)  

have been modeled and evaluated e.g. 

 Open and Closed Queueing Networks [4], [14] 

Multiclass Problems [4] 

 Process synchronization [9], [14] 

as well as a first 

large software system based on SAP Netweaver [20] 

with high accuracy and neglectable computing time. 

Even though the interpreter, MS-Excel, which has been used 

so far was sufficient to demonstrate the methodology, a more 

powerful toolset is under construction, which will improve the 

ease of use and the power of the modeling as well as of the 

evaluation. 
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ANNEX: FORMULAS OF THE FMC-QE CALCULUS 

Global Parameter Section

A
z[1]

  = N
z
ext

e[1]
/∆t = [N

z
ext

e[1]
]/∆T ≤ A

z
max

[1]
Arrival Rate of unified external Service Requests from Source z (< for stochastic distr.)

A
z
max

[1]
 = min(B

z
max.i

[bb(i,z)]
) Bottleneck Throughput of Server System (dependant parameter)

{N
z
total

[0]
} = n

z
total

[0]
total number of unified Service Requests in Universe 

m
z
ext

[1]
 = {N

z
total

[0]
} - {N

z
sys

[1] 
} number if customers within the Infinite Server Source/Sink z (dependant Parameter!)

Common Section

i Index of Service Request/Server/Transistion (unique identifier within Server System)
bb ε (0,1,...) hierarchical level 0- highest ("universe"), 1- ext. Source/Sink || Server System

Service Request Section

N
z
i
e[bb]

 = 1 [N
z
i
e[bb]

] unified Service Request

[N
z
i
e[bb]

] Service Request Unit (semantic identifier)

v
z
i,int

[bb]
 = {v

z
i,int

[bb]
}*[Ni

e[bb]
]/[Nsup(i)

e[bb-1]
] local Service Request transformation coefficient in multiples of [N

z
i
[bb]

]

v
z
i
[bb]

 = v
z
i,int

[bb]
*v

z
sup(i)

[bb-1]
  (recursion leaf i ...root) global Service Request transformation coefficient in multiples of [N

z[1]
]

<origin>::= C||S external Customer or System internal Service Request

Server Section

<server station identifier> Type of Server Station (semantic)

<hierarchical type >::= Server Station type within Server Tree structure

hSSt: H hierarchical Server Station ("node"): 

sH (≡ shSSt) superordinate hierarchical Server Station [bb-1] 

aH (≡ ahSSt) abstracted hierarchical Server Station [bb] (same as directly embedded Stations)

BSSt: B Basic Server Station ("leaf")

      mB ≡ mBSSt multiplexd Basic Server Station

MSSt: M Multiplexer/Demultiplexer Server Station

<server configuration type>  ::= local Server configuration

    SS||PS||IS||mpxed Single/Parallel/Infinite/Mpx

<capacity>:: 1 || K || ∞ max. number of SRq within Service Station ("storage places")

X
z
i
[bb]

Service Time of Basic Server Station type i for a unified SRq

m
z
i,int

[bb] 
local multiplicity of servers within Service Station SSt

z
i
[bb]

 (= multiplexing coefficient for SS)

m
zIS

ext
[1]

 = {N
z
total

[0]
} - {N

z
sys

[1]
} average number of infirnite Customer Server Stations (IS) in external Source/Sink

m
z
i
[bb]  

 = m
z
i,int[

bb] 
 m

z
sup(i)

[bb-1]
   (recursion leaf i... root)total  multiplicity of servers within Service Station SSt

z
i
[bb]

M: m
z
mpx(i),int

[bb(i,z)+1]  
 = m

z
mpx,i

[2]  multiplexer partition for multiplexed Basic Server Station mBSSt
[bb]

Service Rate Bi Service Rate for Unified Service Request 

BSSt: B
z
i
[bb] 

= m
z
i
[bb]

*[N
z
i
e[bb]

]/X
z
i
[bb]

for all subordinate BSSt/hSSt on level [bb+1]

mBSSt: B
z
i
[bb]

 = B
z
mpx(i)

[bb(i,z)+1] Service Rate of multiplexed Basic Server Station mpxBSSt
[bb]

hSSt: B
z
i
[bb]

 = min(B
z
sub(i)

[bb+1]
/v

z
sub(i),int

[bb+1]
 ) for all subordinate BSSt/hSSt on level [bb+1]

B
z
max,i

[1] 
= B

z
i
[bb]

/v
z
i
[bb] max. external  Arrival Rate from Source z (Bottleneck Determination)

Dynamic Evaluation Section

Arrival Rates Ai

A
z
i
[bb]

 = v
z
i
[bb]

*A
z[1]

Arrival Rate in SSt (z.i)

U
z
i
[bb] 

= A
z
i
[bb]

/B
z
i
[bb]

Utilization of Server Station  SSt (z.i)

Control State variable ni for BSSt:

except for System SRq's, which are ignored (e.g. ACK Service Requests  within communication protocols)

Control State variable ni,s number of SRq in Server of SSt (z,i)

n
z
i,s

[bb]
 = m

z
i
[bb]

*U
z
i
[bb]

Control State variable ni,q number of SRq in Queue of SSt (z,i)

n
z
i,q

[bb] 
= 0                              D/D/m

n
z
i,q

[bb]
= U

z
i
[bb]

/(1-U
z
i
[bb]

)             M/M/m

n
z
i,q

[bb]
= U

z
i
[bb]

/(2*(1-U
z
i
[bb]

))    M/D/m

                                                    M/M/m/K a.o. (formulas are a bit too complex to be integrated here)

Control State variables ni for hSSt:  

n
z
i,s

[bb]
 = Σn

z
sub(i,z),s

[bb+1]  
for all (i,z) directly subordinate Server Stations at Laxer [bb+1]

n
z
i,q

[bb]
 = Σn

z
sub(i,z),q

[bb+1] 
for all (i,z) directly subordinate Server Stations at Laxer [bb+1]

common formulas:

n
z
i
[bb]

 = n
z
i,s

[bb]
+n

z
i,q

[bb]
) number of SRq in SSt (z.i) 

W
z
i
[bb]

 = N
z
i,q

[bb]
/A

z
i
[bb]

Waiting Time for a unified SRq in Queue of SSt (z,i)

X
z
i
[bb]

 = N
z
i,s

[bb]
/A

z
i
[bb]

Service Time for a unified SRq in Queue of SSt (z,i)

R
z
i
[bb]

 = N
z
i
[bb]

/A
z
i
[bb]

Response Time for a unified SRq in Server Station SSt (z,i) ("Elapsed Time")

Correctness Check 

N
z
total

[0]
 = A

z
uni

[0]
 *R

z
uni

[0]
(based on the redundancy of the Tableau)  


