DIENEN OPTIK

LCD DIGITAL READOUT

Operation Manual

Contents

Chapter 1 Brief Introduction 1
1.1 Interface 6
1.2 Coordinate System 7
Chapter 2 BASIC OPERATION 8
2.1 Power on 8
2.2 Zeroing 8
2.3 Preset Data to designed axis 8
2.4 Toggle display unit between mm and inch 9
2.5 Mid-point Calculation 9
2.6 Absolute / Incremental / 500 groups SDM 10
2.7 Clear All SDM Datum. 11
2.8 Lathe Function 12
2.9 Filter display value 12
2.10 Close the screen 13
Chapter 3500 GROUPS SDM COORDINATE 14
3.1 Zeroing at the Current Point 14
3.2 Preset datum of SDM Coordinate 15
Chapter 4 SPECIAL FUNCTIONS 17
4.1 Bolt Hole Circle 17
4.2 Bolt Hole Line 20
4.3 Bolt Hole Grid 21
4.4 ARC Processing 22
4.5 Slope Processing 25
Chapter 5 CALCULATOR FUNCTION 27
Chapter 6 INITIAL SYSTEM 29
6.1 Enter/Exit Initial System Settings 29
6.2 System Parameter 29
6.3 Setting the Resolution of Scale 29
6.4 Setting Direction for Counter 30
6.5 Setting Linear Compensation 30
6.5.1 Manually compensate 30
6.5.2 Automatic compensate 31
6.6 Setting Section Compensation 31
6.7 Linear Scale and Rotary Compensation 33
6.8 R/D Display Mode 33
6.9 RS-232 34
6.10 Other Setting 34
Chapter 7 TOUBLE SHOOTING 36

Chapter 1 Brief Introduction

Back Panel(1)

DRO USER'S MANUAL
Description of Key Function

KEY MARK	FUNCTION
X_{0} Y_{0} Z_{0}	Zero selected axis.
$\times Y Z_{0}$	Clear all axes
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	Select axis to operate.
M MCH	Inch/Metric Switch
$1 / 2$	Center Finding
ABE	ABS/INC Switch
- 9	Numeric Key
\bullet	Decimal Point
t/r	+/- Sign
ENT	Enter
CA	Clearing 1 -
[國	Calculator
F1 F6	Function selection key
5	Process holes displayed equally on a circle.
\square	Process holes displayed equally on a line.
8^{8}	Simple R cutting function
5	Process a slope.
($3 \gg$	Stroll up or down to select.
(1)	LCD Screen switch key

1.1 Interface

A Linear Scale Interface

1) 9 PD Connector 1

PIN	NAME
1	+5 V
2	0 V
3	A
4	B
$5-9$	NC

B RS232 Interface

PIN	NAME
1	NC
2	TXD
3	RXD
4	NC
5	GND

2) 9PD Connector 2

PIN	NAME
1	NC
2	0 V
$3-5$	NC
6	A
7	VCC
8	B
9	NC

3) 15 PD Connector

PIN	NAME
1	+5 V
2	0 V
3	A
4	B
$5-15$	NC

9PD signal interface, please consult the agent.

1.2 Coordinate System

DRO is an instrument which can measure position of work piece when processing. Coordinate system must be definite first for more efficiency and accuracy.

In horizontal plane, the X axis is parallel with the operator; Y axis is perpendicular to X axis. Z -axis is perpendicular to horizontal plane. Positive direction of axis is set as the figure. It also can be changed as customer.

The value of one point position is the distance relative to the origin of coordinate.

For a work-piece as Figure A, the value of each point position is as the Figure B when point O is the origin of coordinate.

Fig A

Fig B

Chapter 2 BASIC OPERATION

2.1 Power on

Function: Power on then DRO enter normal display state.
It can memorize the following parameter after power on.
A. The scale position where power off;
B. ABS/INC/SDM mode;
C. Metric/Imperial mode;

NOTE:

- When the power switch is turned on, press and hold the key ENT enter the internal settings.
- If a linear scale is used for segment compensation, the system will prompt to find the RI point. If the linear scale is not moved after Power off, press the key CA to exit without find RI point.

2.2 Zeroing

Function: Zero the designated axis in normal display state. Zeroing is used to set the current point as datum point.

NOTE:

- When zero in ABS coordinate has no effect on INC display value. Zeroing in INC coordinate has no effect on ABS and SDM display value.
- Press the zero key of the same axis will cancel above zero operation if the scale kept still after zero.

2.3 Preset Data to designed axis

Function: Preset a value to current position for a designed axis in normal display state.

Example: Machine the work-piece from the A to B

STEPS:

1. Move the machine table, and align the lathe tool to A.
2. Press $\mathrm{X} \rightarrow \square \rightarrow \square \rightarrow \mathrm{ENT}$, which means the preset data is " 10 ";
3. Moving the machine table until " 27.000 " is displayed in X window. Now it is the position of B.

2.4 Toggle display unit between mm and inch

Function: Length can be displayed either in "mm" (metric) or "inch" (imperial).
Display unit can be toggled between mm and inch.
Example: Display value toggle from mm to inch
STEPS:

1. DRO returns normal display state. Press $\xlongequal{\frac{N C H}{M M}}$, the display unit is inch now.

\% x	25.400
Y	25.400
Z	25.400

NOTE: It is invalid to toggle between $m m$ and inch while axis is encoder.

2.5 Mid-point Calculation

Function: Set the center of work piece as datum by halving the displayed value.
Example: Set the center of rectangle as datum as the right figure.

STEPS:

1. Move machine table and align the lathe tool with point A ;

Press X_{0} to zero X axis, press Y_{0} to zero Y axis;

2. Align lathe tool with point B by moving machine table; Press $\xrightarrow{1 / 2} \rightarrow \mathrm{X}, \stackrel{1 / 2}{ } \rightarrow \mathrm{Y}$ to halve the X and Y axis display value;

3. Move the machine table until " $\underline{0}$ " is displayed in X window and Y window. The position (where the lathe tool is) is the work-piece's center.

NOTE: It is invalid to mid-point calculation while axis is encoder.

2.6 Absolute / Incremental / 500 groups SDM

Function: DRO has 3 display modes: the absolute mode (ABS); the incremental mode (INC) and 500 groups Second Data Memory (SDM) with the range of 001 to 500 .

1. Zero point of work-piece is set at the origin point of ABS coordinate;
2. The relative distance between datum of ABS and SDM remains unchanged when ABS datum is changed.
3. In ABS coordinate. The coordinate value is black;

In INC coordinate. The coordinate value is blue;
In SDM coordinate. The coordinate value is red;

I. Toggle among ABS/INC/SDM coordinate

These three display modes can be changed only in normal display state.

Press key F2 or F3 or \downarrow, the display modes can be changed between ABS, INC and SDM

II. Set the new number of SDM in SDM mode

 STEPS:1. Press key F3, message window display
"InputSDM", waiting for inputting a new number of SDM;

2. Enter a new number. for example, enter $B \rightarrow 6$
3. Press ENT, then the number of SDM is changed to86.

III: Increase/Decrease the SDM number

DRO return normal display state with the display mode SDM, press to decrease the number of SDM by 1 ; press \vee to increase the number of SDM by 1 .

2.7 Clear All SDM Datum

Function: Clear the Datum of all SDM 1-500. After clearing, the display value in SDM coordinate is equal to the value in ABS coordinate.
STEPS:

1. Return normal display state;
2. Press F1 , Enter "Function" interface , Press or $\boldsymbol{V}_{\text {to select }}$
"Reset SDM", then press key ENT

Grid hole
Lathe 0FF
Shake 0FF
Reset SDM
MM/Inch

2.8 Lathe Function

If two scales are installed in one axis, the position of the work-piece should be the sum of these two values in this direction. It is called lathe function. lathe mode is "NULL" : normal display. lathe mode is $\mathrm{X}=\mathrm{X}+\mathrm{Y}$:
X window value $=$ value of X axis position + value of Y axis position. lathe mode is $\mathrm{X}=\mathrm{X}+\mathrm{Z}$:
X window value $=$ value of X axis position + value of Z axis position. STEPS:

1. Set the lathe mode in initial system settings;
2. In normal display state press \square F1 Enter "Function" interface.
3. Press $\boldsymbol{\star}$ or to select "Lathe",then press key ENT

Grid hole
Lathe 0FF
Shake 0FF
Reset SDM
MM/Inch
:---
Lathe 0N
Shake OFF
Reset SDM
MM/Inch

2.9 Filter display value

When machine a work-piece by grinder, the display value varies quickly due to the vibration of grinder. User can't see display value clearly. DRO provides display value filter function to disable the quake change of display value. STEP:

1. In normal display state, press F1, enter "Function" interface.
2. Press $\boldsymbol{V}_{\text {to select "Shake", then press key ENT }}$

Note: The icon " \mathbb{Y} " " indicates that the digital filtering function is valid.

2.10 Close the screen

In order to extend the life of the LCD, when the customer is not using the digital display, can press key (山) to turn off the LCD display. When the LCD display is turned off, it does not affect the counting function of the digital display.

When the LCD screen is off, pressing any button will open the display.

Chapter 3500 GROUPS SDM COORDINATE

DRO has three display modes: the absolute mode (ABS), the incremental mode (INC) and the 500 groups second data memory (SDM 1-SDM500).
ABS datum of the work-piece is set at the beginning of the processing and the 500 group SDM is set relative to ABS coordinate.
500 group SDM coordinate can be divided into several segments, and every segment stores data of one work-piece. For example, if one segment has 20 groups SDM coordinate, DRO can be divided into 25 segments and can store data of 25 work-pieces.
Example: The ABS datum is the center point O , the pointA, B, C, D needed processing are set as datum of SDM 001 -SDM 004.

Two ways to set SDM coordinates:

1) Zeroing at the current point.
2) Presetting datum of SDM coordinate.

3.1 Zeroing at the Current Point

At first set the center point of the work-piece as the origin of the ABS, then align the lathe tool with point $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ by moving the machine table and zero them. It is the position to process where the " 0.00 " appears in X window, Y window by moving the machine table whether in ABS or in SDM coordinate.

STEPS:

1. Set the center of rectangular point O as the datum of ABS

Make line L1 parallel with X axis: line L 2 parallel with Y axis.
When position lathe tool to point O
Zero X axis and Y axis in SDM 001;
Zero X axis and Y axis in SDM 002;
Zero X axis and Y axis in SDM 003;

Zero X axis and Y axis in SDM 004;
2. Set the point A as the datum of SDM 001.

SDM 001: align the lathe tool with point A and zero X axis, Y axis.
Press X_{0}, Y_{0}

3. Similarly, use the same way to set the three auxiliary points B, C and D.
4. Machine the work-piece according to the preset SDM coordinate;
5. Machine another work-piece according to the same blueprint. You only need set the center point as the datum of ABS. It is not necessary to set SDM coordinate again, as SDM can be set automatically. Point A, B, C, and D is the zero point of SDM 001, SDM 002, SDM 003, and SDM 004 respectively. Point can be machined when enter corresponding SDM coordinate and " $\underline{\text { " }}$ appears in screen by moving machine table. This function can save great plenty of time in production.

3.2 Preset datum of SDM Coordinate

Compared with the way of zeroing at current point, the another way (presetting datum of SDM coordinate) can set zero point of SDM more accurately and quickly without moving the machine
 table.

As the figure showed right, center point is the datum of ABS, the position of point A, B,C, D is $(-25,20),(25,20),(25,-20),(-25,-20)$ in ABS coordinate.

A Enter SDM 001 and preset the position of point O as $(25,-20)$, which means the point A is the datum of $\operatorname{SDM} 001$;
B Enter SDM 002, preset the position of point O as ($-25,-20$), which means the point B is the datum of SDM 002 ;
Pay attention that the preset value is negative to the actual value of position in ABS. If set "SDM DIR" as "reverse" in system settings, the caution is not necessary. The value DRO accepts is equal to the negative of the enter value. STEPS:

1. Set "SDM DIR" as "reverse" in initial system settings;
2. Set the center point of the work-piece as the datum of ABS; Line L 1 is parallel to X axis, line L 2 is parallel to Y axis.
Move machine table,align the milling cutter with point O.The machine table remain still while presetting;
1) Set point A as the datum of SDM 001 ;

The position of point A is $(-25,20)$
press.

2) In the same way, the same step is used to set the auxiliary zero position for the two pointsB C and D.

NOTE:

- The SDM preset number direction is set in the internal settings.
- In SDM state, Preset number direction is set to positive, means that the display value is equal to the enter value; Preset number direction is set to reverse, means that the display value is equal to the negative of enter value.

Chapter 4 SPECIAL FUNCTIONS

DRO has special function as the following except measuring and positioning:
Bolt Hole Circle (BHC);
Bolt Hole Line (BHL);
Bolt Hole Grid (BHL);
ARC Processing ;
Slope Processing;
Note:Please refer Coordinate System (in Chapter 1) before reading this section.

4.1 Bolt Hole Circle

Function description:
DRO has the function of BOLT HOLE CIRCLE (BHC) .This function can simplify the pressing of multiple holes which are attributed equally around the circumference of a circle. The DRO will guide operator to enter the
 following parameters:

Center X X coordinate of the center of the circle
Center Y Y coordinate of the center of the circle
Radius Circle radius to be machined
Start angle Starting angle that the center of the first hole on the circle

End angle Ending angle that the center of the last hole on the circle

Holes number Number of holes to be machined
Direction Processing direction(CCW or CW)
Angle has two directions: counterclockwise(CCW) and clockwise(CW). "CCW" indicates that it is counterclockwise from Start angle to End angle; "CW" indicates it is clockwise from Start angle to End angle. As the following figure, the Start angle is 0°, End angle is 240°.

As figure illustrates, machine a hole every 45 deg from $0^{\circ} \sim 225^{\circ}$. Parameters are as the following:

| Center X | 0.000 | |
| :--- | :--- | :--- | :--- |
| Center Y | 0.000 | |
| Radius | 30 | |
| Start angle | 45° | |
| End angle | 225° | |
| Holes number | 5 | |
| Direction | CCW. | |

NOTE: If ST.ANGLE equals END.ANGLE, the holes are attributed equally around the whole circumference.

The positions of the hole center are calculated automatically after input all parameters. Press or to choose the hole No. and move the machine table until the " $\underline{0}$ " appears in X window, Y window. It is the position to process a hole. Example: Machine holes on circumference as the figure.

Center	X	0.000
Center	Y	0.000

Radius 100
Start angle $\quad 0^{\circ}$
End angle 315°
Holes number 8

Direction CCW.
STEPS:

1. Set display unit to metric in normal state;
2. Move the machine table until the machine tool is aligned with the center of the circle, then zero X axis, Y axis.

3. Press to enter Bolt Hole Circle function.
4. Input all parameters, press ENT to start processing.

5. Press the function key F6 to start processing
6. The current point is displayed as " 1 ";

It is the position of the first hole to punch where the " $\underline{0}$ " is displayed in X window and Y window by moving the machine table.

7. After finishing the first hole, press the current point is displayed as " 2 ";Move the machine table, the " $\underline{0}$ " is displayed in X window and Y window. It is the position of the second hole.

NOTE: Press or to change holes number.
3. Process the remaining holes in the same way.
4. After processing all holes, press

F1 to return normal display state.

NOTE:

Press the key F 2 during machining to view the machining parameters Press the key F3 during machining to temporarily leave the current machining state.

Press the key F6 during the machining process to open or closing prompt message (when the machining is finished, prompt the current workpiece processing is completed).

4.2 Bolt Hole Line

Function: DRO provide BOLT HOLE LINE (BHL) function. This function can simplify the processing multiple holes whose centers are attributed equally on one line.
The following parameters are needed to be input:
Start X The X start coordinate of the first hole
Start Y The Y start coordinate of the first hole
Line length Distance between the center of first hole and the center of the last hole

Line angle Angle between the line and the positive X axis
Holes number Number of holes to be machined
DRO will calculate the positions of the hole after all the parameters have been entered. Press or to select the No of hole and move the machine until " $\underline{0}$ " is displayed in X window and Y window. It is the position of hole to machine.
Example:

Start X	0.000
Start Y	0.000
Line length	45.000 mm
Line angle	30°
Line number	4

Line number 4
STEPS:

1. Set display unit to metric

Move the machine table until the machine tool is aligned with the center point of the first hole, and zero X axis, Y axis.
2. Press \boxed{L} to enter BOLT HOLE LINE function;
3. Input all parameters, press ENT to start processing.

4. The current point is displayed as " 1 "; Move the machine table until " $\underline{0}$ "appears in X window and Y window, it is the center of the first hole to punch.
5. After finishing the first hole, press $\boldsymbol{\nabla}$, and the current point is displayed as " 2 "; Move the machine table until " $\underline{0}$ " appears in X and Y window, and then you can punch the second hole at this point.
 NOTE: Press or to transform among holes.
6. Process the remaining holes in the same way.
7. Press $\lfloor\boxed{L}$ or F to return normal display state when finishing processing.

4.3 Bolt Hole Grid

Function: This function can calculate the position of every processing point automatically in processing grid. Only the following parameters need to be inputted:

Type Gride or Frame
Start-X The X start coordinate of the first hole
Start-Y The Y start coordinate of the first hole
Distance- $\mathrm{X} \quad$ Distance between holes in the X direction
Distance-Y Distance between holes in the Y direction
Angle \quad The angle between the grid(or fram)and the X axis
Number-X Number of holes to be machined in the X -axis direction
Number-Y Number of holes to be machined in the Y-axis direction
Example :
Machining the workpiece shown in the figure,The parameters are as following

Type
Start-X
Start-Y 0
Distance-X
15.000

Distance-Y
10.000

Angle $\quad 0.000^{\circ}$

Number-X 6
Number-Y 5

1. Return normal display state;
2. Press F1, Enter "Function" interface , Press $\boldsymbol{\Lambda}_{\text {or }}$
 to select "Grid hole", then press key ENT

- Grid hole
Lathe OFF
Shake 0FF
Reset SDM
MM/Inch

3. Input all parameters, press ENT to start processing.

4. Press the function key F6 to start processing
5. The current point is displayed as " 1 ";

Move the machine table until " $\underline{\text { " }}$ "appears in X window and Y window, it is the center of the first hole to punch.
NOTE: Press $\boldsymbol{A}_{\boldsymbol{\sigma}} \boldsymbol{\nabla}$ to transform among holes.
8. After finishing the first hole, press $\boldsymbol{\nabla}$, and the current point is displayed as " 2 "; move the machine table until " $\underline{\text { " }}$ " appears in X and Y window, and then you can punch the second hole at this point.

Current position	Grid. How
X -15.000	
0.000	:
Z 0.000	
Point:[7]	
kit Parametef Steonut	-

NOTE: Press or to transform among holes.
9. Process the remaining holes in the same way.
10.Press F1 to exit ARC processing after machining is over.

4.4 ARC Processing

It is waste to using numerical control lathe to process arc in the simple product or small production. This function makes it convenient to process arc with normal lathe. Parameter "Max cutting" is the arc length each process. The smaller
the Max cutting, the more smooth the arc plane and the longer processing time.
A. Process XZ, YZ plane

There are 8 modes as the following when processing arc in XZ or YZ plane:

NOTE: Milling cutter may be flat-bottomed or arc-bottomed. If flat-bottomed, set the tool diameter as 0 ;
B. Process XY plane

DRO provides the above 8 modes in processing XY plane. The milling cutter is perpendicular to the machine plane. DRO has internal ARC processing and external ARC processing for each type:

Process Type (when process XY plane)

Set the tool radius according to the actual milling cutter when process XY plane.
Enter the following data for ARC processing:
Process plane Plane of the ARC processing
Process model Mode of the ARC processing
ARC Radius Arc radius to be machined
Tool dia Tool diameter
Step model Feed step
Max cutting Maximum cutting amount
Process type \quad Outside or inside(XY plane only)

Example :

Parameters are as the following:

Process plane	XY
Process model	Mode 3
ARC Radius	20 mm
Tool dia	5 mm
Step model	MAX CUT
Max cutting	1 mm
Process type	Outside

STEPS:

1. Set display unit is metric
2. Move the machine table until the lathe tool is aligned with point A , then zero X axis and Y axis;
3. Press to enter ARC processing state.
4. Input all parameters, press ENT to start processing.

5. Process ARC, the current point is displayed as " 1 ". Process when the " $\underline{\text { " }}$ appears in X window and Y window. Then you have finished the first point.
Press to switch to the second point and repeat the same step.

NOTE: Press $\boldsymbol{A}_{\boldsymbol{r}} \downarrow$ to transform among holes.
6. Press to exit ARC processing after machining is over.

NOTE: For DRO of 2 axes, it is not installed with Z-axis, please press or to
simulate position of Z-axis,

simulate moving to the former process point, and simulate moving to the next process point.

Steps:

1: Before machining, at first, align lathe with the beginning point Z of R, zero Z axis;
2: In machining process, message window displays simulate height of Z axis, which indicates simulate height of Z axis while machining;

As right figure, while machining $X Z$ plane, X window display position of X axis, X axis is finished
 when displaying " $\underline{0}$ " in X window, Z window displays the Z-axis simulation height, which indicates the Z-axis height when the current machining point stops machining. The number of turns and the ring ring scale, which means that machining to this scale for current point.

4.5 Slope Processing

Function: This function can calculate the position of every processing point automatically in processing slope. Only the following parameters need to be inputted:

Process plane Set machine plane XY, YZ or XZ plane
INCL angle the inclination angle of the slope
Step model MAX CUT or Z STEP NOTE:

Z STEP and MAX. CUT are defined as the figure.

MAX cutting the slope length each time processing
DRO will calculate the position of each processing on the slope automatically when all parameters have been input. Press $\boldsymbol{\Lambda} \nabla$ to select the processing point and process until " $\underline{0}$ " appears in the window.

Example :
Process the slope AB as the figure. The parameters are as ollowing:
Process plane XZ
INCL angle 45°
Step model Z STEP
MAX cutting 1 mm

STEPS:

1. Set display unit to metric;

Move the machine table until the lathe tool is aligned with the starting point A , then zero X axis and Z axis.

Press X_{0}, Z_{0} in normal display state.
2. Press to enter slop processing
3. Input all parameters, press ENT to start processing.

4. Process ARC, the current point is displayed as " 1 ". Process when the " $\underline{0}$ " appears in X window and Y window. Then you have finished the first point. Press to switch to the second point and repeat the same step.

5. Press to return normal display state after processing is over.

NOTE: For DRO of 2 axes, it is not installed with Z-axis, please press or to simulate position of Z-axis, Please refer to arc machining.

Chapter 5 CALCULATOR

DRO provides arithmetic operation such as plus，minus，multiply and divide， which convenient for operator to processing work piece according to the drawing．

－Enter and exit Calculator Function

In normal display state：press 凅 to enter calculator function
In calculator state：press 圖 to exit calculator function

Current Position			Calculator		
X		00	0		
Y		0	$\mathrm{X}_{0}\left\|\mathrm{Y}_{0}\right\| \mathrm{Z}_{0}$ Calculator \rightarrow Position $\begin{array}{\|l\|l\|l\|} \hline \mathrm{X} \mid \mathrm{Z} \\ \hline \end{array}$ Position \rightarrow Calculator		
Z		O			
Inv	Sin	Cos	Tan	$\sqrt{ }$	返回
＋	－	\times	\div	Π	二

－Calculating Example

Example 1： $2+30 \times 2-6 / 2=59$
$2 \rightarrow \mathrm{~F} 1 \rightarrow 3 \rightarrow \mathrm{Z} \rightarrow \mathrm{F} 3 \rightarrow 2 \rightarrow \mathrm{~F}, \mathrm{G} \rightarrow \mathrm{F} 4 \rightarrow 2 \rightarrow \mathrm{~F}$,

Example 2： $345+2 \times \sin ^{-1}(-0.5)=285$

NOTE：
1．If incorrect data is inputted，press CL to cancel and input again．
2．Error would occur when calculating incorrectly，such as＂ 0 ＂is used as divisor or proceeding arcsine when absolute value is more than 1．In this case，the message window will display＂ERR．．．＂You can cancel this error message by pressing CL and input data again．

3．The absolute value of inputted data and calculated result should be in the range of 0.000001 to 9999999，otherwise it can＇t be displayed．

- Transferring the Calculated Results to Selected Axis

After calculating is finished:
press $\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}$, to transfer the calculated result to $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, axis, then the window will display this value.

- Transferring the Current Display Value in Window to Calculator

In calculator state:
press $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, to transfer the display value in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ window to calculator.

Chapter 6 INITIAL SYSTEM

Function: Set various parameters according to actual operation.
System setting, Resolution setting, Direction, Linear comp ensation, Section compensation , Axis type, Radius/Diameter mode, RS232 and other setting.

6.1 Enter/Exit Initial System Settings

Touch-hold " ENT " button to enter initial system setting after DRO powers on in 2 second, Press or to select the item you want to change.
press F1 to quit system settings.

6.2 System Parameter

system language:
Chinese and English.
Interface type of axes :
2 axes and 3axes

6.3 Setting the Resolution of Scale

Linear scale:

Different scale has different resolution. DRO can connect with 10 kinds of scale, and these resolutions are $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.2 \mu \mathrm{~m}$, $0.5 \mu \mathrm{~m}, 1 \mu \mathrm{~m}, 2 \mu \mathrm{~m}, 5 \mu \mathrm{~m}, 10 \mu \mathrm{~m}, 20 \mu \mathrm{~m}, 50 \mu \mathrm{~m}$. The resolution must be set to match the linear
 scale.

Encoder:

When the encoder is connected, the resolution is the number of pulses emitted by the encoder during one revolution.

6.4 Setting Direction for Counter

After the user installs the scale, the actual counting direction may be exactly the opposite of what the user expects, and the user's needs can be solved in the internal setting. The direction of the scale is set by the installer and the user
 should not change it.

6.5 Setting Linear Compensation

Definition

Linear error: There is always an error between actual measure value and standard value. If it is distributed around the scale travel linearly, the error is defined as linear error.

Linear compensation: Compensate the linear error to make display value equals to standard value.

NOTE: The linear compensation is set by erector. Operator had better not change it, or the accuracy of linear scale will be worse.

6.5.1 Manually compensate

For example(X Axis) :

The scale valid length is 400 mm .if the measure value is 400.040 mm and the standard value is 400 mm 。

Enter the standard value 400.000 and the
 observed value 400.050 on the corresponding number axis.

6.5.2 Automatic compensation

Operating steps (Take the X axis as example)

1. Touch-hold " X " button for 3 seconds, enter into the mode of X axis automatic compensation, the X axis blinks.
2. As shown in the figure, put the standard gauge blocks on top of the workbench, move X axis to align with the A plane, press the " X_{0} " key, and reset.

3. Move X axis to align with the B plane, press the " ENT " key, window will show "X Axis set ok", then the linear compensation of X axis finished

NOTE:

- Standard gauge block must be integer times of 10 mm (for example: $10 \mathrm{~mm}, 20$ mm, 30 mm...). If not, please manually compensate.
- During automatic compensation, pressing the AC key can exit automatic compensation function, and the previous compensation value will not change.
- INC and SDM coordinates cannot automatically compensate, inch system cannot automatically compensate, only under the ABS and metric system, can enter into automatic compensation function.
- After compensation, values can be checked in internal parameter set.

6.6 Setting Section Compensation

In the case where the number axis type is a scale:
Nonlinear error: There is an error between the measured value of the scale and the standard value. The error is nonlinearly distributed in the stroke range of the scale, which is called nonlinear error.

The linear compensation of the segment is to divide the whole scale into n segments, and the error is considered linear in each segment, respectively, and a compensation value is given; when counting, it is calculated according to different
compensation values in different segments.

Operation steps (X axis as an example):

1. In the internal settings, press $\boldsymbol{V}_{\text {to select the section compensation. }}$
2. Press the key ENT to enter the section compensation, press F4, F5 , F6 to select the axis to be set.

System	SegCOMP AXIS X AXIS		
Resolute			
Dir	EnableSegC0MP SetC0MP	CLOSE	
LineComp		ENTER	
- SegC0MP	CheckCOMP	ENTER	
AxisType	ClearC0MP	ENTER	
RS-232			
Other			
Exit			

3. Press key to move to "Enable SegCOMP" and press key F6 to open the section compensation.
4. Press key move to "Set COMP" and press key F6 to start section compensation.

System	SegC0MP AXIS X AXIS			
Resolute				
Dir	EnableSegCOMP	CLOSE		
LineComp	SetCOMP	ENTER		
O SegCOMP	CheckCOMP	ENTER		
AxisType	ClearCOMP	ENTER		
RD Model				
RS-232				
0ther				
Exit			CLOSE	OPEN

1. The system prompts to move to the vicinity of the X -axis RI point, press the key ENT to start searching RI point.

Move X axis to near
RI, if ready, Press
ENTER key...

Move the X axis
slowly to search
RI.

2. Press X_{0} to clear the X -axis data.

3. Move the scale to a certain point on the standard ruler, press the numeric keys to input the standard value, press the key ENT. and the compensation value of the current node is input into the system. The node number is automatically increased. (The

segment compensation only needs to input the standard value, and the observation value is automatically obtained by the system after reading the standard value.)
4. Compensate other nodes in the same way
5. After all the node compensation settings are completed, press the key F6 to end the section compensation and return to the setup menu.

X	499.070			
	STIV Value	Osiv Value	Nowe sid valie	
	${ }^{500.000}$		10-450.000	070
	${ }^{150.000}$			
	2000.000	199.965		
	${ }^{250.000}$			
	${ }^{300.000}$			
	350.000 400.000	${ }^{349.970}$ 39965		
ExIT				FIN

6. Press key move to "CheckCOMP" and press F6 to check compensation.
7. Press key move to "ClearCOMP" and press F6 to clear compensation.

6.7 Linear Scale and Rotary Encoder

Both linear scale and rotary encoder can be installed in any axis. The linear scale is used to measure distance; the rotary encoder is used to measure angle.

The angle type and angle mode are valid only
 when the interface type is an encoder.

Angle type: percentage and degree minute
Angle type: $0-360^{\circ},-360-360^{\circ},-180-180^{0}$

6.8 R/D Display Mode

In common case, the display value is the distance between lathe tools and the coordinate origin. This display mode is Radius mode. When process cylinder given diameter measurement, diameter is the double distance between lathe tool
 and coordinate datum. The DRO will display the diameter in Diameter mode

6.9 RS-232

Sometimes, the user needs to transfer the current display value to the computer display. At this point, the user needs to decode according to the communication protocol of the digital display to display the data transmitted to the computer, and the specific
 communication protocol can contact the agent.

6.10 Other Setting

There are two types of lathe mode:

lathe mode is $\mathrm{X}=\mathrm{X}+\mathrm{Y}$:
X window value $=$ value of X axis position + value of Y axis position. lathe mode is $\mathrm{X}=\mathrm{X}+\mathrm{Z}$:

X window value $=$ value of X axis position + value of Z axis position.
After setting the lathe mode, you can press the key $F 1$ on the normal display interface to enter the function selection interface and select to turn the lathe function on or off.

Screen protection time

It can be set to $30,60,90$, or 120 minutes, or you can choose to turn off the screen protection function.

NOTE: In the screen protection state, you can exit by pressing any button or moving the scale to exit screen protection state.

LCD-Bright

Press and hold F5 or F6 to increase or decrease the screen brightness.

Z axis Dial

Z axis Dial should be set if Z axis is emulated for DRO of 2axes and only install linear scale for X, Y axis.

Z axis Dial means the distance the Z axis travels when screw runs a revolution.

NOTE: In the case of ARC Processing and Slope Processing, it is used only when the z-axis is not installed.

Factory rest

Prompt for the password. After completing the password entry, press the key ENT to start the Factory rest.

The default setup for all parameters is as following:
$>$ Resolution $5 \mu \mathrm{~m}$;
$>$ Counting direction: Positive
> Input mode in SDM: display value = input value;
> Linear Compensation: Both standard and observed values are 1.000 (No compensation)
$>$ Section compensation: off
> Interface type: Linear scale
\rightarrow Angle type :DD
$>$ Angle mode: $0^{0}-360^{\circ}$
$>$ R/D mode: Radius mode
> Baud rate: 9600
> Lathe mode: off
$>$ Screen protection time: 60 minutes
> Z-axis Dial: 2.5 mm

Chapter 7 TROUBLE SHOOTING

The following are the easy solvent for troubleshooting. If they can not work: please contact with distributor for more service.

Trouble	Possible Reason	Solvent
No display	A The DRO isn't powered. B AC power voltage is not in the range of 100 V to 240 V C LCD screen is damaged	A Check the fuse is OK or not. Check the socket is loose. B Check the input power voltage is in the range of 100 V to 240 V . C Replace the LCD screen
Cover is charged	A Poor grounding is float B Leakage of electricity	Check the lathe and DRO are well grounded.
Display value is doubled	A Improper resolution B check lathe mode	A Set proper resolution. B Set lathe mode off.
No counting	A Poor contact of scale B No scale signal output C Useless of counting function	Exchange scale and check again.
Display value is in disorder	Memory is disorder	A Clear system. B Check compensation is proper.
Erroneous counting	A Poor precision of lathe B Too fast run speed of the lathe C Proper scale precision D Improper resolution is set E Improper linear error compensation F Useless of scale	A Repair lathe. B Reduce the move speed of scale. C Reinstall scale. D Set proper resolution. E Set proper linear error compensation. F Repair or exchange linear scale.

